Contents

Markov chains: limiting distributions

April 8, 2022

Periodicity Aperiodic chains Limiting distribution Limiting and stationary distribution

A birth and death process

1/25

Periodicity

Definition

The period of a state i is the number

 $d_i = \gcd\{n \ge 1 : r_{ii}(n) > 0\}$

If $d_i = 1$ we say that *i* is an aperiodic state.

- r_{ii}(n) = 0 if n is not divisible by d_i. (Conditional on X₀ = i, the probability of being in state i at time n is 0 is n is not a multiple of d_i.)
- d_i is the greatest integer with such property.
- Notice that p_{ii} > 0 is a sufficient condition for d_i = 1.

Periodicity

Theorem

If $i \leftrightarrow j$, then $d_i = d_j$.

- One can speak of the period of a whole class of states.
- For an irreducible chain we can speak of the period of the chain. If this period is 1 we say that the chain is aperiodic.

Periodicity

Proof:

Condition $i \leftrightarrow j$ implies $r_{ij}(k) > 0$ and $r_{ji}(m) > 0$ for some integers k and m. So we have that

 $r_{ii}(k+m) \ge r_{ij}(k)r_{ji}(m) > 0$

and d_i divides k + m.

On the other hand, let n be any integer such that $r_{ij}(n) > 0$. Then

 $r_{ii}(k+n+m) \ge r_{ij}(k)r_{ij}(n)r_{ji}(m) > 0$

Hence d_i also divides k + n + m and therefore it divides n.

Thus d_i divides any n such that $r_{ij}(n) > 0$. This implies $d_j \ge d_i$. Interchanging i by j we deduce that $d_i \ge d_j$. Then $d_i = d_j$.

5/25

Aperiodic chains

Theorem

For a finite and irreducible chain the following propositions are equivalent.

- The chain is aperiodic.
- The chain can not be decomposed into a periodic structure (as in the previous theorem).
- There exists an integer l ≥ 1 and a state j such that r_{ij}(l) > 0 for all i ∈ S.
- There exists an integer $m \ge 1$ such that $r_{ij}(m) > 0$ for all $i, j \in S$.
- For all i ∈ S, the greatest common divisor of the integers n such that r_{ii}(n) > 0 is 1.

Structure of a periodic chain

In an irreducible chain with period d > 1 the transitions between states show a cyclic pattern.

Theorem

An irreducible chain has period d > 1 if and only if there exist d subsets S_i , $0 \le j \le d - 1$, of the state space S such that:

- S_i ∩ S_j = Ø if i ≠ j and S = ⋃^{d−1}_{i=0} S_j.
- If k ∈ S_j and p_{kt} > 0, then t ∈ S_{j+1} (the subindices are reduced modulo d).
- d is the greatest integer for which such a decomposition of S is possible.

Aperiodic chains

The existence of an integer l≥ 1 and a state j such that r_{ij}(l) > 0 for all i ∈ S means that all the elements of the j-th column of P^l are > 0 for some l and j.

That is, state j can be reached from any $i \in S$ in precisely l steps.

Analogously, the existence of an integer m ≥ 1 such that r_{ij}(m) > 0 for all i, j ∈ S implies that all the entries of P^m are > 0 for some m (and, hence, for any m' > m).

That is, there exists an *m* such that for any $m' \ge m$ any state *j* can be reached from any state *i* in precisely m' steps.

Ergodic theorem

Theorem

For an irreducible aperiodic chain we have that, for all $i, j \in S$,

$$\lim_{n\to\infty} r_{ij}(n) = \frac{1}{\mu_j}, \quad independently \text{ of } i.$$

Therefore

If the states are non-null recurrent and (π_j = 1/μ_j : j ∈ S) is the stationary distribution, then

$$\lim_{n\to\infty} r_{ij}(n) = \pi_j, \quad independently \text{ of } i.$$

If the states are transient or null recurrent, then

 $\lim_{n\to\infty}r_{ij}(n)=0$

Doeblin's proof

Let us consider the proof of the ergodic theorem for the non-null recurrent case. That is, for any initial state i we have that

 $\lim_{n\to\infty}r_{ij}(n)=\pi_j$

Doeblin's proof:

Let X be our irreducible, aperiodic, and non-null recurrent chain and let Y be another Markov chain, independent of X, with the same transition probabilities.

Theorem

For an irreducible and periodic chain with period d > 1 we have that the chain given by

$$Y_n = X_{nd}, \quad n \ge 0$$

is aperiodic and

$$r_{jj}(nd) = \mathbb{P}(Y_n = j \mid Y_0 = j)
ightarrow rac{d}{\mu_j} \quad \text{ as } n
ightarrow \infty.$$

9/25

Doeblin's proof

Consider the composite chain Z = (X, Y) defined by

 $Z_n = (X_n, Y_n), \quad n \ge 0$

It can be checked that:

Z is an irreducible chain with transition probabilities

 $\mathbb{P}\left(Z_{n+1}=(j,\beta)\mid Z_n=(i,\alpha)\right)=p_{ij}p_{\alpha\beta}$

- Z is non-null recurrent and aperiodic.
- The stationary distribution of Z is given by

 $\pi(j,k)=\pi_j\,\pi_k$

Consider an state s and let

 $T_s = \min\{n \ge 1 : Z_n = (s, s)\}$

Moreover, let

$$T = \min\{n \ge 1 : X_n = Y_n\}$$

Since $T\leqslant T_s$ and Z is recurrent, we have that $\mathbb{P}(T<\infty)=1$. Then T is not a defective r.v. and

$$\mathbb{P}(T > n) \longrightarrow 0$$
 as $n \longrightarrow \infty$

Doeblin's proof

By the strong Markov property we have that

$$\mathbb{P}(X_n = j \mid T \leq n) = \mathbb{P}(Y_n = j \mid T \leq n)$$

Therefore

$$P(X_n = j, T \leq n) = \mathbb{P}(Y_n = j, T \leq n)$$

13/25

Doeblin's proof

Then

$$\mathbb{P}(X_n = j) = P(X_n = j, T \le n) + \mathbb{P}(X_n = j, T > n)$$

= $\mathbb{P}(Y_n = j, T \le n) + \mathbb{P}(X_n = j, T > n)$
 $\le \mathbb{P}(Y_n = j) + \mathbb{P}(T > n)$

Analogously,

$$\mathbb{P}(Y_n = j) \leq \mathbb{P}(X_n = j) + \mathbb{P}(T > n)$$

Then, as $n \to \infty$,

$$|\mathbb{P}(X_n = j) - \mathbb{P}(Y_n = j)| \leq \mathbb{P}(T > n) \longrightarrow 0$$

Doeblin's proof

Take $X_0 = i$ and let Y_0 have the stationary distribution $(\pi_i = 1/\mu_i : j \in S)$. We have that

$$\mathbb{P}(X_n = j) = r_{ij}(n), \qquad \mathbb{P}(Y_n = j) = \pi_j$$

Therefore

$$|r_{ij}(n) - \pi_j| \longrightarrow 0$$
, as $n \to \infty$

that is,

$$\pi_i(n) \longrightarrow \pi_i$$
, independently of i

and the proof is finished.

Notice that for any initial probability distribution we have that

$$\mathbb{P}(X_n = j) = \sum_{i \in S} r_{ij}(n) \mathbb{P}(X_0 = i)$$
$$\longrightarrow \sum_{i \in S} \pi_j \mathbb{P}(X_0 = i) = \pi_j \sum_{i \in S} \mathbb{P}(X_0 = i) = \pi_j$$

Theorem

If the Markov chain is finite and for all $i, j \in S$ we have that

 $\lim_{n\to\infty} r_{ij}(n) = \pi_j, \text{ independently of } i,$

then $(\pi_i : j \in S)$ is a stationary distribution and it is unique.

17/25

Limiting and stationary distribution

Proof:

First, notice that $\pi_j \ge 0$ because $r_{ij}(n) \ge 0$.

Let $n \to \infty$ in the Chapman-Kolmogorov equations

$$r_{ij}(n+1) = \sum_{k \in S} r_{ik}(n) p_{kj}$$

to get

$$\pi_j = \sum_{k \in S} \pi_k \, p_{kj}$$

Moreover, since $\sum_{j \in S} r_{ij}(n) = 1$ we have that $\sum_{j \in S} \pi_j = 1$ (again, let $n \to \infty$).

Hence $(\pi_i : j \in S)$ is a stationary distribution.

Limiting and stationary distribution

To prove uniqueness suppose that $(u_j : j \in S)$ is also a stationary distribution. Thus $u_j = \sum_{k \in S} u_k p_{kj}$ and, more generally,

$$u_j = \sum_{k \in S} u_k r_{kj}(n), \quad n \ge 1$$

Letting $n \to \infty$ we obtain

$$u_j = \sum_{k \in S} u_k \, \pi_j = \pi_j \, \sum_{k \in S} u_k = \pi_j$$

Limiting and stationary distribution

For general Markov chains the previous theorem is as follows:

Theorem

If for all $i, j \in S$ we have that

 $\lim_{n\to\infty} r_{ij}(n) = \pi_j, \text{ independently of } i,$

then

- $\sum_{k \in S} \pi_k \leq 1$ and $\pi_j = \sum_{k \in S} \pi_k p_{kj}$ for all $j \in S$.
- Either π_j = 0 for all j ∈ S, or else Σ_{i∈S} π_j = 1.
- If all π_j = 0, there is no stationary distribution. If Σ_{j∈S} π_j = 1, then (π_j : j ∈ S) is the unique stationary distribution.

Example:

Consider a Markov chain such that $S = \mathbb{N}$ and

$$p_{ij} = \begin{cases} 1-b, & j=i=0\\ b, & j=i+1, \ i \ge 0\\ d, & j=i-1, \ i \ge 1\\ 1-b-d, & j=i, \ i \ge 1 \end{cases}$$

(We suppose that b > 0, d > 0, $b + d \leq 1$.)

The chain is irreducible and aperiodic because p₀₀ > 0.

21/25

A birth and death process

With $\rho = b/d$ the detailed balance equations give

$$\pi_{j+1} = \rho \pi_j, \quad j \ge 0$$

Hence

$$\pi_i = \pi_0 \rho^j, \quad j \ge 0$$

A birth and death process

Case ρ < 1. Condition Σ_{i∈S} π_i = 1 implies

$$1 = \pi_0 \sum_{j=0}^{\infty} \rho^j = \frac{\pi_0}{1-\rho}$$

Therefore $\pi_0 = 1 - \rho$ and

 $\pi_j = (1 - \rho) \rho^j, \quad j \ge 0$

There exists a stationary distribution and, so, the chain is non-null recurrent. Moreover,

 $\lim_{n\to\infty} r_{ij}(n) = (1-\rho) \rho^j, \text{ independently of } i$

A birth and death process

• Case $\rho \ge 1$.

If $\pi_0 = 0$, then $\pi_j = 0$ for all $j \ge 0$. On the other hand, if $\pi_0 > 0$, then $\pi_0 \sum_{i=0}^{\infty} \rho^i = \infty$.

In any case there is no stationary distribution and all the states are either transient or null recurrent. Moreover,

$$\lim_{n \to \infty} r_{ij}(n) = 0, \quad i, j \ge 0$$

It can be proved that for $\rho=1$ the chain is null recurrent, whereas for $\rho>1$ it is transient.