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Periodicity

Definition

The period of a state i is the number

di = gcd{n � 1 : rii (n) > 0}

If di = 1 we say that i is an aperiodic state.

◮ rii (n) = 0 if n is not divisible by di . (Conditional on X0 = i ,
the probability of being in state i at time n is 0 is n is not a
multiple of di .)

◮ di is the greatest integer with such property.

◮ Notice that pii > 0 is a sufficient condition for di = 1.
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Periodicity

Theorem

If i ↔ j , then di = dj .

◮ One can speak of the period of a whole class of states.

◮ For an irreducible chain we can speak of the period of the
chain. If this period is 1 we say that the chain is aperiodic.
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Periodicity

Proof:

Condition i ↔ j implies rij(k) > 0 and rji (m) > 0 for some integers
k and m. So we have that

rii (k +m) � rij(k)rji (m) > 0

and di divides k +m.

On the other hand, let n be any integer such that rjj(n) > 0. Then

rii (k + n +m) � rij(k)rjj(n)rji (m) > 0

Hence di also divides k + n +m and therefore it divides n.

Thus di divides any n such that rjj(n) > 0. This implies dj � di .
Interchanging i by j we deduce that di � dj . Then di = dj .
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Structure of a periodic chain

In an irreducible chain with period d > 1 the transitions between
states show a cyclic pattern.

Theorem

An irreducible chain has period d > 1 if and only if there exist d
subsets Sj , 0 � j � d − 1, of the state space S such that:

◮ Si ∩ Sj = ∅ if i �= j and S =
⋃d−1

j=0 Sj .

◮ If k ∈ Sj and pkt > 0, then t ∈ Sj+1 (the subindices are
reduced modulo d).

◮ d is the greatest integer for which such a decomposition of S
is possible.
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Aperiodic chains

Theorem

For a finite and irreducible chain the following propositions are
equivalent.

◮ The chain is aperiodic.

◮ The chain can not be decomposed into a periodic structure
(as in the previous theorem).

◮ There exists an integer l � 1 and a state j such that rij(l) > 0
for all i ∈ S.

◮ There exists an integer m � 1 such that rij(m) > 0 for all
i , j ∈ S.

◮ For all i ∈ S, the greatest common divisor of the integers n
such that rii (n) > 0 is 1.
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Aperiodic chains

◮ The existence of an integer l � 1 and a state j such that
rij(l) > 0 for all i ∈ S means that all the elements of the j-th
column of P

l are > 0 for some l and j .

That is, state j can be reached from any i ∈ S in precisely l
steps.

◮ Analogously, the existence of an integer m � 1 such that
rij(m) > 0 for all i , j ∈ S implies that all the entries of P

m are
> 0 for some m (and, hence, for any m′ > m).

That is, there exists an m such that for any m′ � m any state
j can be reached from any state i in precisely m′ steps.
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Ergodic theorem

Theorem

For an irreducible aperiodic chain we have that, for all i , j ∈ S,

lim
n→∞

rij(n) =
1

µj

, independently of i .

Therefore

◮ If the states are non-null recurrent and (πj = 1/µj : j ∈ S) is
the stationary distribution, then

lim
n→∞

rij(n) = πj , independently of i .

◮ If the states are transient or null recurrent, then

lim
n→∞

rij(n) = 0
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Ergodic theorem

Theorem

For an irreducible and periodic chain with period d > 1 we have
that the chain given by

Yn = Xnd , n � 0

is aperiodic and

rjj(nd) = P(Yn = j | Y0 = j) →
d

µj

as n → ∞.
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Doeblin’s proof

Let us consider the proof of the ergodic theorem for the non-null
recurrent case. That is, for any initial state i we have that

lim
n→∞

rij(n) = πj

Doeblin’s proof:

Let X be our irreducible, aperiodic, and non-null recurrent chain
and let Y be another Markov chain, independent of X , with the
same transition probabilities.
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Doeblin’s proof

Consider the composite chain Z = (X ,Y ) defined by

Zn = (Xn,Yn), n � 0

It can be checked that:

◮ Z is an irreducible chain with transition probabilities

P (Zn+1 = (j ,β) | Zn = (i ,α)) = pijpαβ

◮ Z is non-null recurrent and aperiodic.

◮ The stationary distribution of Z is given by

π(j , k) = πj πk
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Doeblin’s proof

Consider an state s and let

Ts = min{n � 1 : Zn = (s, s)}

Moreover, let
T = min{n � 1 : Xn = Yn}

Since T � Ts and Z is recurrent, we have that P(T < ∞) = 1.
Then T is not a defective r.v. and

P(T > n) −→ 0 as n −→ ∞
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Doeblin’s proof

By the strong Markov property we have that

P(Xn = j | T � n) = P(Yn = j | T � n)

Therefore

P(Xn = j ,T � n) = P(Yn = j ,T � n)
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Doeblin’s proof

Then

P(Xn = j) = P(Xn = j ,T � n) + P(Xn = j ,T > n)

= P(Yn = j ,T � n) + P(Xn = j ,T > n)

� P(Yn = j) + P(T > n)

Analogously,

P(Yn = j) � P(Xn = j) + P(T > n)

Then, as n → ∞,

|P(Xn = j)− P(Yn = j)| � P(T > n) −→ 0
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Doeblin’s proof

Take X0 = i and let Y0 have the stationary distribution
(πj = 1/µj : j ∈ S). We have that

P(Xn = j) = rij(n), P(Yn = j) = πj

Therefore
|rij(n)− πj | −→ 0, as n → ∞

that is,
rij(n) −→ πj , independently of i

and the proof is finished.
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Doeblin’s proof

Notice that for any initial probability distribution we have that

P(Xn = j) =
∑

i∈S

rij(n) P(X0 = i)

−→
∑

i∈S

πj P(X0 = i) = πj
∑

i∈S

P(X0 = i) = πj
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Limiting and stationary distribution

Theorem

If the Markov chain is finite and for all i , j ∈ S we have that

lim
n→∞

rij(n) = πj , independently of i ,

then (πj : j ∈ S) is a stationary distribution and it is unique.
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Limiting and stationary distribution

Proof:

First, notice that πj � 0 because rij(n) � 0.

Let n → ∞ in the Chapman-Kolmogorov equations

rij(n + 1) =
∑

k∈S

rik(n) pkj

to get

πj =
∑

k∈S

πk pkj

Moreover, since
∑

j∈S rij(n) = 1 we have that
∑

j∈S πj = 1 (again,
let n → ∞).

Hence (πj : j ∈ S) is a stationary distribution.
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Limiting and stationary distribution

To prove uniqueness suppose that (uj : j ∈ S) is also a stationary
distribution. Thus uj =

∑

k∈S ukpkj and, more generally,

uj =
∑

k∈S

uk rkj(n), n � 1

Letting n → ∞ we obtain

uj =
∑

k∈S

uk πj = πj
∑

k∈S

uk = πj
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Limiting and stationary distribution

For general Markov chains the previous theorem is as follows:

Theorem

If for all i , j ∈ S we have that

lim
n→∞

rij(n) = πj , independently of i ,

then

◮
∑

k∈S πk � 1 and πj =
∑

k∈S πk pkj for all j ∈ S .

◮ Either πj = 0 for all j ∈ S, or else
∑

j∈S πj = 1.

◮ If all πj = 0, there is no stationary distribution.

If
∑

j∈S πj = 1, then (πj : j ∈ S) is the unique stationary
distribution.
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A birth and death process

Example:

Consider a Markov chain such that S = N and

pij =















1− b, j = i = 0
b, j = i + 1, i � 0
d , j = i − 1, i � 1
1− b − d , j = i , i � 1

(We suppose that b > 0, d > 0, b + d � 1.)

◮ The chain is irreducible and aperiodic because p00 > 0.
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A birth and death process

With ρ = b/d the detailed balance equations give

πj+1 = ρ πj , j � 0

Hence
πj = π0 ρ

j , j � 0
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A birth and death process

◮ Case ρ < 1.

Condition
∑

j∈S πj = 1 implies

1 = π0

∞
∑

j=0

ρj =
π0

1− ρ

Therefore π0 = 1− ρ and

πj = (1− ρ) ρj , j � 0

There exists a stationary distribution and, so, the chain is
non-null recurrent. Moreover,

lim
n→∞

rij(n) = (1− ρ) ρj , independently of i
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A birth and death process

◮ Case ρ � 1.

If π0 = 0, then πj = 0 for all j � 0.

On the other hand, if π0 > 0, then π0
∑

∞

j=0 ρ
j = ∞.

In any case there is no stationary distribution and all the
states are either transient or null recurrent. Moreover,

lim
n→∞

rij(n) = 0, i , j � 0

It can be proved that for ρ = 1 the chain is null recurrent,
whereas for ρ > 1 it is transient.
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