
Computers & Graphics 106 (2022) 174–186

C
a

b

c

d

s
h
m
e
r
c
o

s
i

m
o
a

h
0

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on CEIG 2022

Gain compensation across LIDAR scans
Imanol Munoz-Pandiella a,∗, Marc Comino Trinidad b, Carlos Andújar c, Oscar Argudo c,
arles Bosch d, Antonio Chica c, Beatriz Martínez c

Universitat de Barcelona, Spain
Universidad Rey Juan Carlos, Spain
Universitat Politècnica de Catalunya, Spain
Universitat de Vic - Universitat Central de Catalunya, Spain

a r t i c l e i n f o

Article history:
Received 12 May 2022
Accepted 3 June 2022
Available online 18 June 2022

Keywords:
Gain compensation
LIDAR
Panorama
Color constancy
3D reconstruction

a b s t r a c t

High-end Terrestrial Lidar Scanners are often equipped with RGB cameras that are used to colorize
the point samples. Some of these scanners produce panoramic HDR images by encompassing the
information of multiple pictures with different exposures. Unfortunately, exported RGB color values
are not in an absolute color space, and thus point samples with similar reflectivity values might exhibit
strong color differences depending on the scan the sample comes from. These color differences produce
severe visual artifacts if, as usual, multiple point clouds colorized independently are combined into
a single point cloud. In this paper we propose an automatic algorithm to minimize color differences
among a collection of registered scans. The basic idea is to find correspondences between pairs of scans,
i.e. surface patches that have been captured by both scans. If the patches meet certain requirements,
their colors should match in both scans. We build a graph from such pair-wise correspondences,
and solve for the gain compensation factors that better uniformize color across scans. The resulting
panoramas can be used to colorize the point clouds consistently. We discuss the characterization of
good candidate matches, and how to find such correspondences directly on the panorama images
instead of in 3D space. We have tested this approach to uniformize color across scans acquired with
a Leica RTC360 scanner, with very good results.

© 2022 Published by Elsevier Ltd.
a
a

1. Introduction

Lidar scanning is a robust 3D digitization technique exten-
ively used in architecture, engineering, construction and cultural
eritage. Complex scenes such as buildings, monuments and sites,
ust be scanned from multiple locations to get a sufficient cov-
rage (Fig. 1). Terrestrial Lidar equipment is often mounted on a
otating support so as to deliver 360 data around the scanner lo-
ation. The basic information acquired for each scan is a collection
f point samples, each point having spatial (x, y, z) coordinates

and an intensity value corresponding to the return of the infrared
laser used for depth measurements. In order to acquire color
information, state-of-the-art scanners are equipped with multiple
cameras. For example, Leica’s RTC360 scanner (Fig. 1) includes
3 cameras that take pictures at 12 horizontal orientations (30◦

hift). The scanner is able to acquire High Dynamic Range (HDR)
mages by encompassing the information of different exposures.
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The scanner captures 432 MP (12 MP × 3 cameras × 12 positions)
t 5 HDR brackets [1]. After considering overlaps, the scanner is
ble to create 200 MP (20480 × 10240) panoramas (Fig. 2).
Similarly to current digital cameras, the scanner’s software

automatically applies image enhancement techniques to improve
the color reproduction. For example, the RTC360 applies color
balance and exposure correction to each scan before it is ex-
ported. The goal is to compensate the images as if illuminated
with CIE standard illuminant D65, which roughly corresponds
to daylight. This helps reducing the impact of poor illumination
and color differences due to the presence of light sources with
different illumination profiles. However, these image enhance-
ment algorithms operate according to statistical properties of
the acquired images, which largely depend on the point of view
and thus the surfaces visible from a specific scan location. As a
result, although individual panoramas are (overall) well-balanced
in terms of color and exposure, the same surface patch can appear
with very different colors depending on the scan location (Fig. 3
left). This is not a problem if scans are inspected individually;
however, if as usual, multiple scans are combined into a single
point cloud, large color deviations among neighboring samples

produce severe visual artifacts (Fig. 3 right).
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Fig. 1. The Leica RTC360 scanner (left) combines laser scanning and color cameras to capture colored point clouds. Multiple scans (middle) are required to digitize
omplex monuments such as this medieval church. Registration software often reports the quality of the links as a symmetric matrix (right).
Fig. 2. Representation of the overlapping field of view of the RTC360 cameras (left), and example of HDR 360 panorama (right).
Fig. 3. Laser scanners apply automatic image enhancement techniques to individual panoramas (left). In challenging scenes with varied illumination profiles, the
same surface (e.g. the highlighted wall) may appear with very different colors/brightness depending on the scan (middle left). Since these images are used to color
the point samples, rendering simultaneously multiple registered scans (middle right) produces severe visual artifacts, with pseudorandom patterns according to the
visibility of the points from the different scans. Using HDR images and advanced tone mapping techniques (rightmost image) does not solve the problem.
In this paper we propose an automatic algorithm to max-
imize color consistency across panoramas. We achieve this by
computing RGB gain compensation factors for each panorama
taking into account statistics of HDR color data (mean and me-
dian RGB color values). These factors somehow reverse the color
enhancement corrections applied by the scanner. Doing so we
(temporarily) sacrifice the color balance and exposure correctness
of the individual scans, in favor of color coherence across them
(Fig. 4). Once the RGB gain factors are applied to the panoramas,
the color is transferred to the point cloud. We use HDR color
values throughout the process. When needed, HDR panoramas
are converted to LDR by applying a tone mapping operator (we
used [2] for all the HDR panoramas shown in this paper). Notice
that, after our correction, the point samples share coherent colors,
and thus image enhancement and color balance techniques can
be applied safely to the whole point cloud without producing
artifacts.

We compute the compensation factors by detecting corre-
spondences between pairs of scans, i.e. surface patches that are
simultaneously visible by two scans. We use these pair-wise
correspondences to define a graph that encodes the overlap rela-
tionships between panoramas. Terrestrial Lidar scans are usually
acquired with some view overlap to facilitate registration, so we
assume that the resulting graph is connected and thus that there
is a path relating any panorama to any other panorama in the
graph. Lidar registration software often report the links that have
175
been used on-site to perform a rough pre-registration of the scans
as well as a matrix representing the alignment quality of such
links (Fig. 1) after fine registration. We compute a similar graph
but based on a selection of simultaneously visible surface patches,
and use it to find the best compensation factors.

Detecting matching elements across images is also an es-
sential process in image stitching (reviewed in next section)
and photogrammetry reconstruction. However, the problem we
address is essentially different to image stitching in terms of
the final use of the compensated images. Since we wish to use
the compensated panoramas to colorize the Lidar point clouds,
we cannot assume that neighboring pixels in image space cor-
respond to neighboring surface samples in 3D space, as this
assumption only makes sense for images taken from a single
viewpoint, whereas in our case we deal explicitly with panoramas
taken from distinct locations, since our goal is to uniformize
colors across the whole Lidar dataset. In other words, adjacency
between panorama pixels must be defined in terms of their
corresponding (unprojected) 3D positions, and thus we use these
positions to identify correspondences.

Another difference is the amount of information available that
we exploit to find relevant correspondences between pairs of
panoramas. As we shall see, we use the Lidar infrared values
(besides normal and depth maps) to refine which pixels of the
panoramas should be taken into account when computing the

gain compensation factors.
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Fig. 4. Gain compensation example. The first column shows a pair of HDR panoramas, which have been uniformized with our approach (second column). Although
e removed the effect of color balance (the central apse on the upper row had a strong yellowish illumination), we achieve a much more uniform color across
cans. For example, the same wall appears with different brightness levels in the original panoramas (third column), which would lead to visual artifacts if the point
louds are rendered simultaneously. Our approach though achieves more uniform color (fourth column).
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The rest of the paper is organized as follows. Section 2 reviews
revious work on image stitching, HDR imaging and tone map-
ing. Section 3 presents our approach, and Section 4 presents our
esults with a large collection of Lidar scans. We conclude and
iscuss future work in Section 5.

. Previous work

Image stitching Color balancing or correction plays a critical
ole in image stitching. It allows the composited image to show a
atural and consistent color, and facilitates the blending step [3].
nitial efforts on solving the color balancing problem for multi-
iew stitching focused on gain compensation [4]. By adjusting
he intensity gain level of images, they compensate for different
xposure levels. Such compensation, can also be performed using
ll three color channels independently [5].
The broader concept of color correction arises from color

ransfer between images, which was first proposed by Reinhard
t al. [6]. Color correction approaches can be divided into para-
etric and non-parametric ones. Parametric approaches assume

hat the mapping of color between images follows a known
odel, which has shown to produce some of the best results [5].
ost methods focus on correcting colors using a global solution,
ut local approaches based on matching specific regions are also
vailable [7]. Non-parametric approaches, on the other hand, try
o avoid building an explicit model by estimating a look-up table
rom relevant statistics of the images. Such approaches might be
ore flexible, but require enough variability in the shared regions

o work appropriately [5]. More recent approaches put more
mphasis on grain-free images, detail preservation and artifacts
uppression [3].
HDR from multiple exposures In many applications of digital

mage capturing, processing and analysis, such as computer vision
nd 3D reconstruction, obtaining radiance and texture informa-
ion for all the scene areas is critical. When dealing with scenes
lluminated by a high range of light intensities, HDR imaging
vercomes the camera sensors dynamic range limitations and en-
bles the correct reproduction of all the luminosity characteristics
f a scene. This improves the performance of many image pro-
essing and analysis tasks, including feature point detection [8].
HDR imaging is based on the capture, for a given point of

iew, of different photographs with different exposures. For dig-
tal cameras that store images in 12–14 bits raw mode, 3 shots
ith exposure differences of 2 EVs are enough to obtain optimal
esults [9]. These LDR images are fused to obtain a single image
y applying different algorithms of HDR radiance image recon-
truction, which reflect the radiance of the real-life scene. The
irst HDR algorithms were developed in the late ‘90s, and some
f them [10,11] are still used in HDR imaging processes.
One of the differences among the existing algorithms is whet-

er the method assumes a linear [12,13] or a non-linear camera
176
response function [10,14,15]. Those of the latter group can be
applied for raw images, which can be considered linear.

HDR images use 32 bits IEEE floating point values to represent
each color channel in order to fully record all the radiance data in
a scene. The high number of bits makes impossible to view these
image data on a normal LDR display. Therefore, the compression
of the HDR content to LDR content is needed, by applying a
Tone Mapping Operator (TMO) [16], when the result of the HDR
imaging must be visualized.

Tone mapping Tone mapping is key when dealing with HDR
mages. This importance is demonstrated by the large amount of
echniques that can be found in the literature, in books [15,17,
8], as well as surveys [19,20]. TMOs compress the illuminance
ange while preserving contrast by using a mapping function.
his may be done globally [16,21], applying the same function
o all pixels, or locally by changing the function for each pixel
epending on its neighbors [2,22–26]. As reflectance is a funda-
ental descriptor of a scene, reducing the dynamic range of the

lluminance while preserving the reflectance, compresses global
ontrasts while preserving local ones, or details.
Another possibility is to classify tone mapping operators ac-

ording to their effect on global contrast, contour and texture
etail loss [27]. Changes in color appearance may be corrected,
ut the relation of contrast changes to color appearance is non-
inear and not easily explained by color perception models [28].
evertheless, both local and global operators may be approxi-
ated by relatively simple image operations [29]. Noise is also
concern, as many operators may be affected by it, thus intro-
ucing contrast distortion and ringing artifacts. Having a local
oise-aware TMO that minimizes such effects [30] may be very
elevant depending on the used capturing device.

More recently, research has been oriented to develop applica-
ion specific tone mapping operators. The advent of HDR video
ame with its own set of challenges [19]. Their use for HDR
mage matching for computer vision applications [31] is also not
rivial. There, the accurate detection and description of keypoints
s fundamental, which requires an invariance to transformations
ver local neighborhoods, while allowing for accurate localization
f any detected keypoint position. We may train such application
pecific operators using genetic programming [32], or a deep
earning architecture [33]. Tone mapping may also be applied
o HDR images taken during LiDAR scanning [34]. The intensity
infrared reflectivity) captured during the laser scan is used as
guide to improve the exposure of the photographs. This same

ntensity can be used to correct color in LiDAR scans [35]. Well-
xposed areas are used to train a model, that is then used to
redict the color of problematic areas.
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3. Approach

3.1. Inputs

We focus on computing consistent color across a 3D point
loud which has been acquired by range-scanning a real scene
rom a set Q ⊂ R3 of different scanner locations. We assume that
we have access to the independent raw scans Cq, and that the
sensor location q ∈ Q from which they were captured is available.
Moreover, these scans may be in their own coordinate system
and, in this case, we also assume we have access to a 4 × 4 affine
atrix Tq that registers them to a global coordinate system.
At capturing time, the scanner placed at q ∈ Q will emit sev-

ral laser beams that upon reaching the scene surface π will yield
oints p with reflected infrared intensity ip. After finishing the

geometry acquisition step, the scanner proceeds to capture and
stitch several photographs to produce low (LDR) and a high (HDR)
360◦ equirectangular panoramas (Lq and Hq, respectively). Usu-
ally the LDR image is computed by tone mapping the HDR image.
While infrared information is perfectly aligned with the cap-
tured geometry, color information may suffer color bleeding arti-
facts due to misalignment and color-geometry miss-registration
artifacts caused by dynamic objects (e.g. people).

Although we could convert the equirectangular panoramas to
alternative 360◦ representations with less area distortion (e.g.
cube maps), in this paper we preserve the equirectangular projec-
tion as its pixel spacing closely matches that of the point cloud,
since the scanner cameras have been designed such that the
optical resolution matches that of point cloud resolution at the
highest setting of 3 mm @10 m point spacing [1].

3.2. Panorama preprocessing

Our color correction approach consists of applying a global
operator to the Hq panoramas whose parameters are estimated
from surface patches that are visible from pairs of scan locations
q ∈ Q . The first step of our method consists of finding these
patches and, for this purpose, we follow Comino et al. [36] to
compute depth and normal information for the surface repre-
sented by each pixel Hq(x, y). These quantities are estimated by
ray-casting the point cloud and combining the information of
multiple points using different splatting weights. These weights
have been smartly crafted to ensure the sharpness of the result.
The process yields the depth maps Dq and normal maps Nq.

3.3. Flow maps

Next, we compute flow maps Fq,q′ between a subset of the
pairs of scan locations {(q, q′)|q ̸= q′, q ∈ Q , q′

∈ Q }. A flow
map Fq,q′ at pixel coordinates (x, y) contains a triplet of values
(m, x′, y′). The value m is a binary indicator; if set to 1 then
pixels Hq(x, y) and Hq′ (x′, y′) see the same surface. Otherwise,
it indicates that we could not find any pixel in Hq′ (x′, y′) that
represents the same surface as Hq(x, y).

To estimate the flow map Fq,q′ we traverse each pixel (x, y) of
the depth map Dq and perform the following steps:

1. We use the inverse equirectangular projection to obtain the
3D point p corresponding to (x, y,Dq(x, y)).

2. Next, we convert this point to the coordinate system of the
scan Cq′ by performing p′

= (Tq′ )−1Tq p.
3. Then, we project p′ using the equirectangular projection to

obtain the pixel coordinates (x′, y′) and reprojected depth
d′
rp.

4. Since (x′, y′) are real coordinates, we perform bilinear in-
′

′
terpolation on Dq to obtain the corresponding depth d .

177
Fig. 5. From top to bottom and left to right: one panorama Hq′ , a second
panorama Hq , its depth map Dq , its normal map Nq , their overlap as seen from
q (red channel of the flow map Fq,q′ ), and the flow map itself Fq,q′ (green and
lue channels).

5. If the difference between the reprojection depth (d′
rp) and

the depth captured from q′ (d′) is smaller than a certain
threshold (we use 1 cm in our examples) then we assume
pixels Dq(x, y) and Dq′ (x′, y′) represent the same surface
and set Fq,q′ (x, y) = (1, x′, y′).

6. Otherwise, we set Fq,q′ (x, y) = (0, 0, 0).

Fig. 5 shows an example of flow map, where red (overlap
egions) and green/blue channels (actual pixel coordinates) have
een separated for clarity.
There are several criteria for choosing the scan pairs (q, q′)

for which we compute their flow maps Fq,q′ , since considering
all pairs has weighted cost. One possibility is to use the links
from the alignment quality matrix, if available (Fig. 1), since these
links guarantee a certain overlap. Another option is to start from
a central scan q (near the centroid of Q ), compute all flow maps
from q, and proceed similarly from the related scans until we get
a connected graph that includes all scans in Q . Flow maps can be
generated at a smaller resolution than actual HDR images, since
we will use them to compute three RGB compensation factors for
each panorama.

3.4. Refining pair-wise correspondences

Although flow maps already provide an initial correspondence
between scans, they can include regions with undesirable proper-
ties: as we aim to correct the color of surfaces visible from several
locations, any surface property that affects surface radiance and
depends on the viewpoint will lead to computing wrong compen-
sation factors. For this reason, we propose to first divide each flow
map Fq,q′ in several patches and, then, filter these patches to only
take into account the parts where these undesirable properties do
not occur.

We divide each flow map Fq,q′ by computing superpixels on it
using MSLIC algorithm [37], where each superpixel corresponds
to a patch. Using flow maps information to compute patches is
suitable as it encodes the correspondence of the visibility of q′ in
q, thus avoiding handling nonvisible surfaces. Moreover, in most
situations, discontinuities on the data of the flow map Fq,q′ , which
determine superpixels’ border, represent changes on the captured
surface. Furthermore, the size of the computed superpixel is
also important. Each patch must be large enough to allow the
computation of reliable statistics on the associated color data (see
cq in Section 3.6), but, at the same time, it must be small enough

to keep low the likelihood of the patch having several undesired
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properties. In our experiments, we have found that an average
superpixel size of 50 pixels satisfies both conditions.

After that, we filter each patch discarding those that exhibit
ndesired characteristics. For each patch, we compute a score
sci ∈ [0, 1]) that evaluates the following properties, where 0
means discarding the patch and 1 considering it.

Tangent surfaces Patches with normals not oriented towards
the sensor correspond to surfaces that are poorly captured by the
scanner. We compute the average normal of each patch regarding
the view direction of the sensor by sampling the normal map Nq
at each pixel of the superpixel. We accept (scti = 1) those patches
whose average normal has an angle α ≤ 15◦ with respect to the
direction towards the sensor; we discard (scti = 0) those with
α > 70◦, and we linearly penalize those between these angles.

Rough regions A rough surface might show faces with differ-
ent orientations depending on the viewpoint. So, the set of faces
visible from q might get different irradiance than those visible
from q′. For each pixel of the superpixel, we sample the normal
map Nq and compute the standard deviation of the normals
sdt(ni) inside the patch. We compute the score of this property
as the relation between the standard deviation of the superpixel
with respect to the maximum of the panorama: scri =

sdt(ni)
max(sdt(ni))

.
Specular materials Specular surfaces have view-dependent

radiance and, thus, cannot be used for color uniformization. Since
specular materials bounce back to the sensor low intensity values,
for each patch, we compute the minimum infrared intensity ip of
the superpixel. We accept (scsi = 1) those patches that min(ip) >
0.15, we discard those that min(ip) ≤ 0.07, and we linearly
penalize those between that infrared intensity values.

Dark parts As we need to retrieve statistics from R, G, and
B channels, we need to use bright patches: a too dark one would
provide unreliable data. To avoid them, we compute the lightness
of a patch by sampling the LDR image Lq. For each pixel, we con-
vert its RGB color to HSV and compute the median lightness value
of the superpixel Vi. We linearly penalize superpixels depending
on this lightness median value: scdi = Vi.

Zones dispersed in q′ Large disparity between the size of a
patch in q and q′ would bring us to retrieve statistics of non-
comparable regions. To avoid that, we compute the gradient of
the flow Fq,q′ using Sobel operators with a 3 × 3px kernel. Let
Sxq,q′ be the horizontal component (green channel) of Fq,q′ and
Syq,q′ the vertical one (blue channel). For each pixel, we compute
the disparity as the maximum value of the gradient DSq,q′ =

max (∂Sxq,q′∂x, ∂Syq,q′∂y). For each superpixel, we compute the
median value of this disparity d̃s. We accept (scfi = 1) those
atches that their median disparity d̃s ≤ 10 pixels, we discard
scfi = 0) those that d̃s > 15 pixels, and we linearly penalize
etween those values.
The final score of a patch is computed by combining those

btained for each property:

ci = scti · scri · scsi · scdi · scfi

As we will show in Section 3.6, this simple combination allows
he user to effortlessly tune the filtering results using an easy-to-
nderstand threshold. This threshold will define which patches
re not suitable to estimate the corresponding RGB gain factors
nd, thus, should be discarded.

.5. Building the graph

As we compute pairwise correspondences, we compute a
raph G whose nodes correspond to scan origins q ∈ Q and edges
epresent valid overlaps between pairs of panoramas (Fig. 6), each
verlap consisting of at least one patch. In a continuous setting,
he part of a scene that is simultaneously visible from q and
′ is unequivocally defined by q and q′. In a discrete setting,
 c
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Fig. 6. Undirected graph encoding valid correspondences between panoramas
(left) and flow maps (only red channel) showing matching pixels across
panorama pairs (right). We have omitted some scan locations very close to
others shown in the graph. For instance, scan 24 and 27 were omitted because
they are very close to scans 6 and 20, respectively.

Fig. 7. Symmetric flow maps differ due to discretization but roughly represent
the same set of 3D points/pixels of the panoramas. The top row shows Fq20,q05
nd Fq05,q20 . The inset images indicate the location of q20 and q05 on an overhead

map. The bottom row shows the color warped from one panorama to the other
using the flow maps, just for illustration purposes.

Fig. 8. One of the panoramas of the test scene. Notice the presence of multiple
types of light sources.

a flow map Fq,q′ and its reverse Fq′,q do not represent exactly
the same subset of 3D points, due to the spatial discretization
of the flow maps, and the operations described above to refine
correspondences. In practice, the differences are minimal in terms
of the statistical properties (see cq in Section 3.6) we use to
compute the gain compensation factors (Fig. 7), and thus we
consider G to be an undirected graph.

3.6. Solving for RGB gain factors

For each RGB color channel, our goal is to compute a set of
factors {λq} for each Hq, q ∈ Q to compensate the intensity gain.
We propose two different approaches to compute this set.

The first one is using a linear system. For every edge in G
between panoramas Hq and Hq′ , we define an equation: cqλq =

′λ ′ , where the constant c is a measured statistic about the
q q q
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Fig. 9. Result of applying the different filters (and their combination) to panoramas 20 (left) and 5 (right). From top to bottom: Hq , superpixels computed on Fq,q′ ,
tangent surfaces filter (scti), rough regions filter (scri), specular materials filter (scsi), dark parts filter (scdi), dispersed zones filter (scfi) and their combination (sci)
using 0.1 as threshold. Superpixels of the last row are colorized according to their sci factor (red for sci = 0 and green for sci = 1). They represent valid and invalid
correspondences for the compensation factors above.
s

m

intensity in the pixels from Hq that overlap with Hq′ , and re-
spectively cq′ . We have experimented using the mean intensity
and the median intensity. This system is largely overdetermined:
it has n = |Q | unknowns and m = O(|Q |

2) equations, since
the number of flow maps can be quadratic and we can sample
more than one overlapping patch per flow map. Therefore, we use
least squares to find the approximate solution that minimizes the
norm:

min ∥(Cq − Cq′ )λ∥

λ

179
where λ is the column vector with the n factors and Cq is an
m × n matrix with only one value per row: cq in the column
corresponding to the index of panorama q.

Note that this system has the trivial solution λ = 0. Thus, we
choose one panorama qi as the reference, set its factor to λqi = 1,
and modify the equations accordingly.

In our second approach, we minimize a quadratic cost repre-
enting the weighted sum of squared differences:

in
λ

m∑
ωi(cqλq − cq′λq′ )2
i=0
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Fig. 10. Per-component gain factors computed for each panorama using panorama 20 as reference (λ20 = 1 for all three color channels).

Fig. 11. Box plot of patch residuals after gain compensation, grouped by color component (R,G,B).
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Fig. 12. Results, for a complete panorama (left group) and zoom in (right group), after compensating the original panorama (first column) with the linear system
second column) and the weighted cost solution (right column), operating on RGB medians. The zoom in shows the same wall in both original (left column) and
ompensated images (second and third column). We only show a subset of the panoramas capturing the wall.
We defined the weights as ωi = sci ·
min(sizeq,sizeq′ )
panorama size , where sci is

he final score of the patch, and the second term is the minimum
f the relative sizes of the patch in either panorama.
Note that, in these cost functions, we only consider those

atches with a score larger than a given user-defined threshold.
e empirically found that sci > 0.1 provides the best quality

ince it includes a significant number of patches and achieves
oherent intensities over all panoramas.
 a
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4. Results

Source code is available at https://gitrepos.virvig.eu/research/
panorama-gain-compensation.

4.1. Test dataset

We have tested our approach with a collection of +20 scans of
medieval Church (Sant Quirze de Pedret, Fig. 1). We used a Leica

https://gitrepos.virvig.eu/research/panorama-gain-compensation
https://gitrepos.virvig.eu/research/panorama-gain-compensation
https://gitrepos.virvig.eu/research/panorama-gain-compensation
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Fig. 13. Results, for a complete panorama (left group) and zoom in (right group), after compensating the original panorama (first column) with the linear system
second column) and the weighted cost solution (right column), operating on RGB medians. The zoom in shows the same wall in both original (left column) and
ompensated images (second and third column). We only show a subset of the panoramas capturing the wall.
Fig. 14. Joint visualization of the point clouds acquired from scans 7 and 20 before (left) and after (right) applying our technique to the corresponding panoramas.
TC360 laser scanner. The scene is quite challenging because it
ontains a variety of light sources with different profiles (Fig. 8):
ifferent types of fluorescent tubes, tungsten bulbs and led lamps,
s well as daylight entering through multiple windows. Yellowish
llumination was dominant in the apses due to lamps illuminating
182
the paintings, whereas the central nave was dominated by day-
light. As a consequence, any global color balance operator will fail
to obtain reasonable results for the whole image, and local color
balance operators operating on image space would emphasize
color inconsistencies across scans.
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Fig. 15. Ablation study for the wall.

.2. Flow maps

As a per-panorama preprocessing step, we computed all depth,
ormal and IR maps at a reduced (2048 × 1024) resolution. We
 d

183
computed these maps processing an average of 40,125 points/s
using a CPU-based C++ implementation running on a desktop
computer with an Intel Core i7-10700K CPU, 32 GB of RAM and
a Kioxia Exceria Plus 500 GB SSD.

Then we computed a collection of pair-wise flow maps until
we got a connected graph. We generated all flow maps starting
from a few well-connected panoramas. Fig. 6 shows the result-
ing flow maps (only red channel, i.e. matching pixels across
panorama pairs). In our experiments, we computed Flow maps
of 2048 × 1024 pixels using depth maps of the same resolution
s input. Each flow map took an average of 39.31 s to compute
sing a CPU-based python implementation running on the same
omputer.

.3. Pair-wise correspondences

Fig. 9 shows the result of applying the pair-wise correspon-
ences filters to different panoramas Hq (first row). The super-

pixels computed on the flow maps (second row) divide each
panorama into patches of desirable size taking into account sur-
face features and visibility between panoramas. Moreover, the
figure shows how the different filters applied to each patch allow
us to avoid regions with undesirable properties. The tangent sur-
faces filter (scti) discards poorly captured surfaces while preserv-
ng those with a higher sampling rate as flat perpendicular walls
nd spherical roofs of the absis. The rough regions filter (scri) pre-

vents us to consider rough elements like rocks and bumpy walls.
The specular materials filter (scsi) rejects specular elements such
as windows, well-polished elements (e.g. top of the communion
table), and most of the varnished wood (e.g. beams and doors).
The dark parts filter (scdi) consistently analyzes the luminance of
the scene and helps us to focus on the bright zones. The dispersed
zones filter (scfi) shows to be a good option to discard regions
captured at very different distances between scans (e.g. floor
near the scanning location q). Finally, the combination of all the
filters (sci) using 0.1 as the threshold value , integrates all the
previous filters helping us to work only on regions with the
desired properties and thus providing more reliable statistical
color information.

In our experiments, we computed these filters for each flow
map Fq,q′ using an unoptimized single-core implementation using
OpenCV and NumPy. The computation of the superpixels took
23 s, the tangent filter (scti) 6 s, the roughness filter (scri) 9 s,
he specular filter (scsi) 10 s, the dark parts filter (scdi) 10 s and
he dispersed zones filter (scfi) 28 s. As several computations are
hared between filters, the computation took 66 s altogether.

.4. Gain factors

To compute the gain factors, we manually set panorama 20
s the reference scale, i.e. λ20 = 1. Overall, 605,914 patches be-
ween flow maps were used to define either the linear equations
r the weighted quadratic cost function. For the later, we defined
he weight of a patch as its size relative to the full panorama.
ach color channel was solved independently. Fig. 10 shows the
alues obtained depending on the statistic used (mean/median)
nd the cost function (linear/weighted). For all scans, the gain
actor applied to the blue channel is lower than the values applied
o red and green channels. These results imply a general color
orrection to a yellowish cast, more or less intense among scans,
s the predominant light source in each of them depends on
he scanner point of view. For example, the values obtained for
can 12 indicate a remarkable change to a darker and warmer
mage, while scan 22 only suffers a subtle correction for color and
xposure, when the gain factors are calculated with weighted me-

ians solution. Regarding the results obtained with mean/median
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Fig. 16. White balance correction example (original panoramas and compensated ones) focusing on the central apse. Gain factors were optimized taking as reference
scan 20 (outside the apse) but here we applied them taking as reference scan 04 (inside the apse), i.e. we applied gain factors λc

qi/λ
c
q04 instead of λc

qi . The white
alance improvement can be seen by comparing the last column to that in Fig. 13.
Fig. 17. Scans taken under significantly different illumination conditions (main
door open) would influence the results.

statistics, in many scans the values calculated with means are
lower than those calculated with medians, for the three RGB
channels. These lower values involve darker images, and in some
cases the difference is highly relevant, also affecting chromaticity,
as in scans 5, 6 and 19. On the other hand, the differences be-
tween linear and weighted solutions are hardly noticeable. Only
scans 0, 1, 2 and 10 show differences between the two methods,
affecting the exposure more than chromaticity.

To validate the obtained factors, we measure the absolute
ifference in each patch pair after applying the factors to the
orresponding panoramas, i.e. the residual |cqλq − cq′λq′ |. Only
he patches larger than 900 pixels were considered to account for
heir larger visual impact in the final corrected panoramas. Fig. 11
hows the boxplot of the residuals, with whiskers equal to 1.5
he Interquartile Range. Although not statistically different, the
edian statistic produces lower residuals with a narrower range,
nd weighted cost yields slightly better results for means.
Regarding the timings, building the system of equations took

bout 0.4 s in our computer, plus 0.5 s to obtain the factors using
umpy linear least-squares solver. Since we process each color
omponent individually, the total time to compute the factors
as around 3 s.

.5. Visual evaluation

Figs. 12 and 13 show our results using per-patch RGB medi-
ns. Fig. 12 compares the color coherence in the wall located in
ront of the central apse of the church. Despite the wall appears
rom a different view and sampling rate in each of the panora-
as, it allow us to evaluate visually the color consistency across
cans. Notice that the wall appears at a variety of exposures and
olor temperatures in the original panoramas (first column in
ach block). For example, the panoramas taken inside the central
pse (second to fifth rows) exhibit a bright, warm lighting. The
canner adjusted the color balance and exposure for the central
pse, resulting in a dark and blueish wall in the central nave.

endering the combined point cloud with these colors results in
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severe artifacts (Fig. 3). Our approach succeeds in getting highly
coherent color across scans (second and third column in each of
the blocks), the weighted cost solution providing slightly better
visual results than the linear system.

Fig. 13 compares the color coherence in the central apse.
Again, the apse appears from different view angles and very
different sampling rates. As in the previous example, the apse ap-
pears with different color temperatures in the original panoramas
(first column in each block), depending on whether the scan was
taken from inside the apse (the scanner’s color balance achieved
a gray appearance) or from outside. Our approach succeeds in
getting highly coherent color across scans (second and third
column in each of the blocks), with hardly noticeable differences
between the linear and weighted solutions. Once all panoramas
have been corrected, we could safely apply global or local color
balance operators to the point cloud.

Fig. 14 shows the point cloud resulting from combining the
acquired points for two panoramas (scans 7 and 20). Each point
cloud is colorized using the corresponding panorama before (left)
and after (right) applying our gain compensation technique. De-
spite some slight differences between panoramas that are still
visible (mainly due to white balance and color calibration), the
improvement of the resulting image is significant. The computed
compensation factors minimize the differences of color between
points, reducing the artifacts and leading to a more homogeneous
result.

4.6. Ablation study

We now evaluate the benefits of using RGB means vs RGB
medians, and linear vs weighted cost solutions. Fig. 15 shows the
result of focusing on the wall in front of the central apse. All
methods achieve better color coherence with respect to the orig-
inal panoramas. When using RGB means, some scans are not ade-
quately compensated (central rows). Our best explanation is that
RGB mean values are very sensitive to outlier values in the HDR
images, which by definition represent a broad range of radiance
values, affecting the gain compensation factors e.g. for panoramas
taken from locations capturing extreme outliers (e.g. direct sun-
light). Actually, we observed that our HDR panoramas included
values two orders of magnitude larger than the standard de-
viation. RGB medians are robust against outliers and achieve a
better uniformization, with little differences between the linear
and weighted solutions.

4.7. Color balance

Since applying the gain factors to the color channels of the
panoramas just involves a multiplication, gain factors can be
applied on-the-fly (e.g. in a fragment shader), leaving panoramas
unchanged. Keeping the gain factors separated from the panora-
mas they affect allows us to quickly readjust them so as to take

as reference a different panorama, therefore globally changing
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Fig. 18. Although our technique is able to correctly estimate gain factors in panoramas, view-dependent lighting effects such as specular reflections (top) and lens
flares (bottom) will still produce artifacts when combining several scans into a single point cloud (right). Scan 20 is used on the left, scan 7 on top center and scan
19 in bottom center.
white balance. Let λc
qi and λc

qj be the gain factors computed for
panoramas qi and qj for one of the RGB color channels c. Taking
panorama qj as the new reference just involves applying to qi
the gain factor λc

qi/λ
c
qj . This adjustment might be desirable for

challenging scenes with varying illumination profiles (Fig. 16).
This opens the possibility to adjust dynamically the color balance
of the panoramas at runtime, depending on the part of the model
being inspected, while preserving color consistency across scans.

4.8. Memory consumption

To compute the gain factors, for each relation between two
different scan locations, we use one albedo map (3 channels, 1
byte per channel), one intensity map (1 channel, 2 bytes per
channel), one normal map in world-space (3 channels, 2 bytes
per channel), one normal map in eye-space (3 channels, 2 bytes
per channel), one flow map (2 channels, 2 bytes per channel)
and two HDR images (3 channels, 4 bytes per channel). In our
experiments, we use these maps at a resolution of 2048 × 1024
pixels that leads to a consumption of 66 MBytes. Note that this
consumption is temporal and it is freed once the score sci and
the statistic cq are computed for each superpixel. Moreover, our
technique does not require to store the corrected panoramas as
the application of the gain factors is straightforward. Although
Fig. 6 can suggest we need a quadratic number of flowmaps, it
only requires a subset of the available scans. In our experiments
we used about 2N couples (where N is the number of scans).
Besides that, the memory consumption can be reduced working
in a lower resolution, as we only estimate one gain factor per
channel and panorama.

4.9. Limitations

Although we obviously support spatially varying illumination,
our method is sensitive to time-varying illumination, i.e. panora-
mas where the same surface receives significantly different illu-
mination depending on the time the scan was taken. A certain
amount of time-varying illumination will always occur due to
multiple factors, e.g. clouds and Sun position affecting daylight.
Our scans were taken in a time span of about 3 h, and al-
though some lighting changes can be observed in the central
nave, the overall color consistency is good. However, large time-
varying illumination would impact negatively the color unifor-
mity achieved by our method. For example, we had to remove
one scan that was taken with the main door open (Fig. 17) as
it completely changed the radiance inside the church (the door
opening is much larger than the multiple narrow windows). Lens
flares also cause some artifacts (see e.g. the lens flare around
the central window in Fig. 8) and prevent a more accurate color

consistency in certain parts of the panoramas. The same applies to
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specular reflections (see floor in Fig. 8), which are not considered
during the gain compensation and might still result in view-
dependent inconsistencies. Fig. 18 shows that our technique is
not able to correct these situations and how they affect to the
final point cloud.

5. Conclusions

Color consistency among scans capturing the same surface is
essential to prevent highly apparent visual artifacts when render-
ing the combined point cloud. The automatic image correction
applied by the scanner tends to be consistent for scenes with
uniform illumination (e.g. daylight outdoor scenes), but not for
scenes with varied light temperatures, which are corrected de-
pending on the dominant surfaces seen from each scanner loca-
tion. This problem also occurs in conventional photography, but
its incidence in panoramas is higher due to their 360◦ nature. In
this paper, we have presented a completely automatic algorithm
for compensating HDR panoramas so as to maximize color consis-
tency across scans. Identifying surface correspondences between
scan pairs in image space instead of 3D space results in simpler
code and better performance. Recolorizing the point clouds with
the consistent panoramas dramatically reduces visual artifacts in
the combined point cloud. Since we keep HDR colors during the
whole process, exposure, color balance and tone mapping opera-
tors can be safely applied afterwards, even in an adaptive manner
while rendering. Further postprocessing operations (e.g. subsam-
pling, simplification, meshing and texturing) would also benefit
from our approach, as these operations usually combine colors
using local information on a small neighborhood. As future work,
we wish to explore how to handle time-varying illumination. One
possibility is to exploit the intensity values, since the infrared
beam is nearly insensitive to lighting [34]. We also plan to extend
our approach to handle non-diffuse surfaces and lens flares by
exploiting existing information from other panoramas.
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