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Abstract.
Energy is necessary for economic growth and improved well-being, but it poses a great

challenge to be generated without increasing costs and avoiding pollution. A viable option
is wind energy because it is a clean and renewable. However, continuous monitoring and
maintenance of wind turbines is required for the further development of wind farms. Main
bearing failures were identified by the European Academy of Wind Energy as a critical issue
in terms of increasing the availability and reliability of wind turbines. In this work, it is
proposed a hybrid neural network for main bearing failure prognosis. This network consists of a
two-dimensional convolutional neural network (to extract spatial-temporal characteristics from
the data) sequentially connected with a long short-term memory network (to learn sequence
patterns) to predict the slow-speed shaft temperature (the closest temperature to the main
bearing). The mean square error between its real measurement and its prediction gives a failure
indicator. When it is greater than a defined threshold, then an alarm is triggered and gives the
maintenance staff time to check the component. The advantage of this strategy is that it does
not need faulty data to be trained, since it is based on a normality model, that is, it is trained
with a single class of data (healthy) and does not require incurring high costs per acquisition of
new sensors since SCADA data is used (which comes in all industrial size turbine). The results
show that the use of a hybrid network can identify failures around four months before a fatal
failure occurs.

1. Introduction
Energy is a fundamental piece in the development of societies. However, due to climate change
and global warming that has been evident in recent years, the interest of governments in
generating clean energy has grown. An alternative to the common use of fossil-fuel energy
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sources to generate energy is the use of natural resources, which are clean and exists in a wide
geographical area around the world. Wind energy is one of the natural alternatives that has
had great interest and growth in recent years. In 2020, the wind industry showed a year-on-year
growth of 53%, making it the best year in history for this sector. Installing more than 93 GW
wind power [1]. This growth goes hand in hand with the continued increase in the turbine’s size,
which now comes with average rotor diameters greater than 150 meters and turbine capacity
greater than 7.5 MW. This increase in the size of the turbines also presents challenges that these
projects must face. One of the main challenges is the cost of components maintenance, which
can make projects more expensive.

The European Academy of Wind Energy (EAWE) identified main bearing failures as a critical
problem in terms of increasing the availability and reliability of WTs [2]. Therefore, it is
important to have an effective maintenance plan for this component. The ways to perform
maintenance are preventive, corrective and, predictive. The first two methods generate high
maintenance costs in wind power plants. This factor has accelerated the interest in research of
better condition monitoring (CM) systems. It is the crux of the matter when moving from time-
based preventive maintenance, which remains the current core practice for WTs, to predictive
maintenance, as it relies on the actual condition of the equipment rather than the average
or expected life statistics. Most of the CM systems use vibration analysis, acoustic emission
sensors or oil analysis during the operation of turbine components to determine the probability
of a future failure [3]. These techniques, however, are usually very expensive, due to the price
of additional sensors or other mechanical components that need to be installed in the turbines.
One, alternative is to use data obtained from the supervisory control and data acquisition
(SCADA) system that comes with every industrial-size WT. In recent years there has been a
growing interest in using these data not only for the proper control of the turbines but also for
CM since it avoids the increase in costs by not having to buy additional sensors. For example,
in [4] is proposed a method that only requires healthy WT SCADA data to be collected to train
an artificial neural network with a Bayesian’s regularization to predict main bearing failures.
In [5], an extreme learning machine strategy is used to monitor and evaluate the health status
of WTs. A new ensemble approach based on Mahalanobis distance is proposed in [6] to detect
anomalies in WT generators and then diagnose their failure modes.

There are certain limitations in forecasting failures using real SCADA data just by using the
linear time series model or the neural network model. Therefore, in this work, the combination
of several method advantages and several best algorithms is used. This method based on
convolutional neural network and a long short-term memory (CNN-LSTM) is able to predict
the WT slow-speed shaft temperature in advance, thus giving maintenance personnel time
to coordinate a maintenance without incurring high costs. This new technique combines the
advantages of convolutional neural networks that can extract effective spatial characteristics
from the data and long short-term memory that can not only find the interdependence of the
data in time series, but also automatically detect the best mode. Suitable for relevant data, this
method can effectively improve the accuracy of the main bearing failure prognosis. The hybrid
network is trained using only normal (healthy) SCADA data and then when inference is made
with future data, abnormal changes in slow-speed shaft temperature can be detected, which will
be an alarm indication.

The remainder of this paper is organized as follows. A brief description of the used WT and
of the SCADA data are provided in Section 2. In Section 3 the proposed methodology and the
hybrid network model are explained. The obtained results are given and discussed in Section 4.
Finally, conclusions are drawn in Section 5.
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2. Wind turbine and data descriptions
In this work, two WTs (one healthy and one with main bearing failure) located in Spain are
analized. Some specifications are that the WTs can generate a power of 1500 kW and have a
rotor diameter of 77 m. (class IEC IIa). Figure 1 shows the major components of this WT
model. The WT power production begins at wind speed of 3.5 m/s and can go to 25 m/s where
occurs an automatic stop [7]. The optimal performance is reached at a low wind speed of 11.1
m/s. The main WT model technical specifications are described in Table 1.

Figure 1. Main components of the (WT) [8].

Table 1. Technical specifications of the WT.

Number of blades 3

Nominal power 1500 kW
Rotor diameter 77 m
Wind class IEC IIa
Swept area 4657 m2
Nominal rotation speed 18.3 rpm
Cult-in wind speed 3.5 m/s
Cult-out wind speed 25 m/s
Bearings Double spherical roller bearings
Power regulation Independent pitch (variable speed)

These WTe uses a double spherical main roller bearing, which compensates misalignment
by allowing low to medium speeds and large radial loads. The component of interest, in this
work, is the main bearing which can be affected by different types of failures as indicated in
the Table. 2. When bearing failure initiates (e.g., initial crack), it is usually accompanied by
a momentary release of frictional heat, but then the bearing temperature goes back to normal
(crack is stabilized and not growing). The importance of this methodology is to detect this heat
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release months before the bearing is completely damaged. For more detailed information about
the mentioned failure modes, see [4] and, [9].

Table 2. Bearing Failure modes (SKF classification adapted from ISO 15243:2004) [9].

Failure mode Sub-failure

Fatigue Subsurface-initiated, Surface-initiated
Wear Abrasive wear, Adhesive wear
Corrosion Moisture corrosion, Frictional corrosion
Electrical erosion Excessive current erosion, Current leakage erosion
Plastic deformation Overload deformation, Indentations from debris
Fracture and cracking Forced fracture, Fatigue fracture, Thermal cracking

The SCADA data is obtained from February 06, 2017, to November 30, 2018. The SCADA
system is measuring different sensor measurements and, for each one, the mean, maximum,
minimum, and standard derivation of every 10 minutes samples are collected. In addition to the
SCADA data, a file that contains the work orders with failures and maintenance information is
available. For example, maintenance dates, maintenance duration and repair action information.
From this information, it is found that there exists a main bearing fault on 21 May 2018. Thus,
this information is used to split the dataset. In particular, to test if the proposed methodology
can predict the failure months in advance.

3. Methodology
In this section, the proposed methodology is described. It is composed by the following steps:
variable selection, data cleaning, data split, data normalization, a feature reshape stage, the
definition of the model to be trained and, finally, the definition of a failure prognosis threshold
to alert when a main bearing pre-failure exists. Each of these stages are detailed below.

3.1. SCADA sensors measurements selection
The original dataset is composed of many sensor measurements, but when it is desired to study
a specific failure, data analysts must be skilled in choosing the most important measures for the
component to be studied [10]. One of the challenges of this work is to select the variables of
the SCADA data to be used. This is because if variables closely related to other components
of the turbine (and not only to the component to be studied) are used, this methodology could
not only detect the fault of interest but also faults in other components that have a high
coupling with the variables used. For example, if the blade position signal is used as one of
the input variables, the model could detect faults related to pitch. This problem limits the
identification of failures in a specific component. For that reason, in this work is proposed to
use the environmental temperature and wind speed, which are external sensors, and only three
WT component measurements: slow-speed shaft temperature (feature of interest), active power,
and the gearbox bearing temperature, see Table 3.

3.2. Data cleaning
Before training a model, it is important to clean the data to determine and correct any missing
or outlier values. In this stage, the aim is to treat the data so that the dataset has coherence and
thus help the model to have better predictions. There are different ways of detecting outliers.
In this study, a method based on the realistic values range filter is used (see [4]). That is, any
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Table 3. Selected featured for normality model.

Feature Description Range Units Location

Pot Generated power [0,2000] kW Internal
TempAmb Environmental temperature [-5,40] ◦C External
VelViento Wind speed [0,60] rpm External
TempRodamMultip Gearbox bearing temperature [0,100] ◦C Internal
TempEjeLento Slow-speed shaft temperature [0,120] ◦C Internal

value outside a real range of behavior of the variables is considered an outlier. Table 3 shows
the defined sensor ranges. Any measure outside these ranges is considered an outlier. These
outliers are not eliminated directly, they were labeled as missing values to be processed later.

There are several options to deal with missing values, which include: replace them with the
mode, median, average, and other techniques. However, they can introduce a bias in the mean
and standard deviation [11]. In this work, the Piecewise cubic Hermite interpolation polynomial
is employed to replace missing values with new values that are consistent with the dataset [12].
This technique preserves the shape of the data, respects monotonicity, and ensures that at least
the first derivative is continuous. To fill in the missing values at the beginning of the time series,
the first value found is used [13]. To fill in the values at the end of the time series, the last value
found is used. Figure 2 shows a part of the original slow-speed shaft temperature feature (with
missing values) time series, and the feature with data imputation.
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Figure 2. Time series of slow-speed shaft temperature feature with outliers and interpolated
data.
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3.3. Data split: Train, validation and test set
For the data split, the work orders’ information is used. The document indicates that the WT
with a failure has a repair on the main bearing on May 21, 2018. It is important to emphasize
that this work is based on a normality model, which means that the model is trained only
with one-class data (healthy). One of the normality model advantages is that there is no data
unbalance (more data of one class), what usually happens in classification models where it is
difficult or almost impossible to find data with failures in real applications. For example, for
a new WT there is no data with failures. With this proposed methodology, there is no need
to have data with failures. Data from February 06, 2017, to September 24, 2017, is used as
training data. In the work orders, no fault related to main bearing is found between these dates.
The validation data goes from September 24, 2017, to January 1, 2018. Finally, as the main
challenge is to predict the main bearing failure several months in advance, the test dataset is
defined from January 1, 2018, to November 30, 2018. The figure 3 details the split into train,
validation and, test datasets.

Training data Validation data Test data

Failure

Feb 6, 2017 Sep 24, 2017 Jan 1, 2018

May 21, 2018

Nov 30, 2018

Figure 3. Data split: train, validation and test set.

Note that for the healthy turbine, the split of the data is carried out taking the same dates
as the faulty turbine, since as there are no work orders that record failures, any range of data
can be used to train your model. This allows us to show and compare the results of using this
methodology in a healthy turbine and in a faulty turbine.

3.4. Data Normalization
Due to the fact that values of selected features have different magnitude ranges, it is important to
normalize the data. For example, as can be seen in Table 3 the generated power has values from
0 to 2000 and the wind speed has values from 0 to 60. The goal of normalization is to change the
values of numeric columns in the dataset to a common scale. Normalization helps the output
model to not be biased towards the large-scale inputs [14]. Here, the min-max normalization is
calculated by:

y =
x−min

max−min
, (1)

where y is the normalized dataset, min and max are the training minimum and maximum values
and, x is the original set of input values. So, the entire range of values of x are mapped to a
new range from 0 to 1.

3.5. Image creation
As in this work, the first part of the model is composed by a two-dimensional CNN that needs
a matrix as input, not a vector, feature reshape is developed. This consists of converting the
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time-series information into a matrix structure that is accepted by the CNN. The transformation
is carried out individually for each of the selected features used as inputs. The matrix size used
is 12×12 (144 values) with 4 channels, and it is constructed as follows. Every 144 samples (this
corresponds to one day of data) are transformed to one matrix of size 12 × 12 with 4 channels
(one channel per selected feature), similarly to RGB images (with 3 channels). Figure 4 shows
the result of this approach.

00:00 00:10 00:20 23:30 23:40 23:50
Feature

Timestamp

Figure 4. Image creation process.

3.6. Hybrid neural network (CNN + LSTM)
A hybrid model structure is proposed in this section, and it is based on the five selected features
shown in Table 3. The model inputs are the generated power, environmental temperature, wind
speed, and gearbox bearing temperature. The output model is the slow-speed shaft temperature
(the variable most related to the studied fault).

The proposed model, as shown in Figure 6, consists of a CNN and a LSTM networks. A
two-dimensional CNN is used to extract spatial information for every one day matrix. Spatial
information refers to data having location-based relation with other data [15]. Remember that
in the previous Section 3.5 images composed of 144 measurements corresponding to one day are
constructed, maintaining their temporal order. This means that each cell or value in this matrix
has a temporal relation with the value that is in the cell to the left (value ten minutes before) and
right (value ten minutes after). In CNNs, when the kernel analyzes every value in the matrix, its
purpose is to find the spatial relationship (in this case temporal) between the different values of
the matrix. At the end of the convolutional layer spatial-temporal features are obtained. Since
the output of the CNN is fed to an LSTM network for analysis of spatio-temporal features,
it is necessary to reshape (flatten) them into a sequential structure (vector). This vector is
the input to the LSTM network, which has significant advantages over other machine learning
techniques due to its memory capacity over time series proven useful in learning sequences that
contain long-term patterns [16]. The architecture of the LSTM neural network’s cell determines
when the information is updated. Figure 5 shows the basic component (LSTM cell) of a LSTM
network; note the information flow control gates within the cell referenced as input gate (it),
output gate (Ot), and forget gate (ft). In the LSTM cell architecture, ht represents the hidden
input states of the current time, Yt represents the hidden states of exit at the current time step
and ht−1 is the hidden states of the previous time step. The LSTM cell functions are σ (sigmoid
function) and tanh (hyperbolic tangent function). Ct is a memory cell used for information
preservation, and the flow of information to or from Ct is regulated by three gates.

The architecture of the proposed hybrid neural network is described in Figure 6 and the
description of each layer is described in Figure 7.
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Figure 5. LSTM cell unit.

Figure 6. Hybrid neural network proposed.

3.7. Fault prognosis threshold
In this work, a threshold is defined to indicate that a prefailure exists. When the mean square
error (MSE) between the real slow-speed shaft temperature and its model prediction is higher
than the defined threshold, an alarm is triggered. However, before defining this threshold, it is
necessary to group the MSE results by weeks and then apply an exponential weighted moving
average (EWMA) to them to reduce the number of false positive alarms. Finally, to define the
threshold, first the training dataset is passed through the model. The mean (µ) and the standard
deviation (σ) of the obtained output are then calculated. Finally, the threshold is defined as:

threshold = µ+ 4σ. (2)

The methodology stages are described in Figure 8.

4. Results
This section details and analyzes the results of the proposed methodology. The figure 9 shows
that for the faulty WT from February 4 to February 11, 2018, the processed MSE signal exceeds
the defined threshold, which represents a constant alert signal for maintenance personnel and
gives them time to prepare for a preventive maintenance. Therefore, the system guarantees the
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input_1 (InputLayer) [(None, 12, 12, 4)]
[(None, 12, 12, 4)]

Input
Output

Inputdropout_1 (Dropout) (None, 6, 6, 64)
Output (None, 6, 6, 64)

conv2d_1 (Conv2D) Input [(None, 12, 12, 4)]
(None, 12, 12, 64)Output

max_pooling2d_1 (MaxPooling2D) (None, 6, 6, 64)
(None, 12, 12, 64)Input

Output

conv2d_2 (Conv2D) Input (None, 6, 6, 64)
(None, 6, 6, 128)Output

max_pooling2d_2 (MaxPooling2D) (None, 3, 3, 128)
(None, 6, 6, 128)Input

Output

Inputdropout_2 (Dropout) (None, 3, 3, 128)
Output (None, 3, 3, 128)

Inputflatten (Flatten) (None, 3, 3, 128)
Output (None, 1152)

Inputdense_1 (Dense) (None, 1152)
Output (None, 512)

tf.expand_dims_1 (TFOpLambda) (None, 512, 1)
(None, 512)Input

Output

Inputlstm_1 (LSTM) (None, 512, 1)
Output (None, 512, 512)

Inputlstm_2 (LSTM) (None, 512, 512)
Output (None, 512)

tf.expand_dims_2 (TFOpLambda) (None, 512, 1)
(None, 512)Input

Output

Inputlstm_3 (LSTM) (None, 512, 1)
Output (None, 512)

Inputdense_2 (Dense) (None, 512)
Output (None, 144)

Result (None, 144)A

A

Figure 7. Hybrid neural network architecture.

μ+4σ Threshold

Xtrain + Xvalidation
 Ypredict  Errorpredict

TRAINED
MODEL

Xtest
 Ypredict  Errorpredict

 |Ypredict-Y| MSE
Over 

threshold
Yes

No

Healthy

Alarm

TRAINED
MODEL  |Ypredict-Y| MSE

Figure 8. Normality model.

failure alarm months before it occurs. As previously stated, when a bearing failure initiates,
frictional heat is typically released briefly and then the bearing temperature stabilizes. This
is why the error falls below the threshold before maintenance In addition, it is observed that
once the maintenance has been carried out, the processed MSE signal no longer exceeds the
threshold.
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Figure 9. Reconstruction error on the test data for the wind turbine that suffered the fault of
interest.

On the other hand, Figure 10 shows the result of using the same methodology in a turbine
that does not have the studied failure. As can be seen, the error signal never exceeds the defined
threshold.
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Figure 10. Reconstruction error on the test data for a healthy wind turbine.

5. Conclusions
In this work, a hybrid neural network model is proposed and trained to predict months in
advance when a main bearing failure is about to occur. The results demonstrate that the
strategy can predict the main bearing failure around four months before it occurs, and thus let
turbine operators plan a preventive maintenance. It must be taken into account that this model
is only used for the turbine under study. In case it is desired to deploy main bearing failure
prognosis in other turbines, it is recommended that each one should have its own model. But
the advantage of this methodology is that it uses solely SCADA data and requires only healthy
data to be deployed. Therefore, not failure data (which are very difficult or almost impossible
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to obtain in real applications) is needed to train the model. Therefore, the strategy validated
on this turbine is applicable to any other turbine.
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