Introduction to Stochastic Processes

March 19, 2022

Stochastic processes

Distribution and density functions

Mean and autocorrelation

Stationary processes

1/29

Stochastic processes

Stochastic (or random) process: mathematical model of a magnitude that evolves as time passes, in such a way that for any fixed instant of time one has a random variable.

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $R_t \subseteq \mathbb{R}$. A stochastic process X is a mapping

$$egin{array}{lll} X: & R_t imes \Omega \longrightarrow \mathbb{R} \ & (t, \omega) \mapsto X(t, \omega) \end{array}$$

such that $X(t, \omega)$ is a random variable for all $t \in R_t$.

Stochastic processes

• Let $t \in R_t$.

Since $X(t, \omega)$ is a random variable, we have that the subset of outcomes

 $\{\omega \in \Omega : X(t,\omega) \leqslant x\}$

is an event (an element of \mathcal{F}) for all $x \in \mathbb{R}$.

- ▶ In many applications the parameter *t* corresponds to time.
- The dependence on ω is usually omitted and one writes X or X(t) to denote the process.

2 / 29

Stochastic processes

Therefore,

A stochastic process X is a collection of random variables indexed by a parameter t (usually, t means time):

 $\{X(t,\omega)\equiv X_t(\omega), t\in R_t\}$

► X is also a collection of functions of time:

 $\{X(t,\omega)\equiv X_{\omega}(t), \ \omega\in\Omega\}$

where $X_{\omega}(t)$ is the realization of the process corresponding to the outcome $\omega \in \Omega$.

Discrete-time processes

When R_t is a discrete set (finite or denumerable) we say that X is a discrete-time process.

• If $R_t = \{t_1, t_2, \dots, t_n\}$ is finite, then

 $X = (X(t_1), X(t_2), \ldots, X(t_n))$

is a random vector.

• If $R_t = \{t_1, t_2, \dots, t_n, \dots\}$ is countable, then

 $X[n] = \{X(t_1), X(t_2), \ldots, X(t_n) \ldots\}$

is a sequence of random variables.

5 / 29

Continuous-time processes

When R_t is uncountable one says that X is a continuous-time process.

Usual cases are:

$egin{aligned} X(t), \ t\in [a,b] \ X(t), \ t\in (0,\infty) \ X(t), \ t\in \mathbb{R} \end{aligned}$

State space

According to the values taken by the process we have the following classification:

- X(t) is a discrete-state process if its values are countable, that is, if the image set of the mapping X is finite or denumerable.
- Otherwise, X(t) is a continuous-state process.

Distribution and density functions

Consider (for any fixed $t \in R_t$) the probability distribution function of the random variable X(t):

 $F_X(x;t) \equiv F_{X(t)}(x) = \mathbb{P}(X(t) \leq x)$

- $F_X(x; t)$ is the first-order distribution function of the process.
- ▶ It describes the time evolution of the process probability law.

Distribution and density functions

For a continuous-state process (such that X(t) is a continuous random variable for all $t \in R_t$) we can consider the first-order density:

 $f(x; t) \Delta x \approx \mathbb{P}\{x \leq X(t) \leq x + \Delta x\}$

More formally,

$$f(x;t) = \lim_{\Delta x \to 0} \frac{\mathbb{P}\{x \leq X(t) \leq x + \Delta x\}}{\Delta x}$$

• $f_X(x; t)$ is, for each $t \in R_t$, the density $f_{X(t)}(x)$ of the continuous variable X(t).

9 / 29

Distribution and density functions

The known relations between distribution and density functions hold. For instance,

$$f_{X(t)}(x) = \frac{d}{dx}F_{X(t)}(x),$$

that is to say,

$$f_X(x;t) = \frac{\partial F_X(x;t)}{\partial x}$$

Analogously,

$$F_{X(t)}(x) = \int_{-\infty}^{x} f_{X(t)}(u) \ du$$

that is,

$$F_X(x;t) = \int_{-\infty}^{x} f_X(u;t) \, du$$

Distribution and density functions

If X(t) is a discrete-state process taking the values x_1, x_2, \ldots, x_k , ..., we can define the first-order probability function:

$$p_X(x_k;t) \equiv p_{X(t)}(x_k) = \mathbb{P}(X(t) = x_k), \quad k \ge 1$$

We have that

$$F_X(x;t) = \sum_{x_k \leqslant x} p_X(x_k;t).$$

10 / 29

Distribution and density functions

Definition

The *n*-order distribution function of the process X(t) is the joint distribution function of the r.v.

 $X(t_1), X(t_2), \ldots, X(t_n)$

arising from X(t) at arbitrary instants of time $t_1, t_2, \ldots, t_n \in R_t$:

 $F_X(x_1, x_2, ..., x_n; t_1, t_2, ..., t_n) \\ \equiv F_{X(t_1), X(t_2), ..., X(t_n)}(x_1, x_2, ..., x_n) \\ = \mathbb{P}(X(t_1) \leq x_1, X(t_2) \leq x_2, ..., X(t_n) \leq x_n)$

13 / 29

Distribution and density functions

The usual relations and properties of these functions hold. For example,

$$\int_{-\infty}^{\infty} f_X(x; t) \, dx = 1$$
$$\int_{-\infty}^{\infty} f_X(x_1, x_2; t_1, t_2) \, dx_1 = f_X(x_2; t_2)$$
$$\lim_{x_2 \to \infty} F_X(x_1, x_2; t_1, t_2) = F_X(x_1; t_1)$$

$$p_X(x_{k_1}; t_1) = \sum_{k_2} p_X(x_{k_1}, x_{k_2}; t_1, t_2)$$

Distribution and density functions

For a continuous-state process the *n*-order density function is obtained as:

$$f_X(x_1, x_2, \dots, x_n; t_1, t_2, \dots, t_n) = \frac{\partial^n F_X(x_1, x_2, \dots, x_n; t_1, t_2, \dots, t_n)}{\partial x_1 \partial x_2 \cdots \partial x_n}$$

It is to the joint density of the random variables $X(t_1), X(t_2), \ldots, X(t_n)$.

Analogously, if X(t) is a discrete-sate process, the *n*-order probability function is

$$p_X(x_{k_1}, x_{k_2}, \dots, x_{k_n}; t_1, t_2, \dots, t_n) = \mathbb{P}(X(t_1) = x_{k_1}, X(t_2) = x_{k_2}, \dots, X(t_n) = x_{k_n})$$

14 / 29

Mean and autocorrelation

Definition

The mean function of the process is $m_X(t) = \mathbb{E}(X(t))$

- For each $t \in R_t$, $m_X(t)$ is the expected value of the r.v. X(t).
- ► For a continuous-state process

$$m_X(t) = \int_{-\infty}^{\infty} x f_X(x;t) dx$$

► For a discrete-state process

$$m_X(t) = \sum_k x_k \, p_X(x;t)$$

For discrete-time processes the above formulas are

$$m_X[n] = \mathbb{E} (X[n])$$
$$= \begin{cases} \int_{-\infty}^{\infty} x f_X(x; n) dx, & \text{continuous-state} \\ \sum_k x_k p_X(x_k; n), & \text{discrete-state} \end{cases}$$

Definition

The autocorrelation function of the process is defined as

 $R_X(t_1, t_2) = \mathbb{E}(X(t_1)X(t_2)).$

- *R_X(t₁, t₂)* is the joint moment *m₁₁* of the variables *X(t₁)* and *X(t₂)*.
- It is a symmetric function, that is, $R_X(t_1, t_2) = R_X(t_2, t_1)$.
- For $t_1 = t_2 = t$ we have that $R_X(t, t) = \mathbb{E}(X^2(t))$. This function of time is called the average power of X(t).

17 / 29

Mean and autocorrelation

• If X(t) is a continuous-state process,

$$R_X(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_X(x_1, x_2; t_1, t_2) dx_1 dx_2$$

• Otherwise, if X(t) a discrete-state process we have that

$$R_X(t_1, t_2) = \sum_{k_1} \sum_{k_2} x_{k_1} x_{k_2} p_X(x_{k_1}, x_{k_2}; t_1, t_2).$$

 For discrete-time processes we can write analogous expressions. Autocovariance

Definition

The autocovariance function of the process is defined as

 $C_X(t_1, t_2) = \mathbb{E}\left((X(t_1) - m_X(t_1))(X(t_2) - m_X(t_2))\right).$

Expanding this expression we obtain

$$C_X(t_1, t_2) = R_X(t_1, t_2) - m_X(t_1)m_X(t_2)$$

Notice that

 $C_X(t,t) = \mathbb{E}\left((X(t) - m_X(t))^2\right)$

is the variance $\sigma_{X(t)}^2$ of the r.v. X(t).

20 / 29

18 / 29

Stationary processes

X(t) is a strict-sense stationary process if its statistical properties are invariant to a shift of the origin of time.

This means that the processes X(t) and X(t + c) have the same statistics for any c > 0.

Definition

The process X(t) is strict-sense stationary if the families of r.v.

 $\{X(t_1), X(t_2), \ldots, X(t_n)\}$

and

 $\{X(t_1+c), X(t_2+c), \dots, X(t_n+c)\}$

have the same joint distribution for all t_1, t_2, \ldots, t_n and c > 0.

21 / 29

Stationary processes

In particular, taking n = 1 we have that

$$F_X(x;t) = F_X(x;t+c)$$
 for all c

That is, the first-order probability distribution function of a stationary process is time-invariant:

$$F_X(x;t) \equiv F_X(x)$$

Analogously, if X(t) is a continuous-state process:

$$f_X(x;t) \equiv f_X(x)$$

Stationary processes

Therefore, for all $n \ge 1$, for all c > 0 and for all t_1, t_2, \ldots, t_n , we have that

 $F_X(x_1, x_2, \dots, x_n; t_1, t_2, \dots, t_n) = F_X(x_1, x_2, \dots, x_n; t_1 + c, t_2 + c, \dots, t_n + c).$

- When this condition is satisfied for n = 1, 2, ..., k we say that X(t) is k-order stationary.
- Hence, a strict-sense stationary process is k-order stationary for any k ≥ 1.

22 / 29

Stationary processes

Theorem

The mean function of a stationary stochastic process is constant.

Proof:

$$m_X(t) = \mathbb{E}(X(t)) = \int_{-\infty}^{\infty} x f_X(x;t) dx = \int_{-\infty}^{\infty} x f_X(x) dx \equiv m_X.$$

More generally, any property involving a single random variable arising from the process will be time-invariant. Taking n = 2,

 $F_X(x_1, x_2; t_1, t_2) = F_X(x_1, x_2; t_1 + c, t_2 + c)$ for all c

That is,

 $F_X(x_1, x_2; t_1, t_2) = F_X(x_1, x_2; 0, t_2 - t_1),$

Therefore

 $F_X(x_1, x_2; t_1, t_2) \equiv F_X(x_1, x_2; \tau), \quad \tau = t_2 - t_1$

► The joint distribution of two random variables X(t₁), X(t₂) arising from the process only depends on the lag τ = t₂ − t₁ between the two instants t₁ and t₂, but not on the absolute origin of time.

25 / 29

Properties of $R_X(\tau)$

• $R_X(\tau)$ is an even function:

$$R_X(-\tau) = \mathbb{E}(X(t)X(t-\tau)) = \mathbb{E}(X(t'+\tau)X(t')) = R_X(\tau)$$

Hence, we can take $\tau = |t_1 - t_2|$.

• The average power of X(t) is constant:

 $\mathbb{E}(X^2(t)) = R_X(0) \ge 0$

- We have that |R_X(τ)| ≤ R_X(0) for any τ. Indeed,
 - $0 \leqslant \mathbb{E}((X(0) \pm X(\tau))^2) = 2R_X(0) \pm 2R_X(\tau)$

Stationary processes

Theorem

The autocorrelation function of a k-order stationary process $(k \ge 2)$ only depends on the lag τ :

$$R_X(\tau) = \mathbb{E}(X(t)X(t+\tau)),$$

where this expectation is independent of t. In particular, taking t = 0:

$$R_X(\tau) = \mathbb{E}(X(0)X(\tau)).$$

26 / 29

Wide-sense stationary processes

Definition

A stochastic process X(t) is wide-sense stationary if

► The mean function is time-invariant:

$$m_X(t) = m_X$$

• The autocorrelation depends only on τ :

$$R_X(t,t+\tau) = \mathbb{E}(X(t)X(t+\tau)) = R_X(\tau).$$

For time-discrete processes the above definition is translated as:

Definition

A random sequence X[n] is wide-sense stationary if

- The mean is constant, that is $m_X[n] = m_X[0]$ for all n.
- The autocorrelation $R_X[n, n+k] \equiv R[k]$ depends only on k.