

TREBALL FINAL DE GRAU

2 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

Título: USO E INTEGRACIÓN DE SOFTWARE EN CI/CD PARA REDUCIR

VULNERABILIDADES Y REALIZAR CARGA DE TRABAJO/ESTRÉS

Autor: Manuel Fraga Lobato

Tutora: Olga León Abarca

Supervisora: Noemí Arbós Linio

Fecha: 7 de Julio de 2022

Resumen

USO E INTEGRACIÓN DE SOFTWARE EN CI/CD PARA REDUCIR

VULNERABILIDADES Y REALIZAR CARGA DE TRABAJO/ESTRÉS

Este trabajo final de grado trata sobre el uso de herramientas para encontrar

vulnerabilidades de seguridad y limitaciones de rendimiento para hacer las

aplicaciones más robustas y sólidas frente a los ataques.

Además, también explica cómo integrar estas herramientas en entornos de

integración continua y entrega continua.

Las herramientas seleccionadas para el trabajo son Zap (vulnerabilidades de

seguridad), Gatling (limitaciones de rendimiento) y Jenkins (integración de

entorno CI/CD).

Este proyecto consta de una guía de configuración y uso de todas las

herramientas, una muestra de resultados y un análisis en profundidad de un

entorno simulado.

También se menciona cómo se ha organizado el trabajo y se finaliza con una

conclusión crítica sobre las herramientas utilizadas y cómo se ha realizado el

proyecto.

Por último, mencionar que este trabajo de final de grado se ha hecho

conjuntamente con la empresa Giesecke + Devrient (G+D).

INDEX 3

Title: SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE

VULNERABILITES AND PERFORM WORK/STRESS LOAD

Author: Manuel Fraga Lobato

Tutor: Olga León Abarca

Supervisor: Noemí Arbós Linio

Date: Jule 7th 2022

Overview

SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE

VULNERABILITES AND PERFORM WORK/STRESS LOAD

This final degree project deals with the use of tools in order to find security

vulnerabilities and performance limitations in order to make applications more

robust and solid against attacks.

In addition, it also explains how to integrate these tools in continuous

integration and continuous delivery environments.

The tools selected for the job are Zap (security vulnerabilities), Gatling

(performance limitations) and Jenkins (CI/CD environment integration).

This project consists of a guide of the configuration and use of all the tools, a

sample of results and an in-depth analysis of a simulated environment.

There is also a mention about how the work has been organized and it ends

with a critical conclusion about the tools used and how the project has been

done.

Finally, mention that this final degree project has been done jointly with the

company Giesecke + Devrient (G+D).

4 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

 INDEX

INDEX.. 4

ACRONYMS ... 6

LIST OF FIGURES ... 7

INTRODUCTION... 9

CHAPTER 1. ZED ATTACK PROXY (ZAP) .. 11

1.1. WHAT IS ZAP ... 11

1.2. USER INTERFACE .. 12

1.2.1. AUTOMATED SCAN .. 13

1.2.2. MANUAL SCAN .. 14

1.2.3. RECOMENDATIONS FOR USEFUL SCANNING 15

1.3. HOW TO USE ZAP .. 16

1.3.1.HOW TO SCAN MANUALY .. 16

1.3.2. SCANNING AN AUTHENTICATED SITE 17

1.3.3. PROXY CONFIGURATION ... 21

1.4. DOCKER... 25

1.4.1. BASELINE SCAN ... 25

1.4.2. FULL SCAN .. 26

1.4.3. API SCAN: .. 26

1.4.4. USAGE.. 26

CHAPTER 2. GATLING .. 28

2.1. WHAT IS GATLING .. 28

2.2. WHAT IS SCALA .. 29

2.2.1. TYPE INFERENCE .. 29

2.2.2. CONCURRENCE AND DISTRIBUTION 29

2.2.3. INTERFACES ... 30

2.2.4. HIGHER ORDER FUNCTIONSS... 30

2.3. HOW TO INTEGRATE WITH OUR COMPONENTS............................ 30

2.3.1 GATLING RECORDER ... 30

2.3.2 INTELLIJ PROJECT .. 32

CHAPTER 3. JENKINS .. 39

3.1. WHAT IS JENKINS .. 39

3.2. INSTALLATION .. 40

3.3. HOW TO USE JENKINS .. 43

INDEX 5

3.3.1. HOW TO CREATE A JOB ... 44

3.3.2. HOW TO MAKE A JENKINSFILE .. 45

CHAPTER 4. ANALYSIS .. 49

4.1. Pen-testing with ZAP .. 49

4.2. Work/Stress Load with GATLING .. 51

4.3. CI/CD environment ... 57

4.4. DEMONSTRATION .. 59

4.4.1. API REST 1 +1350 req. ... 64

4.4.2. API REST 1 +3000 req. ... 66

4.4.3. BOTH APIs WITH LOW AMOUNT OF WORK 67

4.4.4. BOTH APIs WITH BIG AMOUNT OF WORK 69

CHAPTER 5. CONCLUSIONS & THOUGHTS.. 71

BIBLIOGRAPHY ... 74

6 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

ACRONYMS

- ZAP = Zed Attack Proxy

- CI/CD = Continuous Integration / Continuous Delivery

- CLI = Command Line Interface

- ScaLa = Scalable Language

- PO = Product Owner

- SM = Scrum Manager

- HUD = Head-Up Display

- AJAX = Asynchronous JavaScript And XML

- VPN = Virtual Private Network

- JVM = Java Virtual Machine

- API = Application Programming Interface

- http = HyperText Transfer Protocol

- RTT = Round Trip Time

- URL = Uniform Resource Location

- DevOps = Development Operations

- OS = Operating System

- PDB = Pluggable DataBase

LIST OF FIGURES 7

LIST OF FIGURES

- Fig 1.1.1 ZAP as a “man-in-the-middle proxy” (pag. 11)

- Fig 1.1.2 ZAP as a “man-in-the-middle proxy” with a network proxy (pag.

11)

- Fig 1.2.1. Basic view of ZAP software (pag. 12)

- Fig 1.2.1.1. Automated Scan screen (pag. 13)

- Fig 1.2.2.1. Manual Scan screen (pag. 15)

- Fig 1.3.1.1. Head-Up Display (HUD) in the screen (pag. 16)

- Fig 1.3.2.1. Session Properties icon (pag. 17)

- Fig 1.3.2.2. Authentication configuration (pag. 17)

- Fig 1.3.2.3. Creating a new User in a specific context (pag. 18)

- Fig 1.3.2.4. Selecting the User to use (pag. 18)

- Fig 1.3.2.5. Specifying the context from an HTTP request executed

manually (pag. 19)

- Fig 1.3.2.6. Several manners of pen testing (pag. 19)

- Fig 1.3.2.7. Active scanning using a specific user from “HUD context”

(pag. 20)

- Fig 1.3.3.1. Options tab (pag. 21)

- Fig 1.3.3.2. Proxy configuration for ZAP (pag. 22)

- Fig 1.3.3.3. Proxy configuration for browser (pag. 22)

- Fig 1.3.3.4. Using ZAP as a proxy (pag. 23)

- Fig 1.3.3.5. Generating a Dynamic SSL certificate for the browser (pag.

23)

- Fig 1.3.3.6. Importing ZAP Dynamic SSL certificate (pag. 24)

- Fig 1.4.4.1. Different options for CLI scanning (pag. 38)

- Fig 2.3.1.1. Gatling Recorder UI (pag. 31)

- Fig 2.3.1.2. Configuring browser as a Proxy (pag. 31)

- Fig 2.3.2.1. Creating a Gatling project (pag. 32)

- Fig 2.3.2.2. Project structure (pag. 33)

- Fig 2.3.2.3. HTTP configuration (pag. 34)

- Fig 2.3.2.4. Login Test example (pag. 35)

- Fig 2.3.2.5. Example simulation (pag. 36)

- Fig 2.3.2.6. HashMap to store Token’s (pag. 37)

- Fig 2.3.2.7. Establishing different sessions (pag. 37)

- Fig 2.3.2.8. Defining a Scenario (pag.38)

- Fig 3.2.1. Unlocking Jenkins for installation (pag. 40)

- Fig 3.2.2. Installing plugins (pag. 41)

- Fig 3.2.3. Create first Admin User (pag. 41)

- Fig 3.2.4. Set port for Jenkins (pag. 42)

- Fig 3.3.1. Jenkins’s pipeline (pag. 43)

- Fig 3.3.1.1. Create a new Job (pag. 44)

- Fig 3.3.1.2. Full project name Path (pag. 44)

- Fig 3.3.2.1. Declarative pipeline example (pag. 45)

- Fig. 3.3.2.2. Environment variables in Jenkinsfile (pag. 46)

8 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

- Fig 3.3.2.3. Add parameters in Job (pag. 47)

- Fig 3.3.2.4. Specify git repository (pag. 47)

- Fig 3.3.2.5. Trigger another job from Jenkinsfile (pag. 48)

- Fig 4.1.1. Summary of alerts (pag. 49)

- Fig 4.1.2. More detailed information of alerts (pag. 49)

- Fig 4.1.3. Explanation of an alert (pag. 50)

- Fig 4.1.4. Solutions in “designing” phase (pag. 50)

- Fig 4.1.5. Solutions in “implementation” phase (pag. 50)

- Fig 4.2.1. Initial graphics with summary information (pag. 51)

- Fig 4.2.2. Table with information on response times (pag. 52)

- Fig 4.2.3. Active Users along the simulation (pag. 52)

- Fig 4.2.4. Response Time Distribution (pag. 53)

- Fig 4.2.5. Number of requests & responses per second (pag. 53)

- Fig 4.2.6. Analysis of a particular request (pag. 54)

- Fig 4.2.7. Number of requests & responses per second of a particular

request (pag. 54)

- Fig 4.2.8. 101 Requests test statistics (pag. 55)

- Fig 4.2.9. Requests & responses per second during the test (pag. 56)

- Fig 4.3.1. Options to use ZAP & Gatling functionalities (pag. 57)

- Fig 4.3.2. Stages of the job (pag. 57)

- Fig 4.3.3. Time it takes for the job to finish (pag. 58)

- Fig. 4.3.4. Window for downloading the report (pag. 58)

- Fig. 4.4.1. Environment (pag. 59)

- Fig. 4.4.2. Summary of alerts (pag. 59)

- Fig. 4.4.3. Alerts (pag. 60)

- Fig. 4.4.4. Cross-Domain Misconfiguration description (pag. 61)

- Fig. 4.4.5. CSP: style-src unsafe-inline (pag. 61)

- Fig. 4.4.6. CSP: Wildcard Directive (pag. 61)

- Fig. 4.4.7. Vulnerable JS Library (pag. 62)

- Fig. 4.4.8. X-Frame-Options Header Not Set (pag. 62)

- Fig. 4.4.9. Incomplete or No Cache-control and Pragma HTTP Header

Set (pag. 63)

- Fig. 4.4.10. X-Content-Type-Options Header Missing (pag. 63)

- Fig. 4.4.1.1. Initial graphics of test 1(pag. 64)

- Fig. 4.4.1.2. Response Time Percentiles over Time (OK) test 1(pag. 64)

- Fig. 4.4.1.3. Number of requests/responses per second test 1(pag. 65)

- Fig. 4.4.2.1. Initial graphics of test 2 (pag. 66)

- Fig. 4.4.2.2. Response Time Percentiles over Time (OK) test 2 (pag. 66)

- Fig. 4.4.3.1. Initial graphics of test 3 (pag. 67)

- Fig. 4.4.3.2. Get Cat Fact Requests (pag. 67)

- Fig. 4.4.3.3. Response Time Distribution test 3 (pag. 68)

- Fig. 4.4.4.1. Initial graphics of test 4 (pag. 69)

- Fig. 4.4.4.2. Get Cat Fact Requests test 4 (pag. 69)

- Fig. 4.4.4.3. Number of requests/responses per second test 4 (pag. 70)

INTRODUCTION 9

INTRODUCTION

As is well known, technology has been evolving for a long time and never ceases

to amaze with the speed at which it breaks barriers, leaving more than one

incredulous.

This work arises in part from the need that developers have to adapt to these

changes, since with all the changes there are, to stagnate means to die.

This is an overwhelming truth when it comes to programming because this world

changes "overnight", and you have to be very attentive to the tools you use to

develop your code, since what was safe yesterday it might not be today. The idea

of knowing about security vulnerabilities is not just for hackers, as a developer

who is not agnostic to the issues might be able to avoid them.

This is one of the many reasons why learning about vulnerabilities is never a bad

option. There are a large number of ways to attack clients and servers and it is

practically never possible to be certain that a web page is totally secure. Even so,

this does not justify that a web page uses outdated libraries with security holes

or that it has a misconfiguration of mechanisms in HTTP headers that enables a

domain for clickjacking or cross-site scripting attacks.

In this work we will be able to observe the different types of vulnerabilities that

have been found through vulnerability scans and how to solve them.

The vast majority of these vulnerabilities do not require a great cost or great

measures to be eradicated. If we use one of different software developed for

seeking vulnerabilities we could find that this is due to configuration problems

(such as the case of the CSP header, X-Frame-Options, CORS among others).

In fact, a high percentage of security breaches could be avoided if behind of it

there was a good use of libraries and headers together with basic notions of

cybersecurity. Another compelling reason to learn about this is the great benefit

to be gained from so little knowledge required.

On the other hand we have the performance analysis of applications and

environments. It is very valuable information to know with certainty how an

application behaves under a certain workload, so there are many tools created

because of this need. In this document we can find different tests carried out

under different circumstances and workloads to analyze how a specific server

behaves in order to find bottlenecks and limitations.

Another point to note is the fact of integrating processes in automation software.

As you can imagine, to get a stable and secure application with few limitations,

maintenance is needed and not a just a punctual task. This can become tedious,

since the same thing must always be analyzed to ensure that there are no

security gaps, performance drops or strange behavior.

10 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

This is why automation software is used so much, so all these processes can be

carried out autonomously without the user having to worry about carrying out the

tests, they should only be in charge of analyzing the reports.

In this final degree project, we can see how different tools have been used to

achieve everything mentioned above. These tools are Zap for everything related

to vulnerabilities and security, Gatling for performance and behavior issues, and

Jenkins for process automation.

The project follows a very clear structure, beginning with three chapters that go

into detail about the tools to be used (for vulnerabilities, for load tests and for

integration in CI/CD). It continues with a chapter focused on a demonstration with

results and their respective analysis and ends with a chapter focused on

conclusions, criticisms and personal opinions where also is explained how this

project was done inside a company.

CHAPTER 1. ZED ATTACK PROXY (ZAP) 11

CHAPTER 1. ZED ATTACK PROXY (ZAP)

1.1. WHAT IS ZAP
Zed Attack Proxy (ZAP)[1] is a free and open-source penetration testing tool

designed for testing web applications that is flexible and extensible.

At the heart of ZAP there are the so-called "man-in-the-middle agents". They sit

between the tester's browser and the web application, so it can intercept and

inspect messages sent between the browser and the web application, modify the

content if necessary, and then forward those packets to their destination.

It can be used as a standalone application or as a daemon.

Fig. 1.1.1 ZAP as a “man-in-the-middle proxy”

If there is another network proxy already in use, as in many corporate

environments, ZAP can be configured to connect to that proxy.

Fig. 1.1.2. ZAP as a “man-in-the-middle proxy” with a network

proxy

This software is responsible for making an exhaustive scan of a web domain to

find possible vulnerabilities or bad code practices, which lead to security errors.

The company that developed the tool also has a page that talks about these

vulnerabilities, how they usually occur and how they can be resolved. This page

is updated every year and makes a ranking of the 10 most common vulnerabilities

of the year in question.

Some of the most common vulnerabilities in direct data injection, outdated and/or

vulnerable components, security configuration errors, access control problems

and cryptographic flaws among other common errors.

12 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

1.2. USER INTERFACE
When opening the program, the first thing we see is a screen like the following

one:

Fig. 1.2.1 Basic view of ZAP software

In the previous image we can see the following fields:

1. Menu Bar

Provides access to many of the automated and manual tools.

2. Toolbar

Includes buttons which provide easy access to most commonly used features.

3. Tree Window

Displays the Sites tree and the Scripts tree.

4. Workspace Window

Displays requests, responses, and scripts and allows us to edit them.

5. Information Window

Displays details of the automated and manual tools.

6. Footer

CHAPTER 1. ZED ATTACK PROXY (ZAP) 13

Displays a summary of the alerts found and the status of the main automated

tools.

There are two ways to do an exploration of an application or URL, either the

passive scanning (automated scan) or the active scanning (manual scan).

1.2.1. AUTOMATED SCAN

ZAP uses its spider to crawl web applications and passively scans every page

it finds. A spider is a Zap's own tool that is responsible for going thread by thread

until all the endpoints of a web page can be seen. That's where the name comes

from, since it is as if a spider weaves a web thread by thread with the endpoints

of a target.

ZAP then uses an active scanner to attack all discovered pages, functions, and

parameters.

Fig. 1.2.1.1. Automated Scan screen

ZAP provides 2 spiders for scraping web applications, you can use one or both

in this screen. Traditional ZAP spiders discover links by examining HTML in web

application responses.

This crawler is fast but not always effective when exploring AJAX web

applications that use JavaScript to generate links. For AJAX applications, ZAP's

AJAX spider may be more efficient. The spider inspects the web application by

invoking the browser, which then follows the generated link.

AJAX spiders are slower than traditional spiders and require additional

configuration to be used in a "headless" environment.

14 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

To run a Quick Start Automated Scan:

1. Start ZAP and click the Quick Start tab of the Workspace Window.

2. Click the large Automated Scan button.

3. In the URL to attack text box, enter the full URL of the web application you

want to attack.

4. Click the Attack

1.2.2. MANUAL SCAN

Fig. 1.2.2.1. Manual Scan screen

The passive scanning and automated attack functionality are a great way to begin

a vulnerability assessment of our web application, but it has some limitations.

Among these are:

• Any pages protected by a login page are not discoverable during a passive

scan because, unless you’ve configured ZAP’s authentication functionality,

ZAP will not handle the required authentication.

• You don’t have a lot of control over the sequence of exploration in a

passive scan or the types of attacks carried out in an automated attack.

ZAP does provide many additional options for exploration and attacks

outside of passive scanning.

CHAPTER 1. ZED ATTACK PROXY (ZAP) 15

To manually explore an application, we just need the following steps:

1. Start ZAP and click the Quick Start tab of the Workspace Window.

2. Click the large Manual Explore button.

3. In the URL to explore text box, enter the full URL of the web application

we want to explore.

4. Select the browser we would like to use

5. Click the Launch Browser

1.2.3. RECOMENDATIONS FOR USEFUL SCANNING

Spiders are a great way to explore our simple website, but they should be

combined with manual exploration to be more effective. For example, spiders

only enter basic standard data in our web application's forms, but users can enter

more relevant information, which in turn can make more web applications

available to ZAP.

This is especially true for things like signup forms that require a valid email

address. The spider may enter a random string, which will cause an error. The

user can respond to this error and provide a well-formed string, which will cause

more applications to be displayed when submitting and accepting the form.

The entire web application should be analyzed by using a browser proxy via ZAP.

When we do this, ZAP passively scans all requests and responses made during

a vulnerability scan, continues building the site tree, and logs alerts for potential

vulnerabilities discovered during the scan.

It is important to have ZAP explore each page of our web application, whether

linked to another page or not, for vulnerabilities. Obscurity is not security, and

hidden pages sometimes go live without warning or notice. So be as thorough as

we can when exploring our site.

We can quickly and easily launch browsers that are pre-configured to proxy

through ZAP via the Quick Start tab. Browsers launched in this way will also

ignore any certificate validation warnings that would otherwise be reported.

16 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

1.3. HOW TO USE ZAP

1.3.1.HOW TO SCAN MANUALY

When we are going to perform a manual scan to an URL, a Head-Up Display

(HUD) will be shown with some icons at both sides of the screen like in the

following image.

Fig. 1.3.1.1. Head-Up Display (HUD) in the screen

These page icons provide us with information about page or website alerts or

allow us to take various actions.

If this is our first manual scan, it is highly recommended to follow the short tutorial

provided by ZAP. It takes no more than 10 minutes and is very useful.

At the bottom of the page are the History and WebSocket sections. The History

tab shows all requests made by the browser since we opened this page. These

can be requests for resources like images or JavaScript files, or API requests.

The WebSocket’s tab displays all WebSocket’s requests made by the browser.

The HUD allows us to get a lot of real-time information as we make various

requests on the page being scanned.

The context is a group of configurations, conditions and parameters that we can

configure before scanning an URL. There is a Default Context with the common

configuration, but we can edit it or create a new one specifying some rules or

conditions.

CHAPTER 1. ZED ATTACK PROXY (ZAP) 17

1.3.2. SCANNING AN AUTHENTICATED SITE

There could be different occasions that the site requires of some kind of

authentication in order to access to the pages that are behind that “firewall”.

This problem can be easily solved by manual scanning that site, inserting the

credentials, and once we have surpassed that blocker, we start scanning the site.

But if we want to use ZAP scanning from the CLI or we directly do not want to

manual scan before, we can solve it by setting the authentication configuration in

the Context we are going to use for the scanning.

To do so, we must click on Session Properties.

Fig. 1.3.2.1. Session Properties icon

Then, we should go the Authentication section and select the authentication

method that is going to be used, the URL where is done that authentication, the

URL where we are getting the LOGIN URL from and the credentials.

In the following image, the credentials are input because there is a user already

created.

Fig. 1.3.2.2. Authentication configuration

18 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

Once we have set the authentication configuration up, we must create a User

with the username and password we want to use as credentials, and when once

we have created it, we must enable it.

Fig. 1.3.2.3. Creating a new User in a specific context

Lastly, we must go to Force User and select the User we want to use.

Fig. 1.3.2.4. Selecting the User to use

CHAPTER 1. ZED ATTACK PROXY (ZAP) 19

We can also do the Login with the manual scan, and then look for that Login

request and set it as a context to do the authentication configuration directly.

Fig. 1.3.2.5. Specifying the context from an HTTP request

executed manually

Here, the request with username = “manelZap” and its password is selected as

the credentials for the form-based login of the HUD context.

Fig. 1.3.2.6. Several manners of pen testing

Then, we can attack that URL with the method that we want, and with the context

we want to use. Once we pick on any attack method, a window will pop-up and

there we can select the context.

20 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

For example, if we want to Active Scan with the User “manel” of the context “HUD

Context”

Fig. 1.3.2.7. Active scanning using a specific user from “HUD

context”

Also, we can configure that Scan with some advanced options if we want it to

perform in a specific way.

CHAPTER 1. ZED ATTACK PROXY (ZAP) 21

1.3.3. PROXY CONFIGURATION

If we are behind a VPN, we must either configure some fields or disable our VPN

connection in order to be able to use ZAP. To do so, we must go to:

Tools -> Settings -> Connection

Fig. 1.3.3.1. Options tab

Fig. 1.3.3.2. Proxy configuration for ZAP

Once we have reached this window, we are now able to set the direction and the

port of the VPN we are connected to.

22 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

Also, we must configure the navigator we are going to use ZAP with.

To show an example, here we have how its configured “Firefox”.

First, we need to open Firefox and then go to: Settings -> General -> Proxy

Configuration

Fig. 1.3.3.3. Proxy configuration for browser

Once we have completed all these steps and have filled in the necessary fields,

ZAP is able to inspect different domains as if it were not behind any proxy. Even

so, in case the use of a proxy is not strictly necessary, the quickest solution for

this situation is to "switch off" the proxy. In this way, no proxy configuration would

be needed.

CHAPTER 1. ZED ATTACK PROXY (ZAP) 23

On the other hand, if what we want is to use ZAP as a Local Proxy, then we must

go to “Local Proxy” window instead of the “Connection” window and specify which

direction and which port we want to use (localhost:8080 by default).

Fig. 1.3.3.4. Using ZAP as a proxy

When the local proxy has been set up, a certificate for the navigator is required.

To generate a new certificate, we must go “Dynamic SSL Certificates”, generate

a new one and save it.

Fig. 1.3.3.5. Generating Dynamic SSL certificate for browser

24 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

To use this functionality, we should be out of the VPN, and then go to the

navigator we are going to use for that and import the certificate that has been

previously generated.

In Firefox, we should go to: Settings -> Privacy & Security -> Certificates -> Show

Certificates.

Fig. 1.3.3.6. Importing ZAP Dynamic SSL certificate

We must click on “Import” and select the certificate we had previously generated.

CHAPTER 1. ZED ATTACK PROXY (ZAP) 25

1.4. DOCKER
There is also the option to use zap from the command line on our computer by

using docker containers with the ZAP image.

There are four different ZAP[2] docker images available in order to run OWASP

ZAP as a docker container.

To download these four images, we must do the following docker

1. Stable release

docker pull owasp/zap2docker-stable

2. Latest weekly release

docker pull owasp/zap2docker-weekly

3. Live release

docker pull owasp/zap2docker-live

4. Bare release (small docker image, ideal for CI environments)

docker pull owasp/zap2docker-bare

All the docker images provide a set of packaged scan scripts:

1.4.1. BASELINE SCAN

 It runs the ZAP spider (by default) against the specified target for 1 minute, then

waits for the passive scan to complete before reporting the results. This means

that the script doesn't actually "attack" and only runs for a relatively short period

of time (a few minutes at most).

This script is great for running in a CI/CD environment, even for production sites.

26 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

1.4.2. FULL SCAN

It runs a ZAP spider against an objective (no time limit by default), and we can

also specify the use of an optional Ajax spider scan, followed by a full active scan,

before reporting the results. This means that the script is performing a pen-testing

"attack" and may last more time than a baseline scan. By default, all warnings

are reported as Warnings, but we can specify a configuration file that can change

all rules to FAIL or IGNORE.

The configuration works in a very similar way as the Baseline Scan.

1.4.3. API SCAN

It is tuned to perform scans against OpenAPI, SOAP, or GraphQL-defined APIs

via local files or URLs.

 It imports the definitions we provide and then runs an active scan on the URLs it

finds. Active scanning is tuned for the API, so it doesn't bother looking for things

like XSS. It also includes 2 scripts: Trigger alerts for all HTTP server error

response codes Alert on all URLs that return content types not normally

associated with an API

1.4.4. USAGE

 Depending on which kind of objective we want to analyze, we should use one

docker image or another.

As an example, if we want to perform a basic scan to the specific URL

“www.example.com” we should use the following command in the CLI.

docker run -t owasp/zap2docker-stable zap-baseline.py -t https://www.example.com

We can set more options and conditions to this command in order to obtain some

reports or to specify a maximum amount of time to the scanning, also to show

debugging messages or to use the AJAX spider instead of the traditional one.

As a more complex example, imagine now we must scan the same URL as before,

but specifying a maximum scanning time of 10 minutes, using AJAX spider

instead of traditional spider, we also need to see the debugging messages and

this domain has an authenticated site, so we need to use a context named

“contextUPC” we have previously created with the user “exampleUPC”. And we

want it to generate an HTML report.

The command we should use would be like this:

CHAPTER 1. ZED ATTACK PROXY (ZAP) 27

All the possible appends are shown in the next image:

Fig. 1.4.4.1. Different options for CLI scanning

As a personal suggestion, if there is a need of scanning complex objectives as

some URL with authentication or if we want to generate reports of different scans,

its strongly recommend creating a docker container and set the context files we

may need in there.

We can do that this way:

1. docker pull owasp/zap2docker-weekly

2. docker create --name=xxxx --network="host" -t owasp/zap2docker-weekly
3. docker start xxxx
4. docker exec xxxx mkdir /zap/wrk

5. docker cp example.context owasp:/zap/wrk/example.context

Notice that we are building a container named “xxxx” and creating a directory

“/wrk” inside a folder “/zap” to be able to copy our “example.context” in there.

28 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

CHAPTER 2. GATLING

2.1. WHAT IS GATLING
Gatling[4] is a load testing tool which can be used for our integrated development

environment, version control systems and continuous integration solutions. It

does not have its own solution, rather it integrates with our existing solutions.

It is built on top of Akka[11], which is a toolkit for building distributed message

driven applications. It is a distributed framework which will allow for fully

asynchronous computing.

Using this mode Gatling can simulate multiple virtual users with a single thread.

Akka overrides the JVM limitation of handling many threads.

Gatling is developed as a combination of Java with ScaLa. It is a relatively new

tool, its first stable version originated in early 2012 (January 15), and it is gaining

strength in recent years compared to other tools dedicated to load testing and

stress testing such as JMeter.

Later, we will go into depth in the explanation of how gatling works, but as a brief

introduction it could be said that gatling is made up of three different components.

The first would be the tests that we define, which are the series of requests that

are going to be carried out. Second is the protocol configuration, which is almost

always the HTTP protocol, where we must specify the headers. And finally, there

are the scenarios, which receive as parameters the tests and the configuration of

protocols to be used, and in this way simulate a series of virtual users that are

going to execute the requests provided.

Simplifying things a lot, the scenarios simulate a series of users who use the tests

and the protocols configured to carry out the load and stress tests.

CHAPTER 2. GATLING 29

2.2. WHAT IS SCALA
Scala[9] is a modern multi-paradigm programming language designed to express

common programming patterns in a concise, elegant, and type-safe way. It

seamlessly integrates features of object-oriented and functional languages.

ScaLa is a very powerful language created with the aim of being a scalable

language, hence its name (SCA-lable LA-nguage). It is a programming language

very similar to Java, both run in JVM, and in terms of managing classes, functions

and polymorphism it is very similar to Java, but also to C.

On the other hand, it must be noted that as much as the language is very similar

to Java and C, its usage is quite similar to Python due to how surprisingly concise

it is. What for Java requires 10 lines of code, with ScaLa[10] we can achieve it

with a couple.

This last detail has its good part and its bad part. The good thing is that we get a

much shorter code and therefore it is faster to program, the bad part is its learning

curve, since the readability of the code is infinitely more expensive than other

languages since the ScaLa compiler is very powerful and can do anything from

inferring types and classes to performing simple "operations"[5], so since we don't

usually need to explicitly specify this in our code, it becomes difficult to read.

Despite this, it can be said that ScaLa tries to group the best of other languages

under a single programming language, which is a very attractive idea that is

making the demand for developers with knowledge of this language quite popular.

Entering a little more in technicalities we can see the following characteristics.

Despite this, it can be said that ScaLa tries to group the best of other languages

under a single programming language, which is a very attractive idea that is

making the demand for developers with knowledge of this language quite popular.

Entering a little more in technicalities we can see the following characteristics.

2.2.1. TYPE INFERENCE

By having such a competent compiler, it is not necessary to specify the type of

the objects that are instantiated in most cases, since the compiler can intuit the

type of the objects by itself.

2.2.2. CONCURRENCE AND DISTRIBUTION

It allows to distribute the workload for the processors thanks to the branching of

processes through threads.

And what is related to concurrency, we can make use of promises or use methods

such as Future{} that allow us to process data asynchronously, which favors

parallelization and distribution.

30 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

2.2.3. INTERFACES

Interfaces can be combined into a "superior" interface. Stated in a more code-

focused way, an interface can extend more than one interface at a time.

2.2.4. HIGHER ORDER FUNCTIONS

In ScaLa, functions are values and can be defined as anonymous functions with

a concise syntax. In other words, this allows us to use functions as parameters

to other functions. Hence the name higher order functions, since they use lower

order functions as parameters.

2.3. HOW TO INTEGRATE WITH OUR COMPONENTS

2.3.1 GATLING RECORDER

There are two different ways to test the performance, using the gatling recorder

feature to proxy the traffic going through a browser in order to test the

performance, or doing a customize test to test the different endpoints.

Using the recorder is simpler and quicker but does not provide a quality test, so

we will be doing our personal gatling tests to load & performance test our

components.

Fig. 2.3.1.1. Gatling Recorder UI

If we run the gatling recorder, a similar window as the one we could see in the

last picture will appear.

CHAPTER 2. GATLING 31

In that new window we can specify which port will the gatling recorder will listen

to and, if needed, we can also set an outgoing proxy just in case we are in a VPN.

With that previous configuration we would be able to test the performance of our

proxying traffic, but if we want to, we can customize even more the recording by

setting and configuring all the parameters we can see.

Once we are done with the recorder configuration, we need to open our usual

browser to set it up as a local proxy with the port we specified in our recorder

(localhost:8080)

Fig. 2.3.1.2. Configuring browser as a Proxy

Now we can “Start” the recording and using the browser to record the HTTP

request we perform, and they will be registered on the Gatling feature. When we

are done doing request, we can just click on Stop & Save.

32 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

2.3.2 INTELLIJ PROJECT

First in IntelliJ go to create a new project of the Maven type, and there check the

“Create from archetype” option. This means that a project will be created from a

template that we must provide, and for this we touch the “Add Archetype…”

button.

Next, add the archetype with these values:

• GroupId = io.gatling.highcharts

• ArtifactId = gatling-highcharts-maven-archetype

• Version = desired version

• Repository = leave it empty

Then we will be able to select the archetype created.

We continue with the wizard, and it asks us for the GroupId and ArtifactId of the

project that we are going to create, we fill it with the values that we consider

Once the previous steps have been carried out, we must validate the properties

chosen for the project, if we are satisfied with the results we will click on the

NEXT button.

Fig. 2.3.2.1. Creating a Gatling project

CHAPTER 2. GATLING 33

Once we have our very first Gatling project created, we will see something alike

to this:

Fig. 2.3.2.2. Project structure

In that picture there are some files that won’t be initially in a new project due to

will be added later in order to include that testing in our CI/CD environment.

With that structure achieved, we could start to perform our Gatling Load Testing,

but before starting to code anything, we are going to see what the logic is and

how the tests should be done.

First, a single load test in Gatling is called a scenario. Roughly, a scenario can

be divided into three parts:

• General configuration (protocol, server address, encoding …)

• Steps to execute (open webpage, click this, enter that …)

• Scenario configuration (no. of total users, users over time …)

34 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

To begin with, we must define the initial HTTP configuration, where we must

specify the URL, the content type, some headers and some other things.

Fig. 2.3.2.3. HTTP configuration

On the other hand, there is the stage, the stage could be said to be where we

define the what and the how; how long we want the test to last as a maximum,

how many virtual users we want to have, if this value is going to be static or

dynamic, if it is going to grow or decrease, what type of HTTP configuration we

want to use and lastly the most important, what tests we will want to perform in

this scenario.

Once we have mentioned these concepts, we can start defining the tests we want

to perform. Doing this is quite simple, the only thing we need to do is keep in mind

that we are testing and what we need for it, because if we are not careful and do

not meet all the requirements of the request we want to test, we will get a failed

test result and we will not have no explanation.

Normally, we can put all the tests that we want to carry out in the same scenario

with the same HTTP configuration, since all the requests go to the same base

URL, as is the case of the tests that are carried out on a WEB, but what happens

if Instead of doing a general test, we want to do a specific test of different APIs

with different ports, they no longer share URLs and it does not work with a single

HTTP protocol configuration.

For this case we define test chains, we must think of these as blocks of tests that

are carried out one after another until the chain ends, where in each test we

specify the complete address of the URL where the test attacks. We can do tests

chains of only a single request.

In this way, we can create an environment with more than one scenario (so that

each scenario refers to an API that we want to attack) in which, in each scenario,

one or more test chains are performed, with a single common HTTP protocol and

basic (the URL specified in the protocol will be ignored since the URL specified

in each test within the chain prevails).

As a summary, we must imagine this framework as if we had independent

processes (chains of tests) that attack specific APIs, and to execute them we

must create an environment by using a scenario and an HTTP configuration.

CHAPTER 2. GATLING 35

Fig. 2.3.2.4. Login Test example

In the previous picture we can see how we define a test chain[6], that executes a

pair of tests.

We first execute a login with a username and a password as a body request

(realize that the syntax of the body definition is quite weird), and the response of

that request contains a parameter named auth. We save the response and the

parameter, and in the next request we send the auth parameter as a header.

It can be seen how we must do to save responses and to save parameters of the

responses as variables, so if we need some parameter that is obtained by doing

a previous request, that’s the way to do it.

In the fig. 2.3.2.4. we can see how its created a third test that does not perform

any request[7], it just create a session in which we can work and do some logs

by printing on the terminal, and we take profit of that by printing the responses

we have previously saved.

36 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

With the tests and the HTTP configuration, we can create a simple scenario and

relate it to one or more chain tests.

Then, we set up one or some scenarios with some users under a HTTP protocol.

Fig. 2.3.2.5. Example simulation

A typical casuistic that may be found, is that we first need to authenticate to some

endpoint, and that authentication request provides we some access token or

some value that allows us to perform some extra requests that we could not do

without it.

So, imagine we want to load test a group of endpoints of page “B” by doing

10req/s to those endpoints, but in order to do so, we previously need to

authenticate in page “A” to get the “token” is needed to perform the load testing

of page “B”.

If we group all these petitions in the same scenario, we would be performing 10

req or more to the login endpoint of page “A” that will provide various tokens and

we may have conflict with those values. So, the best solution is to split the

scenarios and first dedicate one to perform the login and achieve the token with

only one virtual user (Login Scenario), and other scenario to do the load testing

with several virtual users using the token we got from the authentication done in

the previous scenario.

Doing this, we only perform one request to the login in order to get what is needed

to perform the load testing, and then we can adapt the scenario and user

conditions to the ones that fit better with our requirements.

To implement this way of working, we need to do some extra steps:

• One step in order to get/set the value we achieve from performing a log in

request.

• Another step to create a session with the parameters that we want to use

as variables in the scenario

CHAPTER 2. GATLING 37

The idea of this is simple, is not in any guide of Gatling but it is an idea that many

people could come up with due to it is an adaptation of the typical getter/setter

methods from Java. It consists of create a HashMap and keep the values we want

to with a name, and once they are saved, we can rescue them from it whenever

we need to.

Fig. 2.3.2.6. HashMap to store Token’s

With that object named “Token”, we fulfill that need of getting and setting values

to a cache. And then we need to do the second step that is to create the session[8]

that will be used in our scenario. To do so, we must create a method that sets all

the parameters we want in a new session.

Fig. 2.3.2.7. Establishing different sessions

38 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

With these two steps, we just need to perform this test before the load testing, we

want to do in our scenario to set the parameters as “environment variables”.

Fig. 2.3.2.8. Defining a Scenario

In this scenario we set a session with the token provided from a basic Log In, but

imagine we could perform an Admin Log In that is different from the basic one,

we can distinguish the value between them using the “initAdmin” method that gets

another param from the HashMap (cache).

With this previous step we can acquire the parameters that other petitions may

need in order to perform several HTTP requests.

CHAPTER 3. JENKINS 39

CHAPTER 3. JENKINS

3.1. WHAT IS JENKINS
Jenkins[16] is a tool made for CI/CD[12] processes. At the very beginning it is

quite difficult to start using it due to its big learning curve which makes it difficult

to become familiar with this software.

Jenkins is a software that is very basic in itself, which is designed to be super

scalable, in such a way that its operation can be customized using plugins[15].

A lot of tools provide a plugin for Jenkins in the same way that a docker image is

provided. So once the CI/CD software is installed, we should think about what

plugins may be necessary to get the most out of this great tool.

To install Jenkins, we have a lot of alternatives, depending on the device we have

and our knowledge in devOps.

The two most common are to install locally using the installer we have

(downloading for Windows, Linux or macOS depending on the OS we use), or by

downloading a Jenkins docker image and running it in a container.

40 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

3.2. INSTALLATION

To install Jenkins, the first thing we must do is download the tool.

The installation can be done in two ways, either we download a file such as

an .msi for Windows, or we can also download a docker image and have our

server for automation in a CI/CD environment running in docker.

The two alternatives are equally valid, and their installation is practically identical.

Once the executable has been downloaded, we just must open the file and start

it on our computer. Once this is done, we will start with the configuration.

Fig. 3.2.1. Unlocking Jenkins for installation

We will see a screen like the one in the previous image, this step is done to verify

that the person who is doing the installation is the one who has downloaded the

software, or at least that he has the necessary permissions, for that we must go

to the address that appears in the image, open the file and copy the password

and then paste it in the Administrator Password field.

CHAPTER 3. JENKINS 41

Fig. 3.2.2. Installing plugins

Once the user has been verified, we can start configuring our Jenkins by installing

plugins. To begin with, there are a series of plugins that are recommended to be

installed by default. They are the basic plugins to be able to use Jenkins, but in

most cases other functionalities must be added to get the most out of this

integration software.

Fig. 3.2.3. Create first Admin User

42 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

Once the installation of the selected plugins is finished, we must create the first

Admin user, in the future we will be able to create more admin users, but it is

recommended to create the first one in that step.

To do this, we will fill in the required fields and click on save and continue.

Fig. 3.2.4. Set port for Jenkins

The last step before we can start our Jenkins locally for the first time is to specify

the port.

By default, it is assigned 8080, but my advice is to change the port because the

use of port 8080 is quite common, and in the future, there may be port conflicts

between Jenkins and other components.

CHAPTER 3. JENKINS 43

3.3. HOW TO USE JENKINS
In this software it is a bit more difficult to classify or group the necessary

components to make good use of the tool. This is because there are many ways

to do things, and the number of things to configure varies a lot depending on how

complex is what we want our job to do. Even so, next we will see what is essential

to start automating a process with Jenkins.

In Jenkins, the distinction of processes is made through "jobs", a job is a process

or group of processes that can be executed both manually and automatically with

a configuration that has previously been completed.

These jobs make use of files called "Jenkinsfile". A good comparison of these

files with an object of daily life would be some instructions, since the jobs use the

jenkinsfile to know what they must do in each step of the job execution.

Within a jenkinsfile we can find a configuration part, such as parameters or

environment variables, and the "stages". The stages are the different steps in a

jenkinsfile. Each stage can contain different processes, ranging from displaying

a phrase on the screen or the content of a directory to executing a second job

within another.

All the stages of a jenkinsfile combined make the “pipeline”[13], that is how it is

called all the processes run by a job.

Fig. 3.3.1. Jenkins’s pipeline

Once we meet these "indispensable" requirements, we can start having

automated processes using jobs. Therefore, we are going to see how we can

start to create/configure the different parts necessary to obtain a functional

integration software.

44 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

3.3.1. HOW TO CREATE A JOB

To integrate anything into a pipeline[14] in order to run some processes we need

to create a Job (we can create it from scratch, duplicate an existing job, a maven

project…). In this job is where we will set the extra-configuration, specify the

repository and more.

Fig. 3.3.1.1. Create a new Job

(To do not have to do the configuration from scratch,its strongly recommend duplicating a job that

fits with our needs, and then adapt the configuration with the desired repository and some

parameters. To do that, we must fill the path of the project)

We can clone an existing Job by copying the “Full project name” of the project we

want to copy and inserting it in the option “copy from” when creating a new Job.

Fig. 3.3.1.2. Full project name Path

CHAPTER 3. JENKINS 45

3.3.2. HOW TO MAKE A JENKINSFILE

First, to run a job in Jenkins we need a JENKINSFILE.

A Jenkinsfile is a file in which we specify what, how and when are things going to

be done.

There are two different ways to make a Jenkinsfile:

• Declarative Pipeline

• Scripted Pipeline

The declarative one is the easiest, and its use is recommended for those who are

not into Jenkins. The scripted pipeline may be more complete, but it is way more

difficult to learn how to create a jenkinsfile.

The jenkinsfile will be inside of a repository with other files (scripts, docker-

composes or even projects) and it will rule what to do and how. As if it was a

guide that shows the job how to do the things we want to.

Inside the jenkinsfile we can differentiate three different things.

• A big Stage that may have smaller stages inside of it.

• Stages inside a BIGGER STAGE that run different steps

• Steps that specify what to do.

All those methods are included inside the pipeline definition.

Fig. 3.3.2.1. Declarative pipeline example

If we do not specify an agent, it will be selected randomly, but we also select a

specific machine to run our job.

46 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

We can set some environment variables, that will be used later.

Fig. 3.3.2.2. Environment variables in Jenkinsfile

A really good tool for the jenkinsfile are the parameters, we can use parameters

that we will specify when running the job in order to modify the performance.

In the previous picture we can see the parameter CREATE, so the stage to

Create the Oracle PDB will only be executed when that parameter is true.

CHAPTER 3. JENKINS 47

To add parameters, we must modify the configuration of our job.

Fig. 3.3.2.3. Add parameters in Job

In this job, there are two parameters, one for specify it some stages are done,

and another one to specify which machine we are using. As we can see, we can

set a default value for those parameters.

An important thing is to have the repository well-configured. To do so, we need

to specify the URL here.

Fig. 3.3.2.4. Specify git repository

48 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

As we can see, we also can select which branch do we want to use.

The project will be downloaded from the repository and the branch that have been

specified in those fields. In that project there must be at least the jenkinsfile so

that the job can be "compiled". It is normally accompanied by a docker-compose

to deploy an environment with components and be able to simulate what is done

in a local environment, and sometimes it can also be accompanied by certain

logic, generally tests.

Even so, it is very likely that everything that is done locally cannot be exactly

replicated in Jenkins, since Jenkins runs on a Linux machine that compiles code

and commands automatically and unitarily, so it is difficult to concatenate

commands.For example, a simple docker command as “docker exec -it XXX bash”

to get into a container, and once we are inside, do other commands (ls, mkdir,

cp…), turns to be a really complicated task due to the commands in the Linux

Machine on Jenkins are secuencial, that means we can not execute commands

inside another command the way we are used to.

A really useful and organised way to work is splitting the task in diversal jobs.

Doing so we are able to reuse the performance of that job wherever we want to.

Some good tasks to split from the initial job may be:

• Create a database

• Clean a database

• Drop a database

• Use a special software through our job

• Do a quality check

We can call another job from our jenkinsfile and specify the parameters required

in order to run that job this way

Fig 3.3.2.5. Trigger another job from Jenkinsfile

In that case, the parameters are variables declared at the environment.

CHAPTER 4. ANALYSIS 49

CHAPTER 4. ANALYSIS
Below we can see a series of results provided by the ZAP and Gatling tools that

we are going to analyze.

4.1. Pen-testing with ZAP

Fig. 4.1.1. Summary of alerts

Related to vulnerability analysis, here we have two images with risk information

in a WEB domain.

From these captures we can get two types of clear information, the first is that in

the analyzed domain there are 11 different types of alerts, of which 8 are risky.

Fig. 4.1.2. More detailed information of alerts

The second table shows which are the different vulnerabilities found in the web

page. Here we can see that the most dangerous are Cross-Site Scripting, which

can enable third parties to execute code in our program, and X-Frame Options

Header Not Set, which indicates that there are some headers that are incomplete.

We also have other alerts that are classified with a lower risk, since as we can

see they are classified into four different groups: high, medium, low &

informational.

Within the Low alerts we have six different risks and finally there are three alerts

grouped under the Informational range, these informational alerts report "bad

practices" that do not cause vulnerabilities but that it would be good to correct.

One of the most favorable points of the ZAP software is how well detailed the

information is. It provides the data completely and with extensive explanations of

WHAT, WHY and HOW the vulnerabilities it finds occur. In addition, if they are

well-known vulnerabilities, they are usually accompanied by a solution. In other

words, ZAP itself recommends how to combat these vulnerabilities in the different

phases of implementation.

50 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

Below is an example of a Cross-site Scripting vulnerability found in a scan

performed by ZAP.

Fig. 4.1.3. Explanation of an alert

As we can see, we are provided with an explanation of what this vulnerability

consists of. This way we can obtain an idea of what is happening, or what could

happen to that website.

Fig. 4.1.4. Solutions in “designing” phase

Fig. 4.1.5. Solutions in “implementation” phase

CHAPTER 4. ANALYSIS 51

4.2. Work/Stress Load with GATLING
On the other hand, in relation to load tests we have the Gatling tool. Next, we are

going to see a series of images of an analysis of an API in which, through the use

of this software, a client is simulated that makes a series of requests and analyzes

the response times, the standard deviation of these times, how many requests

fail and how many are answered correctly and many other data, in addition to

many graphs that explain very well the behavior of the application.

The following test consists of eleven different HTTP requests, of which some are

made only once and others are executed by more than one virtual user.

In total, 29 requests are made against an API and all these requests are

answered with an HTTP 200 (OK). This indicates that the application processes

them correctly.

With the processing and the response times that are received, the Gatling

software creates the different graphs that we will see later.

The following image is the first one we see when we open a gatling test report.

This graph is a summary of the number of requests that have been made in the

test and includes them in three time intervals.

There is also another pie chart further to the right that shows the number of times

each request has been made.

In this way we can see that 25 of the 29 requests have taken more than 1200ms

to obtain a response and the remaining 5 have had a response between 800ms

and 1200ms. Also, as seen in the graphs, all requests have been OK.

Fig. 4.2.1. Initial graphics with summary information

52 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

The second piece of information is a table that shows all the data collected in the

test as far as times are concerned. The different requests made are classified

separately and it shows for each request the number of times it has been made,

the times it has been KO and OK, the number of events per second (cnt/s), the

values of the percentages to track in the reports (it only gives relevant information

if we have a request repeated more than once), maximum time and minimum

time, mean time and standard deviation.

Fig. 4.2.2. Table with information on response times

The fig. 4.2.3. refers to the configuration of virtual users for the configured

scenarios, and how they are managed throughout the test that we carry out. In

this way we can see that we have three different scenarios (blue, green and red

colors) and then we have a line of active users that is the sum of the users of all

the scenarios. From what we can see that we start with a user from scenario 1,

then scenario 1 ends and we continue with two users from scenario 2, which then

decreases to 1 and finally ends to make way for the 4 users from scenario 3.

Fig. 4.2.3. Active Users along the simulation

CHAPTER 4. ANALYSIS 53

The following three graphs are much more related to making requests throughout

the test. In the first one, it groups the response times in percentages, so we can

see that approximately 55% (13% + 42%) takes around 1226ms. And the vast

majority of requests made in the test (95%) are answered in less than 4000ms.

The following graphs overlay the number of active users throughout the

simulation with the number of requests per second and the number of responses

per second respectively.

These last two graphs obtain much more value if they are analyzed together,

since we can see the delay in the processing of the requests between the

requests and the responses.

Fig. 4.2.4. Response Time Distribution

Fig. 4.2.5. Number of requests & responses per second

54 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

On the other hand, Gatling allows us to take a more specific look and focus on a

single request rather than the whole test more generally.

In this way we can observe the times of the requests, their results and how it

evolves depending on the time of a particular request.

The following graph is a good example, since it focuses on the request called

"Request_Demo_9" in which the same request is made 4 times and all are

answered with an HTTP 200 (OK). And in turn it is accompanied by the response

times of those particular requests.

Fig. 4.2.6. Analysis of a particular request

Obviously, we can also see the information related to the requests/responses per

second filtered to a specific request.

Fig. 4.2.7. Number of requests & responses per second of a

particular request

CHAPTER 4. ANALYSIS 55

Obviously, we can also carry out analyzes with much more workload for the

application, for the following case it has been tested with 101 requests for the

API seeking to see how the application behaves in the face of a greater

workload. These tests can be done by time instead of by requests, since if you

want to keep an application under analysis for two hours it can be configured

instead of by X number of requests.

Below we can see the statistical summary of how the test has gone in terms of

times.

By making the same request a greater number of times, we obtain more

consistent results, since with a small number of requests we can receive

inconsistent or error-inducing reports, since if there is an error with the

application or with the database data that makes the RTT increase a lot, the

average time of that request will be greatly increased if only two requests of that

type have been made. On the other hand, if the same request has been

executed 10 times and there has been an error, the average time of the request

can be corrected with the others and you can continue to obtain a reliable

report.

In this way, in this report we can perceive more even numbers with much

smaller standard deviations, which indicates that it is a better report.

Fig. 4.2.8. 101 Requests test statistics

Even so, we have not collapsed the application, which indicates a good design

and architecture of the REST API.

For other cases, it may be interesting to overload a server with HTTP requests

to see when it begins to saturate and you start losing requests or receiving

timeouts. By doing this you can find limitations in an application or locate where

the bottlenecks are in a server to try to remedy them in the future.

56 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

In the following graph we have information about the behavior of the server

during approximately the minute and a half of testing.

Comparing it with the previous test we can see that the number of active users

is higher and that the peak requests per second are also higher. The requests

are processed in bursts on the server since the client that simulates Gatling

manages them in the same way, so it only receives the request blocks, the

REST API processes them and sends the response.

Fig. 4.2.9. Requests & responses per second during the test

We see a great similarity between the number of requests per second and the

number of responses per second, which is a clear indicator that the server is

still far from reaching resource saturation or denial of service.

CHAPTER 4. ANALYSIS 57

4.3. CI/CD environment
For the integration of the ZAP and Gatling tools in the Jenkins software there is

not much complication because the two tools have developed a specific plugin

for integration with Jenkins.

Fig. 4.3.1. Options to use ZAP & Gatling functionalities

Once downloaded and installed, we just have to go to the job configuration and

execute an additional step calling the plugins.

With this step completed, all that remains is to configure the repository from which

the code and the jenkinsfile will be downloaded and fill certain fields for the

plugins. With this configuration we can execute the job and obtain the results and

reports.

Here we can see the stages of the job, the Declarative is a pre-step that compiles

the jenkinsfile in order to find errors and the Build is where the tests are done.

Fig. 4.3.2. Stages of the job

58 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

In the case of ZAP, we will obtain a downloadable file in which we will find the

results, nothing more.

The Gatling plugin has more features, since we can see a graph in the same

Jenkins job and also a window for direct download of the reports.

Fig. 4.3.3. Time it takes for the job to finish

Fig. 4.3.4. Window for downloading the report

CHAPTER 4. ANALYSIS 59

4.4. DEMONSTRATION

In this section we will analyze some results provided by the zap and gatling tools.

It is not a test of a real environment (because for reasons of confidentiality no

data from servers or clients of the company can be shown) so it has been

simulated a real environment using a frontend and two public servers that do not

they are connected to each other.

Fig. 4.4.1. Environment

This will not mean any change since the use of the tools is independent, the

servers are irrelevant for zap and the use of gatling focuses only on the servers,

not on the client to do the behavior tests, so this environment could be a real

environment perfectly.

For the vulnerability analysis with the Zap tool, we have used a specialized web

page for pen-testing attacks as a target, because these attacks require

authorization since they introduce or try to introduce a type of malware in the

database.

The page that has been used for scanning is https://dvwa.co.uk/, This page is

one of the many web pages created with the aim of making people aware of the

problems and/or bad practices that developers usually have when programming

them, so no special permission is needed to be able to carry out pen-testing

attacks for educational purposes.

Fig. 4.4.2. Summary of alerts

60 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

Fig. 4.4.3. Alerts

As we can see in figure 5.20 in the vulnerability analysis provided by Zap, it is

reported that there are 7 different types of alerts[3] classified as medium risk or

low risk. Next, we will analyze the different alerts, we will see what they consist

of, how they have been introduced and how they can be solved.

In the first place we have the cross-domain misconfiguration alert that appears

28 times throughout the entire scan. This vulnerability permits cross-domain read

requests from arbitrary third party domains, using unauthenticated APIs on this

domain.

And if we have a look to the description of the alert, we see this:

Fig. 4.4.4. Cross-Domain Misconfiguration description

This description tells us that there is a problem that could load unwanted data in

the browser due to a Cross Origin Resource Sharing (CORS) configuration

problem.

CORS is a mechanism based on HTTP headers that is responsible for filtering

what type of requests can access the service and which cannot, since it only

redirects those requests that meet the requirements established in that header.

Thus, allowing to decide whether or not to allow the resource load for requests

that have a different origin.

One of the most common bad practices in this type of vulnerability is the following:

Access-Control-Allow-Origin: *

By doing this, all requests are being enabled, regardless of their origin, to load

resources from a website.

In the case of not knowing how to make a good CORS configuration, it is

advisable to avoid allowing access from any source using the * in the header.

If we do not have the information to make good use of CORS, the ideal is not to

configure it, in this way we allow the web browser to enforce the Same Origin

CHAPTER 4. ANALYSIS 61

Policy (SOP) in a more restrictive manner, what will provide more security than

misconfiguring the Access-Control-Allow-Origin (ACAO) header.

The following two vulnerabilities are related to the content security policy header,

a computer security standard that provides an additional layer of protection

against Cross-Site Scripting (XSS), clickjacking, and other attacks.

In part they are closely related to each other since both try to mitigate the same

type of attacks. The vast majority of these attacks consist of a third person who

"modifies" the behavior of a secure website without the latter being aware of it

with the aim of stealing information from the victim, who is totally agnostic about

what is happening.

Typical attacks that occur when there is a misconfiguration of CSP[17] are XSS

aimed at stealing cookies and authenticated sessions and clickjacking that

modifies HTML views so that the victim does certain actions on a website while

thinking he is doing others.

Fig. 4.4.5. CSP: style-src unsafe-inline

Fig. 4.4.6. CSP: Wildcard Directive

To solve these two vulnerabilities related to CSP, it is only necessary to specify

the appropriate parameters in the headers according to which origins we want to

allow the loading of resources on our web page.

One of the best practices to avoid these vulnerabilities is to be aware of where

you put "*", as this Wildcard Directive enables access to everything below the

specified domain.

Content-Security-Policy: default-src *://*.example.com

This would allow access to subdomains of example.com (but not example.com

itself).

Keep in mind that not only can you restrict the origin in a general way, but you

can also specify the origin of images, scripts, objects...

In addition, these attacks not only serve to steal information from third parties but

can also be used to sabotage the use of a web page itself, for example they can

be used to change the color of the web page, modify its text so that it says

62 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

something offensive that may annoy an audience or use scripts that redirect you

to another web page.

The vulnerability that we are going to talk about next is one of the simplest

vulnerabilities to solve and at the same time the most dangerous for a web page.

Fig. 4.4.7. Vulnerable JS Library

The most popular JavaScript libraries[18] tend to be used by a large number of

people which means that they are often heavily audited, although bugs are

quickly recognized and fixed, resulting in a constant stream of security updates.

Due to this, having outdated libraries without security patches can be fatal for a

web page since this makes it very vulnerable.

The good thing about this type of vulnerability is that it can be quickly solved by

updating the versions of the libraries for safe versions and removing libraries that

are not used.

The following risk is related to clickjacking attacks and occurs due to not setting

the X-Frame-Options[20] HTTP header.

Fig. 4.4.8. X-Frame-Options Header Not Set

This header is responsible for deciding when to render and how a web page is

rendered. Two parameters can be specified for this header, one is DENY[21] and

the other is SAMEORIGIN[21].

The DENY parameter denies taking the render regardless of the origin and the

SAMEORIGIN option only renders if the origin is the same.

An example of a clickjacking attack that could be solved using this header is one

in which the victim accesses a website that appears to be secure through a link,

but in reality, the attacker's website is embedded within that website. In this way,

the victim thinks that she is clicking on safe places but she is suffering from a

clickjacking attack.

CHAPTER 4. ANALYSIS 63

The next two are considered low risk. This is so because the risk or problems that

this type of vulnerability may cause are much lower compared to the

vulnerabilities we have seen so far.

The first of these risks is “Incomplete or No Cache-control and Pragma HTTP

Header Set”[19] which consists of Specify which cookies you do not want to be

cached since it is very likely that there is sensitive data that you do not want to

save.

Fig. 4.4.9. Incomplete or No Cache-control and Pragma HTTP

Header Set

And the other one is “X-Content-Type-Options Header Missing”, it happens

because this header is not specified and therefore there is a risk of suffering an

attack, although this type of problem is already obsolete because in 2014

browsers establish this header by default.

Fig. 4.4.10. X-Content-Type-Options Header Missing

Once we have analyzed the entire report that the Zap tool has provided us, we

can see that despite being a web page with a large number of instances of

different vulnerabilities, it is a page in which its security can be increased. simple

and fast way.

The vast majority of vulnerabilities that we find today are produced due to the

misuse of HTTP headers or bad practices when programming. The solution is

usually quite simple and applying it covers the holes through which cyberattacks

sneak in and how much damage they do.

However, as it is a world that is constantly changing, the speed at which new

ways to attack web domains are found is very high.

This results in security tasks not being punctual, but rather maintenance tasks

and constant analysis, since what was safe yesterday may not be tomorrow.

64 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

Once the vulnerability analysis of the web page has been carried out, it is now time to

analyze the 2 REST APIs that exist in this simulated environment in figure 4.4.1.1.

To carry out this analysis, several tests have been done, modifying the configuration of

the scenarios to try to push the servers to the limit so that we can see how they behave

with a certain workload up to the point where one of the two servers collapses.

As we can see later, the APIs have no relation to each other and the data they manage

has nothing to do with each other, this is irrelevant for us since what we want to see is

how they behave when faced with a certain number of requests per second. As you can

see later, the REST API 1 manages comments and posts from a domain and has seven

different requests (both get post delete) and the REST API 2 only returns random data

about animals, in this case cats.

Below we will see four different analyses in which the first two analyze the REST API 1

and the next two analyze the two servers at the same time.

4.4.1. API REST 1 +1350 req.

Fig. 4.4.1.1. Initial graphics of test 1

Fig. 4.4.1.2. Response Time Percentiles over Time (OK) test 1

CHAPTER 4. ANALYSIS 65

If we look closely at the graphs as much as figure 4.4.1.2. like the one in figure

4.4.1.3. we can deduce that this test is relatively far from collapsing backend 1

since all the requests that are made (1379) are answered correctly and none of

them gives any timeout, also if we pay more attention to the last graph, we can

see that the time frame in which the responses take the maximum time is quite

small since the triangle is almost equilateral.

Fig. 4.4.1.3. Number of requests/responses per second test 1

Another piece of information that sheds much light on this issue is the fact that

both the number of requests per second and the number of responses per second

have a very similar shape over time, which means that the delay of each request

is very short and it does not come close to causing a bottleneck, which indicates

that the server works quickly and efficiently.

In this first analysis, virtual users are introduced in a linear manner until reaching

a maximum of 55 simultaneous users making requests, once this peak is reached,

it begins to reduce until it reaches zero.

66 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

4.4.2. API REST 1 +3000 req.

Due to the fact that after the first test it has been seen that server 1 has been

very far from reaching a saturation state despite having a considerable number

of requests, a second test was carried out, increasing the peak of simultaneous

virtual users, trying so to find any bottleneck in the API.

Fig. 4.4.2.1. Initial graphics test 2

Fig. 4.4.2.2. Response Time Percentiles over Time (OK) test 2

Even so, it can be seen in figure 4.4.2.2. that the system continues to act very

efficiently even though it has close to 100 simultaneous users throughout the

load test, making more than 3000 requests.

CHAPTER 4. ANALYSIS 67

4.4.3. BOTH APIs WITH LOW AMOUNT OF WORK

In this first joint test of the two servers, it began with the injection of 5 virtual users

who each made a request of each type, which represents 40 requests throughout

the entire performance test (seven requests to server 1 and 5 requests to

server 2).

Fig. 4.4.3.1. Initial graphics test 3

A rather curious fact that should make us suspect that something is not going as

well as in the previous tests is the fact that there are many fewer requests in the

test and even so, 5 requests have had a response time of between 800 ms and

1200 ms.

Due to this, a very successful idea is to look at the requests that are directed to

the REST API 2 individually.

Fig. 4.4.3.2. Get Cat Fact Requests

68 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

In this way, analyzing figure 4.4.3.2. we can confirm that between the two servers,

API REST 2 is the one with much longer response times and therefore where

there may be a bottleneck.

Fig. 4.4.3.3. Response Time Distribution test 3

Another indication that you can see an imbalance between the behavior of the

two REST APIs when facing the same workload is the distance between the

response times, which we can see in figure 4.4.3.3.

CHAPTER 4. ANALYSIS 69

4.4.4. BOTH APIs WITH BIG AMOUNT OF WORK

After performing the last test and having seen a possible bottleneck on server 2,

the same test is repeated, but introducing a much higher workload and increasing

the number of virtual users in the test in order to saturate the application.

This test consists of 98 virtual users making requests to both servers concurrently

until reaching a total number of 1481 requests throughout the entire test.

Fig. 4.4.4.1. Initial graphics test 4

Once the results are obtained, if we pay attention to the graph in figure 4.4.1.1, we can

see that throughout this test there have been requests that have not been OK.

Now it's time to detect if you are requests that have been KO are they concentrated on

a single server or are they on both REST APIs.

Fig. 4.4.4.2. Get Cat Fact Requests test 4

70 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

The easiest way to identify if they are concentrated in a single REST API is to

check the "get cat fact" request, since it is the only one made to server 2 and if

there are no errors, it means that they are distributed on server 1. If we take a

look at the graph in figure 4.4.2.2., we can see that all the errors are concentrated

on server 2 since there are the 52 erroneous requests, therefore we have our

bottleneck.

Fig. 4.4.4.3. Number of requests/responses per second test 4

The graph in figure 4.4.2.3. perfectly shows the behavior of the API REST 2

during the load test, starting gradually until reaching a saturation point in which

all the requests have been made but not all the responses have arrived. Since

the answers give a timeout after approximately 30 seconds and therefore, they

are KO.

CHAPTER 5. CONCLUSIONS & THOUGHTS 71

CHAPTER 5. CONCLUSIONS & THOUGHTS
In this final degree project, I have worked with many more tools than I thought

when I chose the job. It is true that it takes extra work but the process has been

very beneficial since I have learned about many software that I had not used

before and I have even delved into a new language that I did not know.

Personally, I consider that I have fulfilled both the objectives that the company

proposed to me and those that I set for myself.

Going into more detail, the mentioned goals are:

• The learning and use of software to perform "penetration testing" or pen-

testing" in order to find possible vulnerabilities in user interfaces.

• Acquire knowledge about the types of vulnerabilities and risks in Web

applications.

• The use and learning of tools oriented to perform work/stress load in order

to find limitations.

• Learn what a CI/CD environment consists of, how to use it, and how to

integrate both ZAP and Gatling in an environment like Jenkins.

• Use a framework oriented to project management to organize all the

phases of my TFG and have a record of the work done.

Once the work is done and with much more knowledge on the subject, I consider

that I could add more objectives achieved that I did not even contemplate at the

time I opted for this work.

This is due to the number of "stones" that I have been finding along the way, and

that through hours of research and help from colleagues, have ended up

becoming additional knowledge that I did not think of at the beginning.

Some of these resulting problems that I just mentioned can be:

• Use and configuration of a PROXY

• Linux CLI

• Advanced use of docker and docker-compose

• New programming language (ScaLa)

Making a little criticism about my work and how I have approached it, there are

many things that I would change, but above all I would modify the organization of

the TFG. I am not referring to being organized over time, since I have been

distributing the work over time, but rather to the fact that I would have done more

research tasks.

When I started the work, the first thing I did was read the documentation of the

tools to know what they did and the different ways in which they could be

implemented, and once this was done, I got down to work. The problem came

later because, due to certain limitations of the tool or for other reasons, I could

not implement the tool in the way I had initially chosen and I had to get rid of the

work done.

72 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

After carrying out this project I have realized how important the design and

architecture phase is. And although in my case it wasn't throwing away more than

a day's work, I've learned by not skimping on the design phase, maybe you'll free

yourself from real problems in the future.

Going a little deeper into technical aspects, the ZAP tool has seemed to me to be

a super complete tool, with a large amount of documentation that helps the

learning curve not to be very vertical and very prepared for automation

environments. On the other hand, its use has seemed very "boring" and not very

customizable, since we can only modify parameters of the tracking and scanning

forms, and unless we do a manual scan, we will not be able to really squeeze a

web to find vulnerabilities, which for a CI/CD environment is not optimal.

On the other hand, we have Gatling, which despite the fact that at first it was not

the part that excited me the most, it is the one that I have ended up enjoying the

most.

Gatling allows us to customize the requests the way we want, we can "record"

the requests we send by making Gatling a proxy that is before the API to replicate

them later, or we can create a project with the requests, the protocols and the

scenarios we want to test.

It uses a very versatile language that adapts to protocols, libraries, and since it is

quite similar to Java, it supports practically the same thing.

It provides super complete results, and its version for HTML is very attractive and

functional. With very useful graphs that give us an idea of what happens at all

times of our analysis.

It is true that for more concise analyses, without user concurrence and with less

test variability, other software does the same thing more quickly and easily. But

when we want a complete analysis simulating multi-user Gatling is the best

decision.

For these reasons I consider Gatling to be one of the best options (if not the best)

for these types of tests.

Jenkins is a super powerful software that accepts all kinds of plugins to expand

its functionality and that gives us different options to do what the user wants. It is

very useful, and although the learning curve at first is a bit scary, it is worth getting

into that world.

There is not much more to say about this tool, for these reasons many of its

competitors do not even come close to being rivals for it.

In general terms I think I have carried out a good project, it is true that the fact of

not being able to show information about what I have implemented in the

company has made my work difficult and has made it more extensive, but even

so I believe that a work that deepens in all the aspects in which it should deepen.

CHAPTER 5. CONCLUSIONS & THOUGHTS 73

Leaving aside the three main tools that have been used during this project and

which were the main objectives that I work on. Other types of tools and ways of

working more oriented to time and project management have also been used,

which should be mentioned.

The first one is called SCRUM and it is not a tool, it is a way of working that is

widely adopted over time. It consists of working in intervals of between two weeks

and one month called sprints, and the constant analysis of these sprints with the

aim of finding things to improve that can be put into practice during the next time

interval.

Within this framework, roles are designated within a group of no more than 10

people. There are three roles generally, a Product Owner (PO), a Scrum Master

(SM), and Developers. Very briefly, a Product Owner oversees ensuring that

value is added to a product, a Scrum Master oversees the proper functioning of

the team in the AGILE environment and the developers add value to the product

through implementations.

This has not been strictly fulfilled because the work was carried out by only one

person. Even so, the main objective of constant criticism with short-term

objectives is still applicable.

This has made it easier to find things to improve and optimize the way of working.

Also, another tool named JIRA has been used during this project. This tool is an

Atlassian functionality which allows us to have a visual interface in which we can

create tasks, group them within the same, change their status according to the

implementation level among many things.

It is a very powerful tool that allows the user to graphically see what state of the

implementation it is in, how many things remain to be done and to be able to run

an organization in a simpler way.

And finally, a couple of softwares that are very related, Sourcetree and Bitbucket.

These two tools are often used together and linked because Bitbucket is software

for creating and managing Git-based repositories and Sourcetree is a visual

interface for Git repositories. This greatly facilitates the maintenance and

management of projects, since the management of this through the command

line can become tedious and confusing.

74 SOFTWARE USE & INTEGRATION IN CI/CD TO REDUCE VULNERABILITES AND PERFORM WORK/STRESS LOAD

BIBLIOGRAPHY
- [1] ZAP developer guide (2022). Extracted from:

https://www.zaproxy.org/docs/developer/

- [2] ZAP docker user guide (2022). Extracted from:

https://www.zaproxy.org/docs/docker/about/

- [3] OWASP Top 10 Vulnerabilities (2021). Extracted from:

https://www.zaproxy.org/docs/guides/zapping-the-top-10-2021/

- [4] Gatling Introduction (2022). Extracted from:

https://gatling.io/docs/gatling/tutorials/quickstart/

- [5] Documentation of Scala (2019). Extracted from:

https://www.tutorialspoint.com/scala/scala_functions.htm

- [6] Gatling cheatsheet (Unknown). Extracted from:

https://worldline.github.io/gatling-cheatsheet/

- [7] Gatling Advanced Tutorial (2022). Extracted from:

https://gatling.io/docs/gatling/tutorials/advanced/

- [8] Information about storing data in an existing session (2021). Extracted

from: https://stackoverflow.com/questions/69438476/gatling-issue-

saving-data-to-session

- [9] Documentation of Scala (2022). Extracted from:

 https://docs.scala-lang.org/

- [10] Scala information (2022). Extracted from:

https://docs.scala-lang.org/getting-started/index.html

- [11] Information of Akka (2022). Extracted from: https://akka.io/docs/

- [12] CI/CD information (Unknown). Extraced from:

https://about.gitlab.com/topics/ci-cd/

- [13] Jenkinsfile information (2022). Extracted from:

https://www.jenkins.io/doc/book/pipeline/jenkinsfile/

- [14] Pipeline Documentation (2022). Extracted from:

https://www.jenkins.io/doc/book/pipeline/getting-started/

- [15] List of Jenkins plugins (2022). Extracted from:

https://plugins.jenkins.io/

- [16] Jenkins general information (2022). Extracted from:

https://www.jenkins.io/doc/book/

- [17] CSP Vulnerability information (Unknown). Extracted from:

https://www.invicti.com/blog/web-security/content-security-policy/

- [18] Outdated Libraries Vulnerability information (Unknown). Extracted

from: https://beaglesecurity.com/blog/vulnerability/vulnerable-javascript-

library.html

- [19]Data Session Steal Information (2022). Extracted from:

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_

Cheat_Sheet.html#web-content-caching

- [20] X-Frame-Options header bad configuration (2022). Extracted from:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-

Options

- [21] Clickjacking attack information (Unknown). Extracted from:

https://www.imperva.com/learn/application-security/clickjacking

