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Stochastic processes

Stochastic (or random) process: mathematical model of a
magnitude that evolves as time passes, in such a way that for any
fixed instant of time one has a random variable.

Definition

Let (Ω,F ,P) be a probability space and let Rt ⊆ R.
A stochastic process X is a mapping

X : Rt × Ω −→ R
(t,ω) %→ X (t,ω)

such that X (t,ω) is a random variable for all t ∈ Rt .
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Stochastic processes

◮ Let t ∈ Rt .

Since X (t,ω) is a random variable, we have that the subset of
outcomes

{ω ∈ Ω : X (t,ω) " x}

is an event (an element of F) for all x ∈ R.
◮ In many applications the parameter t corresponds to time.

◮ The dependence on ω is usually omitted and one writes X or
X (t) to denote the process.
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Stochastic processes

Therefore,

◮ A stochastic process X is a collection of random variables
indexed by a parameter t (usually, t means time):

{X (t,ω) ≡ Xt(ω), t ∈ Rt}

◮ X is also a collection of functions of time:

{X (t,ω) ≡ Xω(t), ω ∈ Ω}

where Xω(t) is the realization of the process corresponding to
the outcome ω ∈ Ω.
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Discrete-time processes

When Rt is a discrete set (finite or denumerable) we say that X is
a discrete-time process.

◮ If Rt = {t1, t2, . . . , tn} is finite, then

X = (X (t1),X (t2), . . . ,X (tn))

is a random vector.

◮ If Rt = {t1, t2, . . . , tn, . . .} is countable, then

X [n] = {X (t1),X (t2), . . . ,X (tn) . . .}

is a sequence of random variables.
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Continuous-time processes

When Rt is uncountable one says that X is a continuous-time
process.

Usual cases are:

X (t), t ∈ [a, b]

X (t), t ∈ (0,∞)

X (t), t ∈ R
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State space

According to the values taken by the process we have the following
classification:

◮ X (t) is a discrete-state process if its values are countable, that
is, if the image set of the mapping X is finite or denumerable.

◮ Otherwise, X (t) is a continuous-state process.
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Distribution and density functions

Consider (for any fixed t ∈ Rt) the probability distribution function
of the random variable X (t):

FX (x ; t) ≡ FX (t)(x) = P(X (t) " x)

◮ FX (x ; t) is the first-order distribution function of the process.

◮ It describes the time evolution of the process probability law.
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Distribution and density functions

For a continuous-state process (such that X (t) is a continuous
random variable for all t ∈ Rt) we can consider the first-order
density:

f (x ; t) ∆x ≈ P{x " X (t) " x +∆x}

More formally,

f (x ; t) = lim
∆x→0

P{x " X (t) " x +∆x}
∆x

◮ fX (x ; t) is, for each t ∈ Rt , the density fX (t)(x) of the
continuous variable X (t).
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Distribution and density functions

The known relations between distribution and density functions
hold. For instance,

fX (t)(x) =
d

dx
FX (t)(x),

that is to say,

fX (x ; t) =
∂FX (x ; t)

∂x

Analogously,

FX (t)(x) =

! x

−∞
fX (t)(u) du,

that is,

FX (x ; t) =

! x

−∞
fX (u; t) du
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Distribution and density functions

If X (t) is a discrete-state process taking the values x1, x2, . . ., xk ,
. . ., we can define the first-order probability function:

pX (xk ; t) ≡ pX (t)(xk) = P(X (t) = xk), k # 1

We have that
FX (x ; t) =

"

xk!x

pX (xk ; t).
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Distribution and density functions

Definition

The n-order distribution function of the process X (t) is the joint
distribution function of the r.v.

X (t1),X (t2), . . . ,X (tn)

arising from X (t) at arbitrary instants of time t1, t2, . . . , tn ∈ Rt :

FX (x1, x2, . . . , xn; t1, t2, . . . , tn)

≡ FX (t1),X (t2),...,X (tn)(x1, x2, . . . , xn)

= P(X (t1) " x1,X (t2) " x2, . . . ,X (tn) " xn)
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Distribution and density functions

For a continuous-state process the n-order density function is
obtained as:

fX (x1, x2, . . . , xn; t1, t2, . . . , tn)

=
∂nFX (x1, x2, . . . , xn; t1, t2, . . . , tn)

∂x1 ∂x2 · · · ∂xn

It is to the joint density of the random variables X (t1), X (t2), . . .,
X (tn).

Analogously, if X (t) is a discrete-sate process, the n-order
probability function is

pX (xk1 , xk2 , . . . , xkn ; t1, t2, . . . , tn)

= P(X (t1) = xk1 ,X (t2) = xk2 , . . . ,X (tn) = xkn)
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Distribution and density functions

The usual relations and properties of these functions hold. For
example,

! ∞

−∞
fX (x ; t) dx = 1

! ∞

−∞
fX (x1, x2; t1, t2) dx1 = fX (x2; t2)

lim
x2→∞

FX (x1, x2; t1, t2) = FX (x1; t1)

pX (xk1 ; t1) =
"

k2

pX (xk1 , xk2 ; t1, t2)
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Mean and autocorrelation

Definition

The mean function of the process is mX (t) = E(X (t))

◮ For each t ∈ Rt , mX (t) is the expected value of the r.v. X (t).

◮ For a continuous-state process

mX (t) =

! ∞

−∞
x fX (x ; t) dx

◮ For a discrete-state process

mX (t) =
"

k

xk pX (x ; t)
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Mean and autocorrelation

For discrete-time processes the above formulas are

mX [n] = E (X [n])

=

#
$$$%

$$$&

! ∞

−∞
x fX (x ; n) dx , continuous-state

"

k

xk pX (xk ; n), discrete-state
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Mean and autocorrelation

Definition

The autocorrelation function of the process is defined as

RX (t1, t2) = E(X (t1)X (t2)).

◮ RX (t1, t2) is the joint moment m11 of the variables X (t1) and
X (t2).

◮ It is a symmetric function, that is, RX (t1, t2) = RX (t2, t1).

◮ For t1 = t2 = t we have that RX (t, t) = E(X 2(t)). This
function of time is called the average power of X (t).
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Mean and autocorrelation

◮ If X (t) is a continuous-state process,

RX (t1, t2) =

! ∞

−∞

! ∞

−∞
x1x2 fX (x1, x2; t1, t2) dx1dx2,

◮ Otherwise, if X (t) a discrete-state process we have that

RX (t1, t2) =
"

k1

"

k2

xk1xk2 pX (xk1 , xk2 ; t1, t2).

◮ For discrete-time processes we can write analogous
expressions.
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Autocovariance

Definition

The autocovariance function of the process is defined as

CX (t1, t2) = E ((X (t1)−mX (t1))(X (t2)−mX (t2)) .

◮ Expanding this expression we obtain

CX (t1, t2) = RX (t1, t2)−mX (t1)mX (t2)

◮ Notice that

CX (t, t) = E
'
(X (t)−mX (t))

2
(

is the variance σ2
X (t) of the r.v. X (t).
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Stationary processes

X (t) is a strict-sense stationary process if its statistical properties
are invariant to a shift of the origin of time.

This means that the processes X (t) and X (t + c) have the same
statistics for any c > 0.

Definition

The process X (t) is strict-sense stationary if the families of r.v.

{X (t1),X (t2), . . . ,X (tn)}

and
{X (t1 + c),X (t2 + c), . . . ,X (tn + c)}

have the same joint distribution for all t1, t2, . . . , tn and c > 0.
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Stationary processes

Therefore, for all n # 1, for all c > 0 and for all t1, t2, . . . , tn, we
have that

FX (x1, x2, . . . , xn; t1, t2, . . . , tn)

= FX (x1, x2, . . . , xn; t1 + c , t2 + c , . . . , tn + c).

◮ When this condition is satisfied for n = 1, 2, . . . , k we say that
X (t) is k-order stationary.

◮ Hence, a strict-sense stationary process is k-order stationary
for any k # 1.
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Stationary processes

In particular, taking n = 1 we have that

FX (x ; t) = FX (x ; t + c) for all c

That is, the first-order probability distribution function of a
stationary process is time-invariant:

FX (x ; t) ≡ FX (x)

Analogously, if X (t) is a continuous-state process:

fX (x ; t) ≡ fX (x)
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Stationary processes

Theorem

The mean function of a stationary stochastic process is constant.

Proof:

mX (t) = E(X (t)) =

! ∞

−∞
x fX (x ; t) dx =

! ∞

−∞
x fX (x) dx ≡ mX .

◮ More generally, any property involving a single random
variable arising from the process will be time-invariant.

24 / 29



Stationary processes

Taking n = 2,

FX (x1, x2; t1, t2) = FX (x1, x2; t1 + c , t2 + c) for all c

That is,
FX (x1, x2; t1, t2) = FX (x1, x2; 0, t2 − t1),

Therefore

FX (x1, x2; t1, t2) ≡ FX (x1, x2; τ), τ = t2 − t1

◮ The joint distribution of two random variables X (t1), X (t2)
arising from the process only depends on the lag τ = t2 − t1
between the two instants t1 and t2, but not on the absolute
origin of time.
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Stationary processes

Theorem

The autocorrelation function of a k-order stationary process
(k # 2) only depends on the lag τ :

RX (τ) = E(X (t)X (t + τ)),

where this expectation is independent of t.

In particular, taking t = 0:

RX (τ) = E(X (0)X (τ)).
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Properties of RX (τ)

◮ RX (τ) is an even function:

RX (−τ) = E(X (t)X (t − τ)) = E(X (t ′ + τ)X (t ′)) = RX (τ)

Hence, we can take τ = |t1 − t2|.

◮ The average power of X (t) is constant:

E(X 2(t)) = RX (0) # 0

◮ We have that |RX (τ)| " RX (0) for any τ .

Indeed,

0 " E((X (0)± X (τ))2) = 2RX (0)± 2RX (τ)
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Wide-sense stationary processes

Definition

A stochastic process X (t) is wide-sense stationary if

◮ The mean function is time-invariant:

mX (t) = mX .

◮ The autocorrelation depends only on τ :

RX (t, t + τ) = E(X (t)X (t + τ)) = RX (τ).
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Wide-sense stationary processes

For time-discrete processes the above definition is translated as:

Definition

A random sequence X [n] is wide-sense stationary if

◮ The mean is constant, that is mX [n] = mX [0] for all n.

◮ The autocorrelation RX [n, n + k] ≡ R[k] depends only on k .
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