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Abstract 

Flying Laptop is a small satellite carrying an optical communications payload. It was launched 

in 2017. To improve the satellite’s attitude determination, which is used to point the payload, a 

new sensor fusion algorithm based on a low pass filter and a multiplicative extended Kalman 

filter (MEKF) was developed. As an operational satellite, improvements are only possible via 

software updates. 

The algorithm estimates the satellite's attitude from star tracker and fibre-optical gyroscope 

(FOG) measurements. It also estimates the gyroscope bias. The global attitude estimate uses 

a quaternion representation, while the Kalman filter uses Gibbs Parameters to calculate small 

attitude errors. Past Kalman filter predictions are saved for several time steps so that a delayed 

star tracker measurement can be used to update the prediction at the time of measurement. 

The estimate at the current time is then calculated by predicting the system attitude based on 

the updated past estimate. The prediction step relies on the low-pass-filtered gyroscope 

measurements corrected by the bias estimate. 

The new algorithm was developed as part of a master’s thesis at the University of Stuttgart, 

where Flying Laptop was developed and built. It was simulated in a MATLAB/Simulink 

environment using the European Space Agency’s GAFE framework. In addition, the new filter 

was applied to measurement data from the satellite. The results were used to compare the 

performance with the current filter implementation. 

The new Kalman filter can deal with delayed, missing, or irregular star tracker measurements. 

It features a lower computational complexity than the previous standard extended Kalman filter 

used on Flying Laptop. The mean error of the attitude estimate was reduced by up to 90%. 

The low pass filter improves the rotation rate estimate between star tracker measurements, 

especially for biased and noisy gyroscopes. However, this comes at the cost of potentially less 

accurate attitude estimates. Educational satellites benefit from the new algorithm given their 

typically limited processing power and cheap commercial-off-the-shelf (COTS) sensors. This 

paper presents the approach in detail and shows its benefits. 
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Nomenclature 

𝛽  Gyroscope bias 

ϑ Error angle 

ω Angular velocity 

A  Assembly matrix 

F State matrix / jacobian 

H Observation matrix 

I  Identity matrix 

P Filter covariance estimate 

q  Quaternion 

Q  Process noise covariance 

R Observation noise covariance 

t Time 

T Filter step time 

x System state 

⊗  (Shuster) quaternion multiplication 

�̂�  Estimate of 𝑎 

[𝑎 ×]  Cross product matrix of 𝑎 

Acronyms/Abbreviations 

COI Center of Integration 
COTS  Commercial-Off-The-Shelf 
EKF Extended Kalman Filter 
ESA European Space Agency  
FIR  Finite Impulse Response 
FLOP Floating Point Operation  
FLP Flying Laptop 
FOG Fibre-Optical Gyroscope 
IIR  Infinite Impulse Response 
LSQ Least Squares 
MEKF  Multiplicative EKF 
MUKF  Multiplicative UKF 
OLS Ordinary Least Squares 
PF  Particle Filter 
STR  Star Tracker 
UKF Unscented Kalman Filter 

1. Introduction 

Flying Laptop (FLP) is a small satellite, 
developed and built at the University of 
Stuttgart. It measures 𝟔𝟎 × 𝟕𝟎 × 𝟖𝟎 cm and 

has a mass of 𝟏𝟏𝟎 kg [1]. A fixed optical 
communication system, OSIRISv1, is one of 
FLP’s payloads. OSIRISv1 nominally requires 
an attitude determination accuracy of 𝟎. 𝟎𝟑𝟒 
mrad [2]. FLP carries two star trackers (STR A 
& B) and four fibre-optical gyroscopes (FOG) as 
high-precision attitude and rate sensors.  

A standard extended Kalman filter (EKF) was 
previously developed for FLP. This filter was 
computationally expensive but did not achieve 
the required attitude determination performance 
[3], even after optimization [4].  

Therefore, a new filter was sought. It was 
desired to reduce the risk of filter divergence, 
handle delayed, asynchronous and missing 

STR measurements, estimate the FOG bias 
and utilize oversampled FOG measurements.  

FLP uses quaternions as attitude 
representation. This means that any algorithm 
must preserve the unit quaternion property [5]. 
The basic MEKF guarantees this by using a 
multiplicative error quaternion given in eq. (1) 
[5]. 

 𝒒𝒕𝒓𝒖𝒆 = 𝜹𝒒 ⊗ �̂� (1) 

Other popular filters such as unscented Kalman 
filters (UKF) [3, 6–11] or particle filters (PF) [12] 
exist but were dismissed as being too costly for 
the limited computational capacity of FLP [13]. 
They have their greatest strengths with highly 
nonlinear systems, whereas the rotation 
dynamics and kinematics can be linearized well 
for short time steps [5]. Recent UKF 
developments such as the Multiplicative UKF 
(MUKF) [14] are unproven and require 
adaptation to the sensors [13]. Conversely, 
combining low pass filtering with Kalman filters 
promises cheap noise reduction.  

This paper presents a new filtering concept that 
combines low cost and high precision sensor 
fusion utilizing variable measurement rates. 

2. Methodology 

2.1. Definitions 

This paper uses the same quaternion definition 
as [5] and the internal FLP algorithm, eq (2), 

 𝑞 = [
𝑞1:3

𝑞4
] = [

𝑞𝑥:𝑧

𝑞0
] (2) 

for the quaternion product of 𝒒 and 𝒓 as eq. (3). 

𝑞 ⊗ 𝑟 = [
𝑞4𝐼3 − [𝑞1:3 ×] 𝑞1:3

−𝑞1:3
𝑇 𝑞4

] 𝑟 (3) 

It can be applied to vectors 𝝎𝟑×𝟏 as shown in 

eq. (4) with the functions 𝛀, 𝚵 given in [5]. 

ω ⊗ 𝑞 = [
ω
0

] ⊗ q = Ω(ω)𝑞 = Ξ(𝑞)ω (4) 
 

All reference frames are right-handed cartesian 
coordinate systems.  

2.2. Filter Development 

The new algorithm consists of three elements: 

A digital low pass filter to pre-process the raw 

gyroscope measurements, an ordinary least-

squares (OLS) algorithm to fuse the gyroscope 

measurements in the satellite body frame, and 

finally a Kalman filter with a propagation and 

update step. 

 

2.2.1. Low Pass Filtering Gyroscope 

Measurements 

Five different 5th-order Cauer-type IIR filters 

were designed, one for each normalized cutoff 
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frequency 𝜔𝑐 ∈ {
1

2
,

1

3
,

1

4
,

1

6
,

1

10
}, as they offer the 

lowest signal delay [8] [15]. The passband ripple 

was limited to 𝛿𝑐 = 0.002 dB and the stopband 

attenuation was set to 𝛿𝑠 = −40 dB to achieve 

minimal signal distortion and significant high-

frequency noise suppression. 

Least Squares for Gyroscope Fusion 

A simple OLS algorithm was chosen to fuse the 

four partially redundant gyroscope 

measurements into a single three-dimensional 

measurement vector, utilizing the sensor 

assembly matrix 𝐴𝐹𝑂𝐺  in eq. (5). 

ω𝑘
∗ = (𝐴𝐹𝑂𝐺

𝑇 𝐴𝐹𝑂𝐺)−1𝐴𝐹𝑂𝐺
𝑇 ω̃𝑘 = 𝐴𝐹𝑂𝐺

∗ ω̃𝑘 (5) 

Modifying 𝐴𝐹𝑂𝐺  allows an easy adaption to the 

case of missing gyroscope measurements. 

2.2.2. Multiplicative Extended Kalman Filter 

The new MEKF uses a propagation algorithm 

similar to [5]. It estimates a delta-state 𝛿𝑥𝑘 =
[𝛿𝜗𝑘, 𝛽𝑘]𝑇 to determine the global state estimate 

𝑞𝑘 , 𝜔𝑘. The rate measurement is adjusted with 

the bias estimate by eq. (6).  

ω̂𝑘 = ω𝑘
∗ − β̂𝑘 (6) 

to propagate the attitude and covariance 

estimate. The discretization of the system 

Jacobian 𝐹𝑐 (eq. (7)) is done via linearization in 

eq. (8) to minimize the computational effort [5]. 

𝐹𝑐(𝑡𝑘−1) = [
−[ω̂𝑘−1

+ ×] 𝐼3

03×3 03×3
] (7) 

𝐹𝑘−1 = 𝐼6 + 𝑇𝑘𝐹𝑐(𝑡𝑘−1) (8) 

so that eqs. (9)- (11) propagate the state. 

�̂�𝑘
− = 𝑒𝑥𝑝 (

1

2
Ω(ω̂𝑘−1

+ )𝑇𝑘) �̂�𝑘−1
+  (9) 

β̂𝑘
− = β̂𝑘

+ (10) 

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄 (11) 

The à-priori estimate of the error angle is always 

set to zero (eq. (12)) as it is the best estimate 

given the data available for this step. 

δϑ̂𝑘
− = 0 

 

(12) 

If no STR measurement was received, the filter 

execution ends here. The propagated value 

gets passed on to the controller and is added to 

the buffer for an eventual later update. If a STR 

measurement was received, the filter can 

proceed with the update step. 

As the STR measurements can be taken 

asynchronously, their measurement must be 

compared with the estimated attitude �̂�𝐶𝑂𝐼
−  at the 

time of measurement 𝑡𝐶𝑂𝐼. This à-priori estimate 

is calculated by propagating from a previously 

buffered state using eq. (7) with an adjusted 

timestep 𝑇𝐶𝑂𝐼 = 𝑡𝐶𝑂𝐼 − 𝑡𝑘 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝐶𝑂𝐼. The error 

angle between a single STR measurement and 

estimate is given by eq (13).  

𝛿𝜗𝑆𝑇𝑅 = 2
(qr

−1 ⊗ qSTR ⊗ (q̂COI
− )−1)1:3

(qr
−1 ⊗ qSTR ⊗ (q̂COI

− )−1)4

 (13) 

If two STR measurements arrive in the same 

filter execution cycle, eq (13) is calculated for 

each measurement. The two error angles are 

then assembled by eq. (14). 

δϑ𝑆𝑇𝑅 𝐴𝐵 = [
δϑ𝑆𝑇𝑅 𝐴

δϑ𝑆𝑇𝑅 𝐵
] (14) 

This gives the measurement Jacobian for a 

single measurement as eq. (15) and for two 

measurements as eq. (16).  

𝐻𝐴 = 𝐻𝐵 = [𝐼3 03×3] (15) 

𝐻𝐴𝐵 = [
𝐻𝐴

𝐻𝐵
] 

(16) 

The matrices 𝐻 and 𝑅 for the Kalman gain must 

be chosen according to the number of STR 

measurements [13]. This leads to eq. (17) for 

the update of the error state. 

[
δϑ̂𝑘

+

�̂�𝑘
+

] = [
δϑ̂𝑘

−

�̂�𝑘
−

] + 𝐾𝛿𝜗𝑆𝑇𝑅 (17) 

The global estimate prior to the COI is then 
updated with the error state per eqs. (1) and (6). 
The error quaternion is constructed from the 
error angle with eq. (18) using the definition of 
the Gibbs parameter [5]. 

𝛿�̂�𝑘 =
1

√4 + (𝛿�̂�𝑘
+)

𝑇
𝛿�̂�𝑘

+

[𝛿�̂�𝑘
+

2
] 

(18) 

With the oldest global state updated, the 
buffered FOG measurements can be used to 
propagate the updated state iteratively from the 
COI to the current time with eqs. (9)- (11). The 
propagated values replace the estimates in the 
buffer. If another STR measurement arrives in 
the next filter cycle, this updated buffer ensures 
that each update builds upon the best estimate 
at the time. An illustration of the algorithm is 
shown in Figure 8.  

2.3. Simulations 

The algorithm was simulated in MATLAB using 

ESA’s GAFE framework [16] and the known 

parameters of FLP [13]. It is compared against 

the previous implementation. The true FOG 

bias and FOG noise are varied between 

simulation runs to determine the effect on the 

filter estimate. The initial values were chosen as 

�̂�0
+ = [0.5 0.5 0.5 0.5]𝑇 (19) 

�̂�0
+ = 03×1 (20) 

𝛿�̂�0
+ = [

δϑ̂0
+

�̂�0
+

] = 06×1 (21) 
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𝑃0
+ = 1 × 10−2 𝐼6 (22) 

2.3.1. Covariance Matrices 

The measurement covariance matrix of each 

STR assumes uncorrelated noise, although a 

lower accuracy is expected for the around-

boresight angle in eq. (23). Prior work with 

adaptive covariances was unsatisfactory [4]. 

𝑅𝐴 = 𝑅𝐵 = 𝑑𝑖𝑎𝑔([𝜎𝑆𝑇𝑅
2 𝜎𝑆𝑇𝑅

2 10𝜎𝑆𝑇𝑅
2 ]) (23) 

with σSTR
2 = 10−11 [4]. The bias covariance is 

incorporated in the process noise covariance 

matrix. OLS is used to transform the four FOG 

variances into the bias estimate covariance [5]. 

𝑄 = [
𝑄𝜗 0

0 𝐴𝐹𝑂𝐺
∗ 𝑅𝛽(𝐴𝐹𝑂𝐺

∗ )𝑇] (24) 

with eqs. (25) and (26) [4]. 

𝑄𝜗 = 𝑑𝑖𝑎𝑔([10−14 10−14 10−14]) (25) 

𝑅𝛽 = 𝑑𝑖𝑎𝑔([10−15 10−15 10−15]) (26) 

3. Results and Discussion 

3.1. Filter Estimation Performance 

The new MEKF converges within 400s as 
shown in Figure 1 and Figure 2. Its attitude 
estimate error is unaffected by the FOG bias. 
Although the old EKF shows lower errors in the 
unbiased case in Figure 3, this advantage 
quickly vanishes when a bias is introduced in 
Figure 4.  The new MEKF is more robust in this 
respect. While the desired accuracy is not 
reached yet, performance is improved. 

 
Figure 1: MEKF with unbiased FOG, Kalman 

filter at 5Hz, low pass filter 𝝎𝒄 = 𝟎. 𝟐𝟓  

  

Figure 2: MEKF with FOG 0 bias 𝛃 = 𝟏𝟎−𝟐 𝒓𝒂𝒅

𝒔
, 

Kalman filter at 5Hz, low pass filter 𝝎𝒄 = 𝟎. 𝟐𝟓 

  
Figure 3: Old EKF with unbiased FOG, Kalman 

filter at 5Hz 

  

Figure 4: Old EKF with FOG 0 bias 𝛃 = 𝟏𝟎−𝟐 𝒓𝒂𝒅

𝒔
, 

Kalman filter at 5Hz 

The low pass filter is beneficial only if the 
Kalman filter cannot run fast enough to directly 
process all FOG measurements. The case 
where both the new MEKF and the FOGs run at 
10Hz is shown in Figure 5 while the case with 
the MEKF running at 5Hz is given in Figure 6. 
Both the mean error, and the standard deviation 
of the mean, are improved in the latter case. 
Care must be taken to choose the correct cutoff 
frequency of the filter. A small cutoff frequency 
leads to signal delays that are too large for this 
relatively dynamic system. The optimum is 
found to lie around 0.2 < 𝜔𝑐 < 0.5.  

3.2. Application to in-orbit data 

The MEKF was applied FLP’s in orbit 

measurements. This data included several 

periods without STR measurements, or only 

one STR providing data. This was due to 

blinding or high sensor noise preventing the 

STR’s internal algorithm from finding a solution. 

The STRs are considered nearly exact for the 

purpose of analyzing the filter performance.  

The result is shown in Figure 7 with two long 

periods without STR measurements, as well as 

brief gaps where a few samples are missing. 

The MEKF performs well. 
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Figure 5: Error of the MEKF running at 10Hz 

depending on the cutoff frequency 

 
Figure 6: Error of the MEKF running at 5Hz 

depending on the cutoff frequency 

 
Figure 7: Error of the EKF running at 5Hz 

compared to the embedded FLP estimate using 
in-orbit STR and FOG data 

3.3. Computational complexity 

The required number of FLOPs was calculated 

theoretically [13]. The most expensive 

operations of the MEKF are the Kalman gain 

and the matrix exponential to propagate to the 

current. It is still more efficient than the old EKF, 

partially because the MEKF uses fewer 

measurement states. More iterations become 

necessary the longer the STR measurement is 

delayed. Both methods are equal for a STR 

delay of 2s, or 10 propagation steps [13].  

4. Conclusions  

A new sensor fusion algorithm was developed 
for FLP to try and improved its ACS based on a 
MEKF with a low pass filter  to improve the filter 
robustness. Neither of the filters is quite able to 
reach the originally formulated required 
accuracy motivated by FLP’s OSIRISv1 optical 
communications payload. However, the 
improved robustness should make 
communications more reliable. The new filter 
was shown to handle delayed and biased 
measurements in simulations, as well as 
missing measurements in real-world data from 
FLP. The low pass filter cutoff frequency needs 
to be optimized for the system and sensor 
parameters. Low pass filtering should only be 
combined with a Kalman filter if this enables the 
processing of additional measurements 
between two Kalman filter executions. The new 
MEKF it is advantageous in terms of FLOPs up 
to a STR measurement delay of 2s. 
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Figure 8: Schematic of the new algorithm with a single STR measurement 


