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Abstract: It is commonly assumed that Boolean logic is synonymous with two-valued logic. However,
this needs not be the case. As Boole suspected [7], and Probability theorists know, one can value -
propositions in, say, the real unit interval —whatever the purpose of doing this— and yet preserve the
Boolean-algebra structure of propositions as well as the common laws of ordinary logic. This report
(which is a barely-updated summary of a Ph.D. Thesis [38] written in 1981-82 [see the disclaimer at the
end)) is an exploration of some of the consequences —some interesting, some a bit unexpected— of valuing
propositions in [0,1]. What emerges is a many-valued logic which is, perhaps surprisingly, also Boolean.
Allin a neat and natural way. And though the analysis suggests some parallels with Probability Theory,
the development falls strictly within the logical theory of Propositional Calculus, to whose classical and
well-known version this report aspires to add new insights. Moreover, the expounded theory, initially
aimed at a better understanding of logical concepts, turns out to admit a proof theory that has a direct
application to hypothetical and approximate reasoning (forced by imprecision or other causes).

General remark: Most proofs in this report are both elementary and straightforward, and all are
based on well-known results from elementary Logic and Lattice Theory. They are, therefore, generally
omitted and left to the reader.
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0. INTRODUCTION: THE STRUCTURE WITHIN PROPOSITIONAL LOGIC

Ordinary Propositional Logic is commonly considered satisfactory for many purposes. Also, it has a
widely known and much studied lot of convenient properties, good-natured proof and model theories as
well as a simple and adequate algebraic structure (the Boole algebra). The whole theory of Propositional
Logic is built on the basis that every proposition —an interpreted sentence— is always assigned only
one of two values: true (or 1) and false (or 0); so much, that this two-valuedness is commonly felt as
inseparable from the theory. However, as we argue below, this needs not be so. Two-valuedness is, for
all purposes, not the only case to consider. Suppose we confront any of the following typical situations
—among many possible—, where we use (and so we must value) e.g. (1) propositions that are imprecise,
vague or uncertain (and even paradoxical or meaningless), or (2) unsure or merely believed propositions
(e.g. as premises) or (3) rules and general laws that have exceptions, or (4) propositional theories which
are only partially true —i.e. that have some defective ‘truth content’ in Popper’s sense [32]—, or (5)
propositions with an experimental error affecting their truth value (Scott [39]). Also suppose that because
of some of the above reasons (to name a few), and because we dare not or cannot give it a plain false or
true, we willingly assign one single proposition a truth value other than 0 or 1 (e.g.: “undetermined” -
or non-existent —as in three-valued logics [5][24]—, or a number in the [0,1] interval —as in Probability
or Lukasiewicz-Tarski’s many-valued Logic [27](35]). In that case, ordinary [two-valued] Propositional
Logic is at odds, it has never even suggested such possibilities were tractable, and gives no hint anyway
about how to proceed, get a valid argument out of it and control or parameterize the conclusion’s logical
validity.

And, nevertheless, Propositional Logic can accommodate —we contend— such eventualities in a
perfectly simple and natural way. In the sequel we explore how this can be done, with minimum strain and
maximum generality. The resulting [Boolean] Propositional Logic —that we have called BML (an obvious
acronym)—is like the well-known one in virtually all important aspects —only conveniently augmented—
except in having more than two values available, so that ordinary —that is, two-valued— Propositional
Logic becomes the particular case of BML when all propositions are precise, two-valued propositions.
Thus, we get a natural extension of all Propositional Logic properties and, moreover, puzzling new insights
into the inner workings of Propositional Logic’s propositions and their inherent mutual relationships,
which had been disguised and concealed within the disarming simplicity of traditional two-valued analyses
of Propositional Logic. But not only the inner algebraic propositional structure is revealed: the analysis
seems to shed new light on the apparently simple conditional statement and the seemingly innocuous
relations between that statement and event-conditioning (as studied in Probability). Also, from the
syntactic (proof-theoretic) standpoint, what we further obtain is an intriguing new possibility of having
formally valid but unsound reasoning instances. We will explore these as well as their necessary and
sufficient conditions, and will try to measure and control the degree of relevance of such arguments.

Note therefore that everything that will be said in the sequel is just a full-thrusted complement
of —and fully compatible with— all laws and presentations of classical Propositional Logic. It will
show a rich texture of relations and extensional structure linking the plain-looking and (apparently) dull
" propositions of Propositional Logic. The starting point, as the whole theory that follows, cannot be more
elementary.

1. BASIC PROPERTIES OF PROPOSITIONS

Suppose, first, we have a propositional language £, whose members (henceforth denoted A4, B,...)
are sentences. We shall assume that £ is closed by the propositional operators A, V and ~ and, moreover,
that it has the structure of a Boolean algebra. Thus, the structure (£,A,V,, L, T) (with signature
(2,2,1,0,0)) has the following properties (for arbitrary A, B and C):

1. ANA=A and AVA=A (Idempotency) (1)
2. AAB=BAA and AVB =BV A (Commulativity) (2)
3. AN(BAC)=(AAB)AC and AV(BVC)=(AV B)VC (Associativity) (3)
4. AN(BVA)=A and AV(BAA)=A (Absorption) (4)

5. AN(BVC)=(AAB)V(AAC) and AV (BAC)=(AVB)A(AVC) (Distributivity) (5)
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6. ANL=1 and AVL=A (Infimum),and A A T=A4 and AV T=T (Supremum)  (6)
7. AAN-A=1 and AV-A= T (Complementation) (7

The resulting structure is, of course, the well-known Lindenbaum-Tarski algebra of propositions. It
is, if finite, of cardinality 2V (for some N) and atomic, with exactly N atoms. If there are n propositional
letters in the language —acting as generators of the resulting free Boolean algebra— the structure has
22" elements, with 2" atoms. In case there are infinitely many letters (generators) the algebra has the
same cardinality as the set of generators, and is not atomic. (Nevertheless, we shall restrict our attention
generally, for clarity’s sake, to the finite case.)

As in all Boolean algebras, a partial order (that we denote by F) is definable in the structure —which
is then characterized as a Boolean lattice, with bounds L and T— through the equivalence:

8. AFB < AAB=A < AVB-=2B (Partial order) (8)

Suppose, secondly, that we impose a valuation on this structure, taking values from the real [0, 1]
interval. The valuation takes any sentence 4 in the language and assigns it a real number [A4] (that we -
call “truth value of A”, whatever sense we make of this). In particular, it assigns the interval bounds 0
and 1 to the lattice bounds L and T, respectively. As usual for valuations, this one is monotonic and
additive. Thus, we have:

9. There is a valuation v : £ — [0,1] : A — [A] such that:

9a. [1] =0, and [T] = 1. (9)
And also, as it is generally understood for any valuation:

9b. If AF B then [A] < [B] (Monotonicity) (10)

9c. For any A and B, [AA B]+[AvV B] = [A]+ [B] (Additivity) (11)

Once we are given the nine conditions 1-9 above —admittedly over-redundant (actually, 2 and 5-7 plus
9a and 9c would suffice)— we have all we need to proceed.

Observe that if the valuation described in 9 had been defined in {0,1} instead of [0,1], conditions 1-9
would have completely characterized the standard [two-valued] Propositional Logic. In particular, from
1-8 arises all of its proof theory, while conditions 9a-c —together with the [immediately derivable] facts
(12-13) (see below)— describe completely its model theory (its truth tables, in fact).

It is to be specially emphasized that condition 9 as stated above —that the v valuation has [0,1] as
its range of values rather than merely {0, 1}— is the single differing point between our presentation of
Propositional Logic and the ordinary two-valued view of it. The first naturally subsumes the second as
a special case. It also provides the starting point for our theory.

Several remarks about point 9 are in order here: As to the set of values (the “truth set”), the [0,1] interval
. could have as well been replaced for greater generality by any bounded linearly-ordered cancellative
monoid. Moreover, [T] = 1in 9a could have been verbalized by saying that v, as a measure, is normalized.
Also, 9b could have been omitted or made implicit, since it can be derived from the rest of 9. Still, 9¢
could have been omitted since any valuation on a Boolean algebra is usually understood —by definition—
to have the additive property (thus making the explicit statement of 9¢ redundant). Finally, note that
in the infinite case 9c should have been replaced by an appropriate additivity formula (e.g. “Countable
additivity”), as done in Probability Theory.

(A further remark, on notation: [A] = 1 will be sometimes abbreviated as “k=y A”, which has the
advantage of showing explicitly that a particular valuation v is involved.)

From conditions (1-11) the six formulas below follow immediately:

[-A] =1 - [4] (12)
[AAB] < [4] < [AvB] (13)
[AAB] < min([4], [B]) (14)
[Av B] > max([4],[B]) (15)



IViET 4l = SiEHA] - SiglAiA 4] + ..o + ()™ [AIST Al (16)
Ifforalliand j (i #5) AiAA; =L then [ViZh 4] = Ti=" [4)] (17)
(Remarks: The slightly informal (16) is the classic Poincaré formula for sets [now applying to propositions].

A special case of the former, (17) is the propositional analogue of the classic formulation of additivity (e.g.
in Probability or Measure theory); the condition it imposes on propositions is typically met by atoms.)

As L here is finite, and therefore atomic, any A is decomposable into [the disjunction of] its atoms (i.e.
those it covers, under the lattice - order). Combining this fact with (17) (see the last remark in the
previous paragraph), we have the following decompositions (here rather loosely formalized):

vVAeL A=Vapa ai and [4] = a4 [a]. (18)

So, the truth valuation v is completely defined by the truth values it assigns to the atoms of £ ; from
these basic values the truth value of any proposition can be computed. (More on (18) will be said in later
sections.) Also, by direct application of (17) we have, if a;, ..., ay are the atoms in L:

Yo fad =1 (19) -

i.e. the truth values of all the atoms —for any valuation— add up to one.

If we now define the conditional or if then connective in the usual —classical— manner:

A— B =4, WAV B (20)

then the following formulas immediately obtain:

[A— B] = 1-[A]+[AA B] (21)

[A— B} = 1+[B]-[AV B] (22)

[A—B] = 1-[AA-B] (23)
and, from these, also:

[4— B]-[B— 4] = [B]-[4] (24)

[A— B]+[-A— B] = 1+[B] (25)

[A— B]+[4— -B] = 2-[A4] (26)
which interrelate the truth valuesof 4, B, A— B, B — A and so on, as well as:

[4— B] = [AAB] +[-4] (27)

[A—-B] = 1-[AAB] (28)

the first of which decomposes the value of the conditional into a sum of two terms: one due to the logical
conjunction of the conditional operands, plus a second due to the negation of the antecedent. Also, we
.get:

[AAB] = [[A—»B]]—[[A—»—!A]] = IIB—)A]]—[[B.—rﬁB]] (29)
[A] = [AAB]+[AA-B] = [AvB]+[Av-B]-1. (30)

The first, rather intriguingly, allows us to consider the value of any logical conjunction of two propositions
as the value of the conditioning that one exerts on the other less the value of the conditional of the first
on its own negation. The second is a complementation law (notice B is arbitrary).

As is to be expected in a Boolean algebra,

AFB <= -~AVB=T. (31)
If we denote A =T by “ A”, this can be written as:
AFB < FA- B, (32)

more in line with the usual formulation of the Deduction Theorem of elementary logic. (As a matter of
fact, A could actually be a conjunction A;A ...AA, of propositions, called premises; in that case, the
first A would rather be written as a list, so the left-hand part would read “4;, ..., A, F B".)
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Now, we define the relation between A and B given by [A — B]] =1 —that we note by “4 =, B”
(notice it depends on the particular valuation v chosen)—:

[Definition:] “A |=, B” ifand only if [A — B] = 1. (33)

This relation is a quasiordering (see formulas (36) and (38) below) that contains the lattice order A - B
(ie. A B = Al=, B) and satisfies the following five conditions:

If A=, B then [A] < [B] (but note the converse is not true in general) (34)
AlE, B < [A]=[AAB] <= [B]=[AV B] ' (35)
Ay A (Reflezivity of =) (36)
If A, B and B |=, A, then [A] = [B] (37)
IfAlF, Band B |5, C, then A |, C (Transitivity of Fv)- (38)

If we finally define the biconditional or equivalence connective in the usual manner:

A B =4 (A—bB)/\(B—»A) (39)I

then the following formulas are immediately obtainable:
[A~B] = [A— B]+[B— A]-1 (40)
[A— B] = 1-[AVB]+[AA B] (41)
[A~ B] = 1-[A]-[B]+2-[AAB] (42)
[A < B] = 1+ [A]+[B]-2-[AvV B] (43)
as well as these —rather puzzling— properties:
[4=B] = 2[4~ Bl +([A]- [B])-1 = 2-[B— 4]+ ([B] - [A]) - 1 (44)
[A—B] +[B— 4] = [A— B]+[A~ A] = [B~ A]+[B « B]. (45)

We now define the relation between A and B given by [A4 B] =1 and we note it by “A =, B”
(notice the dependence on the particular valuation v chosen):

[Definition:) “A =, B” if and only if [A~B]=1. (46)

Note that “=,” (which we can call “equality under a valuation”) is an equivalence relation and contains
the ordinary propositional [Lindenbaum-Tarski] identity (i.e. A= B = A =, B). It yields the following
two properties:

If A=, B then [A]=[B] (Truth-value equality). (The converse is not true in general) (47)
A=, B ifand only if 4 =, B and B =, A. (48)

Now, the definition below follows the usual line:
[Definition:] “k= A” ifand only if [A] =1 for all valuations (49)

(Remark: Here “[A] = 1 for all valuations” means “v(A) = 1 for all [0,1]-valuations v of A”. From this
point onwards, “for all valuations” will be sometimes shortened —quite informally— to “(Vv)”.)

As is obvious, = contains |=, (i.e. =4 = |=, A), and the given definition can be written in this way:
“=A iff (Vo) =, A,
Naturally,
If A= B then [A] = [B] for all valuations (50)

(because the valuation is meant to be a function in the mathematical sense).

This has a corollary:
If A then = A (Soundness) (51)



(because A =T yields [A] = [T] =1 for any valuation).

Conversely, we are forced to admit —by convention— that:
If [A] = [B] for all valuations, then A= B (52)

because we have no other way to distinguish any two propositions through the semantic means available
(i.e. the [0,1]-valuations). Actually, we know that the ordinary {0, 1}-valuations suffice to distinguish
and identify all the elements of a Boolean algebra (this is a consequence of the Prime Ideal Theorem).
So we have a considerably softened version of (52): '

If [A] = [B] for all binary valuations, then A= B (53)
where “binary” means that the only values allowed are 0 and 1.
As a corollary of (52) we get:
If =A then A (Completeness) (54)
or, equivalently,
FA if [A]=1 for all valuations. (55)

Note this is quite a strong requirement: recall that we are dealing with [0,1]-valuations, and there are
inordinately more of them than classical {0, 1}-valuations. Nevertheless, as a consequence of (53), this
is no major drawback, and the weaker phrase “for all binary valuations” can be substituted in (55).
Moreover, as it will be seen, a considerably less stringent condition can be imposed on v, and we shall
have as a consequence that not all valuations v of A —binary or otherwise— will need to yield 1 so that
we have - A : actually, the existence of just one that does can be proved to suffice. In fact, if we define:

[Definition:] A positive valuation p is the particular case of the ordinary v valuation in which all atoms
of £ are assigned non-zero values. Or else, in a more general, straightforward and traditional manner:

pisa v:L—[0,1]: A [A] such that, for any 4, [A]=0ifand onlyif A= L (56)

then we get as a result the rather surprising fact that the process of verifying “k= A” reduces to verifying
that this very simple condition holds:

[Theorem:] = A ifandonlyif |=, A forjust one positive valuation p. (57)
because —for the if part (the converse is trivial)— the existence of a single positive valuation p of £ that
yields [A] =1 (i.e. p(A) = 1) suffices for guaranteeing that A covers all atoms of £, and so A = T.

The two relationships (50) and (52) shown above between propositions and values can be combined
to yield this [informally stated] semantical characterization of propositional identity:

A =B ifand only if (Vv) A=, B (58)
“where “Vv” can be here —and subsequently— taken to mean “for all binary valuations v” (see (53)).
Also, the soundness and completeness conditions, taken together, yield this equivalence:

[Completeness theorem (first form):] + A if and only if = A (59)

Now we put forward this (that we state informally):

[Definition:] “A = B” if and only if (Vv) {[A]=1 = [B]=1}. (60)
It is easy to show that
AEB ifandonlyif FA— B (61)

Thus, = contains |=, (i.e. A= B = A |, B), and the last definition can also be written: “A4 = B iff
(Vv) A=y B”.

Recalling the above semantical characterization of propositional identity (“A = B iff (Vv) [A] = [B]"), we
would like to have a reasonable characterization of “A |= B” along the same line: something as “A = B

iff (Vv) [A] < [B]”. Unfortunately, this does not hold. The most we can have is just the rightward half:
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If AEB then [A] < [B] for all valuations (and the converse is not true in general). (62)

Now, again from the given semantical characterization of propositional identity (58) we have:
A=AAB ifandonlyif [A] = [AA B] for all valuations. (63)

Note the the left-hand side is equivalent to writing “4 - B”, while the right-hand part amounts to saying
“[A — B] = 1for all valuations” (or else, by definition, “= A — B”, that we have shown to be equivalent
to “4 = B"). So we are led to this new characterization of the soundness and completeness condition:

[Completeness theorem (second form):] A+ B if and only if 4 | B. (64)
A could represent a list (or, better, a conjunction) of propositions Ay, ..., A, —the premises—. In that
case, it would read thus:

[Completeness theorem (third form):] Ay, ..., A, + B ifand only if Ay, ..., 4, =B (65)
where the left-hand A’s are the conjuncts of A = 4, A ...AA,, while the right-hand term is [demonstrably]
equivalent to stating “{ [A1] = ...=[4,] =1 = [B] =1} for all valuations”.

2. REPRESENTATIONS: PROPOSITIONS AS EXTENSIONS

Two widely-known and yet under-exploited results in Boolean Algebra Theory (see [3]) have to do
with representations of Boolean algebras on set structures. They can be stated thus:

A. Every finite Boolean algebra has a representation in the algebra of all subsets of a [finite] set.

B. [Stone’s Representation Theorem:] Every Boolean algebra is representable on —isomorphic to— a
field of sets.

In particular, the algebra £ of propositions defined above (with 2V elements) has a representation
in —is isomorphic to— :
(2) The set of all subsets (the power set) of a set of N arbitrary elements.
(b) The set of binary valuations (two-valued epimorphisms) of L.

(c) The lattice £ of theories of L. (A theory is, algebraically, a filter (dual ideal); for lattices such as £,
filters are always principal).

(d) A discrete [Stone] topology.

(e) A direct product of N copies of {0, 1} (or, equivalently, the set of strings of N 0’s and 1’s).
Whenever the algebra £ is finite, the representations are just those mentioned (a-¢), and the associated
theorems are relatively trivial. In the general, infinile case, the corresponding representation theorems
are described by slightly different, more open characterizations; and they follow from deep [and beautiful]

‘tesults in Boolean Algebra Theory —basically, the classical Birkhoff and Stone Representation Theorems
of the nineteen-thirties.

As we said before, we shall concentrate on the finite case for clarity’s sake, since the infinite case differs
mainly in the lack of the more intuitive features of the finite counterpart, and results are easily extrapo-
lable. Indeed, the infinite case implies £ is atomless and its homomorphic image (set-representation) is
a field of sets that is properly contained in the power set; it lacks therefore the [very intuitive] atomicity
of £ as well as the simpler and more natural powerset structure on which a finite £ maps.

So we begin by applying the Stone Theorem (or, rather, its finite-instance trivialization) to our case.
We have:

[Representation theorem:] For any given finite algebra £ of propositions (of order 2V) there exist:
a) a finite set © (of order N), and
b) an isomorphism of £ into the power set P(@) of @, i.e.
p:L—PO):A— A (ACO) (66)
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So, every time we have a Propositional Logic we have also an inherent accompanying structure or universe
that we make here ezplicit and name ©; it is explicitly definable from its sentences 4 € £. (This happens
always, even in strictly two-valued logics; the interplay of propositions inside © for that case is studied
below, in section 10.)

Though clearly there is no need to name or qualify the members of © , we may indulge in calling them
possibilities (following Shafer [40]) or eventualities (to distinguish them from Probability’s elementary
events) or, metaphorically, even states or possible worlds (or, for that matter, observers, [observatlona.l]
sei-ups, observations, instants of time or slages of development, elementary situations or contezts in
which things happen, basic considerations or judgments we have on things, discernible basic expression
modes or registers we adopt to describe them, and so on). © is thus configured —in a most general and
open-ended way, so as to fit any interpretation— as the real universe of discourse or reference frame
(the set of possibilities). Each A € P(O) is a proposition (now a rather ambiguous and perhaps devious
terminology: A is, to speak propetly, the set-theoretic, extensional counterpart of the proposition 4 ; in
contrast, A € L is clearly a linguistic, intensional item). The p function is what we call representation
function. Thus, p(A) = A is the [set] representation of the [linguistic] proposition A . Speaking freely, we
could say that A is the eztension of 4, and A the intension of A ; A could even be called as well meaning ~
or reference of A- —innocently enough, were these not such loaded words. Since p is an isomorphism,
there is an inverse function p~! = § we can call description function. Thus, §(A) = A is the [linguistic]
proposition that “describes” the [set] proposition A associated to it. The existence of an isomorphism
guarantees there is a representation for any [Boolean-structured] description, and vice versa.

The set © has N elements (where N is the binary logarithm of the order of the £ lattice). Thus,
it has as many elements (possibilities) as there are atoms in £. We can establish a general, one-to-one
correspondence between the two worlds (the language world £ and the referential universe ©, both made
up of “‘propositions”) and their constituent parts, thus:

C < 7P(9)
A(Ae€eL) <= A(ACO)
AANB < ANB
AVB <= AUB
—A =5 A°
T <— ©
L = )
AFB <<= ACB
A=B <= A=8B
a = {6}

(The arrows are meant to be read “corresponds isomorphically to”; also, “A¢ ” is the set-complement of
A, aisan atomof £, and 6 is an element of ©.)

The one-to-one correspondence between linguistic, propositional atoms (noted a) and possibilities

" (set elements 6) is particularly suggestive. Boolean structure imposes (see (18)) that for any proposition

Ain L, and for any proposition A of P(©), both A and A are decomposable into their constituent atoms
(i.e. those they cover, under their respective lattice order - and C):

VAeL A=V, 44 ai, and YVACO A=)ca {6} - (67)

This could be stated thus: “ any proposition A is a disjunction of [mutually incompatible] elementary
propositions, whose isomorphic counterparts are [in principle mutually independent] possibilities within
a certain universe of discourse; the union of these gives the extensional, set-theoretical counterpart A of
the original proposition A4 ”. It could be called “Principle of Analycity” and it would correspond to the
metaprinciple put forward by Wittgenstein in the Tractatus (1921) [45]. Now this classical [and informally
stated] thesis is quite naturally formalized and explained in terms of £ (and the universe ©): it is just
an immediate consequence of the finite —and thus atomic— character of £. The “second Wittgenstein”
—explicitly rejecting analycity— would naturally fit into the limit, infinite case: whenever £ is [countable
but] no longer finite or generable by a finite vocabulary of propositional [so-called] “atoms” (i.e. letters),
L ceases to be atomic, and thus every proposition A ceases to be expressible in terms of propositional
atoms —that no longer exist in the structure (in fact infinite downward chains appear)— and the current
proposition/set-of-possibilities isomorphism is destroyed.
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Dually, in a finite £ (and ©), any proposition A4, and particularly any elementary proposition a (or pos-
sibility 6}, can be analyzed as —“decomposed” into— the conjunction (or intersection) of more complex
propositions —clauses, in fact— covering a under I (or 8 under C). Thus (again loosely stated, as (18)
or (67) above):

VaeLl a= A,y 45, and VO€© {8} =gea, Aj - (68)

This formulation, valid only for finite languages (and universes), fits nicely —better still if we describe
the 6 as “states” or “possible worlds”— with Carnap’s view [8] that a possible world —whatever this is
intended to mean— is [definable as] “the conjunction of all propositions that are true in it”. As before,
this would no longer hold for the limiting case of an infinite world © of possibilities.

Incidentally, the £ / P(©) isomorphism —in the finite case— lends theoretical legitimacy to the
intuitive practice of representing propositions as Venn-diagram domains in an extensional universe, where
propositional operations translate into set operations and logical implication is viewed as set inclusion.

We give an elementary example of what this isomorphism can do to trigger an intuitive, extensional .
visualization of logical propositions, operations and relations. Suppose we have a language £ consisting
of 32 propositions and —therefore— a referential frame © consisting of five elements (of an unspecified
nature) 6p—64. We display here, graphically, four different two-proposition situations, obtained by varying
the first (A), with the second (B) fixed. Shown also in each configuration are the five most common
composite propositions (naturally, “A « B” means B — A). To get a quick extensional identification of
propositions, each is shown as the set of characteristic values of its set-representation (a subset of ©).
Furthermore, the traditional 0/1 values of characteristic functions have been replaced by nil/box signs,
for enlianced effect.

1) p(A) = {90,01}, p(B) = {02,03, 04} (Ta.ble 1)2

© A B AAB AV B A— B A~ B A~ B
8 = | =
8, | | =N
0, i= || |
03 || || o=
04 [ | || =

2) p(A) = {61,6:}, p(B) = {62,6s,04} (Table 2):
(S] A B AAB AV B A— B A~—B A~ B
6o [ | [=m =
6, i . =]
6, | =l || || || = =]
93 || || ||
04 = = |

3) p(A) = {62,0s}, p(B) = {62, 63,64} (Table 3):
] A B AAB AVB A— B A—B A~ B
8 | | |
6, | | =i
6, | IS = || =i i =
03 == =l I= i =1 || =
04 || | ||




4) p(A) = {03, 94}, p(B) = {02, 03, 04} (Table 4):

© A B AAB AV B A
6o
6,
62
03 [ |
04 i

BRN
inl
JRREIK
Il RN
il NN

Remarks:

- Observe that, in all, 14 out of the possible 32 propositions that could have been set up in this universe
© are on display here. (And notice this is not a free Boolean algebra.)

- In the first case, since p(AV B) = A UB = © (a fact which is visually obvious), we have - AV B. In
the third and fourth we have - A — B for similar reasons.

- In the third and fourth cases, clearly, A+ B (since A C B, a fact that can be quickly recollected after
a simple, casual glance at the tables).

As to the precise nature of the “possibilities” § € ©, nothing needs to be specified about them except,
maybe, that each 6 is just a discernible unit, merely something that can be isolated and told apart precisely
from all other 6s ; so © is —just— a frame of discernment (in Shafer’s sense). In such an undemanding
and abstract setting we can analyze in detail the behavior and mutual relationship of propositions (or,
more to the point, sentences), that we here define merely as linguistic entities that are members of a
[Boolean] structure £ and that have, by the representation theorem, a set-theoretic counterpart. This
analytic procedure will give us new insights into the interior workings and structure of what we ordinarily
call “propositions”, entities we use to consider utterly simple —by its very nature— and generally dismiss
without further analysis. As the example above shows, to speak now of negation, conjunction, disjunction,
conditional, deductive consequence, etc. means to be able to give an accompanying set-theoretic operation

or relation that may be used to illustrate the [initially] purely syntactic interplay among propositions of
L.

It is remarkable that when Boole, just after studying classes, set out to analyze propositions (in 1847),
he conceived them by means of an alternative interpretation of his elective symbol z (already introduced
for classes) which —he said— now stood for the cases (or “conceivable sets of circumstances”) —out
of a given hypothetical “universe”— in which the proposition was true. This is stunningly close to our
set-extensional representation of propositions in the set © of possibilities, to which the Stone theorem
gives rigorous legitimacy. And, since set propositions are measurable —an idea we shall immediately
turn to—, an easy step carries the picture into probability, a step Boole inevitably made when he, in
the last chapters of his 1854 book [7], somewhat obscurely likened the product z - y of two propositions
to the probability of simultaneaously having both and the sum z + y to the probability of having either
[provided both were mutually exclusive].

Something similar occurred later to MacColl [28] when he distinguished between propositions that were
certain, variable or impossible (meaning they were always, sometimes or never the case), an idea Peirce
[31] a bit later more or less borrowed when he spoke of the need of telling apart necessary from contingent
propositions (the first making up a fraction of them, the second being the general case, see [35]). Logi-
cians’ traditional reaction to this approach has always been plainly to deny that what is currently being
described here is a proposition at all, but a propositional function. This is what Russell did when he
reviewed MacColl’s work in 1906 —to an unconvinced MacColl’s strong protestations when arguing back
at Russell—. Such is the conventional answer today, but the Representation Theorem bridges both views
by converting a proposition A (a piece of the language £) into a propositional function that takes values
in {0, 1}, the values of a characteristic function, so defining a set A in a world of cases or circumstances
(Boole’s terms, corresponding to what we have called possibilities) and distinguishing MacColl’s certain

(or Peirce’s necessary) propositions (our case A = ©) from variable or contingent ones (the general
A C O case).
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Though we have just stated that no specification needs to be given about the precise nature of the
possibilities 8, one particular —and yet totally general— view of what each @ stands for is of paramount
importance here. Suppose L is free. £ has then —provided it is finite— 22" elements, is atomic and
has 2" atoms. So p(£) = P(©) has 22" elements and © has 2". We now assign to each 6 the meaning
of interpretation, in the standard [Propositional Logic] model-theoretic usage of the word. As is known,
an interpretation —in this technical, traditional sense— sets the conditions under which a proposition
is to be evaluated according to precise truth-functional rules. So, interpretations allow us to distinguish
and identify each and every one of the 22" propositions in £ (recall that the {0,1}-valuations of a
Boolean algebra suffice to identify all its members, and note that, giveri n propositional letters in the
[generated] lattice £, there are exactly 2" atoms in it, just as many as interpretations required for the
n letters). This fits nicely with the intuitive idea that the 8s are just “discernible units”; it is the case
that, from the algebraic standpoint, they really are. The view just expounded of the 8s as full-blown
logical interpretations makes considerably more sense than may appear at first sight, and will be explored
immediately (in section 3). We shall stick to it as our standard view of ©.

However, with an eye to gaining still newer insights into the mechanism and applicability of propositions,
we give below twelve examples —separately described but not necessarily disjoint— of various interpre-
tation instances of- “proposition” and “possibility” that are clearly superfluous but may give further clues
to the functioning and inner structure of the members of £. We review these examples summarily and
regroup them into five distinct types or “views” (later revisited, in section 4). Given a proposition 4,

each example gives a distinct meaning to each elementary possibility 6 belonging to the extension A of
A.

A. Statistical view of propositions. Examples:

Al. 6 = Affirmative (or negative) response about proposition A from someone being questioned. (Or
6 = Person being questioned: box/nil means a yes/no answer.)

A2. § = Observer or information source about fact A.

A3. 6 = Test or observation some experimenter can or does make of proposition A (or validation instance
of a [proposed] general law A).

A4. 0 = Context in which proposition A does (or does not) happen.

A5. 8 = Formal consideration or judgment on the proposition A one person (or a plurality) can hold
or formulate. (For instance, from a point of view 6, the person judges A to be the case [but not from

o #6).)

A6. 6 = Mode or instance of application —in a linguistic context— of A. (A is here taken more as a
term or utterance than as the proposition this utterance expresses, and 6 is the specific circumstance or
linguistic context in which the utterance A is brought into play.) This approach is especially suitable to
model vagueness, an inherent feature of natural language. Thus, a vague “John is tall” can be “precisified”
-(Carnap’s term [9]) into 6 = “John is 6 ft. tall”, ¢’ = “John is 6 ft. 4 in. tall” and so on, each to be valued
according to the degree the speaker thinks the particular 6 describes —or applies to— the original vague
sentence. The fs here are Carnap’s precisifications or Fine’s specifications (defined as “ways of making a
vague expression precise” [15]), or the elementary propositions making up a communication class which
—as Cresswell considers [12]— any vague expression ultimately reduces to.

B. Probabilistic or Evidential view of propositions. Examples:

Bl. 8 = Elementary event (w) in a [complex] event A. This view, which likens © to the sample space Q)
of Probability is consistent with several authors’ view of Logic as something related in certain senses to
Probability, especially Boole (in his propositional characterization of the z variable, in 1847), MacColl
(in 1897) and Peirce (c. 1902). Later this view was considerably taken to extremes by Reichenbach [34]
and Carnap [9], who at a certain point came to consider “truth”, roughly, as probability equaling one.

B2. 0 = A [Shafer’s] possibility 6 in a proposition A inside an evidential frame of discernment ©. All
considerations and caveats given by Shafer [40] apply here.

C. “Partial truth” or “Truth content” view of propositions:
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Cl. 6 = Elementary component of a proposition or theory A (in the sense of Haack [18): A is [partially]
true depending on how many of its two-valued components —conjuncts, in fact— are true). Such a
treatment may be made compatible with Popper’s truth-content and verisimilitude ideas [32], and be
subject to related metric considerations (e.g. distance between theories).

D. Modal view of propositions. Examples:

D1. @ = Instant of time (or stage of development) in which A happens. This case is subsumable under
the next heading (D2). It is also consistent with Kripke’s modeling of Intuitionist Logic [25].

D2. § = “Possible world” in which A is supposed to happen (or, perhaps, state in which A is or occurs).
We can incorporate all usual modal descriptions into this model; we can speak, for instance, of necessity,
belief (or knowledge), obligation, accessibility —through program execution—, or provability —in Gadel’s
[modal] sense [17]—, if we use the conventions of the alethic, epistemic, deontic, dynamic or [Gddel’s]
provability version, respectively, of Modal Logic [11].

E. Properly standard-Logic view of propositions:

El. 6 = Interpretation (in the ordinary [Propositional Logic] model-theoretic usage of the word) under
which the proposition A is to be evaluated according to precise truth-functional rules. As we said
previously, such an apparently outrageous view makes considerably more sense than appears at first sight
(especially when L is free), and is the one we shall make our standard (since, indeed, any view we can
give about the nature of the fs can be embedded naturally into the ‘4s-as-interpretations’ frame). It will
be explored immediately below (in section 3).

These or other interpretations of the fs are not necessary, but may be useful sometimes. In the
context of the views we have just listed, Tables 1-4 above (which we shall reuse and expand later) are
perhaps best understood intuitively when interpreted either in Boole’s original terms or else in terms
of type A. Each § is e.g. a context or situation (Boole), a test (A3), an observer (A2) or a person
answering a questionnaire (A1). In the first case, A “happens” (or “it is the case that A”) when a box
is present, and the whole A column represents A as a general proposition (or rather as a [propositional]
function of its diverse cases of application). In the latter case, a box in its row on column A means the
individual has answered yes to the specific request, the A column summarizes the global [i.e. the sample
population’s| answers to question A, and the five composite propositions represent collective opinions
(from those subjects polled); these are logically deduced —or rather [truth-functionally] constructed—
from each individual’s answers (note there is effectively a standard truth-value computation for each row
or observer 6, and note also that this same fact applies to Boole’s view of § as “cases” or “circumstances”).
A simple look-up at the tables also allows to capture such [global] facts as - AV B or A+ B (which now
become immediately apparent).

Other views can also explain the tables satisfactorily or supply additional and enriching hints. For
instance, the B1 approach can be used to understand Boole’s description (in terms of z) of propositions
"—which, he implies, are ordinarily two-valued but sometimes may fluctuate in-between— a description
which insensibly took him into probability. B1 can similarly be used to model MacColl’s and Peirce’s
treatment of propositions as contingent entities —in fact propositional functions (that these authors, like
Boole, tended to interpret as “probabilities”).

3. POSSIBILITIES AS INTERPRETATIONS
From now on, we shall take £ to be a Boolean algebra freely generated by n propositional letters. So,
L will have cardinality 22" and, as before (see section 2), it will admit representations in (among others)
(a) P(©), where © has 2" arbitrary elements.
(b) The set of binary valuations (two-valued epimorphisms) of £.

For the infinite case (i.e. infinitely many propositional letters available), £ turns out to have the
same cardinality as the set of letters. If this is countable, £ also is. The same general-case classical
[Birkhoff-Stone] theorems apply, but here we have two particular remarks to add:
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- First: there is indeed an isomorphism between £ and a [Boolean] algebra of sets B. Here, p(L) = B and
B C P(©); and © (and B) is countably infinite if the set of generators of £ (and L) is. Nevertheless, B
does not ever equal P(0) .

- Second: the new situation is beautifully characterized by an additional, later (i.e. post-Stone) result
by Mostowski and Tarski [30] (and Hanf [21]): “A propositional algebra freely generated by a countable
vocabulary of infinitely many propositional [so-called] “atoms” (i.e. letters) is (1) countably infinite, (2)
atomless, and (3) isomorphic to an interval algebra (i.e. the [Boolean] algebra generated by the semiopen
intervals of a linear order) and also to the clopen algebra of the Cantor continuum 2 ”.

(However, as before, we shall not further explore this line of enquiry.)

Now, turning to the finite case, all we said above about © holds, but this set now has 2" elements
(where n is the number of propositional letters available in the description language £). Also, Wittgen-
stein’s “analycity” of propositions (67) and Carnap’s definition of “possible world” (68) are here valid
only because the propositional language £ used has a finite number of basic, “atomic” expressions avail-
able: they no longer hold when the language we need to describe reality requires a non-finite amount of
resources.

Clearly, especially in view of the representation theorem (the (a) and (b) above), the 2" elements of
© turn out to be —or can be properly identified with— the model-theoretic standard interpretations of
Propositional Logic: there are exactly 2" of them (given n propositional letters), and each interpretation
corresponds to one particular string of n 0’s and 1’s that identifies each one of the 2" atoms (minterms)
of £ (which are one-to-one associates of the 2" members of Q).

This view of the 6 as the familiar truth-value interpretations of elementary logic is what we shall
take as standard from now on. This is not to exclude all other views of © as a set of general, abstract
possibilities (or, as we mentioned, different entities metaphorically describable as eventualities, states,
possible worlds, observers, set-ups, observations, instants, considerations, Jjudgments, modes, expression
registers, frames of mind, etc.). In fact, as will be seen later —when we turn our attention back to
the valuations of £L—, the view that the 2" elements of © are Just the common Propositional Logic
interpreiations will subsume naturally all other views of what the elements of © can be thought to be,
and every possibility will just be a particular instance of a logical interpretation.

4. TRUTH AS [ADDITIVE] MEASURE

Given that there is a valuation v : £ —[0,1]: 4 — [4] (defined in section 1, condition number 9)
and that there is, also, an isomorphism p : £ «—s P(©) : A~ A (see the Representation Theorem in
section 2), clearly v and p induce a [0,1]-valued measure (a secondary valuation, in fact) on P(0):
[Definition:] p: P(©) — [0, 1] is the valuation on P(0) induced by the isomorphism p : £ +— P(©) in
such a way that p =vop~!, je. u(A)= [6(A)] = [A]l- (Note “[ ]”is v( ) and “6” is p=1). (69)

The properties of v (see section 1) are automatically passed on to I, so that we have, for instance;:

#($) =0, and p(0©)=1. ‘ (70)
IfACB then p(A) < pu(B) (Monotonicity). (71)
Forany A and B, u(ANB)+ u(AUB) = pu(A)+ u(B) (Additivity). (72)
ANB=A ifandonlyif p(ANB)= 1(A) for all valuations p. (73)

which are the counterpart of formulas (9-11) and (63), respectively, of section 1.

As the counterpart of (12-17) we have, trivially:

H(A%) =1~ p(A) (74)
K(ANB) < p(A) < u(AUB) (75)
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#(ANB) < min(u(A), u(B)) (76)

#(AUB) > max(u(A),u(B)) (77)
#USTA) = TSI a(A) — TigimAiNA)) + ...+ (=)™ (NSt Ay (78)
Ifforalliand j (i #j) AiNAj=¢ then p(UZT A:) = 0= u(Ay) (79)

Conditions (70) and (79), together with the fact that P(©) is a [finite] Boolean algebra (and, a fortiori,
a o-algebra), clearly characterize the pu : P(©) — [0,1] valuation as an additive measure of the sets
(propositions) A of P(©). It also allows us to see the “truth”-value [A] of a proposition A as the
measure p(A) of the set of its corresponding possibilities.

The counterpart of (18) is (again loosely formalized):

VAC®o m(A) = Yoea #({6}) . (80)

which tells us that p is completely defined by the values it assigns to the possibilities of © (as v by those
assigned to the atoms of £), and that the measure of any proposition A C © can be computed from
them. Also (as (19)):

sizeerde L6 = (81)

Four particular cases of the 4 and v valuations may be interesting:

1) Positive measure: Here, like we said in definition (56), all values attributed to the atoms are non-zero.
If £ is free —as we have assumed since section 3— with n generators, then for every proposition A4
and every corresponding set-representation A all 2" interpretations (elements of ©) in A add up their
contributions to the numerical value p(A) = [A] . Thus, we have as an immediate consequence:

F=A ifand only if |=, A for all positive valuations p, (82)
a condition which is reducible (see (57)) to this quite undemanding one:
A ifand onlyif |=, A for just one positive valuation p. (83)

It can easily be seen that the definition of “= A” given in section 1 is now fully consistent with the
traditional definition of “|= A”, namely: “=A4 iff A is true in all [2"] interpretations”.

2) Uniform measure: 1t is a special case of the former. Here all § in © are represented with equal weight
—presumably obeying to our ignorance, or perhaps translating the intuitive idea of “equiprobability” —,
so that the truth value or measure of a proposition coincides with the relative cardinal of its extension:

card(A)

I[A]] = m (84)

3) Non-positive measure: By this we mean any valuation that may have some zero-valued 8. If this does
happen, then not all interpretations 6 necessarily contribute to the overall value of the proposition they
are in, so this value lacks the logical significance it had in positive valuations (when non-zero values for all
6 were mandatory). In this case only the positive-valued interpretations count (because they contribute
something to the truth value), and so we are now free to give the elements of © (that we here denote by
the more general and uncommitted term possibilities rather than by the Logic-biased “interpretations”)
any meaning we choose. For instance, if we try the possible world approach, then those 6 that are valued
above zero are precisely the worlds (or states) that “count” [in “our” world] (i.e. that determine that a
given proposition A is to be considered necessary, believed (or known), compulsory, accessible [through
program execution], provable and so on [according to whether our approach is, respectively, alethic,
epistemic, deontic, dynamic, proof-theoretic, etc.]). In this way, we can effectively give non-zero values
to all worlds accessible (in Kripke’s sense) from our given world, and zero values to all others. Thus, we
shall have [A] = 1 if and only if A is true in all accessible worlds (i.e. is “necessary”). Conversely, if
we are given a modal operator (] with any precisely-defined intended meaning, we can give a semantic
characterization of it through the appropriate v or u valuation (that will then prescribe which atoms or
worlds precisely are to be assigned non-zero values), so that:
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0A ifand only if [A]=1 [for that particular valuation] (85)

If we vary the valuation, the meaning of [1A varies accordingly. Naturally, if the valuation is what we
have called positive we fall back on the “}= A” case (as it should be: logical truth, after all, is an obvious
instance of modal necessity, and the latter should include the former as a special case).

4) Selective measure: It is a special instance of the latter case. It consists of a zero-valuation for all
possibilities in © except for one particular 8 (say 8,), which for obvious reasons (i.e. additivity) is
assigned 1 as value. Such a valuation allows us to select a possibility (possible world) 8, among those
in the universe ©. This case, also, corresponds to the simple two-valued case of ordinary propositional
logic, as here “[A] = 1” simply expresses the assertion “4 is true” (and “[A] = 0” “4 is false”). It
also means that we live in —precisely— 6, (the “real world”), where everything happens (and nothing
happens elsewhere). We shall have more of this later (see section 10).

We now work and expand the example we gave in section 2 (note however that, for simplicity reasons
—and against our.own advice in section 3—, the Boolean algebra used there has only five atoms and is
therefore not free). Suppose that, for illustration purposes, we value the elements of © in four different

ways (u1-p44), and that we make the measure y, uniform, ps positive, uz non-positive, and 4 selective.
So we get:

(Table 5)
o m M2 M3 B
8o .2 .10 0 0
61 2 .15 0 0
) 2 .20 .6 1
63 2 .25 3 0
04 2 .30 1 0
pO)= | 1 1 1 1
1) p(A) = {60,6:1}, p(B) = {62, 63,64} (Table 6):
A M1 M2 K3 B4 B H1 M2 M3 K4
| 2 .10
|| .15
[198] 2 .20 .6 1
|| 2 .25 3 0
=i 2 .30 1 0
[Al= [ 4 | 25 | o 0o | [B]= 6 | 75 | 1 1
AAB M1 w2 B3 a4 AV B #1 b2 M3 ™
|| 2 .10 0 0
=l 2 .15 0 0
=i 2 .20 .6 1
|| 2 .25 3 0
=i 2 30 | 0
[AAB] = 0 0 0 0 [AV B] = 1 1 1 1
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A—-B B M3 3 Ha A~ B 1 K2 B3 #4
|| .2 .20 .6 1
|| 2 .25 3 0
m .2 .30 1 0
[A— B] = 6 75 1 1 [A«~ B] = 0 0 0 0
2) p(A) = {01, 02}, p(B) = {02, 03, 94} (Ta.ble 7)
A #1 w2 H3 Ha B M1 w2 w3 Ha
|| .15 0 0
= .20 6 1 || 2 .20 .6 1
2= 2 .25 .3 0
1) .2 .30 1 0
[A] = 4 35 6 1 [B] = 6 75 1 1
AAB M1 ) i3 [T AV B 1 2 M3 14
|| .2 .15 0 0
= .2 .20 .6 1 D 2 .20 .6 1
|| 2 .25 3 0
[ | 2 .30 .1 0
[AAB] = 2 | .20 | .6 1 [Av B] = 8 | .90 1 1
A—B B B2 K3 Ha A— B B K2 B3 Ba
|| .2 .10 0 0 || 2 .10 0 0
| 2 .20 .6 1 = 2 .20 .6 1
] 2 .25 3 0
|| 2 .30 .1 0
[A— B] = 8 | .85 1 1 [A— B] = 4 | .30 6 1
3) p(A) = {02, 03}, p(B) = {02, 03, 04} (Ta.ble 8):
A M1 B2 K3 a B K1 K2 K3 Ha
|| .20 1 . .2 .20 .6 1
[ | .25 0 || .2 .25 3 0
(]| 2 .30 1 0
[4] = 4 45 | .9 1 [B] = 6 15 1 1

1o




AAB B M2 ) ™ AV B B B2 B3 Ba
= .2 .20 .6 1 || .2 .20 6 1
- 2 25 0 | 2 .25 3 0
[ .2 .30 1 0
[AAB)= | 4 | 45 [ 9 [ 1 | [avBl= | 6 | 5 | 1 1
A—B 1 M2 u3 B4 A~ B B B2 u3 Hq
|| 2 .10 0 0 = 2 .10 0 0
[ | 2 .15 0 0 ] 2 .15 0 0
= 2 .20 .6 1 == 2 .20 .6 1
== 2 .25 .3 0 = 2 .25 3 0
= 2 .30 .1 0
[A— B] = 1 1 1 1 [A~B]= | 8 | .10 | .9 1
4) p(A) = {63,0.}, p(B) = {62,863, 64} (Table 9):
A #1 #2 K3 M4 B 1 M2 M3 4
- 2 .20 .6 1
= ; .25 3 = .2 .25 3 0
| 2 .30 . = 2 .30 A 0
[Al= | 4 [ 55 | 2 | o [[Bl= | 6 | 75 | 1 1
AAB 731 K2 M3 M4 AV B 1 M B3 M4
| | 2 .20 .6 1
|| .2 .25 .3 || 2 .25 .3 0
= .2 .30 S || 2 .30 1 0
[AAB]= | 4 | 5 | 4 | 0 | [AvB]= 6 | 75 | 1 1
A— B 1 M2 p3 B4 A~ B 73 M2 K3 T
| 2 .10 0 0 || . .10
|| .2 .15 0 0 = .2 .15 0 0
= 2 .20 .6 1
= .2 .25 .3 0 || .2 .25 3
|| .2 .30 1 0 == .2 .30 .
[A—B]= | 1 1 1 1 [A-B]= | 8 | 80 | 4

(Note that, due to lack of table space, we have done without the “A « B” proposition.)

It is easy to verify that all relevant formulas of section 1 (i.e. (9-24) and (40-45)) are satisfied in the
four cases 1-4. Moreover, observe that in case 1,

[AAB] = max(0,[A] + [B]—1)  and  [AV B] = min(1, [A] + [B]) (86)
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for all four measures p;-p4; in cases 3 and 4 we have:
[A A B} = min([A], [B]) and [Av B] = max([A], [B]) (87)

also for all four measures. These results, that will be rigorously justified in section 6, already suggest
that the classical logical connectives (here A and V) are non-functional, and that their values (i.e. the
truth values of the composite propositions constructed with them) depend on the “relative position” —a
concept that we shall later parameterize accurately— of A and B (inside ©). We also have (note the
left-hand condition is satisfied in cases 3 and 4) that: ,

AFB = [A—-B]=1 (88)

for the four —actually for all— valuations (as it should be).
Intuitively, the measure px({0}) of each individual § in the © universe should seemingly correspond
to the relative importance or the relevance this individual has in that universe. Thus, in a view of
© of the A2 type (see section 2) where the 6 are observers, u({8}) would represent the importance a

“superobserver” assigns to each particular 6. In a tests (A3) or possible worlds (D2) view, u({6}) would *
be the relevance attributed to test 8 or the degree of realizability of the given possible world. And so on.

In our standard view of the 8s as interpretations (E1), we would have:

El. p(8) = Relevance of interpretation. u(A) = [A] = Degree of [logical] validity of A. (Note measure
 should be positive here.) We have:

“E=A ifandonlyif [A]=1".
If the valuation were not positive but selective then we would have:
“Aistrue ifandonlyif [A]=1".

For general, non-positive valuations we would have three situations, characterized by:

1) [A] =0
IT) [A4] € (0,1)
III) [A] = 1

that would correspond to what, historically, all formalizations of Three-valued Logic have characterized
as:

1) ‘A is false’

IT) ‘A is undetermined’ —either because the truth value of A is [existent but] unavailable or because it
does not exist (i.e. there is a “truth-value gap”)

) ‘A is true’.

We shall stick to this reading of “truth values” in three-valued Logics later, when we turn back to analyze
their truth tables (in section 8).

Now we turn back to our list of restricted views A-D. With views of type A in mind, Table 5 (that lists
the twenty values assigned to the five possibilities 6o-8,4 by the four valuations y;-p4) allows, through the
relatively smooth transition it suggests between the uniform x, and the selective u4, the modeling of the
process of scientific ezplication (Carnap’s term). We begin in a situation with poor evaluation criteria —so
we give each possibility § (observation, possible explanation, etc.) equal weight—, then we progressively
discard some possibilities made irrelevant by the enquiry until we focus on a unique 8 (here 6;). Under
this perspective, A would be a proposition or theory under elaboration or discussion, © would be the set
of, say, experiments, contexts or polemizers, each with its own independent verdict on the theory being
discussed, and each being itself evaluated (according to likelihood, seriousness, relevance, ...) by those
who globally appraise the theory in its state of progress. Such a process —being eliminative— would
refine the theory, as usual in science (and also in public opinion: different observers can, even maintaining
their views, be weighed equally at first by the public and then progressively one or several opinion-leaders
can arise and consolidate); but the inverse process is also possible: a single explanation or observer is
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given utmost importance at first (probably because of lack of alternatives), then more explanations are
raised or more observers have own opinions.

To give an idea of the range of applicability of the £/P(©) isomorphism, we next reexamine the list
of the twelve different examples we suggested in section 2.

Al. p(f) = Weight given to the person being questioned. u(A) = [A] = State of opinion (of those being
questioned) about A. This is an intuitive and trivial view of ©, with a direct application to questionnaire
theory. Each distinct p or v valuation corresponds to a different aggregation function (and so p; is an
arithmetic mean while x4 is a selection function). Note that our conception of ® has been based so
far on an implicit assumption: that opinions are mutually independent; if individual opinions influence
each other or there are collective/individual interferences then the additivity assumption (72) should be
relaxed. (We shall do that in section 11.)

A2. p(6) = Observer’s credibility. u(A) = [A] = Consensus over A. This is a variant of Al (with a
possible application to Science Theory) according to which the “truth” of a proposition or theory A is
the result of consensus among (e.g.) scientists at a given moment. This can be seen in agreement with a .
certain simplified theorization of scientific truth in the Kuhnian tradition.

A3. p(6) = Evaluation-or reliability of test. p(A) = [A] = “Truth” of A. Here [A] = 1 amounts to
assert that A is true by induction on the N (or 2") observed cases. Obviously, it is limited induction,
because it ranges just over a finite number of cases, over cases that were previously selected (by choos-
ing ©) and, moreover, with an attached weighing function presumably reflecting the relevance of each
observation. With these constraints in mind, this adequately formalizes induction. Nevertheless, when
possible observations are potentially infinite (the most frequent situation), we are again in an infinite £,
and all the appropriate caveats apply.

A4. p(f) = Relative importance of given context. u(A) = [A] = Global value of A considering all the
relevant contexts. (This is consistent with Boole’s presentation.)

A5. p(6) = Weight or relevance of given consideration. u(A) = [A] = Result of a complex consideration
or judgment on A. (A model, maybe, for “subjective probability”.)

A6. p(f) = Likelihood of application. p(A) = [A] = Degree of applicability (or frequency of application)
of the utterance A in some given circumstance or linguistic context. As we said, this approach is especially
suitable to model the vagueness of natural language. Thus, a vague “John is tall” can be “precisified”
or “specified” into —or [implicitly] communicated as— 6 = “John is 6 ft. tall”, §' = “John is 6 ft. 4 in.
tall” and so on, each to be valued according to the degree the speaker thinks the particular 8 describes
—or applies to— the original vague sentence. “Fuzzy-set”-theory practitioners would no doubt say that
[A] is the “truth value” of the [vague] sentence A.

Bl. u(f) = Additive valuation of event 8 (i.e. Probability, in the current mathematical sense). p(A) =
[A] = Probability of A. (Nothing to add here; we are in the mainstream of an intensively explored
subject, and we can take advantage of all its methods and insights.)

B2. p(6) = Bayesian (i.e. additive) valuation of possibilily 8. u(A) = [A] = Beliefin A (in Shafer’s
sense). (Also nothing to add, except for the fact that the additivity (72) we currently assume assimilates
our case to what Shafer calls Bayesian beliefs; section 11 will loosen additivity, so that our analysis will
be coextensional with Shafer’s.)

C1. u(6) = Value or relevance of the given component of the theory. u(A) = [A] = Partial truth (in
Haack’s sense) of A, or “Truth content” (in Popper’s). (Nothing to add to what was said on this view
before.)

D1. p(6f) = Relevance of the given instant (or stage). u(A) = [A] = Value of A in time (or “mathematical
truth” in the intuitionists’ sense).

D2. p(f) = Relevance of world. u(A) = [A] = Degree of contingency of A. Here we have that [A] = 1
means “A is necessary”, that [A] € (0,1) means “A is contingent”, and that [A] = 0 means that “A
is impossible” (thus abusing the alethic terminology; actually, proper terms should be used for non-
alethic modal contexts). Dually, we would have [A] # 0 corresponding to “A is possible” or “cA”. (It
is noticeable that P. Henle gave this same meaning for A when interpreting Lewis’s S5 in the Boole-
Schroder algebra.)
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El. (See above, before Al).

Given that our standard view is that £ is free, generated by n propositional letters, any other view
(like e.g. Al) is subsumable into it by considering that any possible proposition is generated by n letters,
so that there are 22" such propositions. If there are 2V possible answers to question A by N persons
being polled, there must be n letters and 2" possibilities 6 such that N < 2" (this is necessary to be able
to distinguish all N individuals). At least 2® — N possibilities not representing persons will be valued
zero. If only one person is questioned, his or her answer will automatically yield the truth value [A] of A.
If there are N (> 1) of them, they may disagree (and then [A] will be a weighed mean of their opinions).
Or else they may all agree; in that case [A] = 1 will signal not only truth but solid unanimity. Similarly
for the rest of views (A-D).

It is to be remarked that, by the representation theorem (66), we always have a set structure P(©)
when we use a propositional language £. If £ is freely generated by n letters then £ contains 22"
distinct elements (propositions) and automatically we have as their set counterparts 22" subsets of ©,
where © is the set of 2" elements (of unspecified nature) that correspond to the 2" atomic propositions
in £. Though we are generally uninterested in the meaning of this universe © and its “possibilities” or
“eventualities” 8, they are there to take, and possibly to help us in figuring out or interpreting better how
the [linguistic] propositions of £ behave. For instance, suppose the generators of £ (a lattice of theories)
are just a vocabulary of n elementary theories (posing as basic explanations for observed facts [and also as
prediction components for yet unobserved ones]). There is —by the representation theorem— a universe
© of 2" possibilities (of still unknown nature) whose 22" different combinations (sets) correspond to all
22" theories in £. An easy interpretation of © is this: each  is a corroboration instance of each atomic
theory of £. Given a theory A of £, A is expressed by a syntactical combination of the elementary
theories that generate £ and it simultaneously has a set counterpart: the set A of eventualities  where A
is found to hold. Thus, it is just natural to value the “truth” of A by measuring the 8s in A, so we have
[A] = u(A). Moreover, we have that if, for instance, for a given pair of theories A and B we find that
AF B, then we also find that A C B, so that when we follow a reasoning down the I direction, we also
can be sure that, as it concerns possibilities, the ones contained in A are also in B, so that the reasoning
process monotonically maintains possibilities (if the § were distinct respondents to the A question, A - B
would mean they are faithful to their own past affirmative responses); and vice versa: if all possibilities
(or yes answers) were not preserved when going from A to B, then valid reasoning could not proceed in
that direction. Such considerations may help to illustrate an underlying process going on whenever we
—apparently only syntactically— use propositions.

5. RELATIVE TRUTH

Suppose we want to express the conjunction value as a product:
[AAB]=1[4} T (or [AAB] =*'"-[B]) (89)
-We have (provided [4] # 0):
.o [AAB] _v(AAB)
[A] v(A4)
which yields on £ a new valuation v4 : £ — [0,1] with the same properties as the original valuation v
(indeed v, satisfies equations (9) and (11), as is easy to prove).

= v4(B) (90)

With the current £/P(©) representation in mind, we have:
_ MANBE) (91)
#(A)

Thus, the new valuation takes in account, out of every subset of ©, only the part contained in A,
and it gives it a value related only to that part. So we define T as the relative truth “ [B|A]” (i.e. the
“truth of B relative to [or conditioned on] A”):

(Definition:] Relative truth of B with respect to A is the quotient

[4A B]

8141 = 5

([A] #0) (92)
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[ Remark: Here we break with our own implicit notational convention according to which double brackets
separate the syntax (inside) from the outer world of semantics; now, what is inside is not syntax ~—clearly
it is not a wff (the stroke there is not Sheffer’s)— but a bungled expression, a half-hearted concession to
the time-honored ‘conditional probability’ notation. ]

If [B|A] = [B] (which, incidentally, implies that also [B|-A] = [B]), then we say that A and
B are independent (because the valuation v4(B) = v(B) remains unaffected by A). In that case, the
conjunction can be expressed as the product:

[4A B] =[A4]- [B] (93)
(and then we have also:
[A— Bl =1-[A]+[A]-[B]=1-[4]-[-~B] ). (94)

In any other case we say that 4 and B are [mutually] dependent and speak of the relative truth of one
with respect to the other. Note the dependence goes both ways and the two situations are symmetrical.
We have (always assuming [A] # 0):

[A]- [BlA] = [B]- [AIB] = [A A B] (95)
[A|A] =1 (96)
I[AlﬁA] = [[-1A|A] =0 (97)
[4A B|A] = [B|A] = [A — B|A] (98)
[AvB|A] =1=[A— B|B] (99)
[B|A]+ [-B|A]=1 (Complementation) (100)
[B] = [A]- [B|A] + [~A] - [B|-A] (Distribution) (101)
[A—B]=1- [A] - [-B|A] (102)
_[[A-—rBII_lIA—»—!A]]_ _1—[[:‘1—».8]]
[B|A4] = [A] [l =1 ] (103)
Note that, in general,
[B|A] # [A — B] (104)

Particularly, we have always
[B|A] < [A— B] (105)
ezcept when either [A] =1 or [4 — B] =1, in which cases (and they are the only ones):
[B|A]=[4— B] .
-We have also:

[B|A]=1 ifandonlyif A}, B (106)
[B|A] =0 ifand onlyif A=, ~B
Naturally, from (106) we get: A= B iff (Vv) [B|A]=1,andso: A B = [Bl4]=1 (107)

(Also, as (57) or (83): A =B iff (3p) [B|A] =1 , where pis a positive valuation.)

Two remarks are in order. First: formula (95) is the logical equivalent of Bayes’ formula, but note
there is no privileged direction here, i.e. neither A nor B can be thought of as “prior” or “posterior” to the
other (actually, such terms would make no special sense in this exclusively logic context), and the formula
is —contrasting with its interpretation problems in Probability— unproblematically symmetric. Second:
the (104) inequality together with formula (95) suggest a reason for the current P(A — B) / P(B|A)
confusion incurred when trying to measure [probabilistically] the [logical] A — B statement. Such cavalier
identification may plausibly arise from a straightforward translation from A4 A (A — B) —which occurs
in Modus Ponens and is logically equivalent to A A B— into [A] - [B|A] —which equals the value of
A A B—, thus turning a [logical] meet into a [numerical] product along the way, and —on the whole—
unwittingly assimilating A — B to its value [A — B] and then to [B|A], which is then multiplied by
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[the value of] A. To see that, just compare the following two valid decompositions (the first of which is
an elementary Boolean property, while the second is formula (95) again):

[AAB] = [AA(A— B)] (note that [AA (4 — B)] # [[4]-[A — B], see below)

[AAB] = [A]-[BlA]
where it can be noticed that, to get [4 — B] identified with [B|A], a [logical] meet between propositions
must be transmuted into a [numerical] product between values, and this can be done in a value-preserving
way only if A and A — B are independent —which is emphatically not the. case (see below, after table
12) except when either proposition is binary-valued; also, the [A — B] must be ultimately assimilated
to [B|A]. But “B|A” neither is the same thing as “A — B” nor has the same value or meaning, as we
saw above.

An example, taken from typical probability scenarios, will give the feeling of what we mean by relative
truth (or what we could as well call “conditional truth”, after the model of “conditional probability”).
Suppose we toss a coin three times; if we represent ‘heads’ by ‘@’ and ‘tails’ by ‘@’ then we have eight
possible outcomes:

bHh=000,0=000, =080, =000,
04.=000, =000, =000, ;=000 .
(So we have an eight-element frame ©.) We now express the following facts:

A = ‘First toss is heads’.
B = ‘Second toss is heads’.

C = ‘Exactly two consecutive heads are obtained’.

Naturally,
A = {6o,6,,0,,65}
B = {60, 61,604,605} (108)
C = {61,604} .
So we have (assume g is uniform):
(Table 10)
6] A B c AAB ANC BAC
6o = == =il
6, i | | = =i |
4, |
03 |
04 | | |
05 =
Oe
67
p= | 172 | 172 | 1/4 1/4 1/8 1/4

where we note that:
|IA/\B]] = 1/4 = IIA]] [[B]]
[AnC]=1/8=[A]-[C]
[BAC]=1/4 # 1/8=[B]-[C]}.

According to this, A and B are mutually independent, and so are A and C, but not B and C, because
C is conditioned by B.

Not that this example is anything new: on the contrary, it is a most trivial and commonplace exercise
in Probability. Yet, suppose that we now vary slightly the problem and we say, not that three consecutive
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tosses are made (which involves a time sequence), but that we have a three-coin array (sonow,eg. OO
means there is ‘tails’ in the center coin) and that three possible coin configurations particularly interest
us:

A = ‘Leftmost coin is heads’.

B = ‘Center coin is heads’.

C = ‘Exactly two coins in contact have heads in them’,

These are obviously the same A, B, C as before, but they now refer to a situation in space, and there
is no time or action involved at all. Thus, Probability’s traditional way of describing the relationship
between B and C as a “conditioning (or chaining) of one [previous] event (B) on another [subsequent]
event (C)” is rather at odds with the absence of the time dimension, because here the dependence of B
and C'is due strictly to the spatial configuration of the coins (and not to any “previous” event). Moreover,
this dependence is mutual: C’s truth also influences B’s (notice that C I B, as clearly shown in the
table); labeling this reverse influence as “conditioning” would give the description, even in the tossed-
coins interpretation, a rather contrived unnaturality (because the fact that C happens presupposes that
B and A have already happened).

And note that the inherent symmetry we have pointed out in logical dependence —so natural and
easy to accept (see e.g.” (95), a logical “Bayes formula”)— is mirrored, in Probability, in the unease
probabilists feel at the definition, distinction and interplay of a priori and a posteriori probabilities, two
symmetric concepts that —because Probability so much subliminally relies on time (and because time is
a one-way arrow)— prove so hard to accept as such (i.e. as indeed symmetric).

Actually, we suggest that the terms “logical dependence between two propositions A and B” or else
“truth of some proposition A relative to some other proposition B” is a more accurate —and general—
description of fact than “conditioning of event B on event A”. Particularly, the proposed formulation
avoids the usual time-dependent and frequentist connotations so often associated to probabilistic ter-
minology —especially when described phenomena are of a purely logical nature. We also claim that
this assimilation of the ‘conditional probability’ concept into Logic is, aside from practical applications,
enriching for both Logic and Probability theories. From the conceptual side, it allows to recognize and
establish the clear-cut distinction between the [generally diverging] values “ [B|A] ” and “ [A — B]”
(see (104)). It also helps to clarify the sharp-edged difference between the “ [B|[A]=1" and “A =B "
situations (which —though they always go hand in hand, see ( 106-107)— are conceptually distinct).

All that was said in this section about truth relativization of B by a “conditioning” proposition A
is extensible to the general case where there is not one but n propositions Aj, ..., A, that bear on
B’s truth. We call these propositions —which could easily be the axioms of a certain theory (and B a
potential theorem)— contezi. Then definition (92) generalizes into:

[Definition:] Relative truth of B with respect to a contezt Ay, ...,A, is the quotient

[AiA...A A, AB]

[B|Ay,..., An] = [AiA...AA,]

([ALA ... A A,] #0) (109)

6. CONNECTIVES AND PROPOSITIONAL STRUCTURE

The goal now is to find the truth value of composite propositions in £. For the negation connective
this is easy: it is given by formula (12). For the rest we have the three following formulas that are a
direct spin-off of additivity (11) and the definitions (20) and (39):

[Av B] = [4] + [B] - [4 A B] (110)
IIA—»B]] = 1—[[A]]+[[A/\B]] (111)
[A+~ B] = 1-[A]-[B]+2-[4A B] (112)

(formulas (111) and (112) are (21) and (42) again).

So the problem now reduces to finding the numerical expression [A A B] of the conjunction A A B as a
function of the [numerical] “truth” values [A] and [B] of the component propositions A and B.
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For any A = p(A) and B = p(B) we have, obviously:
pCANBCACAUBC®O (113)
and, because of the monotonicity (71) of u:
0 <u(ANB) < u(A) <u(AUB) <1 (114)

In (113) there is a smooth, comprehensive gradation of possible cases. We distinguish four extreme cases;
the first two concern intersection, the third and the fourth union:

- Case 1: ANB = ¢. We have:
p(ANB)=0 (115)
- Case 2: Subcase (a): ANB = A (i.e. A C B). We have:
n(A NB) = p(A) < u(B)
or Subcase (b): ANB =B (i.e. BC A). We have:
#(A NB) = u(B) < u(A)
In either subcase we have:
4(A N B) = min [u(A), u(B)] (116)
- Case 3: Subcase (a): AUB = A (i.e. B C A). We have:
#(A UB) = u(A) > u(B)
_or Subcase (b): AUB =B (i.e. A C B). We have:
1(A UB) = u(B) > u(A)

In either subcase we have:

(A UB) = max [u(A), u(B)] (117)
- Case 4: AUB = 0. We have:
p(AuB)=1 (118)

Cases 2 and 3 describe a single situation —that we shall call ‘case &’— because, thanks to additivity
(72) of p:

#(AUB) = p(A)+p(B) - u(ANB) =
= p(A) + p(B)— min [u(A), u(B)] =
= max [p(A), u(B)]

and vice versa. On the other hand, cases 1 and 4 can be treated as one, because we have, respectively:

w(ANB)=0 (119) (for case 1), and
rAUuB)=1 . (120) (for case 4),

that by (72) yield, respectively:
u(AUB) = u(A) + u(B) (121) (for case 1), and
w(ANB)=p(A)+p(B)-1 (122) (for case 4).

We can cover the situations described by (119-122) with a single name —we shall call it ‘case 8'—
and a pair of formulas:

#(A N B) = max [0, u(A) + u(B) 1], (123)
that summarizes in a single statement formulas (119) and (122), and
#(A UB) = min 1, p(A) + p(B)], (124)

that does the same for formulas (120) and (121).

To justify results (123) and (124) it suffices to consider that:

-If y(ANB) =0 (119) then (A UB) = p(A) + p(B) < 1, s0 p(A) + p(B) —1 < 0and py(ANB) =
max [0, #(A) + p(B) — 1] = 0, as it should be.
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-If u(AUB) =1 (120) ther p(ANB) = p(A)+p(B)—1 > 0, so x(ANB) = max [0, x(A) +p(B)—1] =
u#(A) + p(B) — 1, also as it should be.

So the formula (123) is right for the two cases (119) and (120) it so compactly summarizes. And identically,
coeteris paribus, for (124) as a summarizing formula for the union in both same cases.

Thus, by tracking what happens with measure 4 when A (as B) goes all the way —in smooth
gradation— from ¢ to © (see (113)), it is easy to see that not one but many values are possible for
#(ANB) and (A UB), and that those values are strictly dounded as prescribed by formulas (116-117) in
one extreme case, and by (123-124) in the other. This has a straightforward translation into truth values
and composite propositions. The first thing we learn is that the binary connectives —as propositional
functions— are not functional, i.e. they yield different values for a proposition despite the fact that the
operands may have stable values. (We shall see below, however, that the binary connectives are actually
functional, but in three —not two— variables.) The second is that the range of values of composite
propositions has, nevertheless, strict and prescribable bounds. We analyze that, and distinguish the two
exireme cases we mentioned:

A) Case @ : It summarizes cases 2 and 3 above. This situation is what we call mazimum compatibility
between two propositions A and B. The value of the connectives is given by:
[AAB] = min ([A], [B]) (125)
[AV B] = max ([A],[B]) (126)

(which are (116-117) in truth-value notation).
We shall often abbreviate the right-hand members as “ [A A B]*” and “ [AV B]* ”, respectively.

Case @ obviously corresponds to any of the situations described next:

A B
A C B, which is equivalent to A+ B and, graphically,
H =
Il
==
B C A, which is equivalent to B+ 4 and, graphically,
||
m =
N .

all of which justifies our speaking of “mazimum compatibility”. We could have called this case also simply
compatibility or coherence (because of lack of incoherence, see case ©) or mutual implication (because
here either A+ B or B - A). The situation here is one of [mutual] dependence, as [B|A] —or [A|B]—

_equals one. (Later we shall speak also of correlation.)
From [A A B] and (111-112) we obtain at once:
[A— B] = min (1,1- [A] + [B]) (127)
[4 o B] = 1-|[4]- [B]| (128)
We shall abbreviate the right-hand members as “ [4 — B]* ” and “ [A « B]t ”.

B) Case © : It summarizes cases 1 and 4 above. There is what we call minimum compatibility between
two propositions A and B. The value of the connectives is given by:

[AAB] = max (0,[A] + [B] - 1) (129)
[AvV B] min (1, [A] + [B]) (130)
(which are (123-124) in truth-value notation).
We shall often abbreviate the right-hand members as “ [AA B]~ ” and “ [AV B]~ ”, respectively.
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Case © obviously corresponds to any of the situations described next:

A B
A NB = ¢, which is equivalent to AA B =1 and, graphically,
=i
||
|
=
A UB = O, which is equivalent to - AV B and, graphically,
||
. .
| B
|

all of which justifies our speaking of “minimum compatibility”. We could have called this case also simply
incompatibility or incoherence (because either AA B = 1 or A A ~B = 1), or mutual contradiction
(because here either A+ —B or =A | B).

From [[A A B] and.(111-112) we obtain at once:
[4— B] = max (1- [4],[B]) (131)
[4 - B] = [[4]+[B]-1| (132)
We shall abbreviate the right-hand members as “ [4A — B]~ ” and “ [A — B]~ ".

Note: ‘As corollaries to (125-132) we have that:
- If [A] = 0 then: [AAB]=0, [AVB]=[B], [A—B]=1 and [A— B]=1—[B]. (133)
-If[B] =0 then: [AAB] =0, [AVB]=[A] and [A— B] = [A«~ B] =1- [A4]. (134)

So, in summary, the value of the connectives is always inside a slack interval, with bounds © and @:

Connective Case [ Minimum value Actual value Maximum value | Case
A o max (0, [A] + [B] - 1) [AA B] min ([4], [B]) &)
v o max ([A], [B]) [Av B] min (1, [A] + [B]) o
— e max (1 — [A], [B]) [A — B] min (1,1 — [A]+ [B]) @
- o 1141 + [B] - 1] [4 ~ B] 1 - |[4] - [B]| ®

We have, perhaps more graphically:

=) [AAB]- < [AAB] < [4AB]J* ®
® fAvB]t < [AVB] £ [AVB]- e
S] [A—B]- < [A—B] < [A— B]* @
© [AwB]- <[4-B] < [A~B]* @
! ! !
0 c a d 1

The above diagram is actually oversimplified: each connective would have a different projection on the
[0,1] line, and each would have a different triple of values ¢, a and d; in each triple, c and d are the
minimum (c) and maximum (d) values, respectively, that the actual value (a) of the corresponding
composite proposition can reach, as the swing along [0,1] takes a from the © to the & case.

A rather stunning fact about the above graph is that the width d — c is constant for the three first
connectives (and exactly double that length for the biconditional). Indeed,

[AABI*—[AAB]- = [AVB]*-[AVB]- = [A— B]* - [4A— B]- = ([A = B]* - [A~ B]-)/2 =
= min ( [4], [B], 1-[4], 1-[B]),
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a quadruple minimum that only depends on the values of [A] and [B]. We note this value by “ A(4, B)”
or “ Ayp” and notice that A(4, B) = A(-A4, B) = A(4,-B) = A(—A4,-B).

Another striking fact about connectives is that we can parameterize their values through a unique pa-
rameter we name “ a4, B) ” or “ asp ” and we call “degree of compatibility [between propositions A
and B]” or “relative position [of propositions A and B (inside ©)]". Its value is:

_ [AAB]-[AAB]~
AB = TANB]* - [AA B]-

a (135)

Symmetrically we define a second parameter we name “ 8(A4, B) ” or “ 845 » —that we call “degree of
incompatibility [between propositions A and B]”— through the formula

Bap =4 l—aap (136)

Naturally, 0 < a4p < 1 and, simultaneously, 1 > B4p > 0 —where the leftmost and rightmost bounds
refer to cases © and @, respectively, so that both cases are completely determined by one parameter (or
both of them):

Case @ (Mazimum compatibility): aap = 1 (or Bap =0).
(Note that then —and only then— [A A B] = [AA B]t.)

Case e (Minimum compatibility): aap = 0 (or fap = 1).
(Note that then —and only then— [AA B] = [A A B]~.)

Both cases coincide if —and only if— at least one of the propositions A or B is valued binarily. In this
situation —which is equally well described by both case profiles— a4p and B4p are undetermined, and
the actual value of the connectives is given by any of the formulas above.

In the general case, the parameter a p acts as an indicator or measure of “relative position” of
propositions A and B inside ©, and also as a cursor ranging inside the [fixed] interval between bounds,
pointing to the actual value of the connective. We can formulate each connective as a linear function (a
convex combination of case @ and case © values) “interpolating” between bounds (=the extreme @ and
© values), so that its effective value is given by the values [A4] and [B] and the parameter a. (Thus each
connective is functional in three variables, the third being .)

Indeed we can, and get the following set of formulas (where (137) derives directly from (135) while
(138-140) are obtained from (137) via (110-112)):

[AAB] = asp-[AAB]* + Bap-[AAB]- (137)
[AVB] = asp-[AV B}t + Bap-[AV B]~- (138)
[A— B] = aup-[4— B]* + Bap-[A— B]~ (139)
[A~ B] = ass-[4+ B]* + Bap-[A«~ B]~ (140)

So by knowing a single value (either of [AA B], [AV B], [A — B], [A « B], asp or Bap) we can
compute the other five.

Alternatively, formulas (137-140) can be replaced by this set:
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[AA B] = min ([A],[B]) — Bas-Aas (141)

[Av B] = max ([A],[B]) + Bas-Aas (142)
[A— B] = min (1,1 - [A]+[B]) — Bap-Aas (143)
[[AHB]]: 1-— |[[A]]—|[B]H — 2-8aB-AaB (144)

where it is prominent that the value of the connectives is the value for case @ plus a negative correction
(except for Vv, whose correction is positive) of size proportional to the incompatibility Bap and the
[constant] interval length A sp (which is a function of [A] and [B] only).

Incidentally, connectives for case @ —in fact [generally upper] bounds for actual values— coincide with
values [functionally] assigned by Lukasiewicz-Tarski to the connectives in their Lo logic. On the other
hand, connectives for case © (in fact [generally lower] bounds for actual values) coincide with values
[functionally] assigned to them by threshold logic. The difference here is that those connectives are no
longer functionel in the truth values of the operands, but act as mere bounds for actual values. These
depend not only on the truth-values of the component propositions but also on a third term indicating
their relative position as well. (Nothing new in this to Probability, long accustomed to producing different
values after the relative disposition of component events.)

The a parameter satisfies the following relations:

a(A4, A) =1 and a(A, -~A)=0 (145)
a(4, B) = a(B, A) (146)
a(4,B) = a(-4,-B)=1-—a(A,-B)=1-a(-4,B) [ =p(~A,B), etc. ] (147)

(and analogously for 8). With those relations in mind, numerous properties of our many-valued logic can
be easily proved. For instance:

[AA—=A] = a(4,7A4) - [AA-A]T + B(A,-A) - [AA-A] =[AA-A]~ =0
[AV—A] = a(4,-A) - [AV-A]T + B(A,-A) - [AV-A]- =[AV-4A]~ =1
[4— B] = a(4, B) min (1,1~ [4] + [B]) + A(4, B)- max (1 — [4], [B]) =
= (-4, B)- min (1, [~A4] + [B]) + a(—4, B)- max ([-A], [B]) = [~4AV B]

We continue elaborating on the example of section 4 (tables 5-9), but now we only use, for simplicity,
the po valuation (see table 5). As before, we shall consider four cases 1-4 (corresponding to tables 6-9).

1) We have:

[A] = .25, [B]=.75 and, e.g., [A— B] =.75 (from table 6)

Aap =.25 and Bap = ([A— B]t —[4 — B])/Aip =1 (through simple arithmetic)
so that we obtain:

QAB = 0

[AAB]=.25-1x.25=0 (because of (141))
[AVB]=.715+1x .25=1 (because of (142))
[A— B]=.75 (given)
[A-B]=5-2x1%x.25=0 (because of (144))

|IA|B]| = IIA/\ B]] / IIB]] = 0/.75: 0
IIBIA]l: IIA/\B]] / [[A]I: 0/.25: 0

(notice the above values for connectives are in perfect agreement with those computed for g, in table 6).
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2) We have:
[Al=.35, [B]=.75 and [A— B]=.85 (from table 7
Aap =.25 and Bup = (1-.85)/.25=3/5 (straightforward computation)

so that we obtain;

asp =2/5

[AAB] =.35-3/5x .25 =.20 (because of (141))
[AvV B] =.75+3/5 x .25 = .90 (because of (142))
[A— B]=.85 (given)

[A—~B]=1-].35-.75/-2x 3/5 x .25 = .60 — .30 = .30 (because of (144))
[A|B] = .20/.75 = 4/15
[B|A] = .20/.35 = 4/7
(note that values agree with those computed in table 7 for M2).
3) We have: i
[A]= .45, [B]=.75 and [A— B] =1 (from table 8)
Aap=.25 and Bap=(1-1)/.25=0 (straightforward computation)

so that we obtain:

asp=1

[AAB] = .45-0x .25= .45 (because of (141))
[AVB]=.15+0x .25=.75 (because of (142))
[A—B]=1 (given)

[A—B]=1-|45—-.75|-2x 0 x .25 = .70 (because of (144))
[A|B] = .45/.75 = 3/5
[BlA] = .45/.45 =1

(note that values agree with those computed in table 8 for H2).

4) We have:
[A]=.55, [B]=.75 and [A— B]=1 (from table 9)
Aap =.25 and fap=(1-1)/.25=0 (straightforward computation)

so that we obtain:

asp =1

[AAB] = .55—-0x .25 = .55 (because of (141))
[AVB]=.75+0x .25=.75 (because of (142))
[A—-B]=1 (given)

[A~ B]=1-|55~-.75| -2 x 0 x .25 = .80 (because of (144))
[A|B] = .55/.75 = 11/15
[B|A] = .75/.15=1

(note that values agree with those computed in table 9 for n2).

The example shows the agreement between computed and table values, and it follows a as it slids along
from 0 to 1 as A and B cease to be incompatible (i.e. as the degree of superposition between A and B
increases); in the process, the dependence of A on B (and vice versa) also increases, until [B|A] finally
reaches one in cases 3-4. More graphically:
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(Table 11)

© A B A B A B A B

6o ]

6, | ||

62 [ || | | |

63 || l . N =N =

04 = =t = | .

1 aaBp = 0 l aapap = 4 | aQsap = 1 | aAB = 1

[A|B] = 0 | [A|B] ~ .27 | [A|B] = .60 | [A|B] ~ .71
[BlA] = o |[B|A] ~ .57 | [B]A] = 1| [Bl|4] = 1

In section 5 we said that two propositions A and B were independent when their conjunction could
be expressed —in value— as the product of [A] and [B]:

[4AB] = [4]-[B] (148)
It is easily shown that the necessary and sufficient condition for that to happen is:
asp =max ([AL[BI) if[4]+[B] <1
= max ([-A],[-B]) if [A] +[B] >1 (149)
(the expression in the second row is equivalent to 1— min ([4], [B]) ). Analogously,
Bap = min ([~4}, [~B]) if [4]+ [B] < 1
= min ([4],[B])  if [A]+[B]>1 (150)

(the expression in the first row is equivalent to 1— max ([A], [B]) ). Note that A —always compatible
with itself— is never independent from itself (except when its truth value is binary). Similarly, A and
—A —always incompatible— are never mutually independent (except when their truth value is binary).

When two propositions are independent, the connectives can be expressed —in value— in this way:

[AAB] = [4]-[5] (151)
[Av B] = [Al+[B]-[4]-[B] (152)
[A— B] = 1-[A]+[4]-[B] (153)
[A~ B] = 1-[A]-[B]+2-[A]-[B] (154)
[41B] = [4] and [Bl4] = [B] | (155)
Turning back to our example (with px;), we now change B and make:
p(A) ={60,6:}, p(B) = {6:,62,63} (Table 12):
o A B A —- B
6o =i .10
0, || .15 || 15 || .15
6, [ | .20 | .20
03 = .25 || .25
64 Il | 30
[A] = .25 | [B] = .60 [[4— B]=.90

So we have: A,p =.25 and B4p = .40 and, thus: asp = .60,
which satisfies condition (149), so that A and B are independent, and, indeed:
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[AA B] = .15 = [[4] - [B]
[Av B] = .70 = [A] + [B] - [A] - [B]

Summarizing: for any pair of propositions 4 and B of L, the truth value of any composite proposition
involving A and B —as well the relative truth of one with respect to the other— is computable once the
following values are known:

(a) the truth values [A] and [B] of A and B, and
(b) the value of parameter a4 p (or Bas). ,

(Note that from values [A] and [B] —that by (a) we are required to know— the value of A4p can be
immediately computed.)

The values of ayp (or Bap) are usually not known, but two considerations stand out: first, all
computations can proceed if we know just one of these eight values: [AAB], [AVB], [A — B], [4 ~ Bj,
[A|B], [B|A], aap or Bap —from which all others are derivable at once—; second, in certain cases the
value of a is either irrelevant (e.g. when one of the propositions is binary-valued) or immediate. This last
happens, for instance, when AF Bor B A (so @yp = 1) or when AF~Bor -B} 4 (so aqp = 0).
And also, in particular, when B = A or when B = —14, because then a(4, 4) = 1 and a(4, —4) =0,
whence we can easily derive, e.g., the principles of identity (- A — A), non-contradiction (F —(4 A =4))
and excluded middle (- AV ~-A4) —by verifying that, indeed, [A — A] = 1, [AA—~A] = 0 and [AV-A] = 1
for any valuation. So our logic —that we shall call henceforth ‘BML’ (for Boolean and Many-valued)—
is, like ordinary (i.e. two-valued) Boolean logic, consistent with classical Aristotelian principles (which is
peculiarly not the case of traditional multi-valued logics such as Kleene’s [24] or Bochvar’s [5] three-valued
ones or Lukasiewicz-Tarski’s Lo, [27]). Also, we have now that BML incorporates the whole of classical
[two-valued] Boolean Logic as a special case. One further interesting result here is that, for any A and
B, propositions 4 and 4 — B are always incompatible, i.e. a(4, A—»B)=0 (a good thing to remember
when we turn to modus ponens and proof theory in section 12).

Requisite (a) is the only one exacted by logics based on functional connectives such as Lukasiewics’s
L0, where the values of composite propositions are given directly by our case@®-formulas (and so a5 = 1
for every A and B), which means that —viewed from the BMI perspective— in Lo, all propositions
are compatible. In BML —incidentally— assuming such a thing would be clearly unrealistic or utterly
impossible, because in £ every proposition A4 has a negation, and a negation —A automatically stands as
incompatible with A, thus contradicting the assumption [that all propositions are compatible].

Requisite (b) is new and peculiar to the present Boolean multi-valued logic we have called BML. The
@ parameter corresponds to what Reichenbach in his probability logic called ‘Kopplungsgrad * [34](35];
it acts as a sort of descriptor or “memory” of the [relative] structural disposition of propositions A and
B “inside” L (or of A and B inside ©). This situation parallels the one familiar in Probability, where
[only] three commonplace cases are usually considered:

1) One event A is conditioned by the other. Given the probability of A and the degree of conditioning
P(B|A), the probability of B can be computed. This is the probabilistic counterpart of our dependence
(or relative truth) relation. If P(B|A) = 1 (VP) , we are in [the subcase A C B of] our case &.

2) The two events are independent. Probability of event-conjunction is then the product of probabilities
of isolated events. This corresponds to what we called “[propositional] independence”.

3) The two events are totally disjoint (mutually exclusive). Compound probability of the events is the sum
of probabilities of isolated events (as event-conjunction has zero probability). This is the probabilistic
counterpart of [the subcase ANB = ¢ of] case © (in our terminology).

Note that cases @ and © imply that the values of the connectives are those affected with the - sign
([AA BJ*, ete.) or with the — sign ([A A B]~, etc.), respectively, but the converse is not true: the
connectives may have @ values and yet we may not be in the @ case (A+ B or B F A), and we may
have © values with no © conditions (AAB =1 or AV B); such situations arise in the @ case when
A ¢ B but the “outer” possibilities (= the fs in A that are outside B) are all zero-valued, and in the ©
case when AN B # ¢ but the common possibilities (= the 8s in AN B) are zero-valued. Such is often the
case the case with selective valuations (see for example Tables 6-9). Nevertheless, if the truth valuation
is positive then that converse is true: a + or — value corresponds to a + or — situation —so then by
simply looking at the values we can be sure what conditions hold.
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7. CONDITIONALS AS REVERSIBLE PROPOSITIONS

Suppose p is a positive valuation, Classically (i.e. in two-valued interpretations of Boolean logic),
[A— B] =1or | A — B means —by (57), (59) and the representation theorem— A C B, whichis a
rigid relation that can only be asserted when an inclusion is really present and this fact can be effectively
assessed. This happens at least in these three groups of instances:

1) [A— Bl =1or =, A — B (or A C B) represents either a (a) logical relation (“A implies B"),
or a (b) semantical relation (e.g. of the ‘semantic postulate’ type: “the concept B is entailed by the
definition of A”), or a (c) general mathematical relation (“A suffices for B”, “B is necessary for A”), or
a (d) statistical relation (“every time one finds that A one also finds that B”), or simply a (e) heuristic
relation (where rule “if A then B” is to be understood or executed as “every time condition A arises,
action or consequence B should follow”).

2) [A— Bl =1or |5, A — B (or A C B) represents a causal relation. This can mean either: (a) Ais
the cause and B the effect; clearly A needs not be the only alternative cause (i.e. it may be that A’ C B ]
too, with A’ # A) but B is clearly the only effect of A (a univocal cause): so A — B is causal and
predictive (anticipatory). Or (b) A is the effect and B the cause; the effect may not be the only one due
to B, but B is the only cause of A (a univocal effect): so A — B is causal yet retrospective (diagnostic).

3)[A— B]=1or|=p A — B (or A C B) represents an evidential relation: “4 is [concluding] evidence to
assert B”, and so “B is an explanation hypothesis for —or an expected consequence from— the evidence
A”. (B may be —most often— the real cause of the observed A, it may sometimes be its effect, or it may
be neither.) A4 — B is thus evidential; it is also retrospective (or diagnostic) if B causes A, or predictive
(or anticipatory) if B is the effect.

(We will be interested only in the latter two cases).

In BML, the simple fact of being able to value a conditional A — B in [0,1] turns things around,
so we may now have a new perspective on the conditional statement and how it works. For now the
arrow no longer signals a rigid condition corresponding to set inclusion A C B but a relation (in the
mathematical sense i.e. with possibly overlapping or even disjoint A and B). Also, the relation between
A and B is now completely general; and if, e. g., A — B is causal (but note the causality is now totally
general: m causes may be associated to n effects) then B — A is evidential. Further, we have:

a) A and B are reversible, and each direction will yield an independent truth value (TA — B] # [B — 4],
generally). If A — B is meant to be read as ‘cause — effect’ (or ‘effect — cause’) then B — A is read
‘evidence — hypothesis’.

b) A — B, when asserted (for instance, in a premise), may now simply be a signal (given by the utterer)
that the arrow is to be followed in this order (because it flows in the direction of time or evidence) or, more
plausibly, that A — B is more likely the case than B — 4, i.e. [A — B] > [B — A] (a relation which,
incidentally, amounts to say that [B] > [A] and, hence, also that [B|A] > [A|B]). Or else asserting
"A — B may just signal that [A — B] > [4 — —B] (and so [B|A] > [-B|A], and [B|A] > 1/2).

b’) Yet, more to the point, asserting “4 — B” reasonably seems to imply that there is a relation between
propositions A and B, so we would expect [A A B] > 0 (which amounts to [A — B] > 1 — LAD).
Nevertheless, on closer look, this appears still to be insufficient. Asserting A — B seems to imply, more
restrictively, that [A A B] > [A] - [B] (which amounts to [A — B] > 1 — [4] - [B], a higher value
than 1 — [A]) —because if the sign here were < we would have independence or even anticorrelation
(see above), a rather perverse result (contradicting any reasonable expectation raised by the A — B”
assertion). (Remember that in “4 — B” the relation between A and B is logical, not merely frequential
or probabilistic.)

In view of the preceding considerations, we could reinterpret some concepts and values, like [B|A]
and [A|B], when given the A — B assertion (that we here interpret, for simplicity, as a ‘cause — effect’
flow —and so B — A as ‘evidence — hypothesis>— and note we no longer require that the valuation
should be positive):

— [B|A] (or “o4™ —or even “vg”, see next paragraph—) could be termed “degree of sufficiency or
causality” of A (or “causal support for B”, or even “prediction or anticipation capability”), to be
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read as “degree in which 4 is sufficient for B” or “degree in which A4 is [in general non-unique] cause
of B”. In view of (91), it is roughly a measure of how much of A is contained in B.

— [A|B] (or “v4™ or “op”) could be termed “degree of necessity or evidence” of A (or “evidential
support for A", or even “reirospective or diagnostic capability”), to be read as “degree in which
A is necessary for B” or “degree in which B is [in general non-compelling] evidence (= support of
hypothesis) for A (=the hypothesis)”. With (91) in mind, it can be seen as how much of B overlaps
with A.

Such measures may be directly estimated by experts, normally by interpreting the fs frequentially, in
terms of cases , like Boole. (Cases may be statistically-based or simply imagined, presumably on the basis
of past experience or sheer plausibility.) Thus, 4 in a causal 4 — B” would be determined by answering
the question: “How many times (proportionally) —experience shows— A occurs and B follows?” For
v,4, the question would be: “How many times effect B occurs and 4 has occurrred previously as a
cause?” (Similarly for the evidential reading of “4 — B”.) Once o and v have been guessed, they lead
—by straightforward computation— to [4 — B], [B — A] and the a,p value, which allows one to
compute all other values for connectives and also to get a picture of the structural relations linking 4 °
and B (see also section 12(a).) (Incidentally, the expert can immediately detect there is no [anomalous]
anticorrelation just by checking that neither [4|B] < [A] nor [B|A] < [B1.)

We would thus arrive at an “implication-as-causality” scheme revolving around three basic cases
(note we are always following the ‘cause — effect’ downstream, predictive direction, but might as well
have considered the ‘effect — cause’ upward, retrospective direction):

1) ACB: Wehavea,p =1, [4— B] =1, [A] < [B] and [B — A] < 1. The second equation means
that A is one of the [possibly several] alternative causes of B, while the second inequality signals B
as [partial| evidence in favor of A.

2) BC A: Wehaveaup =1, [4— B] <1, [A] > [B] and [B — A] = 1. The first inequality means
that B is one of the [possibly several] effects of cause A, while the second equation suggests [total,
determinating] evidence in favor of A (once B occurs).

3) A and B overlap: This is the general case. A is one of the [possibly several] alternative causes of effect
B [that A causes among possibly several other effects]. We have not only @ > 0 but reasonably we
should have —more restrictedly— a > a®, where a° is the compatibility of A and B when they are
independent (this value is given by formula (149)); this is because we expect causality to imply posilive
correlation. Indeed, & = a® means independence and, therefore, propositional indifference: nothing
to suggest causality; @ < a® means [4|B] < [A], actually a negative correlation, plainly contradicting
any reasonable notion of causality or linkage. So, we conclude, one should have a > a°; moreover,
both [4 — B] and [B — A] are < 1, we have —as always— [A — B] - [B — A] = [B] - [A], and:

[A— B] > 1-[A]+ [A]-[B] (equal sign if and only if
[B— A]>1-[B]+[A]-[B] A and B are independent)

If these two conditions are met, the conditional A — B —and the whole chain of reasoning—
can be reversed. Once that done, two different, non-interfering lines of reasoning appear, one causal
(A — B), the other evidential (B — A). In each —naturally— we compute and keep track of the
truth values of the intervening statements, so that the conclusion can be appropriately qualified —or,
rather, quantified— (see section 12). The B — A reasoning direction happens to make possible —and
controllable— what has traditionally been termed ‘inductive’ or ‘plausible reasoning’ (or more recently,
after Peirce, ‘abduction’), which is merely the downward [deductive] process inherently associated to
—and simultaneous with— any ordinary [upward] deduction along a Boolean structure. (Here “upward”
and “downward” are conventional directions, due to the F-operator progress towards the top T.)

We can easily define a correlation coefficient k between 4 and B as a measure of how far a,p is
from af, g, ranging from +1 (corresponding to a,p = 1) through 0 (aaB = alp) to =1 (aap = 0). So
we do. To obtain the correlation formula, we just fit a curve through the three points @ = 1, a = a® and
a = 0 (quadratically, so we have smooth behavior) and get:

(2

DA -

K= 1-2(a%?) - (1-2a%a] -1 (156)
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In particular, any proposition turns out to have, indeed, maximum negative correlation (—1) with its own
negation (as it is natural to expect, anyway).

8. THREE-VALUED LOGIC AS A SPECIAL CASE

Classical three-valued logics, especially Kleene’s system of strong connectives [24] and Lukasiewicz’s
L3 [26], give the following tables for the values of connectives (where U stands for “undetermined™):

(Table 13)
A 00U 1 \ 0 U 1 — 6 U 1
0 0 0 0 0 0 U 1 0 1 11
U 0 X U U U Y 1 U v zZ 1
1 00U 1 1 1 11 1 0 U 1

where X = Y = U in both Kleene’s and Lukasiewicz’s tables, and Z = U in Kleene’s but Z = 1 in
Lukasiewicz’s. Clearly, Aristotelian principles do not hold in these logics (except that - 4 — A does
in Lukasiewicz’s), for if A [and so —A too] is “undetermined” (i.e. its value is U) there is no way that
=(AA-4) and AV A can be assigned in them the 1 value they should have (and, so, these expressions
can never be theorems in those logics —unless, that is, theoremhood is extended to designated values
other than 1).

Now, if we —as we had already suggested in section 4— abbreviate “[A] € (0, 1)” (of BML) by “[4] = U”
(as in Kleene o Lukasiewicz) the values given in the above tables coincide exactly with those that would
have been computed by the BML formulas, ezcept that X, ¥ and Z would remain undetermined until
we knew asp. In general, BML values would match Kleene’s, but in certain cases they would yield
differing results:

1) If [A] + [B] < 1 and A and B are incompatible (typically because A N B = ¢) then X = 0.
2) If [A] + [B] > 1 and A and B are incompatible (typically because A UB = ©) then Y = 1.
3) If [A] < [B] and A and B are compatible (typically because A C B) then Z = 1.

Note that in the particular case in which B is A we have always [AA-A] = 0 (from 1) and [AV-4] =1
(from 2). We have also [A — A] = 1 (from 3). These three results are perfectly Aristotelian and in full
agreement with what is to be expected from a Boolean logic; indeed, the three must yield the predicted

values just for simple structural Boolean-algebra reasons, as the first two should follow from (7), (9) and
(50), and the third from (20) and (7).

The above analysis strongly suggests that if, for some reason, upholding Aristotelian principles is worth-
while, then any three-valued logic should not be strictly functional, but allow some non-functionally-
determined values available in predictable cases. Something in this spirit is what Van Fraassen suggested

when he advocated ‘supervaluations’ [42]. Now, we contend, the same results are obtained automatically
through the BML formulas.

The same applies to Lukasiewicz-Tarski £o,. This logic, by its very structure, never gets values
consistent with Aristotelian principles and, therefore, these are implicitly negated in it. Moreover, as we
explain in sections 10 and 12, the choice of connectives in this logic is neither very well based on algebraic
motives nor very helpful for constructing a reasonable proof theory. And when it comes to practical uses
of Lo, such as its [extensive] application in Fuzzy Set Theory [2] —where it stands as the base logic—, the
‘min’ and ‘max’ values prescribed for the A and V connectives by this logic not always make everybody
happy: to judge from the current literature, authors often are at pains discussing the relative merits of
alternative formulas for the values of composite propositions (see for example [1][16](20][36][41] [46] or
(47]). Many intuitive or heuristic reasons given are, viewed from BML, relatively easy to understand.
Indeed, when propositions are strongly correlated (for instance, because many imply others and few neg-
ative propositions are present) then the connectives tend to have our @ values, and authors tend to favor
them. On the other hand, when propositions are negatively correlated (or many negations intervene),
© formulas seem preferable. Standing in middle ground, large systems (like industrial control processes)
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or long reasoning chains would tend to use many diversely-correlated propositions, and their relative
compatibilities would in the long run cancel each other out into a statistical semblance of independence,
$o it comes as no surprise then that authors are rather prone to suggest products for conjunctions. Ele-
mentary statistics show that in a universe © with five possibilities and uniform measure # (amounting to
“equiprobability”) barely a tenth of proposition pairs have a undefined (because one of the propositions
is binary-valued), half that proportion have @ = 1, only one fiftieth have have a = 0, and the rest (more
than four fifths) have  in the (0,1) interval; if we increase the size of © to eight or more elements (possi-
bilities) then the proportions of binary, fully compatible and fully incompatible pairs become negligible,
and virtually 100 % of proposition pairs have a in (0,1), clustering around independence. No wonder,
then, products tend to be suggested when system complexities grow.

9. THE GEOMETRY OF LOGIC: ORDER, DISTANCE,
TRUTH LIKELIHOOD, INFORMATIVENESS, IMPRECISION AND ENTROPY IN £

Suppose we are given any two propositions A and B, whose truth values are [A] and [B] and whose
conjunction C (= AA B) and disjunction D (= AV B) have values [C]and [D]. Assume —without loss of
generality— that [A] <-[B] and that both values are in the open interval (0,1). Given the monotonicity
(10) of any valuation v, if we project each lattice point 4 of £ on the point [A] of the real interval [0,1],
the lattice order I will be preserved in the < order of the real line. Any valuation can be conceived
as a distinct orientation of the real projection line. Naturally, conditions (64) and (62) require that if
A+ B then all projections on all possible orientations of the real line keep A projected just under B (i.e.
(4] < [B]).

Now suppose that A precedes B in the lattice order of £, so A - B. We have: (a) aas =1 (so
A and B have maximum compatibility), (b) [A — B] = 1 and [B — A] = 1 — ([B] - [AD), (<)
there is a line (representing 4 + B) that links point A to point B, and (d) A= Cand B =D (so
conjunction C and disjunction D get projected on the real line at the same points as A and B). If A and
B keep their truth values but no longer have maximum compatibility (which automatically entails that
AF B is no longer the case), then the line joining A and B disappears —as now A I/ B— replaced by a
quadrilateral (actually a rectangle, see below) joining A, C, B and D, the projection points [C] and [D]
of the conjuction and disjunction become distinct from [A] and [B], and the four projections now follow
this order: [C] < [4] < [B] < [D]. The exact amount of the separations is the same for both pairs of
points (we call it §4p, or simply §):

6 = [A]-[c] = [D]-[B]

(because additivity (11) now reads [A] + [B] = [C]+ [D] ). If we now replace [A A B] by its value
—as given by (141)— and recall that [A] < [B] we get:

§ = Bap-Aup (157)

.So, lack or loss of compatibility between A and B means that —though their projected values remain

the same— the projected values of their connectives outdistance themselves from [A] and [B] propor-
tionally to the degree of incompatibility 845, up to a maximum distance —corresponding to maximum
incompatibility, i.e. 845 = 1— given by the minimum of [A] and 1 — [B] (as this is the value of A,p
for [A] < [B]). In any case we have:

[AAB] = [A] -6 (158)
[AvB] = [B]+6 (159)
[A—=B] = 1-6 (160)
[A< B] = 1-|[A]~[B]l-2-6 (161)

So the values of all the connectives have now a correction factor added that depends on the compatibility
a (through §). The third formula shows the loss of the precedence order A - B and so the deletion of the
line formerly joining points A and B (now a simple [untraced] diagonal of the ACBD rectangle). Along
with the fourth formula, we can recall (41) (now expressable as “[4 B] =1~ ([D] - [C])” ), which
states that “A =, B iff [C] = [D]”", a fact that strongly suggests using 1 — [A e~ B]=[D]-[C] as
a measure of the distance AB [under a given valuation v]. So we do. (We remark that all definitions we
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give from now on of distance and related concepts are not only applicable to propositions but to theories
as well, because for a finite lattice like £ the lattice £ of its theories is isomorphic to L£.)

[Definition:] Distance (or Boolean distance) between two propositions or theories A and B is:
d(A,B) =4t 1-— IIA — B]] = |[AV B]] - [[A/\ B]] = ”IA]] - I[B]]I +2-Bap-AaB (162)
(Naturally, if AF B then d(4,B) = [B]-[4].)

[Definition:] Compatible distance between two propositions or theories A and B is:

d+(A,B) = |[A] - [B]|=1- [A ~ B]* (163)
This distance can also be expressed in this way:
d+(A, B) = [A] + [B] — 2 min ([A], [B]) (164)

It is interesting to notice that:

- both d and d* are really distances (in the mathematical sense), as indeed, e.g.:

d(4,B)>0 ,- d(4,4)=0 and  d(4,B)=d(B,A) (165)
d(4, B)+d(4,C) > d(B,C) (Triangle inequality) (166)
AFBFC = d(A,B)+d(B,C)=4d(A4,C) (Linear additivity) (167)

— the distance between two propositions or theories is the same as the distance between their negations
or antitheses (i.e. d(4, B) = d(—~4,-B), and the same holds for d+)

— the Boolean distance d(A, B) equals the value of the symmetric difference between A and B [ defined
by AAB =4 (AA-B)V(~AAB)]so we have:

d(A,B) = [AAB] and  d(4,1) = [4] (168)

Moreover, we have the folowing miscellaneous properties —that hold in any metric Boolean algebra and
were comprehensively studied by David Miller in his ‘Geometry of Logic’ paper [29]:

d(A,B) = d(AAB,1)

d(A, B) + d(—4, B) = d(A, -4) =1 (169)
d(AAB,A) = d(B,AV B) (170)
d(A,B) = d(AAB,AV B) (171)

(Incidentally, (170-1) show the quadrilateral ACBD described above is a rectangle, as we claimed there.)

In view of the previous relations, we could define a truth likelihood value for A —approximating
Popper’s [and Miller's] verisimilitude measure— by making it to equal the distance between A and
falsehood, i.e. d(4, 1). We obtain, immediately:

(4, 1) =d(T,L) - d(T,A)=1-d(4, T)=1—d(AAT, L) =1—d(-4, 1) = 1 - [-4] = [A] (172)

So here we have a further interpretation of our “truth values” [A] in terms of truth likelihood or Popper’s
verisimilitude (a promising concept —only partially developed— which initially led this author to suggest
it as a means to measure the truth content of a theory and to evaluate the distance to other theories).
We recall that we already considered [A] (in sections 2 and 4, in our C1 interpretation of ©) as a rough
measure of partial truth or “truth content” of A. In a similar spirit, we are reminded that a puzzled Scott
—and Katz after him— once suggested the “truth value” [A] of many-valued logics could be interpreted
as one (meaning truth) less the error of [a measure settling the truth of] A or the inezaciness of A [as a
theory]; in this framework, it comes out that, in our terms, [A]=1—¢4 and €4 = 1 - [A4] = d(4, T).

Further along the line of exploring related ideas, we now observe that, for any propositional letters P
and @, any uniform truth valuation yields [P] = [-P] = .50, [P A Q] = .25 and [PV Q] = .75, which is
like saying that, if all letters are equiprobable, the given values are the probability of the given proposition
being true (2 number that Bar-Hillel and Hintikka call, appropriately, “truth-table probability” [23]). So
this value's complement to one should seemingly correspond to the amount of information —in a loose
sense— we have when the proposition is true. This is precisely what Bar-Hillel and Hintikka define as
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“degree of information”, semantical information or informativeness I (A) of a proposition A. (Viewed in
our terms, I(A) equals 1— [A], or [~A].) These authors use the concept to model the reasoning process,
assumed to be driven by an increase both of informativeness and parsimony. What is interesting is that
they compute the informativeness of composite propositions by combining them according to rules which
amount to a multi-valued truth-value non-functional calculus of the functional-cum-supervaluation type.
So, they suggest that equalities

I(Av B) = I(A) - I(B) and
I(A A B) = I(A) + I(B) — I(4) - I(B)

are appropriate, but that (4 A ~4) and I(A V —A4) should be assigned, respectively, the 1 and 0 values
(supervalues, in fact, in Van Fraassen’s sense [42]). All these values coincide with those predicted by the
BML formulas: indeed, if A and B are assumed independent the above equations follow automatically
from our formulas, while if B = -4 the 1 and 0 are a consequence of the zero compatibility between A
and —A.

We now define a new measure in £:

[Definition:] Impr;cision of a proposition (or theory) 4 in £ (or £) is the value for A of the function
f:L-—[0,1] suchthat f(A4)=[4 e —A]*+ (173)

(We could as well have used the word “fuzziness” instead of imprecision, but the former term —aside
from its technical adequacy— is so much tied to Fuzzy Set Theory that it is better to leave it there;
moreover, “imprecision” is a rather neutral descriptor, aptly covering vagueness —a formal imprecision
built inside the language— as well as uncertainty —of a more epistemological nature.) It is immediate
that:

f4)=1- d*t(4,-4) (174)

(and note that, had we used [4 < =A] in (173) or d(4,-4) in (174), we would have had an identically
zero function f —and a useless definition—).

Some authors, like Zawirski and Lukasiewicz in the thirties, have Jjustified the deviation from classical
principles arising from many-valued logics (especially the non-validity of (7)) not as a drawback of these
logics but, on the contrary, as due to the propositional imprecision these logics for the first time allow
to acknowledge and formalize [35]. They subsequently tend to define imprecision as a measure of how
blurred the distinction between a proposition and its negation can appear to be or, equivalently, as a
measure of the logical compatibility between them. Or, still, as the inability of the particular logic
we use, given an imprecise proposition, to distinguish between positive and negative (so that the more
imprecision present the less “separating” or “resolving power”of that logic). In BML, as in any other
Boolean logic, there is no deviation from classical principles, a proposition and its negation are always
clearly distinct, and they are characterized just by having zero compatibility. However, Zawirski’s idea
tan be translated —more usefully than apologetically here— into BML (which, as any other many-valued
logic, also recognizes and accommodates imprecise statements —i.e. those valued in (0,1)— naturally).
In fact, propositional distinctiveness or compatibility are not merely intrinsic properties of propositions;
they can be affected as well by our analysis of them (by means of the v valuation): thus, we could as
well treat two propositions 4 and B as possibly indistinct, or independent, or fully compatible, though it
may happen that the second is just ~A. So imprecision, rather than being an excuse for ruining laws in
the receiving logic, can be redefined as the observer’s failure to tell a proposition from its negation (or,
equivalently, his inability to identify a contradiction) in the absence of the relevant information to make
such a distinction possible. More precisely, what f(A) measures is the degree of error we make when
in BML we find a proposition indistinguishable from its negation, i.e. when we consider —because we
lack information or for other reasons— a proposition compatible with its own negation. (This is what
definition (173) formalizes.) Under this perspective, it is clear that imprecision is an error we make. It
is more an effect of our measures and considerations over £ (i.e. of the v valuation and the previous
distinctions made in £) than a property of the logic or the propositions themselves. Though we as users
attribute imprecision to propositions, it does not originate in them but in the way we view or treat them.
Indeed, a statement like “the temperature is high” can be precise (or not) depending on the user’s point
of view: use of (un)tolerably vague language —to match physical perceptions—, or (un)certainty about
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fact —due to, e.g., (un)availability of a thermometer. It is this standpoint what determines the value
he or she assigns to the current proposition —and then a binary value identifies a precise proposition,
and an imprecise one gets in BML a value in (0,1). All the same, a sentence like “the temperature is
low” may be felt as contradictory —and so logically incompatible (a = 0)— with the above statement,
or it may be felt as not necessarily incompatible with it (@ > 0) —so their conjunction, for instance,
may not (and does not) equal zero. The source of the problem, we admit, is formally indifferent to us.
Sometimes it derives from an imprecise use of the language to which the proposition belongs (and then
it is vagueness), sometimes it is due to an imperfect knowledge of the fact that the proposition is (or is
not) actually the case in the real world (and then it is uncertainty). [In the context of theories we would
rather speak of ambiguity and partial truth in a Popperian sense].

As is easily deducible [from (164)], we have:
f(4) = 2 min ([A],1- [4]) (175)

which is equivalent to saying that the imprecision of a proposition A equals twice the error we make
when in BML we evaluate on A the truth of the law of non-contradiction or of the excluded middle ,
by considering there really is maximum compatibility between A and —A (This equivalence is trivial to
verify, since the right-hand expression in (175) equals 2 x [A A =A]t or 2 x (1 —[4V -4]*.)

Following this line of reasoning, we observe:

— Classical [two-valued] logic (“B2L") is the special case of BML in which all propositions in £ have
zero imprecision; if there exists just one imprecise proposition then we are in BML. (In Gaines’s peculiar
terminology [-see next section-], B2L and BML would apparently correspond to what this author
somewhat bizarrely calls “probability logic”and “fuzzy logic”, respectively.)

= Measure f fulfills a number of conditions that suggest it can be used as an entropy measure (in the
sense of De Luca & Termini [14]); these conditions are:

- f(A) = f(~A) (i.e. affirmation and negation of A are both equally imprecise)

— There are in £ ‘minimal’ propositions (i.e. A such that f(4) = 0) as well as ‘maximal’
propositions (i.e. A such that f(A4) € (0, 1])

-If[A} < [B] < 1/2 or [A]> [B] >1/2 then f(4) < f(B)
— Naturally, a proposition reaches its highest imprecision value when its truth value is 1/2.

Note, however, that the f measure sometimes plays —often forcedly— the role of a measure of ignorance.
But, if so, assimilating ignorance to maximum imprecision seems too simplistic (ignorance would then
reduce to the [A] = 1/2 case). Instead, a situation of ignorance seems to be better and more realistically
modeled not just inside a proposition, with no concern for alternatives, but rather in the form of a
certainty function (plausibly of the sub-additive type) like the one we shall mention in section 11 and we
shall call —after Shafer— ‘vacuous’.

10. SPECIAL CASES

BML as a logic is general and powerful enough to include familiar, well-known logics as particular
instances of itself. This is the case of (a) standard classical logic —normally considered to be neces-
sarily two-valued— and of (b) standard [but non-classical] many-valued logics like Lukasiewicz-Tarski’s
£ infinite-valued logic [27] (or, more simply, the three-valued formalisms by Kleene [24], Bochvar [5],
Lukasiewicz [26] [and others] we already treated in section 8 as a special case of BML). But BML also
helps to explain certain scattered results or ideas that are not normally part of the logic mainstream.
We have mentioned already Boole’s (7], MacColl’s [28] and Peirce’s [31] views on [what turned out to be]
propositional functions, Carnap’s view on [limited] induction [9], or Scott’s view of error [39], among oth-
ers. All of them can be naturally explained inside the BML frame. We now turn to other less-known past
ideas —more for illustration than straight theorizing— like: (c) the attempt by Gaines at deep-rooted
generalization covering both classical and many-valued logic [16][46] (an effort rather akin to ours, at least
in its starting point if not in methodology or results), (d) past attempts at formalization of {linguistic]
vagueness [4][15][37], (e) attempts to axiomatize partial belief or rational expectations [10][13][43], or
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even (f) the logic of Quantum Mechanics [6][44]. (Also, Dempster-Shafer theory (40] will be mentioned
in the next section.)

What, instead, cannot be considered a special case of BML is either intuitionistic logic (since it
operates on a propositional structure which is emphatically not Boolean) or traditional modal logic. We
can integrate modal aspects into BML (as we did in view D of sections 2 and 4) but any logic built on
this interpretation would be too simple, would have no provisions to accommodate complex Kripkean
structures, and would give no clear idea of what is to be understood by “truth” [in the present world]
(so, e.g., [A] = 1 may be translated into “A is necessary [or whatever]”, but what is to be done with
“A is true” or 14 — A” remains unclear) or of what sense is to be made of operator iteration like
in ‘104", Moreover, such a logic would block any modal formalization that would not include the
necessitation rule. Yet some insights are easily obtainable: the L / P(©) isomorphism allows us to see
the [J operator as a set operator that takes A into OA (where [JA is clearly taken to mean “the set
of eventualities where A is necessary, believed —or known—, compulsory, program-reachable, provable,
etc.”). Under such conditions, in modal systems M having the T axiom (the “necessity” or “knowledge”
condition Faq (04 — A), this axiom just characterizes the [] set operator as antitonic with respect to
the set-inclusion order, because it merely says that [JA C A, so that when we state in such systems ~
“0A” (e.g. “A is necessary” or “known”) we just mean that the [] set-operator restricts A into a
subset of itself —thus making the “necessary” or “known” instances a subset of the merely true ones—.
(Naturally, pure belief systems would not generally satisfy the condition, and in them [J would take
any A —representing the believed proposition— into any other set —representing that A is believed—,
possibly quite unrelated to the original.) Also, we could in turn value modal propositions, so [[14] would
have sense as the measure u of the (1A set, and [0A] as 1 — pu(CJ(A€)).

a. Classical two-valued logic (B2L)

B2L is the special case of BML in which every proposition is binary (ie. YA € £ [A] € {0,1})
or, equivalently (by (175)), in which every proposition has zero imprecision (ie. VA€ £ f(4) =0).
Thanks to the representation isomorphism, we know that this corresponds either to a selective valuation
or, more generally, to a situation where all non-zero-valued possibilities in © behave in the same way
(note that if there a unique such non-zero-valued possibility then we are back in the case of a selective
valuation). Thus, B2L corresponds either to a universe where there is only one eventuality to consider
(= the “real world” or “the” [only] case we consider) or to a universe where all eventualities § considered
behave solidly in the same manner (e.g., responses make packed unanimity). We can say, then, that “a
proposition is true or false in B2L if and only if it is true or false simultaneously in all the relevant worlds
considered (i.e. all the 8s such that u(8) # 0)”, B2L is clearly both Boolean and functional. Having the
first property means that the propositions in the logic can be assumed to make up a Boolean algebra,
and no property of the valuations the logic allows on its propositions is inconsistent with this assumption.
Having the second (= functionality) means that values of composite propositions are functions of —only-
the values of component propositions, so [4  B] = [A] #' [B] for any [binary] connective ‘#’ (in other

words, the valuation is a homomorphism that preserves logical operations),

b. Lukasiewicz-Tarski’s L, logic

Lukasiewicz & Tarski’s Lo logic [27], as BML, generalizes B2L in the sense that it allows the
members of the lattice of propositions to take values in (0,1] other than 0 or 1. Both systems of many-
valued logic include classical B2L as a special case. Nevertheless, while BML gives up functionality,
Lo gives up Booleanity. In fact, if the {0, 1} truth set is extended to [0,1] those two properties of B2L
cannot be both upheld, and either must be given up.

Indeed, if we wanted to extend B2L to the [0,1] truth set case, a reasonable and near-minimal way
of doing it is that proposed by Bellman & Gierz (1], which is reducible to postulating (a) that two
dual logical operations A and V can be defined in the set of propositions that have the commutativity,
associativity and distributivity (and so also idempotency) properties, and that this set is bounded [with
respect to the order < defined by those properties] (so that the set is a bounded distributive lattice),
(b) that there is a [0,1]-valuation of the propositions in this lattice which is a monotonic [increasing]
homomorphism (a condition we could call principle of functionality). From such elementary, simple
and undemanding conditions we deduce immediately (if we note by “[A]” the value of proposition A)
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properties (13-15). But (14) and (15), together with idempotency and the functionality condition, yield
at once:

[AAB] = min ([A], [B]) (176)
[Av B] = max ([A], [B]) (177)

and this has some serious consequences we mention below. [But there are other consequences —of proof-
theoretic nature— of having the (176-7) constraints built inside the logic; they will be mentioned in
section 12]. The first consequence is that we happen now to be fully in Zo. The second is that once we
get (176-7) both ~(AA—A) and AV —A can no longer be theorems of the logic (because they yield the
1 value only when A is assigned a binary value, so it does not in general equal 1 —a necessary condition).
But this is a serious snag: we are compelled to give up classical Aristotelian principles —warranted by
Booleanity (= conditions (1-7) but especially the last one)— not because we want it so but because
the algebraic conditions we —or Bellman & Gierz— impose are such that the non-classical outcome
is unavoidable. The main culprit here is, demonstrably, what we termed “principle of functionality”.
It breaks Booleanity so narrowly that, by not postulating it, we can preserve the Boolean character of )
the system and, with it, classical principles (this is just what BML does). From a purely algebraic
point of view, the-giving up of the two traditional laws (7) of Logic means that propositions now form
a De Morgan algebra —a fairly interesting structure but considerably weaker than Boolean algebra and
structurally rather poor (especially as compared to the commonplace generality and simplicity of the
latter —otherwise so widely known and universally mastered). What is more surprising is that we give
up Booleanity not by invoking some metaprinciple (like, e.g., not believing in the validity of the law
of the excluded middle —that the intuitionists deny— or doubting the logical value of contradictions
constructed through —e.g.— vague or nonsense sentences). Instead, we give up simple and basic theorems
only because of technical reasons: we just do not have the laws because we do not seem to be capable
of guaranteeing them in the system. Lukasiewicz’s comforting thoughts —that many-valued logic allows
us creatively to break bivalency, as he was preaching an unconvinced audience in the nineteen-thirties—
sound rather like a poor excuse, since the problem is not that many-valued logic may allow law-breaking
if we wish it —and moreover, of course, have it all under control— but that in £, we are compelled to
it, with no way out: the fact of valuing one single proposition in (0,1) automatically makes the principles
of non-contradiction and the excluded middle invalid.

BML gets over all this. Both principles are explicitly recognized —in (7)— as theorems (in fact,
axioms) of the system, and so we do not walk into non-classical logic, a costly step to make —particularly
if there is no compelling need to make it. So, Booleanity is preserved —at the expense of giving up truth-
functionality (except for binary values). Added advantages are:

- BML maintains a formal symmetry —though with a different interpretation— with Probability The-
ory (or, more generally, with Measure Theory) whose valuations —also in [0,1]— are unarguably non-
functional and, moreover, made on a lattice that is [nearly always] assumed Boolean.

- BML allows £ to be represented on a Boolean set-algebra, which is both intuitive and easy (to be
-compared with L, that allows to represent the original lattice of propositions only on comparatively
awkward and unexplored De Morgan algebra structures, with no clear intuitive meaning).

- BML admits L., as a special case since, indeed, £, behaves exactly as BML would do if no proposition
in £ could be recognized as a negation of some other and, then, it would be assigned systematically the
@-case connective formulas. Naturally that would give an error in the values of composite propositions
involving non-fully-compatible propositions, but it would also restore the lost truth-functionality of two-
valued logic. Recalling what the @-case stands for, £, amounts —from the BML perspective— to
viewing all propositions as having always maximal mutual compatibility. That means that L., conceives
all propositions as nested (i.e. for every A and A’, either A C A’ or A’ C A where A is p(4)). (Such
a picture is strongly reminiscent of Shafer’s description of conditions present in what he calls consonant
valuations, see section 11.)

Thus, in BML terms, L is a special case of BML (or, better, an approximation to it under special
assumptions) characterized by systematic usage of the @-formulas. This approximation (a simplification,
actually) implies maximum compatibility between all pairs of propositions of £, which entails the fiction
of a total, linear order - in £ —and C in P(©)— (that means a coherent, negationless universe) and
which is probably the best assumption we can make when information on propositions is lacking and
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negations are not involved —or cannot be identified as such. (Such an option is as legitimate as that
of assuming, in the absence of information on propositions, that these are independent.) In L., obvious
negations may be a problem, but it can be solved by applying [error-correcting] supervaluations —that
BML supplies automatically. (And note that, in particular, the error incurred in by £, when failing to
distinguish between a proposition and its negation —thus not being able to recognize a contradiction—
is just the quantity we called imprecision in section 9.)

¢. Gaines’s ‘Standard Uncertainty Logic’

In an interesting effort to discriminate between algebraic structures and truth valuations on them
—somewhat paralleling and anticipating the aim of the present work— Gaines set out to define what he
termed a ‘Standard Uncertainty Logic’ [16][46], that covered and formalized two common subcases. This
logic postulates (a) a proposition lattice with an algebraic structure that is initially assumed Boolean
but —by technical reasons— finally admitted to be merely distributive, and (b) a monotonic valuation of
the lattice on the [0,1] interval, with the same conditions (9-11) set here for BML. Gaines distinguishes
two special cases of his logic: (1) what he calls ‘probability logic’ and defines to be the particular case "
of his logic where the law of the excluded middle holds (that turns out to be actually coextensional with
classical logic, our B2L), and (2) what he terms ‘fuzzy logic’, defined (in one among several alternative
characterizations) to be his logic when that law does not hold. Apparently, Gaines’s general logic is our
BML (that covers B2L as a special case, just as Gaines’s logic becomes his ‘probability logic’ when “all
propositions are binary”), but closer examination reveals that Gaines’s ‘fuzzy logic’ is, simply, £.,. This
fact is spelled out by the property he mentions of propositional equivalence (here in our notation):

[A < B] = min (1 - [4]+ [B],1-[B] + [A])

in which the right hand is clearly 1 — |[A] — [B]|. This is an expression that is deduced from Gaines’s
postulates only if, necessarily, either AF Bor BF 4 (note this either/or situation is explicitly mentioned
by Gaines as a characteristic property in his ‘fuzzy logic’). So Gaines makes the implicit assumption
that the base lattice is linearly ordered (perhaps induced to it by the < symbol used for the [partial]
propositional order in the lattice). A confirmation for this comes from the fact that classical principles
—that hold, by definition, in his ‘probability logic>— do not hold in this one. No wonder, then, the base
lattice cannot be but merely distributive.

d. Black’s and Fine’s formalizations of vagueness

After Russell’s [37], Black’s approach to vagueness (4] has an essentially historical interest today,
but we mention it because some of his ideas are curiously reminiscent of particular items of BML
(especially when interpreted under the A6 viewpoint of section 2 above). Thus, Black suggests valuing
the ‘consistency’ of a “vague entity” by means of the formula:

14

C = lim =
n—oo n

(where p is the number of cases in which the entity is applicable, n the number of cases considered),
which, aside from the limit, fits pretty well with our “truth” —or rather applicability— value [A] in the
case where p is a uniform measure on P(®) (so [A] is the relative cardinal of A in ©) and the fs are
interpreted as application instances, as in A6 (see section 2). Another component of Black’s conception
that recalls ours is what he calls ‘z value’ or ‘deviation of consistency’, that he —obscurely— defines as:

2m
z = —
n
where the [undefined] m is called ‘[number of] most favoured judgments’. Considering the author wanted
this measure to capture the degree of vagueness associated to a given vague entity, Black’s idea seems to
be that of having a measure roughly like our imprecision because, to judge from the “z curve” illustrating
the paper,

z = 2x (1~ max (C,0)) = 2min(:,1—p)
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where the right-hand part of the formula is equivalent to the expression defining f(4) in (175).

Fine [15] also approaches vagueness in a way that BML concepts can perhaps illuminate. He
essentially advocates for supervaluations on vague propositions that can reveal the truth of =A when
A is [vague and] false, or the truth of AV A (always, no matter A is precise or vague). He calls this
mechanism ‘supertruth’ and says it reveals truth-related ‘penumbral connections’ existing between vague
propositions. But these are automatically resolved in BML, so there is no need to supervalue to get the
‘supertruth’ of vague sentences: vagueness is naturally assimilated there to general imprecision, gets no
specific treatment, and all the logic machinery applies.

e. Vicker’s formalization of partial belief

Consideration of psychological or epistemic factors in determining the probability function is a time-
honored tradition that derives from illustrious precedents like Keynes, Ramsey [33], de Finetti [13] or
Carnap [10], who in their formalization of ‘subjective probability’ (or Carnap’s theory of ‘partial belief’) .
view probability as an [additive] valuation satisfying specific axioms and “rationality” conditions. Carnap
based his theory on [two-valued] predicate logic, but Vickers [43] later asked if an axiomatization of

probability could be developed on non-binary logics. He suggested a minimal axiom set he called ‘system
S’

1. If A is necessary, then p(4) = 1.

2. If A and B necessarily exclude each other, then p(4 V B) = p(4) + p(B).
3. If p is “rational” then necessarily p(A A B) < p(A).

5. If a is an atomic proposition, then a and —a are inconsistent.

6. Every proposition can be expressed as a disjunction of atoms (= logically independent elementary
propositions).

7. [Principle of Transparency:] If A’ is a proposition such that believing A entails believing A’, then
p(4) < p(4).

Vicker’s axioms —with number 4 (involving first-order logic) absent— are all satisfied in BML. Any
reasonable interpretation of axiom 1 —where ‘necessary’ presumably means something like “[A] = 1 for
any valuation”— holds there, and axioms 5 and 6 are a consequence of the fact that £ is a Boolean
atomic lattice, while axioms 2 and 7 are included in the definition of the v valuation (9-11) and 3 is a
consequence of it. Thus, not only BML supplies a logical infrastructure on which to build a theory of
‘rational belief’, but BML itself can be thus considered “rational” —in the Carnap-Vickers sense.

f- Quantum logic

Though the logic of Quantum Mechanics arises in Birkhoff and Von Neumann’s pace-setting 1936
article, the version we now discuss is the relatively sophisticated one by Bodiou [6] or Watanabe [44]. The
starting point is the postulate according to which the base propositional lattice is not distributive: one of
the current reasons for that is Hilbert space structure (about which we shall not argue); a further reason
is the particular interpretation that this logic forces on certain experimental results. Bodiou suggests the
following equivalences between probability and “truth”:

1. Forevery law p(bla) =1 <= 4 a<b
2. For every law p(bla) =0 <= 4 a<b (2 and b are “contradictory”)
3. Forevery law p(bla) #1 <= 4 aAb=¢ (2 and b are “incoherent”)
4.a5b <= g Fa—b

In our notation this reads
1. (Vo) [B|A]=1 <<= A+B
2. (vv) [B|A] =0 <= AF-B
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3. (Vo) [BlA] #1 <= AAB=1
4 AFB <= FA—-B
All relations are BML theorems ezcept 3, since in BML we have:
(Vo) [B|A]=0 <= AF+-B <= AAB=1 = (Vv) [BlA] #1

and the last implication cannot be reversed (but see point (3), towards the end of this subsection). Notice
that what Bodiou calls “incoherence” (AAB = 1) is a special case of our incompatibility (asp = 0,
implying either AAB =1 or =AA~-B = 1).

A reason often given by ‘quantum logic’ proponents (e.g. Reichenbach in 1944) to explain why
distributivity fails in this logic is the interpretation of certain experimental results where:

P(a) - p(bla) + p(a) - p(bla) < p(b) (178)
a relationship we write in this way:
[4]- [BIA] + [-4] - [B|-4] < [B] (179)

which is the negation of (101) (a theorem we called distribution). But this is normally interpreted [by
quantum logicians (e.g. Watanabe)] as:

(AAB)V(~AAB)#B (180)

which obviously signals the breaking of distributivity. However, the even-handed transcription of (178)
into (180) is rather cavalier and easy-going. Actually, the reading (178) of experimental results translates
immediately, in BML notation, into (179). From there we conclude that:

[AA B] + [~AA B] < [B] (181)

which is in clear violation of additivity (11) [but not of distributivity (5)]. The above transcription
process illustrates two facts: (a) going directly from (178) into (180) not only transforms probabilities [of
propositions] into plain propositions but unmotivatedly trades an arithmetic plus for a logical join, and
(b) if the (178) experiment has any logical relevance whatsoever, it is for other reasons: (181) implies
that the v valuation defined in £ is subadditive (making B = T in (181) one has [A] + [-4] < 1), but this
quite a different matter. Actually, (181) does not imply the failure of any logical principle, and £ is still
Boolean. The only condition that fails to hold in the cases (178) we examine is additivity (11), but this
failure is otherwise very reasonable if we admit, with Heisenberg, that in precisely these cases the observer
can hardly (or not at all) evaluate experiment conditions and results (and, thus, it is not unnatural that
paying the price for the (178) anomaly falls on [our] valuation v of propositions and definitely not on
their properties or structure).

Bodiou for one defends quantum logic as a useful step towards a more general and ambitious logic he
calls “dialectic” [6]. He bases his claim on three reasons —all of which, he contends, support the breaking
-of distributivity:

1) Non-binary valuation of propositions implies non-distributivity.

2) Certain experimental Quantum Physics contexts are only interpretable without distributivity —or
explicitly denying it.

3) Distinguishing incoherence (AA B = 1) from contradiction (A F —=B) is not only reasonable but the
contrary (denying the distinction) would be unacceptable; moreover, it allows mutually incoherent —yet
non-contradicting— theories to coexist in a same lattice and develop dialectically into a more general
and coherent new synthesis theory.

Now, Bodiou’s aim, attractive as it may seem, either strains Logic too much (when banning Boolean
or merely distributive structures from it) or else it demands too much from it (e.g. distinguishing two
ordinarily indistinguishable situations). And, we contend, one requirement is simply unnecessary and
misconceived, while the the other is superfluous and can be achieved by other means. As for the point 1
(above), Bodiou's argument is just false: BML itselfis a counterexample. As for point 2, we have already
seen that —aside from the transcription problem from probabilities to propositions— empirical result
(178) admits a simple explanation amounting to no more than the presence of subadditive valuations.
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And for point 3, BML cannot make the proposed distinction —as, in BML, incoherence is always
equivalent to mutual contradiction (ie. AAB=1 <= Al -B). But, first, that distiction is not
what it seems: the BML equivalence is after all what everyone would accept as reasonable; secondly,
part of the urge for the distinction derives from a connotational, parasitic sense of the phrase “mutual
contradiction” as “invalidation” [of one theory by the other], so it may sound plausible to think of two
coexisting incompatible theories yet not contradicting (=“invalidating”) each other. Nevertheless, if this
sense-splitting is just what is wanted, subadditive valuations may, again, be an acceptable and more
simple solution.

11. IGNORANCE AS SUBADDITIVITY

Suppose now that the propositions in £ satisfy (1-8) —so we are still in a Boolean algebra— but the
v valuation we impose on L is subadditive, i.e. monotonicity (10) and (9) hold but instead of (11) we get:
{AA B} + {[Av B}} > {[A} + {{Bl} (Subdditivity) (182)

where we note explicitly by the {[ [} brackets that v is subadditive. BML with (182) instead of (11) will -
be denoted by BML.. Instead of (12-17) now he have:

{-4a} < 1- {4} (183)
{AAB} < {A} < {AV B} (184)
{AA B} < min({{A], {{B]}) (185)
{Av B} > max({{A}, {B}) (186)
VT AL > SEHAD - Siglan 4l + .+ () AD AD (187)
Ifforalliand j (i # j) AiAA; =L then {ViZT AT > I A (188)

Condition (187) characterizes the subadditive valuation v as a lower probability or as a belief Bel(A)
[in Shafer’s sense] (see [40]). If the inequality signs were inverted, the valuation would become an upper
probability or [Shafer’s] plausibility PI(A). The defective value —the part of the value v(A) attributed
neither to A nor to ~A— can be expressed as:

0(4) = 1-({[A}+{~A4}) = (1 - {~AD}) - {A} = PI(A) — Bel(A) (189)

We know that a subadditive valuation like v: £ — [0,1]: A s {JA} —or, better, the measure y :
P(©) — [0,1] : A - pu(A) induced on P(O©) by that valuation— defines a function m : P(©) — [0, 1]
(called “basic assignment” by Shafer) that satisfies:

1. m(¢) = 0 (190)
2. Y ace m(A)=1 (191)
.-so that the u(A) (or {{A]}) values are computed from this measure through
{4} = Taca m(B) (192)
and, conversely, the m(A) values can be obtained from {{A]} (or u(A)) through
m(A) =Y gca (-1)A-Bl 4(B) forany AC© (193)

Incidentally, it is obvious that Bel(A) and PI(A) coincide with the traditional concept (in Measure
Theory) of inner measure (P.) and outer measure (P*), so that the following chain of equivalences has
a transparent meaning (notice Shafer calls Bel(—A) “degree of doubt of A”):

Pl(A) = P*(A) = Fpnaze m(B) = Ypco M(B) — Ypca- m(B) = 1— P,(A°) =1 Bel(—4) (194)

We know, also, that an additive valuation g is just a basic assignment m such that m(A) = 0
for all A C © ezcept for the singletons {§} of ©. This is what Shafer calls ‘Bayesian belief’; it has
a very intuitive general interpretation here: if a valuation g is additive then each eventuality 8 of ©
has a basic assignment value m({6}) and the value u(A) associated to each set of P(©) is obtained
strictly by adding the basic assignments of their eventualities. By contrast, if the valuation is subadditive
then not only each eventuality has an assignment value but each subset of © has an assignment as well,
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and the value p(A) associated to each set A of P(®) is obtained by adding the basic assignments of
their eventualities plus those of all sets contained in A. In other words, an additive valuation implicitly
assumes all eventualities in © are independent (in the following sense: they alone allow us to determine
the value u(A) of any set of which they are part); on the other hand, a subadditive valuation assumes
the eventualities are interdependent (in the sense that the cumulative value of their basic assignments
do not suffice for computing the u(A) value: to obtain it, one has still to add them the assignments
corresponding to the different sets they may form inside A). This has a transparent meaning under an
interpretation of the A1 type (=the s as question-answering individuals): a subadditive valuation means
simply that opinions are due not only to the individual 8s’ views of the proposition A (they may even
have null weight) but also to those of opinion-forming collectives, whose emerging opinion “influences”
—adds to— that of the individuals in them.

But there are other examples, like this classic result from opinion surveys. Confronted with the ques-
tion “Should the Government allow public speeches against democracy?”, 25% of those polled assented.
Substituting the word “prohibit” for “allow” elicited 54% of assenting responses. Since both words are
antonyms (the contrary of prohibiting is allowing), it is clear that people had an unattributed gap left -
between those two complementary concepts, thus:

{AL} + {~A} = .25+ .54 < 1 (195)

which reveals that people value proposition A (=speeches allowed) subadditively, and also that “allow”
and “fail to prohibit” are analyzable, in Shafer’s terms, as Bel(A) and PI(A), respectively, with values
-25 (for belief) and .46 (for plausibility).

One family of subadditive valuations Shafer considers is that of consonant valuations, defined through

{AA B} = min ({A}, {B}). (196)

One property of such valuations is that all focal elements are nested (see [40]), or, in our language, for
every A and B with non-zero asignment value m, necessarily A ¢ Bor B C A (where, as always,
A = p(A)), so all “focal” sets in P(O) are linearly ordered by set inclusion (this is, by the way, what
we used to call mezimum compatibility or “case @”). Another property of consonant valuations —which
Shafer portrays as based on absolutely non-conflicting evidence— is that, for an arbitrary proposition 4,
Wwe are never in a position to grant positive degrees of belief to both sides of a dichotomy involving 4, i.e.

{{Al} =0 or {[-A]} = 0 (necessarily one of both). (197)
The particular instance of subadditive valuation in which all non-true propositions get the zero value, i.e.

{A} =1 ifA=T, =0 otherwise (198)

is what Shafer calls ‘vacuous belief function’ and that we prefer to call ignorance (because it models
ignorance more acceptably than assigning maximum imprecision f(A) to a proposition, see section 9 ). It
is just the particular instance of valuation in which all non-true propositions get the zero value. Indeed,
we have, for a given A (or for any A if there is total ignorance):

{A} = {-A} = o. (199)
This is to be compared —if we restrict ourselves to additivity— with being able to obtain just

IIA]] = II_'AL

a condition also fulfilled in (199), wich can never give way —if v is to be additive— to both values 4 and
—A being zero (as above), but to the mere and more prosaic

[4] = [-4] = 1/2, (200)

which implies —through (174) or (175)— also f(A4) = f(—~A) = 1, so banally identifying ignorance with
maximum imprecision and at the same time trivializing and impoverishing both concepts. By (198) or
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(199), ignorance is a byproduct of our inability to value propositions (maybe just one) in the appropriate
manner —i.e. additively—. This is distinct from imprecision, i.e. our inability to assign —additively—
a {0, 1} value to a given proposition —and thus to decide on its truth or falsity; in that case all we can
say is that [A] (and [-A]) is in the open (0, 1) interval and that has non-zero imprecision f(A).

Subadditivity enables us to analyze other interesting situations related to Logic. For instance,
suppose we have a subadditive valuation assigning A the value u(A) = {{A]} = Bel(A), and that a set A’
(not necessarily a subset of A) can be found in P(©) such that there is an gdditive valuation which assigns
A’ precisely the same value. We denote A’ by “CJA” (where []is a set-operator of the sort mentioned in
section 10), and A’ = §(A’) by “CJA”. So we have:

Bel(A) = {IAI} = IIHA]] (201)

The (is here a linguistic operator that acts on a sentence A and transforms it into another whose value is
the belief (=subadditive truth-value) one can assign non-additively to A, so it seems proper to interpret
O syntactically as “it is believed that” or “a ( = the name of a subject or rational agent) believes that” .
(in the latter case (0 would rather have been indexed as “,” or “la]”). Further, we would have

PI(A) = l—Bel(-rA) = 1—{[-1AI} = l—ﬂDﬁA:ﬂ = I]:—ChA]] = [[OA] (202)

where we have defined a new operator “o” as an abbreviation for “~[1=". In view of the (202) equality,
it could be advisable to interpret o syntactically as “it is plausible that” or “a admits as credible”
(so that “0,A” —or (a)A— would read “a finds that A can be believed”), because a just does not
believe the contrary. Naturally, if the Bel valuation happens to be additive (“Bayesian”, in Shafer’s
terms), then the assigned values of (J4, A and oA collapse into a single number and our truth-valuation
of A amounts to our belief of A and also to its plausibility. If it does not, we can distinguish those
three values and operate syntactically inside the language £ of propositions. Since for any A we have
6§ =1— {{A]} - {[~A}} = PI(A) — Bel(A) > 0 and so PI(A) > Bel(A), we also have that the (] operator
is consistent with axiom D of normal modal logics:

OA — oA (203)

because, by monotonicity, (203) gives

Bel(A) < PI(4) . (204)
(But (203) is not necessary: (204) holds anyway, even when (203) does not.)

Likewise, if the [J set operator happens to shrink any A into [JA so that [JA C A for any A then this
condition translates into axiom T of modal logic:

04A—A. . (205)

Now, this is an interesting case. If axiom (205) —variously known as “principle of knowledge” or “ne-
cessity” in normal versions of Modal Logic— does hold, then (203) and the usual reading of “JA” as
“A is known [by someone]” or “A is necessary” —and of “cA” as “A is admissible (= not known to
be otherwise)” or “A is possible”— prompts by (202) and (203) a reinterpretation of our {{AJ} and
1— {[~A], or Shafer’s Bel and Pl (or, equivalently, lower and upper probabilities P. and P*) as, respec-
tively, “degree of knowledge” or “necessity” Nec(A)=4s {{A} (= [OA4]) and “degree of admissibility” or
“possibility” Poss(A4) =4 1 — {{~A]} (= [¢A]); naturally, Nec(4)<[A] < Poss(A) for any A (and also
Nec(A) + Poss(~A) = Poss(A) + Nec(—A) = 1). If necessity (or knowledge) of A and —A are totally
incompatible (in the sense that Nec(-A4) = 0 whenever Nec(A) > 0) then Nec becomes a ‘consonant
valuation’ of the type mentioned above, and (196) applies, so Nec(4 vV B) = max(Nec(A), Nec(B))
and Poss(AA B) = min(Poss(A), Poss(B)).

Subadditive valuations on a given propositional lattice can be combined by obtaining their basic
assignment functions m and computing from them the new valuation through the well-known Dempster
rule, which is a conceptually simple operation.
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It is interesting to notice that a subadditive valuation may be superimposed on a propositional
lattice without breaking its Boolean character, so that AA—-A = 1 and AV -4 = T still hold,
while {[A]} + {[-A]} < 1 at the same time. This slightly paradoxical fact may explain that many often-
encountered situations —where mere subadditivity ( {{A} + {~A]} < 1) was probably the case— have
been analyzed historically as invalidating the law of the ezcluded middle, because it was felt that there
was a “third possibility” between A and -4 making for the unattributed value 1—{{A]}—{-A}, covered
neither by A nor ~A. If our analysis is correct, such situations are analyzable in terms of incomplete
valuations as in (183), but this does not imply the breaking of bivalence (= the (7) complementarity
formula) of any Boolean algebra. Also, it allows analyzing the concept of ignorance (see end section 9)
and the paradox of Quantum Logic (see (178) in previous section) —as well as Bodiou’s claim that a pair
of theories may be incoherent yet non-contradicting— as simply subadditive problems not entailing the
breakdown of Booleanity or of ordinary logic.

Indeed, as for the quantum paradox, the transcription of (178) not into (179) but into (180) explains
why the apparent anomaly can be blamed on the breaking of additivity, not of distributivity, as argued in
section 10(f) above. As concerns Bodiou’s claim, it can also be seen in BML (the subadditive version
of BML) that ‘incoherence’ between theories does not entail their mutual contradiction —thus meeting
Bodiou’s condition— just by noting that now {{A — =B} < 1-— {{AA B} and that under a given
valuation we can have {{/AABJ} =0 and not have {{A — —~B]} =1 (though the converse still holds).

Subadditive valuations can also adequately formalize certainty ( meaning that {{A]} = 1 while at the
same time {{B]} = 0 for all B |- A) as they did —and along parallel lines— with ignorance (above). They
can as well report satisfactorily how a scientific explanation frame (i.e. the appropriate lattice of theories
that cover any observed or predictable true fact) is dynamically replaced by another once the first can
no longer account for observed facts: as the valuation of explanations turns subadditive —reflecting that
they no longer cover all predictable facts— one is naturally forced to replace the original propositional
structure of theories by a new one (still a Boolean lattice) provided with a new —now again additive—
valuation on it that restores the balance; the augmented lattice generators are the new vocabulary, and the
elementary components of the new structure are the required new explanatory elements (atomic theories)
for the presently observed facts. Such a simple valuation-revision and lattice-replacement mechanism
may serve to illustrate the basic dynamics of theory change in scientific explanation.

(From now on, we revert to ordinary —i.e. additive— valuations that we shall be using in the rest of the
report.)

12. PROOF THEORY

Let us begin by showing the well-known sorites about bald men: “If a man with i hairs is not bald
then a man with i — 1 hairs is still not bald. Suppose a man has n hairs. Therefore, a man with 0 hairs
_is still not bald”. Formally:

A,' -—9A,‘_1 (i:l,...,n)
An

Ao

This is a paradox because the reasoning is formally correct (it consists of merely n applications of
the Modus Ponens rule), the n + 1 premises are deemed flawless, but the conclusion is outright false (or,
more precisely, a contradictio in terminis). Usually, it is the length of the argument that is put to blame.
There is, however, a more concrete and satisfactory answer we offer. The n premises A; — A;_, cannot
obviously be asserted with the same assurance whatever the index value. That’s why the argument fails:
for low values of i the premises simply cannot be asserted, even if the rest can, so we can never have all
premises asserted, and the reasoning is formally valid but vacuously so. We propose instead to provide
every premise A with a value [A] in [0,1] —computed in an unspecified way (statistically, by opinion
survey, or whatever)— with the unique requirement that a zero value means a false premise, 1 means a
true —and therefore assertable— premise, and 1 — ¢ (¢ > 0) means that we can assert it but with some
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apprehension or risk e. Obviously, the value of [A; — A;_.] decreases with i, so that when i is n (or
even, say, around n/2 or n/3) it is 1 or very near 1, but when i approaches, say, n/10 —and surely when
it becomes zero— the value of 4; — A;_; (= the predisposition we have —or the risk we are willing
to assume— to assert it) comes down to an exceedingly low number. According to our proof theory
(developed at some length below), the conclusion A has the same truth value, at best, as that lowest of
numbers (and, thus, the reasoner would be willing to assert the conclusion just no more than he or she
would willing to assert A; — Ay).

The underlying explanation is this. As always, all elementary propositions used in the above ar-
gument generate a Boolean lattice £, and have as automatic counterpart a powerset structure on a set
© of 2" eventualities. We can picture these as responses given by 2" independendent reasoners to the
question “Do you think that A is the case?” (where A is one of the 22" possible sentences that are
expressible in £). We can reasonably assume that at each decrement of i (= number of hairs left) more
and more respondents will stop answering yes to the 4; — 4;_; question, so monotonically shrinking to
leave a hard-core set of respondents who still say yes to A; — Ag. It is only this hard set of persisting
possibilities (respondents) 6 that will validate the whole sorites (actually they are the only omes able to =
complete it, as they have all its premises asserted), and so it is just natural to get as “truth value” of the
conclusion the proportion (or, in general, the weighted mean or measure) of people who have been able
to reach the conclusion all the way through.

We now elaborate on the general proof-theoretical aspects of BML. First we need to have a formula
for the value of the connectives (especially conjuction [of premises]), no matter how large the number of
operands (conjuncts) in them. We take the semi-formal (16) and cast it in a slightly more precise form:

For every positive integer n and every collection A, ..., A, of propositions of £,

VT Al = & OV A A (206)

(where I ranges through all non-empty subsets of {1,...,n}).
We abbreviate the first n — 1 terms of (206) as S:

For every positive integer n and every collection Ay, ..., A, of propositions of L,
S = ¥ ) A A (207)
(where I ranges through all non-empty subsets of {1,...,n — 1}).

(Naturally, S = [ViZ} 4] - [[/\::1' AiJ(-1)" ). We then get:

max(0,5-1) < [AA] < min(al) (208)
max([A]) < [V Al < min(1,5) (209)

The lower value for A and the upper value for V can be replaced by these coarser but often more useful
bounds:

(0, 04D - Ylanad - 1) < [AA]l < malal)  (10)

i i<J
max(4]) < [V 4l < min(t, 3[4 (211)
i=1 i

We immediately collect that II/\::'I' A;] reaches its upper bound if there is a set representation Ag (cor-
responding to a proposition Ax) that is a subset of all other set representations. Analogously, IIV::I' Al
reaches its lower bound if there is a set representation A, that is a superset of all other set represen-
tations. Those are sufficient conditions for [the values of] conjunction and disjunction to coincide with
the minimum and maximum, respectively. (And notice both conditions are guaranteed by having P(©)
linearly ordered by set inclusion, though there is no need at all to have so strict a requirement.) In the

48



general case, A and V will have a value between indicated bounds. If all set representations are pairwise
mutually disjoint then the conjunction will have max(0, 3"[A;] — 1) as its lower bound. And if all the
Ajs were simply atoms then [AA;] =0 and VAl = 2[4

We can now proceed to our proof theory (a slightly extended version of the standard one). Here we
understand by proof theory the usual syntactical deduction procedures plus the computation of numerical
coefficients that we must perform alongside the standard deductive process. We do that because a final
value of zero for the conclusion would invalidate the whole argument as thoroughly as though the reasoning
were formally —syntactically— invalid. As always, any [formally valid] argument will have, by defini tion,
the following [sequent] form:

T'+B (212)

where B is the conclusion and T' stands for a list of premises. Given an infinite £, the list could be
infinite too, but it would always be reducible by the compactness property to a finite list A4;,..., A,.
Ambiguously, I' will also —and most often— stand for the conjunction A A; of the premises A4;,..., 4,. *
We have, elementarily:

TFB & +T 5B (32)
I'YB & TkEB (65)
'B & EI'-B & (Vo)[ - B]l=1 = [-B]j=1 = [r] < [B].

Summing it all up we have, for any arbitrary argument:

T-B = [I]<I[B]. (213)

We henceforth assume that we have a valid argument (so T - B will always hold), and distinguish
four possible cases:

1) [I]= 0 (i.e. the premises are [materially] inconsistent). Here by (213) [B] can be anywhere between
0 and 1; this value is in principle undetermined, and uncontrollably so (though a limiting condition
—an upper bound— will sometime appear in the formulas). This is a case no logician would be
interested in, since if one has a formally valid argument but one is in no way risking to assert any of
its premises, it is only natural that the value of the conclusion turns out to be anything. (Yet there
are cases —when contradictions are involved— in which logicians can and do get interested, see the
QS rule below).

2) [B] = 0. This entails, by (213), [T'] = 0 and we are in a special instance of the previous case. The
reasoning is formally valid, no premise is asserted, and the conclusion is false.

3) [F] € (0,1) (i.e. the premises are consistent). Then, by (213), [B] > 0. We have a formally valid
. argument, we risk assessing the premises (though with some apprehension) and get a conclusion
which can be effectively asserted though by assuming a [bounded] risk. This will be the case we will

set to explore below.

4) [I]= 1. This condition means that [A4;] =...= [A.] =1 and, by (213), [B] = 1. So the premises
are all asserted —with no risk incurred— and the conclusion holds inconditionally (remember I' - B
is formally valid). This is the classical case studied by ordinary two-valued Logic.

We are interested in examining case 3 above, i.e. formally valid reasoning plus assertable premises
(though not risk-free assertions) plus assertable conclusion (but at some [measurable] cost). Cases 3 and
4 characterize in a most general way all sound reasoning. We must first find out the conditions for cases 1
and 2 —so as to exclude them— that we label unsound arguments (since in those cases having a formally
valid argument T' - B does not preclude getting an irrelevant ([B] = 0) or —worse— uncontrollably-
valued conclusion B). As those cases are the ones to avoid and both are characterized by condition
[T] = 0, we have, summing up the two:

[Definition 1:] Unsoundness of a valid argument T F B is having either [B] = 0 (no matter the value of
the premises) or else [B] > 0 with all premises making up a null conjunction (i.e. [I] = 0).
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[Definition 2:] Soundness of a valid argument I - B is having [B] > 0 whenever the value of the premises
is non-zero (and [I'] > 0).

From this, the next theorem —we could term Soundness condition— immediately follows:
[Theorem:] If [I'] # O then the argument I' - B is sound (thus implying [B] # 0). (214)

[ Remark 1: Reconsidering definition 2, we could venture a more stringent definition of soundness along
the following lines: the value of the conclusion should not only be non-zero but also not less than
the value of the least asserted premise, so that [B] > min[A4;] (where 4; € T). But this
condition —apparently reasonable enough— would immediately entail (if only we kept the very natural
A-introduction rule, see below) that the value of the conjunction connective is rigidly the minimum
function (i.e. [AA;] =min([A;]) in all cases). So, incidentally, we would be back in the inavoidably
truth-functional Lukasiewicz-Tarski £, logic. This, as we have previously seen, seems neither acceptable
nor realistic (it presupposes a linearly ordered negation-free universe, as we found and stated in our Lo,
criticism, see section 6 —concluding paragraphs— and 10(5)). ]

[ Remark 2: A new and also strict version of definition 2 —more reasonable and less destructive than -
the one suggested in the previous remark— would be this one: Soundness of a valid argument I' - B is
having [B] > 1/2 (instead of merely > 0) whenever the value of each premise is > 1/2, as we assume it
to be. (We will use this criterion somewhere below.) ]

a. Modus Ponens

We can now turn to the basic inference rule, the Modus Ponens (MP). From a strictly logic point of
view, this rule is

A
A—- B n

(215)
B P

where m, n and p stand for the force (or “truth value”) we are willing to assign each assertion; so, in our
terms, m, n and p are just our [A], [A — B] and [B]. They are numbers in [0,1] that take part in a
[numerical] computation which parallels and runs along the [logical, purely syntactical] deduction process.
This is well understood and currently used by reasoning systems in Artificial Intelligence that must rely on
numerical evaluations —given by users— that amount to credibility assignments (or “certainty factors”),
belief coefficients, or even —rather confusingly— probabilities (often just a priori probability estimates);
this is the case of successful ezpert systems such as Mycin or Prospector. The trouble with such systems
is that they tend to view Modus Ponens as a probability rule (this is made explicit in systems of the
Prospector type). They use it to present the MP rule in this way:

A(m)
A — B(o)

(216)
B(p)

where m and p are the ‘probability’ (a rather loose term here) of 4 and B, and “A — B(c)” means
that “whenever A happens, B happens with probability o”. Here ¢ turns out to be just the conditional
probability of B given A. (It is what we called —in section 7— “degree of sufficiency” o of A —or
of necessity of B— and assumed easily elicitable by experts.) So it is just natural, and immediate, to
compute the p value thus:

p2oc-m
or, in our notation,
[B] > [B|A] - [4]
which is none other than (13) followed by (95).
The problem is that what we have, from our logical, probability-rid standpoint, is (215), not (216), and
in (215) n is not [B|A] but [A — B]. Remember [B|A] and [A — B] not only do not coincide (as
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we know from (104) already) but mean different things. [A — B] is the value (“truth” we may call it,
or “truth minus risk”) we assign to the [logical] assertion A — B. Instead, [B|A] is a relative measure
linking materially, factually, A and B (or, better still, the A and B sets), with no concern whether a true
logical relation between them exists; we might even have [B|A] < [B], thereby indicating there exists
an anticorrelation (thus rather contradicting any —logical or other— reasonable kind of relationship
between A and B). So we turn back to our (215) rule; note that m +n > 1 (this always holds), and
that [B|A] can be obtained from [4 — B] through (103) or —more usefully (because [B|A] is directly
obtainable from experts, see section 7)— [A — B] from [[B|A] through

[4A— B] = 1-[A]-(1-[B|A]). (217)
As an application of all considerations above we now have the following two easy propositions (where,
as can be noted, the soundness condition (214) translates into four equivalent conditions):

[Theorem 1:] The Modus Ponens rule

A m
A—B n
- : (we assume m and n are both non-zero)
B P
is unsound (including [B] = 0) if one of these four equivalent conditions hold:

1) m+n=1 (218)

2) [BlAl=0

3) [AAB]=0

4) A and B are incompatible (a4p = 0) and [A]+ [B] < 1.

Moreover, [B] <n =1—m (so [B] is either zero or unpredictably somewhere between 0 and n).

Conversely, the following theorem states the soundness condition for the MP rule.

[Theorem 2:] The Modus Ponens rule

A m
A—B n
(we assume m and n are both non-zero)
B P
is sound (and thus [B] # 0) if one of these four equivalent conditions hold:

1) m4+n>1 (219)

2) [B|A]>0

3) [AAB] >0

4) Either [A] + [B] > 1 (and thus [B] > 1 — m) or both A and B are compatible (xap >0)
and not binary-valued.

In the sound MP case (the only interesting one in practice), we have —by applying formulas (127)
and (131)— the following bounds for the value [B] of the MP conclusion:

[A]+[A—-B]-1 < [B] < [A— Bj (220)

(or equivalently, in shorter notation: m+n—1< p < n ); the lower bound —which equals [AA B]
— is reached when asp = 1 and [A] > [B], while the upper bound is reached when a4z = 0 and
[A] + [B] > 1. Naturally we know neither [B] nor ap beforehand usually, so we don’t know whether
the actual value [B] reaches either bound or not, nor which is it; we can merely locate [B] inside the
[m+n—1,n]interval. Admittedly, this is not a tremendous result; in particular, it is not very helpful in

pinpointing [B] except when either m = 1 (then [B] = n = [AAB])orn =1 (then [B] is undetermined,
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and merely > m). So we must take a closer look at Modus Ponens as an argument and at the conditional
statement A — B as [the expressive counterpart of] a relation (see section 7). It may seem reasonable
to assume that the following two provisos apply. First, soundness apparently demands not only that
[B] # 0 but [B] > 1/2 provided the value of the premises A and A — B are also —as we take for
granted— above 1/2 (this, that we anticipated in remark 2, makes sure at least that [A] + [B] > 1).
Second, the upper subinterval of [m + n — 1, 1] comprised by values between [B|A] and n = [A — B] is
—quite reasonably— never reached, because it corresponds to the case of actually anticorrelated A and
B. So, we have now a narrower interval to locate the unknown [B]:

[A]+[A—B]-1 < [B] < [BlA] (221)
(or, equivalently,
[4AB] < [B] < [AABI/[4]
or, still, in shorter notation,
m

and here the upper bound is reached when A and B are independent (aap = a9 ).

Now, this result (221) still does not quite help, because we don’t usually know much about the relationship
—and compatibility— between A and B. (Instead, what we can always be sure of is that a(4,A — B) =0
no matter which are A and B, but this is hardly helpful anyway.) We don’t even know whether [A] < [B]
or [A] > [B]. (If the latter were assuredly the case then we could at least write

[B] < min([A],[4A — B]) or, better, [B] < min([4],[B|A4]) (222)

as the upper bound in (220) and (221).) What we can say is that if the first unequality holds ([A] < [B])
then (remember provisos 1 and 2 apply):

and 1-f4] € asp < 2-[A—B]-1 (223)

(but for ayp =1 [B] is undefined, merely > m). And if it is the second ([A] > [B]), then:

2.[A— B] -1
S -4y

(In both (223) and (224) the lower bounds for a 45 are reached for independent A and B.) If we further
assumed, as we hinted in section 7, that asserting A — B means somehow [A — B] > [B — A], and so
-[B] > [A] (and ¢4 > v4, see sect. T) then (223) applies, but not (224), nor (222), and we have merely
[A] < [B] < [B|A] as closest bounds. Furthermore, if A — B, as an assertion, is taken to mean
rather [A — B] > [A — —B], an interpretation we suggested there (for which there is some evidence in
experimental psychology), then —and only then— [B|A] > 1/2.

[B] = [A— Bl-aus(1—[4]) and 1-[B] < aus (224)

In (221), if A and B are fully or strongly compatible, [B] will be nearer the lower bound; if they are
independent, [B] will have the highest value. (While this may seem a paradox, it is not: given the [fixed]
values n and m of [A — B] and [A], it is considerably easier for a low-valued [B] to yield the given
[A — B] if A and B are compatible; conversely, if they are not fully compatible, or even independent, it
will take a high value [B] to match the given [A — B]. And we could get a still higher value, but only
by demanding that A and B are anticorrelated, a rather absurd proposition.)

Thus, we can only increase our [B] if we are assured that A and B are independent (in the sense of
(93)): we then obtain a higher value [B] = [B|A] (but we may consider this one as a rather unwanted
side case). Or, the more we confide in a strong logical relation between A and B, the more we should
lean towards the low value given by

[Bl=[AAB]=m+n—1. (225)
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In absence of the relevant information, it seems we should reasonably stick to the [A A B] value (=
m -+ n — 1) as our safest bet. This value is exactly the measure (or weighted mean) of the possibilities
(logical interpretations, polled individuals, etc) # making up A that also make up B. To understand what
that may mean, assume the 8s are logical interpretations, in the standard sense; then [Bl=[AAB]is
Just the “truth” of the argument, i.e. the proportion of interpretations in which the argument (the MP)
has been effectively performed and yielded true as value. Or assume the s are independent elementary
reasoners, each having full reasoning capabilities and completing its own line of argument in view of the
premises it has: [B] then equals [A A B] and so u(A N B). AN B are precisely the s in B that have
both A and A — B as premises (this can be easily visualized on tables 6-9 of section 4), so that they
—and only they— have been able actually to complete the Modus Ponens. (Equivalently, if we executed
a stochastic process tuning the frequency of each 6 to its 44(6) value and performing the MP reasoning
each time it were possible, the proportion of cases in which the conclusion B would be reached in the
long run would just equal u(B), i.e. [B].)

(As regards tables 6-9, note that a MP relating the A and B in table 6 would be clearly unsound, that
nobody would reasonably assert “A — B” with the anticorrelated A and B of table 7, and that only the |
2 column in table 8 fulfills the first proviso.)

Now imagine we want not merely a pair of bounds for the conclusion B of an MP but the ezact value
[B]. Two obvious candidate formulas for this follow immediately from (22) and (24):

[B] = [AvB]+[A—B]-1 (226)
[[B]] = |IA]] + [[A — B] - [B — A] (227)
To get something useful out of it, let us suppose we are given not only o4 = [B|A] but also

va = [A|B] that we shorten to o and v and assume estimated by experts (see section 7). We then
formulate MP as

A(m)
A — B(o,v)

— (228)
B(p)

which is exactly (216) except that the conditional has prompted evaluation of relative truths of A and B
in both directions. The value is computable at once from (95):

8] = %’i—ﬂ or p = ";jm (229)

(Note this value is the one approzimate reasoning systems (e.g. Prospector) unqualifiedly assign to [B]

_on purely probabilistic grounds —and falsely assuming, as we saw, that [B|A] is the same as [A— B].)
If we wanted the MP presented in the more traditional way (215), first we would directly estimate the
truth value [A — B] of the conditional, or compute it from o through (217) —or both, and use each
estimate as a cross-check on the other—, so we would now have, along with the expert guess of v:

A m
A— B n (v)

(230)
B 4

(wheren=1-m-(1-g) ), and so

[B] = [[EATBBi]]] _ m+:—1 (231)

that naturally fits the (221) bounds (when v runs along from 1 to [A]). Or else we can use (227) directly,
if we previously estimate [B — A], or compute it from v.
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What is interesting here is that no previous condition is needed. If one wants proviso 2 (having a
positive correlation between A and B), this fact, or its absence, can be detected at once just by checking
whether v > m (and then [B] < o). If we require that the first proviso holds (or that simply [A]+[B] > 1,
a weaker condition) then the following formula gives a 4p, once the [B] value is computed by either (231)
or (227):

[A— B] - [B]
1 — max([4], [B])

We illustrate this with three elementary examples:
1} A CB: We have o = 1 and n = 1. Moreover: v = [A]/[B], [B] = m/v, and asp = 1.

2) ANB is —in value— half of A and also half of B: We have o = v = .5 and n = 1 — m/2. Then
[B] = m, and « = (1 — 3m/2)/(1 ~ m). If A and B were independent then [B] = m = .5 and

a=a’=.5.

asp = (232)

3) A and B are independent: This fact clearly shows, because m = v. We have
[Bl=r=1-(1-n)/m=(m+n-1)/m, and @ = a® = 1—min(o, v).

b. A-Introduction, and the Quodlibet Sequitur (QS) rule

The A- Introduction rule is:

A m
B n

(233) (m and n are here not necessarily non-zero)
AANB P

where, incidentally, it is clearly seen that the above-mentioned criterion that the conclusion should never
be less than the value of the least asserted premise (see remark 1 under ‘soundness’) would immediately
entail that the value of the A connective is necessarily the minitmum function, and so we would be back
in L. (Indeed, since [A A B] <min([A], [B]) —by (13)— and [A A B] >min([A], [B]) —by the given
criterion—, so [A A B] =min([A], [B]).)

The unsoundness condition for this rule gives:
[T]=0 if and only if [ Conclusion ]| =0,

which is exceptional and characteristic of this type of arguments (for the rest only the if part applies).
The trivial case here is m = 0 or n = 0: the rule is then (trivially) unsound. For the general case, the
A-introduction rule is unsound if and only if [A A B] = 0, which amounts to [A] + [B] < 1 and asp = 0.

A particularly interesting special case of the argument is where B is = A. Then the argument can be
-stated in this way:

A m
—A 1-m

(234) (m is not necessarily non-zero)
L 0

which is a valid but —to us— unsound argument. We concede this fact is not relevant for all practical
purposes, because the conclusion is warranted by positing the argument in full, Gentzen-style:

'ra
'--4
(235)
F'FAA-A
and this makes sense, for [ — A A -4] = [(I — A) A (I' = —A)] (for any valuation), and the

conjunction inside the brackets has one as value —since [I' — A] = 1 (this is implied by the first line)
and also [I' = —A] = 1 (as implied by the second)—-.
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Note that this oddity (having an unsound yet valid argument) is also present in ordinary, two-valued
logic. An argument suchas 4,-AF L would hardly be validated Jjust by model-theoretic considerations,
because A and —A are never assertable simultaneously, by definition.

A related type of argument is the QS rule (the medieval quodlibet sequitur or, equivalently, the weak
intuitionistic —-elimination), a very important element in Logic, since it allows detection of contradictions,
and subsequent action after that. We have:

A m
-A 1-m

(236) (m is not necessarily non-zero here)
B P

The unsoundness condition, when applied to this argument, gives [I'] = 0, and so [B] is either zero
or has an (uncontrollably) arbitrary value. Hence, the rule is again unsound to us, but we accept it on
the same grounds we accepted the previous argument, and we note also that this rarity is already present
in —and ignored by— two-valued logic. Nevertheless, it is perhaps appropriate to remind oneself that .
[B] is indeed demonstrably arbitrary. This, which can be blamed on the underlying radical unsoundness
of the argument, allows [B] to be 1 —and this is what ordinary logic chooses it to be— or zero (and
thus the argument is clearly unconclusive). The latter solution is, we recall, the one allowed by relevance
logics —in certain (controlled) circumstances— or by systems tolerating somehow local contradictions.

As an aside, we turn back again to the criterion, suggested in remark 1 above and subsequently
discussed, that the conclusion should never be less in value than the least asserted premise. This is here
clearly seen as counterproductive, for it would make [B] necessarily zero whenever the Logic involved
is the’ classical two-valued version (since, then, m € {0, 1} and thus p = 0), contrary to assumptions
made there. This is, perhaps, a further reason against the (traditional) many-valued £, logic. We have
already contended £, is unrealistic (by forcing the universe to be coherent and negation-free) and unable
to recognize contradictions (by sheer lack of “resolving power”, so to speak, as we noted when we saw
that a contradiction A A =4 is never valued 0 if 4 is not binary-valued); now we charge, further, its
proof-theory does not allow the reasoner to detect contradictions and act accordingly (resolve them and
proceed ahead).

c. Resolution

By resolution we understand Quine’s “consensus” rule or the disjunctive version of Gentzen’s cut:

AV L m
Bv AL n

(237)
AV B P

where L is a literal (a letter or a negation of a letter). We have —always— m +n > 1. Moreover, the
-soundness condition here implies m + n > 1, and [T] < [ Concl] is now

[AVB] > [AVLI]+[Bv-L]-1 (238)

(or, equivalently, p > m +n — 1). This is our best approximation. However, if we want to pinpoint the p
value precisely we can do better than that, for we have alternative candidate formulas for the exact value
of the conclusion (though not necessarily more useful than (238)), e.g.:

[AVB] = [AVBVIL]+[AVBV-L]-1 ,or
[Av B] [AVI]+[BV~L]+[AV-L]+[BVL]-[AAB] -2
[AvB] = [AVI]+[BvV-L]+[AAL]+[BA-L]-[AAB] -1

As is notorious, the Modus Ponens rule can be formulated —as indeed certain other natural-deduction
rules can (Modus Tollens, the disjunctive or hypothetical syllogisms, or reductio ad absurdum)— as a
special case of resolution. We then find again, just by applying the (238) bound, the lower bound in
formula (220). (Or we could as well rediscover the exact (227) by simple algebraic manipulation of any
of the three formulas above.)

I
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SUMMARY, DISCLAIMER AND REFERENCES

Summary: Many-valued (MV) logic, whatever its philosophical Jjustification or its practical uses,
has always been conceptually modeled as a non-classical logic. It has thus been, by tradition, inevitably
characterized as “deviant”. First, because some of the theorems that currently obtain (in MV logic) are
not the expected familiar ones —or, rather, because some familiar results fail to show as MV theorems.
Also, because the MV approach apparently forces sentences into an algebraic structure that is considerably
weaker than the usual Boolean algebra that so satisfactorily meets the demands of ordinary propositional
logic. This applies as much to the finite-valued formalisms (Post, Kleene, Bochvar, etc.) as to the
infinite-valued ones (notably the Lukasiewicz-Tarski £ logic). This report (which, as stated in the
Abstract, is a barely-updated summary of a Ph.D. Thesis written in 1981-82) has set out to explore some
consequences of taking the opposite assumption: that a many-valued logic can be consistently conceived
and developed that is classical, i.e. structurally no different —in both proof-theoretic and algebraic
senses— from plain ordinary Boolean logic, from which it inherits the usual convenient properties, with
only a moderately small price to pay (non-truth-functionality, which is incidentally the same price that -
Probability has always had to pay). So, the author hopes to have shown, Many-valued and Boolean
need not be contradictory concepts, as Boolean does not necessarily mean two-valued. And both can be
integrated into ordinary Propositional Logic, whose structures can then be more explicitly revealed.

Disclaimer: Shortly after writing this thesis, back in 1982, I found that Hans Reichenbach and
Zygmunt Zawirski had already got the basic idea —which is otherwise simple and obvious enough— in
the nineteen-thirties. The idea is, roughly, that imposing [0,1]-valuations on a Boolean algebra should
be a natural and sensible thing to do (provided one were ready to renounce the habit of thinking of
truth valuations as epimorphisms). These authors, though, were not strictly in the Logic business,
and had a different purpose in mind: the grounding of Probability on [non-truth-functional] Logic (an
effort, incidentally, they later discontinued). Mine was, instead, Jjust showing that MV logic could be
characterized as classical —albeit non-functional— Logic. Thus, no matter the goal was different, I
considered that historically the point had been made (by them) and so I did not bother to translate the
dissertation (written in Catalan) into publishable English papers. Moreover, I sensed that the underlying
purpose and results, self-evident as they seemed to me, were to be soon (re)discovered and developed
by some other more authoritative logician. I waited ten years for that to happen. To my knowledge, it
did not. Rather puzzled, I have now finally made up my mind to publish in English what I had long
considered trivial, merely local and anticipatory, and all but redundant, written only for self-illumination.
In so doing, I have not dared but summarize and emphasize the main points and, for the rest, leave the
underlying work and supporting argumentation and references unmodified, for, in my view, updating
would have changed the basic flavor and structure of the material. The ten-year delay has not been
completely useless, though, because it has improved my own understanding of the ideas I had so clumsily
exposed a decade earlier. I only wish this reluctant working piece of mine will at last prompt the
-authoritative work I had been expecting all these years from a totally qualified author.
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