
 

 

Title: Numerical modelling of the growth of glioblastoma cells in 
microfluidic devices 
 
Author: Maria Elzaurdi Carrera 
 
Advisor: Dr. José Sarrate Ramos 
 
Department: Departament d’Enginyeria Civil i Ambiental (751) 
 
Academic year: 2021-2022 

Master of Science in 
 Advanced Mathematics and 
Mathematical Engineering 



Universitat Politècnica de Catalunya
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Abstract

Glioblastoma Multiform (GBM) tumour is considered one of the most aggressive and lethal primary brain
tumour. In vivo trials are complex due to the amount of different variables that can affect a human body,
collateral damages and ethical issues. To overcome these problems, in vitro experiments are done using a
microfluidic device. However, these experiments are still expensive in terms of time and human resources.
Thus, numerical models are needed in order to design these devices and reduce the total cost of the cor-
responding experiment.
This project provides an in-depth analysis of a non-linear diffusion-convection-reaction mathematical model
considering the interaction of the tumour cells with oxygen concentration. The numerical resolution of this
model is done by using high-order continuous finite elements method and high-order Diagonally Implicit
Runge-Kutta, DIRK, temporal discretization schemes. Hence, we end up with a non-linear system at each
time stage which is solved applying the Newton-Raphson’s method. Finally, we present several examples
that illustrate the capabilities of the presented formulation.

Keywords

Glioblastoma Multiform, numerical modelling, finite element method, non-linear equations, Newton Raph-
son, oxygen, living cells, dead cells.
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Numerical modelling of the growth of GBM cells in microfluidic devices

1. Introduction

Glioblastoma Multiform, GBM, is an aggressive type of cancer that appears in the brain as well as in the
spinal cord. In most of the cases it can be difficult to cure, and there are a few treatments that slow its
growth and alleviate its symptoms.

In a human body, cells are in contact with the micro-environment and they receive external stimuli all time.
This make them modify their shape, their location, they tend to migrate, and so on [7, 8]. In vivo research
of this situation is difficult and dangerous due to the consequences that these experiments can have on the
quality life of the patients. In order to acquire a deeper knowledge on the evolution of this type of tumour,
in vitro experiments are used, so that we have a better control of the variables [1]. These experiments
have been done in 2D where cells are mostly cultured in the traditional Petri dish, in which cell behaviour
is very different from the observed in real cases [2, 9]. To overcome these drawbacks, microfluidic devices
were designed to allow a more accurate reproduction of the micro-environment and cell distributions [1],
including three-dimensionality.

Figure 1 presents a 2D sketch of a generic microfluidic device. It is composed of a central micro-chamber
where GBM cells are seeded at a prescribed density in a collagen hydrogel. This chamber is surrounded by
two microchannels that are used to supply oxygen to GBM cells through several holes that can be opened
or closed depending on the ongoing experiment.

Figure 1: 2D sketch of a microfluidic device.

The main cell processes considered are cell proliferation, differentiation and migration in total relation with
oxygen concentration surrounding the cell. In addition, two types of experiments will be simulated with
these microfluidic devices. First, oxygen will be supplied from both microchannels when high concentration
of living cells is inserted in the microchamber. Living cells quickly consume the existing oxygen and start to
dye and migrate towards both microchannels. This way, a necrotic core is generated at the inner part of the
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microchamber. Second, oxygen will be supplied from one single microchannel when a lower concentration
of living cells is inserted in the microchannel. In this case, cells migrate towards the open microchannel
more slowly than in the necrotic core case and a pallisade of living cells is generated at the open channel.
These two type of experiments will be illustrated in figures 2 and 3 obtained from reference [1].

Figure 2: Three snapshots of an experiment where a necrotic core is generated.

Dead cells are marked in red and living cells are marked in green. After oxygen is depleted, living cells
”dye” or move towards lateral walls so a necrotic core is created to the inner part of the micro chamber
(figure from reference [1]).

Figure 3: Two snapshots of an experiment where a single pallisade is generated.

The left image shows initial living cells distribution while the right one presents living cells distribution once
oxygen is supplied by the right channel, forming a single pallisade (figure from reference [1]).

These trials take a long time to complete them and if the design of the devices is complex even more time
is needed. After a long number of experiments, it has been observed that the dimension of the device and
its geometry have a strong influence on the duration of the experiment. In order to reduce the time and to
make the process more manageable, the versatility of mathematical modelling and computational methods
are used to analyse the growth of glioblastoma cancer [5, 6].

Glioblastoma Multiform tumour is the most common and aggressive of the primary gliomas. Therefore,
special efforts are focused on the development of new drugs and therapies that can lead to a better
prognosis. To this end, in this work, a mathematical model for the growth of the glioblastoma cells in
microfluidic devices is developed. It is based on a system of non-linear partial differential equations and
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Numerical modelling of the growth of GBM cells in microfluidic devices

ordinary differential equations. In order to compute the numerical solution for this non-linear diffusion-
convection-reaction model, high order finite element and implicit DIRK time discretization methods are
used.

This master thesis is structured in six chapters. Chapter 1, briefly introduces the main characteristics of
the physical problem and sets the objectives of this work. In chapter 2 the mathematical model used
throughout the work is presented. Chapter 3 details how we solve the problem by means of spatial and
temporal discretization methods. In the fourth chapter, some implementation details are discussed. Chapter
5 presents several examples in 2D and 3D. Finally, in chapter 6, we explain the conclusions of this work
and analyse the future work.
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2. Mathematical Model

2.1 General Formulation

The general formulation of the Glioblastoma Multiform growth evolution is provided by the next mathe-
matical model composed by a non-linear diffusion-convection-reaction equations. Tumour cell growth is
modelled using a non-linear coupled system:

∂c i

∂t
+∇ · f i = s i for i = 0, 1, ... , n. (1)

where c0 is the oxygen concentration and c i for i = 1, ... , n are the concentrations of the n phenotypes of
cells. f i is the corresponding flux and s i represents the source term of each element. The motion of these
phenotypes are governed by a diffusion term (proportional to the gradient of each concentration) and a
chemotaxis part (proportional to the gradient of oxygen concentration):

f i = −Ai∇c i + c iBi∇c0 for i = 0, ... , n.

where Ai and Bi are the diffusion and chemotaxis matrices. In general, these coefficients depend on
temperature, mechanical cues (represented by E) and the concentration of the oxygen and the phenotypes
(c = (c0, c1, ... , cn)T ). Hence, they can be expressed as Ai = Ai (E,T , c) and Bi = Bi (E,T , c). The
source terms are modelled as:

s0 = −
n∑

j=1

αjc j

s i =
1

τii
c i −

n∑
j=1,j ̸=i

1

τij
c i +

n∑
j=1,j ̸=i

1

τji
c j i = 1, ... , n.

where αi = αi (E,T , c0) is is the oxygen rate consumed by the i-th cell population depending on the
temperature, mechanical cues and oxygen concentration, τii = τii (E,T , c) is the characteristic time of
proliferation for population i and τij = τij(E,T , c) corresponds to the characteristic time of differentiation
form population i to j , both of them depending also on the temperature, mechanical cues and concen-
trations. Specifically, for application in microfluidic devices where living cells are mixed with hydrogel at
constant temperature, the thermal and mechanical dependences can be neglected.

This system is completed with a set of some initial and boundary conditions.
c i (x , t) = g i

D for x ∈ ΓiD

f i · n = g i
N for x ∈ ΓiN

f i · n = βi (c i − g i
R) for x ∈ ΓiR

c i (x , 0) = c i ,0(x) ∀x ∈ Ω

where Ω is the domain and its contour is ∂Ω = ΓiD ∪ ΓiN ∪ ΓiR for i = 0, ..., n.

7



Numerical modelling of the growth of GBM cells in microfluidic devices

2.2 Particular case

In this work we are considering two phenotypes cells: living cells concentration, c1, and dead cells con-
centration, c2. Similarly, we denote by c0 to the continuum field of oxygen concentration. Thus, we shall
denote by c = (c0, c1, c2)T the vector of field variables with 3 rows. Then, the equation that regulates
each population evolution can be expressed by considering different assumptions based on [2]:

1. Oxygen: The general case for oxygen concentration is:

∂c0

∂t
+∇ · f0 = s0

f0 = −A0∇c0

The assumptions make in the oxygen case are (see reference [2] for more details):

(a) A0 is constant.

(b) B0 = 0, this means that oxygen does not move respect to its gradient.

(c) The oxygen consumed per unit time by the living cells is

α1 = α1
∗r(c

0; c0t )c
1

where α1
∗ is a constant, c0t is the oxygen concentration related to the oxidative phosphory-

lation kinetics, the cell structure and morphology and the diffusion process in the cytoplasm
and r(c0; c0t ) is a function of the oxygen concentration which describes more accurately the
consumption at low oxygen concentration:

r(c0; c0t ) =
c0

c0 + c0t

As dead cells do not consume oxygen it is considered that α2 = 0. Thus, the source term for
the oxygen equation becomes

s0 = −α1
∗ r(c

0; c0t ) c
1 (2)

2. Living cells: The general case for living cells concentration is:

∂c1

∂t
+∇ · f1 = s1

f1 = −A1∇c1 + c1B1∇c0

The following assumptions are considered (see reference [2] for more details):

(a) A1 is constant.

(b) B1 is related to the oxygen and living cells concentration:

B1 = B1
∗β

1(c0, c1)

where B1
∗ is a constant value and β1 regulates how chemotaxis and proliferation/differentiation

are activated depending on oxygen and cell population concentrations. This last term is defined
as

β1(c0, c1) = ϕ (c0; c0h)ϕ (c1; c1s )
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where c1s is the cell saturation concentration and c0h the induced hypoxia migration activation
threshold. The functions are defined as ReLU functions:

ϕ (c1; c1s ) =


1 if c1 < 0

1− c1

c1s
if 0 ≤ c1 ≤ c1s

0 if c1 > c1s

ϕ (c0; c0h) =


1 if c0 < 0

1− c0

c0h
if 0 ≤ c0 ≤ c0h

0 if c0 > c0h

(c) It is considered that dead cells cannot be converted into living cells, this means that τ−1
21 = 0.

Then, the source term is modelled as

s1 = τ−1
11 c1 + τ−1

12 c1 =
1

τ∗11
S11(c

0, c1)c1 +
1

τ∗12
S12(c

0)c1

where τ∗11 and τ∗12 are a constant values, τ11 is the characteristic time of proliferation for living
cells and τ12 is the characteristic time of differentiation from living cells to dead cells. In our
case,

S11(c
0, c1) = ϕ+(c

0; c0h)ρ(c
1; c1s )

Besides that, cell proliferation also depends on nutrient supply or availability of space to grow
and split. Thus, the model combines logistic growth and the go or grow paradigm based on
oxygen supply. We define the growth corrections as:

ϕ+(c
0; c0h) =


0 if c0 < 0
c0

c0h
if 0 ≤ c0 ≤ c0h

1 if c0 > c0h

ρ(c1; c1s ) = (1− c1

c1s
)

Moreover,

S12(c
0) =

1

2
(1− tanh(

c0 − c0a
∆c0a

))

where c0a and ∆c0a are the location and the spread parameters associated to the oxygen con-
centration inducing cell death.

3. Dead cells: The general case for dead cells concentration is:

∂c2

∂t
+∇ · f2 = s2

f2 = 0

Dead cells are considered as an inert population. Based on experimental observation [2], we assume

(a) A2 = 0.

(b) B2 = 0.
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(c) We consider that dead cells are just created from living cells. Then, τ−1
21 = τ−1

22 = 0, while

1

τ12
=

1

τ∗12
S12(c

0)

where τ∗12 is a constant and S12(c
0) is a function that depends on c0. Thus, the source term is

s2 =
1

τ∗12
S12(c

0) c1 .

Once the equations for our model are posed, the values of the parameters that we have already explained
must be defined. Many of them are essentially unknown or with high ranges of variation. In order to
determine a set of reliable values for these parameters, in references [1] and [2] a parametric analysis based
on a 1D models have been developed. Table 1 details the values proposed in these works and the ones
that will be used here. It is important to point out that all of them are in the range found in bibliography:

name value units
O2 diffusion (A0) 10−5 cm2/s

O2 consumption rate (α1
∗) 10−9 mmHg × cm3

Michaelis-Menten constant (c0t ) 2.5 mmHg

cell diffusion (A1) 6.6× 10−10 cm2/s

chemotaxis coefficient (B1
∗ ) 7.5× 10−9 cm2 / (mmHg × s)

hipoxia migration threshold (c0h) 7 mmHg

cell saturation limit (c1s ) 5× 107 cell/mL

growth characteristic time (τ∗11) 7.2× 105 s

deadth characteristic time (τ∗12) 1.728× 105 s

anoxia death threshold (c0a ) 1.6 mmHg

anoxia death sensibility (∆c0a ) 0.1 mmHg

Table 1: The parameters values

.
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3. Numerical Model

Once the previously explained assumptions are applied, the model to solve is:

∂c0

∂t
−∇ · (A0∇c0) = s0 (3)

∂c1

∂t
+∇ · (−A1∇c1 + c1B1∇c0) = s1 (4)

∂c2

∂t
= s2 (5)

This non-linear diffusion-convection-reaction mathematical model can be solved by applying numerical
methods that involve high-order continuous Finite Element method and high order Diagonally Implicit
Runge-Kutta (DIRK) time schemes. This leads to a non-linear problem at each stage of the DIRK scheme
that will be solved by the Newton method.

3.1 Weak form

We consider the space of test functions

V i
0 = {v ∈ H1(Ω) : v|ΓiD

= 0} for i = 0, 1, 2

where ΓiD denotes the Dirichlet boundary for the i-th species, and the set of admissible functions

V i
D = {v ∈ H1(Ω) : v|ΓiD

= g i} for i = 0, 1.

The non-linear equations for oxygen and living cells contain the divergence of the flux. Therefore, they can
be solved in a similar manner. Considering the equations for both of them as:

∂c i

∂t
+∇ · f i = s i for i = 0, 1. (6)

Multiplying both sides by a test function, ψi ∈ V i
0 for i = 0, 1 we have∫

Ω
ψi ∂c

i

∂t
dΩ +

∫
Ω
ψi∇ · f idΩ =

∫
Ω
ψi s idΩ for i = 0, 1.

Applying integration by parts and the divergence theorem in the flux term, we obtain for all ψi ∈ V i
0,∫

Ω
ψi ∂c

i

∂t
dΩ+

∫
∂Ω
ψi f i · ndΓ−

∫
Ω
∇ψi · f idΩ =

∫
Ω
ψi s idΩ for i = 0, 1

Considering now the boundary conditions that we have described before and substituting the flux value,
we obtain for i = 0, 1:∫

Ω
ψi ∂c

i

∂t
dΩ+

∫
Ω
∇ψi · Ai∇c idΩ−

∫
Ω
∇ψi · (c iBi∇c0)dΩ+

∫
ΓiR

ψiβic idΓ

=

∫
Ω
ψi s idΩ−

∫
ΓiN

ψig i
NdΓ +

∫
ΓiR

ψiβig i
RdΓ
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The case of dead cells is the easiest due to the fact that flux is not considered. The equation to solve is:

∂c2

∂t
= s2

where c2(x , t) ∈ H1(Ω). Multiplying each part by a test function ψ2 ∈ H1(Ω) and integrating in the
corresponding domain, we obtain ∫

Ω
ψ2∂c

2

∂t
dΩ =

∫
Ω
ψ2s2dΩ

Then, the weak formulation of our problem reads: find (c0, c1) ∈ (V 0
D ,V

1
D) such that∫

Ω
ψi ∂c

i

∂t
dΩ +

∫
Ω
∇ψi · Ai∇c idΩ−

∫
Ω
∇ψi · (c iBi∇c0)dΩ +

∫
ΓiR

ψi βi c i dΓ

=

∫
Ω
ψi s idΩ−

∫
ΓiN

ψihidΓ +

∫
ΓiR

ψiβig i
N dΓ for i = 0, 1.

(7)

for all (ψ0,ψ1) ∈ (V 0
0 ,V

1
0 ) and find c2 ∈ V 2

0∫
Ω
ψ2∂c

2

∂t
dΩ =

∫
Ω
ψ2s2dΩ

for all ψ2 ∈ V 2
0 .

3.2 Spatial discretization

First of all, we discretize in space our unknown c i (x , t) ∈ V i
D which is defined as

c i (x , t) =

niu∑
j=1

Nj(x)c
i
j (t) +

nt∑
k=niu+1

Nk(x)c
i
k(t)

where nt represents the total number of nodes and nu the number of nodes in which the concentration c i is
unknown. Then, we are going to divide our concentrations in two summations: on the one hand, we have
the sum of the unknown concentrations while on the other hand, the known concentrations are summed.

Replacing the approximation in the weak form, we obtain: find c ij (t) ∈ R for any t > 0 and for i = 0, 1
such that

niu∑
j=1

dc ij
dt

∫
Ω
NlNjdΩ+

niu∑
j=1

c ij

∫
Ω
∇Nl · Ai∇NjdΩ

−
niu∑
j=1

c ij

∫
Ω
∇Nl · (NjB

i(
nt∑
r=1

c0r ∇Nr )dΩ+

niu∑
j=1

c ij

∫
ΓiR

αiNlNjdΓ

=

∫
Ω
Nls

idΩ−
∫
ΓiN

Nlh
idΓ +

∫
ΓiR

Nlβ
ig i

RdΓ

−
nt∑

j=niu+1

dc ij
dt

∫
Ω
NlNjdΩ−

nt∑
j=niu+1

c ij

∫
Ω
∇Nl · Ai∇NjdΩ

+
nt∑

j=niu+1

c ij

∫
Ω
∇Nl · (NjB

i(
nt∑
r=1

c0r ∇Nr )dΩ+
nt∑

j=niu+1

c ij

∫
ΓiR

βiNlNjdΓ

(8)
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for all l = 1, ..., niu.

With regard to dead cells, our unknown c2(x , t) ∈ H1(Ω) is discretized by

c2(x , t) =
nt∑
j=1

Nj(x)c
2
j (t)

Hence, replacing it in the weak form and taking ψ = Nl the expression obtained is: find c2j (t) ∈ R for any
t > 0 such that

nt∑
j=1

∂c2j
∂t

∫
Ω
NlNjdΩ =

∫
Ω
Nls

2dΩ (9)

for l = 1, ..., nt . Note that here, we are assuming that no dead cells move outside of the microchannels
and only no flux conditions will be applied on all boundaries.

3.3 Temporal discretization

Once spatial discretization is done, we have to carry out the temporal discretization. For this purpose,
different techniques can be used. In this work, DIRK schemes are used (more details in [3] and [4]).

Equations (8) and (9) can be discretized in time using DIRK schemes. We use the following notation: (·)n
indicates the value of any variable at time tn and (·)n,l the value of any variable at time tn,l = tn + cl∆t,
where n denotes the time step and l the DIRK stage. Hence, the concentration of any component at time
tn+1 = tn +∆t will be:

c i ,n+1 = c i ,n +∆t
s∑

l=1

bl ċ
i ,n,l , (10)

where ċ i ,n,l is the approximation of dc i/dt at time tn,l , and s is the total number of stages. The solution
at each stage of the DIRK scheme is computed as:

c i ,n,l = c i ,n +∆t
l∑

k=1

alk ċ
i ,n,k

Considering ĉ i ,n,l = c i ,n +∆t
∑l−1

k=1 alk ċ
i ,n,k , the solution at each stage can be computed as:

c i ,n,l = ĉ i ,n,l +∆tall ċ
i ,n,l for l = 1, ... , s, (11)

By clearing the derivative parameter from the previous equation we obtain

ċ i ,n,l =
c i ,n,l − ĉ i ,n,l

∆t all
for l = 1, ... , s, (12)

Parameters bl , cl , alk define the DIRK method and are given by the Butcher’s table, see Table 2. Note
that for DIRK schemes matrix A is lower triangular, as it is considered in equation (11).
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Table 2: Butcher’s table for a diagonal implicit Runge-Kutta scheme.

c A
b

≡

c1 a11
c2 a21 a22
...

...
. . .

cs as1 ... ass
b1 b2 ... bs

In the oxygen and living cells cases, at stage l of the step n, that is, at tn,l and for i = 0, 1, we look for
c i ,n,lβ ∈ R so that

niu∑
β=1

ċ i ,n,lβ

∫
Ω
NαNβdΩ +

niu∑
β=1

c i ,n,lβ

∫
Ω
∇Nα · Ai∇NβdΩ

−
niu∑
β=1

c i ,n,lβ

∫
Ω
∇Nα ·

(
NβB

i ,n,l
( nn∑

r=1

c0,n,lr ∇Nr

))
dΩ +

niu∑
β=1

c i ,n,lβ

∫
ΓiR

βi ,n,lNαNβdΓ

=

∫
Ω
Nαs

i ,n,ldΩ−
∫
ΓiN

Nαh
i ,n,ldΓ−

∫
ΓiR

Nαα
i ,n,lg i ,n,l

R dΓ

−
nt∑

β=niu+1

ċ i ,n,lβ

∫
Ω
NαNβdΩ−

nt∑
β=niu+1

c i ,n,lβ

∫
Ω
∇Nα · Ai∇NβdΩ

+
nt∑

β=niu+1

c i ,n,lβ

∫
Ω
∇Nα ·

(
NβB

i ,n,l
( nt∑

r=1

c0,n,lr ∇Nr

))
dΩ

+
nt∑

β=niu+1

c i ,n,lβ

∫
ΓiR

βi ,n,lNαNβdΓ

(13)

for α = 1, ... , niu.
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Introducing equation (12) into equation (13) we obtain that at time tn,l and for i = 0, 1, we seek for
c i ,n,lβ ∈ R such that

niu∑
β=1

c i ,n,lβ

∫
Ω
NαNβdΩ + all ∆t

niu∑
β=1

c i ,n,lβ

∫
Ω
∇Nα · Ai∇NβdΩ

−all ∆t

niu∑
β=1

c i ,n,lβ

∫
Ω
∇Nα ·

(
NβB

i ,n,l
( nt∑

r=1

c0,n,lr ∇Nr

))
dΩ

+all ∆t

niu∑
β=1

c i ,n,lβ

∫
ΓiR

βi ,n,lNαNβ dΓ

= all ∆t

∫
Ω
Nαs

i ,n,ldΩ +

niu∑
β=1

ĉ i ,n,lβ

∫
Ω
NαNβdΩ

−all ∆t

∫
ΓiN

Nαh
i ,n,ldΓ + all ∆t

∫
ΓiR

Nαβ
i ,n,lg i ,n,l

R dΓ

−
nt∑

β=niu+1

(
c i ,n,lβ − ĉ iβ

) ∫
Ω
NαNβdΩ− all ∆t

nt∑
β=niu+1

c i ,n,lβ

∫
Ω
∇Nα · Ai∇NβdΩ

+all ∆t
nt∑

β=niu+1

c i ,n,lβ

∫
Ω
∇Nα ·

(
NβB

i ,n,l
( nt∑

r=1

c0,n,lr ∇Nr

))
dΩ

+all ∆t
nt∑

β=niu+1

c i ,n,lβ

∫
ΓiR

βi ,n,lNαNβ dΓ

(14)

for α = 1, ... , niu.

In the case of dead cells, at time tn,l , we seek for c2,n,lβ ∈ R such that

nt∑
β=1

ċ2,n,lβ

∫
Ω
NαNβdΩ =

∫
Ω
Nαs

2,n,ldΩ (15)

for α = 1, ... , nn.

Inserting equation (12) into equation (15), we obtain that at time tn,l we seek for c2,n,lβ ∈ R such that

nt∑
β=1

c2,n,lβ

∫
Ω
NαNβdΩ = all ∆t

∫
Ω
Nαs

2,n,ldΩ +
nt∑

β=1

ĉ2,n,lβ

∫
Ω
NαNβdΩ (16)

for α = 1, ... , nn.

Equation (14) and (16) are a system of non-linear equations that we rewrite using the residual form:

R
(
c0,n,l , c1,n,l , c2,n,l

)
=

R0
(
c0,n,l , c1,n,l , c2,n,l

)
R1
(
c0,n,l , c1,n,l , c2,n,l

)
R2
(
c0,n,l , c1,n,l , c2,n,l

)
 =

0
0
0

 . (17)

We now particularize (17) to our case taking into account the hypotheses on the data and coefficients
indicated in previous chapter. Next we detail, for i = 0, 1, 2, the αth component R i

α of the vector Ri .
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1. The residual form for the oxygen case is:

R0
α =

n0u∑
β=1

c0,n,lβ

∫
Ω
NαNβdΩ + all ∆t

n0u∑
β=1

c0,n,lβ

∫
Ω
∇Nα · A0∇NβdΩ

+all ∆t

n0u∑
β=1

c0,n,lβ

∫
Γ0R

β0,n,lNαNβ dΓ

−all ∆t

∫
Ω
(−1)α1

∗Nα r(c
0,n,l ; c0t )

( nt∑
r=1

c1,n,lr Nr

)
dΩ−

n0u∑
β=1

ĉ0,n,lβ

∫
Ω
NαNβdΩ (18)

+all ∆t

∫
Γ0N

Nαh
0,n,ldΓ− all ∆t

∫
Γ0R

Nαβ
0,n,lg0,n,l

R dΓ

+
nt∑

β=niu+1

(
c0,n,lβ − ĉ0β

) ∫
Ω
NαNβdΩ + all ∆t

nt∑
β=n0u+1

c0,n,lβ

∫
Ω
∇Nα · A0∇NβdΩ

−all ∆t
nt∑

β=n0u+1

c0,n,lβ

∫
Γ0R

β0,n,lNαNβ dΓ

for α = 1, ... , n0u.
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2. The residual form for the living cells is:

R1
α =

n1u∑
β=1

c1,n,lβ

∫
Ω
NαNβdΩ + all ∆t

n1u∑
β=1

c1,n,lβ

∫
Ω
∇Nα · A1∇NβdΩ

−all ∆t

niu∑
β=1

c1,n,lβ

∫
Ω
∇Nα ·

(
NβB

1,n,l
( nt∑

r=1

c0,n,lr ∇Nr

))
dΩ

+all ∆t

n1u∑
β=1

c1,n,lβ

∫
Γ1R

β1,n,lNαNβ dΓ

−all ∆t

∫
Ω
Nα

(
1

τ∗11
S11(c

0,n,l , c1,n,l)− 1

τ∗12
S12(c

0,n,l)

)( nt∑
r=1

c1,n,lr Nr

)
dΩ (19)

−
n0u∑
β=1

ĉ1,n,lβ

∫
Ω
NαNβdΩ

+all ∆t

∫
Γ1N

Nαh
1,n,ldΓ− all ∆t

∫
Γ1R

Nαβ
1,n,lg1,n,l

R dΓ

+
nt∑

β=niu+1

(
c1,n,lβ − ĉ1β

) ∫
Ω
NαNβdΩ + all ∆t

nt∑
β=n1u+1

c1,n,lβ

∫
Ω
∇Nα · A1∇NβdΩ

−all ∆t
nt∑

β=n1u+1

c1,n,lβ

∫
Ω
∇Nα ·

(
NβB

1,n,l
( nt∑

r=1

c0,n,lr ∇Nr

))
dΩ

−all ∆t
nt∑

β=n1u+1

c1,n,lβ

∫
Γ1R

β1,n,lNαNβ dΓ

for α = 1, ... , n1u.

3. The residual form for dead cells is:

R2
α =

nt∑
β=1

c2,n,lβ

∫
Ω
NαNβdΩ− all ∆t

τ∗12

∫
Ω
NαS12(c

0,n,l)
( nt∑

r=1

c1,n,lr Nr

)
dΩ

−
nt∑

β=1

ĉ2,n,lβ

∫
Ω
NαNβdΩ (20)

for α = 1, ... , n2u.

Newton-Raphson method will be used in order to find the roots of (18), (19) and (20). This method
consists on solving the linear system for each iteration ν,

J(cn,lν ) ∆cν+1 = −R(cn,lν )

where ∆cν+1 = cn,lν+1 − cn,lν and J(cn,lν ) is the 3 × 3 block Jacobian matrix with the block in the ith row
and jth column defined as [

J(cn,lν )
]
ij
=

∂Ri

∂cj ,n,lν

i , j = 0, 1, 2.

17
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This block is a niu × nju matrix (i , j = 0, 1, 2) whose entries are[
∂Ri

∂cj ,n,lν

]
αβ

=
∂R i

α

∂c j ,n,lβ,ν

α = 1, ... , niu, β = 1, ... , nju.

More precisely, this matrix is computed for each cell concentration:

1. For the oxygen case:[
∂R0

∂c0,n,lν

]
αβ

=
∂R0

α

∂c0,n,lβ,ν

=

∫
Ω
NαNβdΩ + all ∆t

∫
Ω
∇Nα · A0∇NβdΩ + all ∆t

∫
Γ0R

β0,n,lNαNβdΓ

−all ∆t

∫
Ω
(−1)α1

∗Nα
∂r(c0,n,lν ; c0t )

∂c0
Nβ

( nt∑
r=1

c1,n,lr ,ν Nr

)
dΩ (21)

for α,β = 1, ... , n0u ;[
∂R0

∂c1,n,lν

]
αβ

=
∂R0

α

∂c1,n,lβ,ν

= −all ∆t

∫
Ω
(−1)α1

∗r(c
0,n,l
ν ; c0t )NαNβdΩ (22)

for α = 1, ... , n0u and β = 1, ... n1u ;[
∂R0

∂c2,n,lν

]
αβ

=
∂R0

α

∂c2,n,lβ,ν

= 0 (23)

for α = 1, ... , n0u and β = 1, ... n2t .
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2. For the living cells:[
∂R1

∂c0,n,lν

]
αβ

=
∂R1

α

∂c0,n,lβ,ν

= −all ∆t

∫
Ω
∇Nα ·

(( nt∑
r=1

c1,n,lr ,ν Nr

)( ∂Bnu
1

∂c0

∣∣∣∣
cn,lν

Nβ

( nt∑
r=1

c0,n,lr ,ν ∇Nr

)
+ B1,n,l

ν ∇Nβ

))
dΩ

−all ∆t

∫
Ω
Nα

(
1

τ∗11

∂S11
∂c0

∣∣∣∣
cn,lν

− 1

τ∗12

∂S12
∂c0

∣∣∣∣
c0,n,lν

)
Nβ

( nt∑
r=1

c1,n,lr ,ν Nr

)
dΩ (24)

for α = 1, ... , n1u and β = 1, ... n0u ;[
∂R1

∂c1,n,lν

]
αβ

=
∂R1

α

∂c1,n,lβ,ν

=

∫
Ω
NαNβdΩ + all ∆t

∫
Ω
∇Nα · A1∇NβdΩ

−all ∆t

∫
Ω
∇Nα ·

((
B1,n,l
ν +

( nt∑
r=1

c1,n,lr ,ν Nr

) ∂B1

∂c1

∣∣∣∣
cn,lν

)
Nβ

( nt∑
r=1

c0,n,lr ,ν ∇Nr

))
dΩ

+all ∆t

∫
Γ1R

β1,n,lNαNβ dΓ

−all ∆t

∫
Ω
Nα

1

τ∗11

∂S11
∂c1

∣∣∣∣
cn,lν

Nβ

( nt∑
r=1

c1,n,lr ,ν Nr

)
dΩ

−all ∆t

∫
Ω
Nα

(
1

τ∗11
S11(c

0,n,l
ν , c1,n,lν )− 1

τ∗12
S12(c

0,n,l
ν )

)
Nβ dΩ (25)

for α,β = 1, ... , n1u ;[
∂R1

∂c2,n,lν

]
αβ

=
∂R1

α

∂c2,n,lβ,ν

= 0 (26)

for α = 1, ... , n1u and β = 1, ... n2t .
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3. For the dead cells:[
∂R2

∂c0,n,lν

]
αβ

=
∂R2

α

∂c0,n,lβ,ν

= −all ∆t

τ∗12

∫
Ω
Nα

∂S12
∂c0

∣∣∣∣
c0,n,lν

Nβ

( nt∑
r=1

c1,n,lr ,ν Nr

)
dΩ (27)

for α = 1, ... , nt and β = 1, ... n0u ;[
∂R2

∂c1,n,lν

]
αβ

=
∂R2

α

∂c1,n,lβ,ν

= −all ∆t

τ∗12

∫
Ω
NαS12(c

0,n,l
ν )NβdΩ (28)

for α = 1, ... , nt and β = 1, ... n1u ;[
∂R2

∂c2,n,lν

]
αβ

=
∂R2

α

∂c2,n,lβ,ν

=

∫
Ω
NαNβdΩ (29)

for α,β = 1, ... , n2t .

Taking all these computations into account the Jacobian matrix structure is:

J =

J00 J00 0
J10 J10 0
J20 J20 J22


Finally, once the concentrations are known at all stages the corresponding time derivatives at all stages
are computed using equation (12). From these values, the concentration at time step n + 1 is computed
according to equation (11).
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4. Implementation Details

As detailed in chapter 3, the non-linear system composed by equations (14) and (16) or (17) in compact
form, has to be solved at each stage of the DIRK scheme. In this work, we use the Newton’s method to
solve it. Therefore, at each iteration of the Newton method the linear system has to be solved. In order to
speed up the solution process we exploit the structure of the system matrix. Thus, the linear system to be
solved is: J00 J00 0

J10 J10 0
J20 J20 J22

∆c0

∆c1

∆c2

 =

−R0

−R1

−R2


To speed up the experiments, we are not going to solve the whole system directly. This means that, to
reduce the memory footprint and the computational time, we split it in two uncoupled and smaller linear
systems. First, we solve it for oxygen and living cells, that is, we seek for ∆c0 and ∆c1 by solving:[

J00 J00
J10 J10

] [
∆c0

∆c1

]
=

[
−R0

−R1

]
(30)

Afterwards, using the concentration values obtained before, we can compute the case of dead cells, that
is, we seek for ∆c2:

J22∆c2 = −R2 − J20∆c0 − J21∆c1 (31)

where the values in the right hand side are known.

We compute the matrix structure of the linear system: one for oxygen and living cells, and the other one
for dead cells. We loop on time according to the selected DIRK scheme. At each stage of the DIRK scheme
we solve the non-linear residual system. That is, we iterate according to the Newton’s method. Thus, at
each iteration:

1. We compute the residual for oxygen and living cells, (18) and (19).

2. We compute the Jacobian for oxygen and living cells, (21), (22), (24) and (25).

3. We solve the linear system for oxygen and living cells, (30).

This process is done until convergence conditions are achieved. Once we obtain the values for ∆c0 and
∆c1, the same steps will be done for dead cells:

1. We compute the residual for dead cells, (20).

2. We compute the Jacobian for dead cells, (27), (28), and (29).

3. We solve the linear system for oxygen and living cells, (31).

We iterate until convergence is achieved. Specifically, the process for oxygen and living cells stops when

∥c0,n,lν − c0,n,lν+1 ∥L2
∥c0,n,lν+1 ∥L2

≤ ϵc0 and ∥R0,n,l
ν ∥2 ≤ ϵR0

∥c1,n,lν − c1,n,lν+1 ∥L2
∥c1,n,lν+1 ∥L2

≤ ϵc1 and ∥R1,n,l
ν ∥2 ≤ ϵR1
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The iteration process for dead cells stops when these two conditions are satisfied:

∥c2,n,lν − c2,n,lν+1 ∥L2
∥c2,n,lν+1 ∥L2

≤ ϵc2 and ∥R2,n,l
ν ∥2 ≤ ϵR2
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5. Examples

In this section we present several examples that illustrate the capabilities of the presented formulation in
2D and 3D. The 2D examples are going to show us a necrotic core state while 3D simulations present a
single pallisade situation.

5.1 2D simulation of a microfluidic device under several working conditions

The main objective of this work is to develop a computational model to predict the behaviour of a microflu-
idic device. In this section we will analyse a specific model of microfluidic devices and we will simulate it
under three different working conditions.

Figure 4 shows the 2D CAD model of a microfluidic device. Its height is 1.35 cm and its width measures
0.3 cm. Boundaries coloured in blue represents solid walls made of polystyrene. The green boundary is an
exchange surface through which oxygen is supplied. Finally, the brown boundary represents inlet valves.
These valves are used in two different ways. On the one hand, they allow injecting a mixture of living cells
and collagen hydrogel. On the other hand, they are used to create three different working environments.

First, they can be closed, acting as a solid wall. This will be denoted as case A later. Second, they can
be opened, allowing to supply oxygen to the interior of the micro-chamber (they behave as an exchange
surface). This will be denoted as case B later. Third, they are opened allowing to supply oxygen but do
not allow living cells leaving the micro-chamber, denoted as case C later.

Figure 4: The regions of different boundary conditions in 2D

Next, we summarize the three cases we will analyse and the corresponding boundary conditions at the
upper and lower valves.
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1. Case A:

• Oxygen: Neumann homogeneous conditions.

• Living cells: Neumann homogeneous conditions.

• Dead cells: Neumann homogeneous conditions.

2. Case B:

• Oxygen: constant Dirichlet conditions.

• Living cells: Robin conditions.

• Dead cells: Neumann homogeneous conditions.

3. Case C:

• Oxygen: constant Dirichlet conditions.

• Living cells: Neumann homogeneous conditions.

• Dead cells: Neumann homogeneous conditions.

The initial conditions in those three cases are the same constant values:

c0,0 = 7 mmHg

c1,0 = 4× 107 cells/mL

c2,0 = 0 cell/mL

For the three cases we have performed two simulations. First, we have used linear elements with Backward
Euler time integration scheme. Second, we have used P3 elements with a DIRK3S3 scheme. All simulations
have been performed up to a final time step of 3 days and ∆t = 1h.

5.1.1 Case A

As we have already mentioned, what differentiates one case from the other are the boundary conditions at
the top and the bottom of the central tube. Specifically, the boundary conditions are:

1. For oxygen:

f0 · n = 0 in the solid wall.

c0 = 7mmHg in the exchange surface.

f0 · n = 0 in the valves.

2. For living cells:

f1 · n = 0 in the solid wall.

f1 · n = β1c1 in the exchange surface.

f1 · n = 0 in the valves.

with β1 = 10−6 s/cm.
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3. For dead cells:

f2 · n = 0 in the solid wall.

f2 · n = 0 in the exchange surface.

f2 · n = 0 in the valves.

Note that no flux boundary condition is applied on the exchange wall because in the experiments no
dead cells have been observed leaving the micro-chamber (see reference [2] for details).

The results of these simulations are presented in figure 5. In the first column, we have used a Backward
Euler for the temporal discretization with linear elements while the second one corresponds to DIRK3S3
temporal discretization with elements of degree 3. Red colour expresses the high amount of concentration
while blue colour means the opposite, that is, there is a lack of this type of concentration in that part.

At first, we have our mesh full of oxygen and living cells. After 3 days, we can observe that as we imposed
Neumann homogeneous conditions everywhere and we supply oxygen concentration in the right and left
side, close to these borders is the only place where oxygen remains. With respect to living cells, this type
of phenotype just survive near oxygen that is the reason why we only have in red close to these borders.
In the remaining part, dead cells appeared due to the lack of oxygen. Hence, the concentration of living
cells decreases in the tubes, thus increasing the concentration of dead cells throughout the tube.

Similar results are obtained in both simulations. Table 3 summarizes the characteristics of the used mesh
and the computational time of building and solving the linear systems at each stage of the DIRK scheme.

P1 P3
nOfNodes 5763 50311

nOfElements 5504 5504

theNumOfUnknowns of oxygen and live cells 11396 100236

theNumOfUnknowns dead cells 5763 50311

time building the linear system of oxygen and live cells 4.01 5.05

time solving the linear system of oxygen and live cells 0.15 6.12

time building the linear system of dead cells 1.51 1.12

time solving the linear system of dead cells 0.02 0.59

approximated cpu time 1550.22 11875.12

Table 3: Case A, the number of nodes and elements in each problem and the time required to create and
solve the system are detailed.

From the images we can state that there is not any significant difference between P1 with Backward Euler
and P3 with DIRK3S3. With regard to the table 3, it can be appreciated that working with high-order
methods in space and time increase the computational time.
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(a) Oxygen case with P1 elements (b) Oxygen case with P3 elements

(c) Living cells case with P1 elements (d) Living cells case with P3 elements

(e) Dead cells case with P1 elements (f) Dead cells case with P3 elements

Figure 5: 2D contour plots for case A of the oxygen, living cells and dead cells after 3 days.
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5.1.2 Case B

In this experiment the boundary conditions are different to the previous case. In concrete, the boundary
conditions are:

1. For oxygen:

f0 · n = 0 in the solid wall.

c0 = g0 in the exchange surface.

c0 = g0 in the valves.

with g0 = 7mmHg.

2. For living cells:

f1 · n = 0 in the solid wall.

f1 · n = β1c1 in the exchange surface.

f1 · n = β1c1 in the valves.

with β1 = 10−6 s/cm

3. For dead cells:

f2 · n = 0 in the solid wall.

f2 · n = 0 in the exchange surface.

f2 · n = 0 in the valves.

Note that no flux boundary condition is applied on the exchange wall because in the experiments no
dead cells have been observed leaving the micro-chamber (see reference [2] for details).

The computed results are depicted in figure 6. The first column represents the problem solved with linear
elements while the second corresponds to elements of degree 3. Red colour expresses the high amount of
concentration while blue colour means that there is less amount of concentration of this type.

This particularity can be seen in figure 6. In the exchange surface, the same phenomenon as in Case A
happens. With respect to the valves, as Robin conditions are considered in living cells, the concentration of
cells increases near these contours, while the concentration of dead cells decreases in the vicinity of these
edges. Moreover, in those valves, as there is a high living cells concentration leaving the micro-chamber,
their concentration decreases in the Robin contour, thus forming a palisade at some distance from the
Robin contour.

Similar results are obtained in both simulations. Table 4 summarizes the characteristics of the mesh and
the time required to build and solve the linear systems at each stage of the DIRK scheme.
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(a) Oxygen case with P1 elements (b) Oxygen case with P3 elements

(c) Living cells case with P1 elements (d) Living cells case with P3 elements

(e) Dead cells case with P1 elements (f) Dead cells case with P3 elements

Figure 6: 2D contour plots for case B of the oxygen, living cells and dead cells after 3 days.
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P1 P3
nOfNodes 1473 12481

nOfElements 1344 1344

theNumOfUnknowns of oxygen and live cells 2862 24718

theNumOfUnknowns of dead cells 1473 12481

time building the linear system of oxygen and live cells 0.87 4.91

time solving the linear system of oxygen and live cells 0.01 7.01

time building the linear system of dead cells 0.33 1.07

time solving the linear system of dead cells 0.01 0.71

approximated cpu time 256.99 2018.45

Table 4: Case B, the number of nodes and elements in each problem and the computational time used to
create and solve the system are detailed.

5.1.3 Case C

In this last trial the boundary conditions are a bit different to the previous cases. In concrete, the boundary
conditions are:

1. For oxygen:

f0 · n = 0 in the solid wall.

c0 = g0 in the exchange surface.

c0 = g0 in the valves.

with g0 = 7mmHg.

2. For living cells:

f1 · n = 0 in the solid wall.

f1 · n = β1c1 in the exchange surface.

f1 · n = 0 in the valves.

with β1 = 10−6 s/cm

3. For dead cells:

f2 · n = 0 in the solid wall.

f2 · n = 0 in the exchange surface.

f2 · n = 0 in the valves.

Note that no flux boundary condition is applied on the exchange wall because in the experiments no
dead cells have been observed leaving the micro-chamber (see reference [2] for details).

The results are presented in figure 7. In the first column, we have used a Backward Euler for the temporal
discretization with linear elements while the second one corresponds to DIRK3S3 temporal discretization
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with elements of degree 3. Red colour expresses the high amount of concentration while blue colour means
the opposite, that is, there is a lack of this type of concentration in that part.

This can be appreciated in figure 7. As at the top and bottom borders are imposed Dirichlet boundary
conditions for oxygen, the concentration of living cells increases near these contours, while the concentration
of dead cells decreases in the vicinity of these contours. Furthermore, considering that the flux of living
cells is null, they tend to accumulate in this contour due to the presence of oxygen.

Similar results are obtained in both simulations. Table 5 summarizes the characteristics of the used mesh
and the computational time of building and solving the linear systems at each stage of the DIRK scheme.

P1 P3
nOfNodes 1473 12481

nOfElements 1344 1344

theNumOfUnknowns of oxygen and live cells 2862 24718

theNumOfUnknowns of dead cells 1473 12481

time building the linear system of oxygen and live cells 0.93 4.33

time solving the linear system of oxygen and live cells 0.01 8.43

time building the linear system of dead cells 0.34 1.01

time solving the linear system of dead cells 0.01 0.88

approximated cpu time 261.75 2003.33

Table 5: Case C, the number of nodes and elements in each problem and the time required to create and
solve the system are detailed.
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(a) Oxygen case with P1 elements (b) Oxygen case with P3 elements

(c) Living cells case with P1 elements (d) Living cells case with P3 elements

(e) Dead cells case with P1 elements (f) Dead cells case with P3 elements

Figure 7: 2D contour plots for case C of the oxygen, living cells and dead cells after 3 days.
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5.2 3D simulation of two microfluidic devices under the same working
conditions

In this section we will simulate two microfluidic devices under similar working conditions. On the one hand,
the same shape as in 2D models will be used, see figure 8. On the other hand, another chip model will be
used, see figure 10.

In both of them a single pallisade will be generated since oxygen will be supplied from one single mi-
crochannel when a lower concentration of living cells is inserted in the micro-chamber.Therefore, cells
migrate towards the open microchannel more slowly than in the necrotic core case and a pallisade of living
cells is generated for the open side.

The initial conditions are:

c0,0 = 2 mmHg

c1,0 = 3.99× 106 cells/mL

c2,0 = 0 cell/mL

With regard to boundary conditions, the oxygen will only be supplied on one of the exchange surface side.
Then,

1. For oxygen:

f0 · n = 0 in the solid wall and one of the exchange surface.

c0 = g0 in the exchange surface.

f0 · n = 0 in the valves.

with g0 = 2mmHg

2. For living cells:

f1 · n = 0 in the solid wall and one of the exchange surface.

f1 · n = β1c1 in the other exchange surface.

f1 · n = 0 in the valves.

with β1 = 10−9 s/cm.

3. For dead cells:

f2 · n = 0 in the solid wall.

f2 · n = 0 in the exchange surface.

f2 · n = 0 in the valves.

Note that no flux boundary condition is applied on the exchange wall because in the experiments no
dead cells have been observed leaving the micro-chamber (see reference [2] for details).

Besides that, all simulations have been performed up to a final time step of 8 days and ∆t = 2h. For both
cases we have used Backward Euler time integration schemes with linear elements.
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5.2.1 First chip model

Figure 8 shows the 3D model analysed in this example. The dimension of this device is 1.35cm high, 0.3
cm wide and 0.02 cm deep. It corresponds to the 3D version of the model simulated in Section 5.1. It can
be observed that boundaries coloured in blue represents polymer walls, the green boundary is an exchange
surface through which oxygen is supplied and the brown boundary represents the inlet valves.

Figure 8: The regions of different boundary conditions in 3D with the first chip model

We consider the same situation as case A of 2D. That is, the valves are closed, acting as a solid wall.

• Oxygen: Neumann homogeneous conditions.

• Living cells: Neumann homogeneous conditions.

• Dead cells: Neumann homogeneous conditions.

Figure 9 shows the concentration distributions after 8 days. Several aspects of these results should be
mentioned. First, the oxygen concentration in the inner part of the micro-chamber after 8 days is reduced
in a slower rate than the oxygen concentration in the necrotic case. This is due to the fact that the initial
concentration of living cells is smaller. Second, the migration of living cells is also smaller due to the
fact that there is still oxygen in the inner part of the micro-chamber. Third, since the robin parameter is
smaller in the current experiment (β1 = 10−9), a smaller living cells concentration does not decay near the
exchange surface.
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(a) Oxygen case with P1 elements

(b) Living cells case with P1 elements

(c) Dead cells case with P1 elements

Figure 9: 3D contour plots of the oxygen, living cells and dead cells in a pseudo pallisade after 8 days.
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In table 6, some characteristics of the mesh and the computational time of building and solving the linear
system at each stage of the DIRK scheme are summarised. With regard to the computational time, it
requires just 6h while in vitro experiments need about 8 days to reach a single pallisade state.

P1
nOfNodes 44415

nOfElements 34240

theNumOfUnknowns of oxygen and live cells 88425

theNumOfUnknowns of dead cells 44415

time building the linear system of oxygen and live cells 25.27

time solving the linear system of oxygen and live cells 18.11

time building the linear system of dead cells 5.65

time solving the linear system of dead cells 2.15

approximated cpu time 22359.27

Table 6: Summarised data of pseudo pallisade with the first chip model.

The number of nodes and elements in each problem and the time required to create and solve the system
can be seen.

5.2.2 Second chip model

In this case, the chip model that we have used have a different shape. It is 0.5 cm high, 0.2 cm wide and
0.03 cm deep. Figure 10 shows the CAD model coloured according to the type of boundary. Therefore,
according to the type of the prescribed boundary condition.

Figure 10: The regions of different boundary conditions in 3D with the second chip model

The blue parts correspond to the polymer walls. Green boundaries represent an exchange surface through
which oxygen is supplied. Finally, the brown boundary corresponds to the inlet valves.

Considering the initial and boundary conditions described above, the single pallisade phenomenon can be
appreciated in the figure 11.

35



Numerical modelling of the growth of GBM cells in microfluidic devices

Observing the three images, we can see that in the valves there is not any exchange of oxygen or cells as
we have imposed Neumann homogeneous conditions. With regard to the exchange surface, in the holes,
the presence of oxygen and living cells can be appreciated. As expected a pseudo pallisade of living cells
is generated next to the exchange surfaces. Moreover, as we move away from the holes, the presence of
dead cells is greater.

In table 7, some characteristics about the mesh and the time required to create and solve the system at
each stage of the DIRK scheme are summarised.

P1
nOfNodes 26649

nOfElements 22080

theNumOfUnknowns of oxygen and live cells 53158

theNumOfUnknowns of dead cells 26649

time building the linear system of oxygen and live cells 17.16

time solving the linear system of oxygen and live cells 37.92

time building the linear system of dead cells 3.91

time solving the linear system of dead cells 3.25

approximated cpu time 26548.87

Table 7: Summarised data of pseudo pallisade with the second chip model.

Finally, it can be stated that the require computational time is 7 hours while in a trial 8 days have to be
passed.
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(a) Oxygen case with P1 elements

(b) Living cells case with P1 elements

(c) Dead cells case with P1 elements

Figure 11: 3D contour plots of the oxygen, living cells and dead cells of a pseudo pallisade after 8 days.
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6. Conclusions and further investigation

In this work we have presented a mathematical model to simulate the growth of glioblastoma in a microflu-
idic device. It is composed of a system of two non-linear PDE coupled with a non linear ODE. To solve
this problem, we use continuous high order finite elements and implicit DIRK time discretization schemes.

In order to improve the computational efficiency of the developed formulation we have exploited the
structure of the Jacobian matrix and we have split the global Jacobian in two parts. The first containing
the unknowns corresponding to the nodal values of the oxygen and living cells concentration and the other
corresponding to the nodal values of dead cells.

We have applied the formulation to several CAD models. In the first one, we have simulated a necrotic
core state in 2D model using different space and time discretization methods. In the second one, we have
analysed a single pallisade state in 3D version by using two different microfluidic devices.

Several works will be analysed in the near future. First, non-isotropic representation of the diffusive matrices
and chemotaxis matrices will be implemented. This is important because non-isotropic hydrogel will be
used. Second, iterative solvers will be implemented in order to further improve the computational efficiency
of the implementation (reducing the memory footprint and the execution time). This will be of the major
importance when dealing with more complex 3D models.

Other aspects can also be explored in the future. From the modelling point of view, gravity effects should
be included in order to reproduce the experimental results observed in specific microfluidic devices. From
the numerical point of view, other formulation such as hybridizable Discontinuous Galerkin (HDG) should
be considered if the convection (due to the migration) of living cells produced by chemotaxis is more
relevant.
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[2] J. Ayensa-Jimeńez, M. Pérez-Aliacar, T. Randelovic, J. A. Sanz-Herrera, M. H. Doweidar, and
M. Doblare. Mathematical formulation and parametric analysis of in vitro cell models in microflu-
idic devices: application to different stages of glioblastoma evolution. Scientific Reports, 10(1):1–21,
2020.

[3] J.C. Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons, 2016.

[4] Kenned, A. Christopher, Carpenter, and H. Mark. Diagonally implicit runge-kutta methods for ordinary
differential equations. a review. Technical report, 2016.

[5] H. Kitano. Computational systems biology. Nature, 420(6912):206–210, 2002.

[6] A. Kriete and R. Eils. Computational systems biology: From molecular mechanisms to disease. Academic
press, 2013.
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[8] S. J. Mousavi, M. H. Doweidar, and M. Doblaré. 3d computational modelling of cell migration: a
mechano-chemo-thermo-electrotaxis approach. Journal of theoretical biology, 329:64–73, 2013.

[9] C. Wang, Z. Tang, Y. Zhao, R. Yao, L. Li, and W. Sun. Three-dimensional in vitro cancer models: a
short review. Biofabrication, 6(2):022001, 2014.

39


	Introduction
	Mathematical Model
	General Formulation
	Particular case

	Numerical Model
	Weak form
	Spatial discretization
	Temporal discretization

	Implementation Details
	Examples
	2D simulation of a microfluidic device under several working conditions
	Case A
	Case B
	Case C

	3D simulation of two microfluidic devices under the same working conditions
	First chip model
	Second chip model


	Conclusions and further investigation

