e)
oo 1913
| ((‘\OV\ ‘

L

A description of TSC V1.2

1

Toni Soto
Sebas Vila

Report LSI-94-17-T

#UPC

Facullat d'iInformatica
de Barcelond - Bibliotec?

-5 OCT. 1994

A description of TSC V1.2

A tool conceived to build user interfaces
to distributed applications

ABSTRACT

TSC is a package conceived to build on it any
kind of application that requires an user inter-
face mainly command oriented. The package
has a distributed philosophy thus having a high
modularity and portability. Although TSC was
designed with graphical applications in mind, its
use is not restricted to them and big profit can
be achieved by using it in other kind of applica-
tions. This report describes the functional ca-
pabilities of the product and it shows several
examples of use.

Table of Contents

1 INtroduction : cou ves vemes wes vun wam oam aw s o 5o o 50 5 6 1
2 Architecture overview........ 3
3 Building a toy application........................... 7
3.1 Sketch of the necessary StePs ...t e e e T

3.2 Define the applicationooiiiririiieiiiiiiiiiiiiirnennans 3

3.3 Implementing the application. ..., 10

3.4 Write the commands definitionooooioiiiiiiiiiiiiii.. .. 11

3.5 RN It s snn somenem sk mummons 0umeaeis, S s R e s a ik 12

4 The command language 17
4.1 Tdentifiers. ..o e 17

4.2 TSSO data tyPes co ettt et e 18

4.3 Application data tyPest e e 21

4.4 Variable declarationsot 22

4.5 EXPIressionst iuiiaueins inseonines e ise et saeenas 22

4.6 ASSIZNIMENt ..o e 23

4.7 Sequence cONtTOl ... e e 24

4.7.1 Sequential composition.coiitiiii 24

4.7.2 Conditional sentence.............oiuiiiiiienninineenin, 24

4.7.3 Generalized conditional sentence 24

4.7.4 Tterative Sentenceiuurir e 25

4.7.5 Context change sentenceoooieiiiini..... 25

4.8 Subprograms 26

4.8.1 Commands ... 27

4.8.2 Procedures. 28

4.8.3 Functions ... 29

4.9 Managing the contexts 30

4.10 Miscellaneous TSC primitives i ., 31

4.11 Compilation units..... ... 31

4.11.1 Referencing environment and prototypes............... 32

4.11.2 Replacement rules 32

5 The application description file.................. .. 35
5.1 Defining the contexts. ... 35

5.2 Application data bypes oo e 36

1

5.3 Specifying the operations ... aiiia 36

6 The process-context mapping file.................. 39

7 The Command System: sc......................... 41

7.1 Starting-up an application. i 41

7.2 Controlling the CS: the metacommands...............coveiin.an. 42

7.2.1 Command loading metacommands 42

7.2.2 Statistical and informative metacommands 42

7.2.3 Context change metacommand 42

7.2.4 Journaling metacommands o i, 42

7.3 User oriented facilities. ..o ii i i 43

7.3.1 The command interrupt mechanism 43

7.3.2 The function call substitution mechanism................ 43

7.3.3 The command completion mechanism 46

8 The Input-Output System: se...................... 47

9 The source code generator: gu..................... 49

Command Syntax ... i e e 49

Command ParaMetersttt e 49

10 Building a standard application process 51
11 Building an input-providing application process

.. 53

11.1 Examples of main programs of input-providing user systems 55

11.1.1 Working with Motif (POSIX environment)............. 5

11.1.2 Working with Motif (DEC/VMS environment) 57

11.1.3 Working with Xlib (POSIX environment)............... H8

12 Building the distributor system 61

13 Building the application loader shell script... ... 63

Appendix A Toy application listings................. 65

A.1 The file ‘. tsccomrc’........... e e e e e 65

A2 Thefile ‘context.h .. i it e 68

A3 Thefile ‘initial.sc .. i iieiiievaioisasisnisussiisesasneonenan 68

A.4 The file ‘quadrador.h’ wes smm s s i s i S s s e e 69

TSC V1.2

A5 The file ‘QUAATE.C7 ottt ittt et 0
A6 The file “Brans . SC ...ttt e e e e e ™H

Appendix B DEC/VMS vs. POSIX environment .. 77

Appendix C Installing TSC 79
C.1 POSIX installationouiiuiinuiiiiii i, 79
C.2 DEC/VMS installationouuinuiieniniiininiiiniieennnan.. 80
Appendix D Formal syntax descriptions 83
D.1 Command definition language syntaxoooviiiiieinnien.s 83
D.2 Resource description file syntax ..o 85
D.3 Proces-Context Mapping File syntax........ ..o . ST
Appendix E Knownerrors............................ 89
Appendix F Wishlist................................. 91
Appendix G Version to version change log.......... 93
G.1 From V1.1 to V1. 2uuws senasme s feme @b S0y e saies - 93

iii

v

TSC V1.2

Chapter 1: Introduction 1

1 Introduction

TSC is a package conceived to build on it any kind of application that requires an user interface
mainly command oriented. The package has a distributed philosoply thus having a high modularity
and portability. Although TSC was designed with graphical applications in mind, its use is not
restricted to them and big profit can be achieved by using it in other kind of applications.

For the kind of programs that people would try to build on top of this user interface, several
requirements were identified:

¢ A flexible command language. The full power of an application becomes more tame when one
can easily construct his own commands based on the basic repertoire. Moreover, it is desirable
to be able to reprogram the commands on-line, that is without quitting and reentering the
application. This favors the fast and easy modification of the interface needed to hasten the
iterative cycle of design and evaluation of the interface.

e Command interruptibility. During the execution of a command, the user often needs to execute
another command in order to be able to answer the prompts issued by the running command.
Therefore we require the command interpreter to have the ability to freeze the execution
of the command it was performing and execute a new one instead, and later return to the
frozen command in the very same state. This feature adds a lot of power and flexibility to the
resulting application with no work by the programmer (other than following good programming
practice).

e Command substitution. For instance there may be several ways of entering a point. A com-
mand will include any of them as a default, but the user may want to use another in a particular
execution of the command. Dynamic substitution —in execution time— of the input function
used is thus necessary. Again we’re aiming at flexibility with no programming “tax”. This also
simplifies the interaction while executing the application. The operator need not be prompted

for a choice if he can freely change the default “on the fly” whenever he wants to.

o State sensitivity. The application may have several distinct states, such that the commands
that are available in each of those states may differ. For example, at points one may be working
in a 2-dimensional subsystem, and at times in a 3-dimensional subsystem, which may share
some commands (like refresh screen) but not others (like geometric transformations, which are
intrinsically 2D or 3D).

We decided to move most of the user interface to a separate process, which would thus become
a closed package interacting with the user application through message interchange. This separate
process would then handle all input from and text output to the user, and also the command

language compiler and the virtual machine running the ontput from such compiler. This implements

2 TSC V1.2

dialogue independence through compliance with the calling model provided. The result is that ther
programmer writes fully parameterized and encapsulated procedures that are then easily maintained
and reused. The interaction with the user application(s) is through a message-passing mechanism.
To further save the user from the complications of handling this message interchange mechanism,
a compiler was built that, given information on the routines that make up the users’ application,
automatically produces an ANSI-C main program including the message-passing routines and the
appropriate calls to each routine on behalf of each possible incoming message. The user has only
got to build a set of C-callable routines, and a file giving a high level description of them.

Chapter 2: Architecture overview 3

2 Architecture overview

The TSC architecture will not be fully explained in this manual. Only the necessary concepts
and terminology that an user needs are shown.

The first concept to be dealt with is the three types of TSC existing users. TSC is a tool to build
applications. The person who use this tool to build a new application is named a programmer.
The programmer usually builds an application offering some degree of configurability. That is, the
application can be configured in order to become more useful to do a given task. The person who
configures an application is named customizer. Once the application has been built and configured
it can be used. The person who uses it is named user.

Usually, a programmer becomes customizer and user to test the product. It is also current for
a user and a customizer to be the same person. Other combinations are also possible. In fact,
the three categories of persons related to TSC are logical but physical ones. Nonetheless, it is a
good matter to know at any time which kind of person you are. This categories are named user
categories.

Everyone of the user categories should have a distinct view of TSC. In particular, TSC must
be transparent to an user. Thus this manual is not intended for it. The customizer should know
little about how to build applications, therefore he should be mainly involved with writing new
commands see Chapter 4 [Command Language], page 17. Nonetheless, the customizer and the
user should know about the particular application. Thus, it is recommended to include the needed
information into the application documentation itself.

A TSC application should be seen, from the architectural standpoint, as distinct things depend-
ing on user categories. From the user view point, a closed application is seen and therefore without
any particular architecture due to TSC. From the customizer standpoint, the application is a set
of application primitives that can be used to define commands using a command language. This
can be shown in a scheme like the following:

i +
| +=----eu-- + tommm - + |
| | APP PR | | COMM DEF | |
| +=-=-c-u-- + tommm—m e + |
| APPLICATION |
R e 4

The command primitives seen depend on the particular application. Thus, a exact view of the

varticular architecture should be given to the customizer bv the programmer.
- A g

4 TSC V1.2

The third standpoint is referred to programmer. In fact a programiner sees two distinct aspects
of a TSC application: the architecture of TSC as a tool and the architecture of a TSC built
application. Let us see bhoth of them.

TSC as a tool is a set of

e Tools to help the programmer to construct applications.
e Executable programs needed to run a TSC built application.

e Auxiliary systems offered by other people (contributions).

The first item refers to generators. That is, tools that produce source code that will be part of
the application. Currently only one of this tools is needed.

The second item refers to TSC systems. That is, fixed parts of a TSC application that are
provided in a ready-to-use form. You should keep in mind that a TSC application is always a

multiprocess application. Therefore, some of this needed processes are TSC systems.

The third item refers to auxiliary systems. That is, to systems that offer new application
primitives to the customizer at no cost for the programmer. In fact, these are systems whose
differences with the systems that a programmer should implement are none but their ready-to-use
form. These systems are not covered by this manual.

If TSC is correctly installed in your site the location of these systems should be transparent to

programmer. Ask to your system manager if you have trouble with it or read Section C.2 [Installing

TSC], page 80.

All these tools are used by the programmer to build an application. A TSC built application
is always a set of distinct processes communicating between them. The processes can he classified
into two classes: TSC systems as seen before, and application systems. Application systems are
processes built by the programmer that construct the application. These processes implement the

application primitives that make an application distinet from the other ones.

Therefore, a TSC application is, during run time, composed of the following processes:
’ Pl ’ g 1 &1

[

Chapter 2: Architecture overview

Command system

/

|

I

I
TSC systems < Input Output system

I

I

| Distributor system
\

Application systems

The command system is the kernel of the system. See Chapter 7 [Command System], page 41.
Its main function is to catch user commands and eject the necessary application primitives calls
to do the task. It is a configurable system and the commands definition is loaded during start
up from a file. See Chapter 4 [Command Language], page 17. The Input Output System plays
the role of a system comsole. All the system i/o is done by default using this system. Currently
this system opens a window on the screen that lets the user communicate with it. See Chapter 8
[Input Output System], page 47. The distributor system is a message dispatcher. It only exists by
technical reasons and can be seen as part of the command system. Although part of the TSC set
of systems, it must be generated for every application because of its dependence on the last one.

See Chapter 12 [Building Distributor], page 61.

6

TSC V1.2

-~

Chapter 3: Building a toy application

3 Building a toy application

In this chapter a brief example will be shown. All the necessary steps to build a toy application
inside the POSIX environment are going to be explained. Thus, the reader will acquire a global
knowledge of the overall system. More precise definitions should be found in the next chapters.
If you are working in a DEC/VMS environment, you should take into account the slight existing
differences respect to TSC. These differences are to be explained in the following chapters. To
read a brief enumeration of these please refer to Appendix B [DEC/VMS vs. POSIX environment)]
page 77.

2

3.1 Sketch of the necessary steps

Below, a list of the steps necessary to build an application are sketched. The same pattern
should be followed to construct any application:

1. Define the set of application primitives that the system will offer and establish what process
is going to execute everyone of them.

2. Define how many contexts will exist and the set of operations that will be allowed to execute
in each context.

3. Establish the mapping between the contexts and the processes that will execute the incoming
requests from every context.

4. Edit the process-context mapping file. This file reflects the mapping hetween the contexts and

the processes. The following topics should be accomplished:
¢ There was no context mapped onto more than one process.
¢ Every context is mapped onto one process.
¢ The process names couldn’t clash with any other executable name in the system.

5. Edit the application description file. This file contains the definition of the system that the
user will see from the command language. This includes the contexts definition, the types
definition and the operations definition.

6. Using the gu utility, generate the main body of every process. From this activity, we obtain
the files ‘process.c’ and ‘process.h’.

7. Implement the application primitives of each process. The following topics need to be consid-
ered:

e The ANSI-C prototypes of the functions that should be implemented are contained in the

file ‘process.h’.

8 TSC V1.2

e It is mandatory to implement the function void CanviContext (int ca, int ¢f). This

function is a hook called when a context switch is done.

¢ It is mandatory to implement the function void IniUsuari (int argc, char **argv).
This function is a hook automatically called before the process is used the first time.

¢ It is mandatory to implement the function void FiUsuari (void). This function is a
hook. It is the last function called before the process exits.

8. Generate the distributor system using the gu utility. This utility builds the program named
dist.c.

9. Compile and link the systems built by the user. Every object should be linked with the
automatically generated main body. The executable file has to be named process without
exception. This assures the required consistency with data included in the process-context
mapping file.

10. Generate the application loader. This is a shell script that loads all the processes required to
run the application. This shell script is generated using the gu utility. Several topics should
be considered related to it:

e The generated script assume that will be executed in the directory where the executable

files corresponding to the processes live.

o This script redirects the output of every running process to the files named ‘process.log’
when invoked using the -1 flag. Usually these files contain the trace log of the applications.

11. Edit into a file the definition of the commands needed to work with the application.

3.2 Define the application

The application that we will build is a two dimensional square editor. Therefore, we should
define a two-dimensional space delimited by the coordinates [0,0] and [100,100]. In this space, the
following operations will be defined:

¢ An operation to create a square given its size and color at a fixed position.
e An operation to delete a square.

¢ An operation to inquire the data associated to a square.

With this requisites, the operations should be formally defined. We design a set of operations
around the data type QUADRAT. Thus, we are going to define an abstract data type. In order to do
that, the PUNT data type will be useful. Let us define the operations:

Chapter 3: Building a toy application 9

FUNCTION CreaQuadrat (PUNT p, REAL ¢, REAL color) RETURN QUADRAT
This function builds an square centered in p. The square size is ¢ and the color color.
If the size of the square is bigger than the whole two dimensional world, the square is
not created and an QuadratNul is returned. The color range is [0,5].

PROCEDURE BorraQuadrat (QUADRAT q)
The square g is deleted.

FUNCTION EsQuadratNul (QUADRAT q) RETURN INTEGER
The function returns 0 if ¢ is a valid square or 1 if it is a QuadratNul.

FUNCTION QuinQuadrat (PUNT p) RETURN QUADRAT
The function returns the square that is centered at the point p. If there are two or
more of these squares, which of thein is returned is implementation dependent.

FUNCTION ColorQuadrat (QUADRAT ¢) RETURN INTEGER
This function returns the color of the square .

FUNCTION PosQuadrat (QUADRAT ¢) RETURN PUNT
The function returns the position of the square q.

FUNCTION LongQuadrat (QUADRAT g) RETURN REAL
The function return the edge length of the square .

FUNCTION CoorX (PUNT p) RETURN REAL
FUNCTION CoorY (PUNT p) RETURN REAL
The functions return one of the components of the two dimensional point p.

FUNCTION CreaPunt (REAL x, REAL y) RETURN PUNT
This is the funtion that builds a point given both components.

FUNCTION FisicPunt (PUNTF p) RETURN PUNT
This function returns a point given a physical point. That is, given a point in device
coordinates, compute the world coordinates point applying the device transformation
and return it.

Being defined the operations, the application data types used should be implemented. Only
records are offered as type constructors. Therefore, to define the required application data types
we do:

TYPE QUADRAT IS INTEGER
TYPE PUNT IS REAL, REAL

Following, the number of contexts and how the context are related to the operations should be
decided. However, in this example only one context is needed, let us call it QUA. Now, the application
description file can be writteu. It will be called ‘initial.sc’. See Appendix A [initial.sc listing],
page 65.

10 TSC V1.2

To finish, the process-context mapping file shonld be defined. In this case, there is only a

context, so, only one process is needed. The former, named ‘proc.sc’, will resemble:

quadrador QUA

All the necessary data to build the application has been completed. The next step is to use the
TSC utilities to make them effective.

3.3 Implementing the application

Once the files ‘initial.sc’ and ‘proc.sc’ are written, the implementation process can be
started. Let’s continue with our example.

1. Build the main loop of the ‘quadrador’ process. The command that should be ejected is

gu -main quadrador -userp quadrador initial.sc proc.sc
This command produces the files

‘quadrador.c’
The main loop of the application process. This module should be compiled and
linked with the other modules of the process, including the application primitives
implemented by this process.

‘quadrador.h’
A header file containing all the ANSI-C prototypes of the user-provided subpro-
grams. Every implementation of an user-provided subprogram must include this
file. See Appendix A [The file quadrador.l], page 65

2. The application programmer should implement the application primitives. Everyone of the
prototypes existing in the file ‘quadrador.h’ should be implemented. In this toy application,
only one file is needed to contain the implementation. Let’s name this file ‘quadre.c’. See
Appendix A [The file quadre.c], page 65.

This file must be compiled following the procedures required by the supporting operating
system. In a typical UNIX installation, the command should be:
cc -¢ quadre.c
3. The application system can be built. To obtain application systews, the files ‘quadre.o’ and

‘quadrador.o’ must be linked together. Because of the way the application subprograms are
implemented, also the library ‘libtscg’ should be linked to them. This library is located at

Chapter 3: Building a toy application 11

the directory ‘/usr/local/lib’ in a typical installation!. Thus, in this installation we can
obtain the user process executable file by issuing
cc -o -L/usr/local/lib -o quadrador quadrador.o quadre.o -ltscg -1X11

Care should be taken because the name of the resulting file, ‘quadrador’, must agree with the
name given to the process in the file ‘proc.sc’.

4. Now, all the application systems are built. It is time to make the distributor svstem. This can
be achieved by

gu -dist dist initial.sc proc.sc

This utility generates the file ‘dist.c’ which must be compiled and linked to obtain the
distributor process.

5. The last step is to obtain the application loader. As the application is built by several processes,
a tool is provided for making an application loader. Therefore, using gu, it is as easy as
gu -loader requadre initial.sc proc.sc

We obtain a shell script named ‘requadre’. It’s execution loads and starts all the required
processes.

The process that executes the user commands has two main parts. The first, which is named
main loop, is a dispatcher whose principal task is to call application primitives depending on the
received requests from the command system. The main loop is automatically generated by a
generator. The second, the set of application primitives , is a collection of subprograms and data
structures. These are, as his own name suggests, the user supplied procedures and functions that
carry out the core work done in an application system.

3.4 Write the commands definition

The application built has no command defined. The applications built under the toolkit TSC
should define the commands offered to the end user via a command language. The application, dur-
ing load time, automatically reads a command definition file named *.tsccomrc’. All the command
defined in this file are to be incorporated into the command processor and, therefore, available to
the user. To see a complete description of this language, you should see Chapter 4 [Command
Language], page 17.

The command language allows the definition of a commands set laying on the application prim-
itives specified in the file ‘initial.sc’. These commands are accesible to the user and they are

the only media available to use the application. In our case. the defined commands are:

! This library is not part of TSC but it is supplied with no warranty in the same distribution
package

12 TSC V1.2

CREA Create a fixed square in a fixed location. The square has a edge length of 10 units and
a position of the center located at the point (50.0, 50.0).

Quadrat Create a new square with a given center and edge length.
Consulta Given a square pointed by the user. the command writes the square characteristics.
Esborra Delete the user pointed square.

Escala Given a square pointed by the user, scales it by a factor.

Transllada

Given a square pointed by the user, moves it to a new position.

Color Given a square pointed by the user, changes its color.

The complete listing of the command definition can be seen in Appendix A [‘. tsccomrc’ listing],
page 65.

3.5 Run it

The application is now completely built. Therefore, it can be installed in the definitive place
and any end user can use it. Following we will briefly describe the main salient characteristics of
the application from a end user standpoint.

The application is constituted by a set of files. We call this set the run-time set of systems or,
shortly, the run-time set. In our case, the run-time set is composed by the files:

‘sc’ The command system process. It is a TSC system.
‘se’ The input-output system process. It is a TSC system.
‘quadrador’

The application system. It belongs to the set of application systems.

‘dist’ The distributor system. It is a TSC! system.
‘initial.sc’
The file containing all the primitive operations supplied by the application systems.
‘.tsccomrc’
The file containing all the command definitions that the application is going to know
from starting time.
‘requadre’

The file used to start the application by the user.

Chapter 3: Building a toy application 13

All the executable files should be located in a directory known to the path. In addition, the
TSC systems are the same for all the applications built under the toolkit. Thus, it is recommended
to place them in a common use directory. The files ‘initial.sc’ and ‘.tsccomrc’ should reside in
the working directory.

The application starts by issuing the command

requadre

This action loads all the application processes. Because of this, appear in the screen two new
windows:

¢ The user system window. This the application main window. This window is going to support
the graphical interaction with the end user. The manipulation of squares will be done via this
window.

e The input-output system window. This window is the media used by the command system to
talk with the end user. The end user can issue commands and the command system can show
alphanumerical data to the end user. This window has two main subwindows:

— The bottom window. This is where the user wrote the commands and requested data.

— The upper window. This is where the command system does the output of textual data.

Now, the input system is implemented using a Motif widget. Therefore, all the Motif resources
associated to it will apply. The later are documented in Motif User Manual.

At this moment, the user can type any command. Type for instance, the following;:

CREA

and a square is created in the graphic window. Any other command that is defined can be
typed. Try, for instance, to type the command:

Quadrat

the command execution prompts you with the following question:

Quadrat, centre

14 TSC V1.2

point anywhere in the graphic window and answer the other questions. As a result, a square
is drawn in the given point. Now, try again with the same command in order to create another

square. When the command asks you with

Quadrat, centre

type the following answer

@RealPunt

suddenly, the command systems ejects some incredible messages and prompts again asking

Punt X

A mechanisin named substitution has been used. Because of that, the way you give the point to
the command system has changed. Before the substitution, the point should be given by pointing
on the graphic window. After that, the point should be given as a pair of real coordinates. More
about how this mechanism works can be read in Section 7.3.2 [Substitution Mechanism], page 43.

The commands can also be interrupted. This means that while a command is running, another
one can be executed freezing the later command execution. Try to execute the command

Quadrat

When this command asks you the point where to put the square, answer with the name of
another command, for instance:

Consulta

The command Consulta begins its execntion. Answer yoursell the asked questions. After the
Consulta command execution, the command Quadrat execution is resumed at the same place
where it has been stopped. More about this mechanism can be read in Section 7.3.1 [Interrupt
Mechanism], page 43.

Another useful utility is given by the completion wechanism. This mechanism allow to complete
the name of an incompletely typed command. Try to execute

Col

Chapter 3: Building a toy application 15

The input system shows you the complete name of the command

Color

Now you can select the complete name from the input system history box. If the typed prefix is
shared by more than one command name, the answer obtained contains all the possible commands.
Try with the prefix Co. More about the mechanism can be read in Section 7.3.3 [Completion
Mechanism], page 46.

This introduction cannot be finished without introducing the metacommands concept. The
metacommands are a set of predefined commands that any application built on TSC has. These are
mainly involved with governing the own command systew. The currently most used metacommand,

is Compile. This metacommand reads a text file containing a number of command definitions and

incorporates them to the running system. Let’s try it.

Write a new command into a file. Say, for instance, a command that translates a given square
to a new position. Name the file as ‘trans.sc’. See Appendix A [The file trans.sc), page 65, by
example. Now, type the metacommaud

Compile

and answer to the file name question with ‘trans.sc’. The command is now compiled and
incorporated to the set of available commands. Verify it yourself by issuing the command

Transllada

There are several metacommands more, For a complete reference see Section 7.2 [Metacom-

mands], page 42.

16

TSC V1.2

Chapter 4: The command language 17

4 The command language

The command system is a specialized process whose main function is to interpret the commands
sent by the end user and, in response to that, eject the corresponding requests to the application
systems. The commands available to the user and their corresponding meaning are described by a
programming language. We call this programming language the command language.

A definition written in this language is always translated to a kind of ’assembler language’
and stored in a repository. The repository plays the role of the RAM memory where command
definitions are stored inside the command system. See Chapter 7 [Command System], page 41.

The later process is named command compilation.

See Section 7.2.1 [Command Loading Commands], page 42, for more information about how to
compile a command definition. Following, the command definition language is explained and his
most salient characteristics sketched.

4.1 Identifiers

All the identifiers required by the language should have the same syntax. An identifier is defined,
using UNIX-like regular expressions as:

<identifier> ::= [a-zA-Z][a-zA-Z0-9_]%*

Classical examples should be:

Functioni
tmp_2
DELETE_OBJECT

It is important to note that the language is case sensitive. Thus, the variables FirstIndex and
FIRSTINDEX are distinct each other. In fact. it is a common agreement to write composed word
identifiers by gluing together all the words and writing in capitals every first letter of each word.
See for instance: DeleteAll, CloseConnectionl or RollBackTransaction.

18

4.2 TSC data types

TSC V1.2

The CL is a hard typed language. That is, types cannot be mixed in expressions except using
YI suag Yi 1 1 g

conversion operators. The CL defines four distinct predefined data types which are named TS

data types. Of course, everyone of these data types has its associate set of primitives. These

primitives are core primitives. The core data types are:

INTEGER

e This type can represent any integer value that can be represented with an int data

type of the C language. Typically this corresponds to the hardware CPU word.

¢ The allowed arithmetic operations on this data type are the following

+

h

Integer addition
Integer subtraction
Integer product
Integer quotient

Integer remainder. The operator semantic is the same that the corre-

sponding in the C programming language.

¢ The allowed boolean operations on this data type are the following

Greater than

Greater than or equal
Lesser than

Lesser than or equal
Equal

Not equal

with the classical meaning.

e The applicable core primitives are

ReadInt

Writelnt

It is a function with the following prototype
FUNCTION ReadInt (STRING mess) RETURN INTEGER

The function, when executed, prompts the end user with the mes-
sage mess and waits the user to introduce an integer. The introduced

integer is retwrned.

It is a procedure with the following prototype

Chapter 4: The command language

REAL

19

PROCEDURE WriteInt (INTEGER val)
The procedure, when executed, writes the value of the integer val to
the input system history window. The output is always followed by a

carriage return. The value is always written in decimal.

Integer constants take the classical form, this is, for instance
0, -123, +45, 98

This type can represent the same range of values that can be represented with a

float data type of the C programming language. Typically this is a single precision

floating point real.

The allowed operations on the type are

+

*

/

The allowed boolean operations on this data type are the followin

Real addition

Real subtraction

Real product

Real quotient

g
Greater than

Greater than or equal

Lesser than

Lesser than or equal

Equal

Not equal

with the classical meaning.

The applicable TSC primitives are

ReadReal

WriteReal

It is a function with the following prototype

FUNCTION ReadReal (STRING mess) RETURN REAL
The function. when executed, prompts the end user with the message
mess and waits the user to introduce a real value. The introduced real

is returned.

It is a procedure with the following prototype

PROCEDURE WriteReal (REAL val)
The procedure, when executed, writes the value of the real val to the
input system history window. The output is always followed by a

carriage return. The value is always written in decimal.

20

STRING

TSC V1.2

Constants follow the typical syntax. Despite of that, integer part as well as man-
tissa part are forced to exist. Thus, they are correct constants
0.0, -13.1, 12.001, 0.003, +9.0

This type can represent any sequence of alphanumeric characters belonging to the
ASCII set. The sequence has no length limitation.

The applicable TSC primitives are
ReadString

It is a function with the following prototype
FUNCTION ReadString (STRING mess) RETURN STRING

The function, when executed, prompts the end user with the message
mess and waits the user to introduce a string. The introduced string

1s returned.

WriteString
It is a procedure with the following prototype
PROCEDURE WriteString(INTEGER val)

The procedure, when executed, writes the value of the string val to
the input system history window. The output is always followed by a

carriage return.

StringCompare
It is a function with the following prototype
FUNCTION StringCompare(STRING s1, STRING s2)
RETURN INTEGER
The function returns an integer code depending on the lexicographi-
cal ordering between the two given strings. The returned values are,

therefore

x<0 if s1 < 82

0 if s1 = 2

x>0 if s1 > s2
StringConcat

It is a function with the following prototype
FUNCTION StringConcat (STRING s1, STRING s2)
RETURN STRING
The function returns a string obtained by concatenating the strings s1
and s2.

e 5String constants follow the classical syntax.

"This is a string constant"

Chapter 4: The command language 21

PUNTF

e This type is used to represent a physical point related to a given window and also
certain mouse special keys.

e The applicable TSC primitives are

ReadPhPoint
It is a function with the following prototype

FUNCTION ReadPhPoint (STRING mess) RETURN POINTF

The function, when executed, prompts the end user with the message
mess and waits the user to click a point in a window. The picked point

is returned.

ValidPhPoint

It is a function with the following prototype

FUNCTION ValidPhPoint(PUNTF p) RETURN INTEGER

The function returns something distinct from 0 if p is a valid point or
0 if the point is a end of sequence. This operation is intended to help
on working with point sequences. With his help, a iteration can be
built over a points sequence. At moment, the user should invariably

press an ESC key in order to obtain such an end of sequence.

4.3 Application data types

In addition to the TSC data types, each application can provide a set of specific ones. These
are named application data types. This facility is intended to allow the command language to be
tailored to a given application. The set of data types defined by the application is established by
the application designer by means of the application description file see Chapter 5 [Application
Description File], page 35 and cannot be changed by the user.

The user can declare as many objects of these types as he wants and, of course, he can use any
type in a parameter list or as a returning type of a function.

Not only data types are provided but also a set of operations, functions and procedures, over
them. The reader should remember that the command definition language is strict-typed, therefore
the defined operations are the only mean to work with the data types. Usually, the data types and
the operations have an ADT-like organization. Nonetheless, this is enforced by no rule and it is

the application designer who chouses the best organization depending on the application goals.

22 TSC V1.2

4.4 Variable declarations

Variable objects can only be declared as local objects inside a subprogram see Section 4.8 [Sub-
programs}, page 26. Any number of objects of any existing type, being it predefined or applicatii 1s
specific, can be declared. The syntax of a declaration is given by:

<type-identifier> <variable-identifier>;

It should be noted that only one variable can be declared by declaration. Therefore, to decl. e
two o more variables, the declarations should be repeated as in the following example:

REAL a;
REAL b;
0BJECT obj3;

4.5 Expressions

Expressions are objects that can be built by operating other objects. They are defined by t e
following rules:
1. Any variable V is an expression and its type is the type of the variable.
2. Any constant K is an expression and its type is the type of the constant. For instance:
2 is an expression of INTEGER type
3. If £ is a function and E an expression, then £(E) is an expression and its type is given by t »
returning type of f.

4. If op is a binary operator and E an expression then E op E is an expression and the typeist e

returning type of op.

5. If op is an unary operator and E an expression then op E is an expression and the type is (e
returning type of op.

6. If E is an expression then (E) is also an expression and its type is that of E.

The evaluation order of an expression is given by the priority of the operators as shown in the
following table from more to less priority:

O
£O

Chapter 4: The command language 23

When conflict arises between two operators of the same priority, then the associativity rule is

used. In this language, associativity goes from left to right.

It is interesting to note that there exist expressions of boolean type in spite of existing no BOOLEAN
type. These expressions are used for sequence control constructions see Section 4.7 [Sequence
Control], page 24 like the conditional sentence. These expressions can be obtained by using the
relational operators associated to TSC data types see Section 4.2 [TSC Data Types], page 18 and
also using the following hoolean operators:

OR Boolean or. Whether it is a conditional-or or not is undefined.
AND Boolean and. Whether it is a conditional-and or not is undefined.
NOT Boolean negation.

At present, this characteristic, what can be explained in terms of original design goals, has
become obsolescent and will be corrected in future versions of TSC. Therefore a BOOLEAN type will
be created belonging to the TSC data types and boolean operations will be the type operations.

4.6 Assignment

This is the fundamental statement of the language and is written :=. The use is as in any
programming language:

<variable> := <expression>

Where the type of both sides must be the same. Assignment is defined for any kind of existing
type.

24 TSC V1.2

4.7 Sequence control

Usually is called sequence control to the set of structures that allow the programmer to define
the sequence of statements executed. The command language provide a reduced but complete set
of structures like most of the imperative programming languages. Let’s see every structure.

4.7.1 Sequential composition

A sequence of statements can be written as follows:

<statement-1>; <statement-2>; ... <statement-i>;

An example of composition can be:

i := 3; j:= 4; RedrawObject(q);

4.7.2 Conditional sentence

The conditional sentence has the following syntax:

IF <boolean-expression> THEN
<sentence>

ELSE
<sentence>

ENDIF

as usual, the ELSE part can be omitted if it isn’t necessary. An example can be:

IF NumberOfObjects(scene) > 100 THEN
WriteString("Too many objects!!");
ENDIF

4.7.3 Generalized conditional sentence

There exists a restricted generalized conditional sentence that works only for INTEGER type
discriminants. The syntax is the following:

Chapter 4: The command language 25

CASE <discriminant> IS
WHEN <integer-const> DO
<sentence>
WHEN <integer-const> DO
<sentence>

OTHERWISE
<sentence>
ENDCASE

Given an integer value for the discriminant, the WHEN whose integer constant matches the dis-
criminant is executed. Only one WHEN clause can match the discriminant at every time. If no WHEN
clause is matched, then execution of the sentence raises a run-time error and process is stopped.

The OTHERWISE clause is optional. When given. it catches the discriminant values for which no

WHEN clause exists.

4.7.4 Iterative sentence

Only one iterative sentence is provided. Its svntax is:

WHILE <boolen-expression> DO
<sentence>
ENDWHILE

The corresponding semantic is that of equivalent sentence in the C programming language.

4.7.5 Context change sentence

This sentence is intended to execute a list of sentences in a specific context see Section 4.9

[Managing Contexts], page 30. The syntax of the sentence is easy:

CONTEXT <context> DO
<{sentence>
ENDCONTEXT

The execution of a command is always done within a context. Nonetheless, sometimes it is
desirable to execute some senteuces within another context. In this case the given sentence should

be used. The result of using it is thal <sentence> will be execnted under the <context> jnstead of

26 TSC V1.2

being executed in the actual context. Thus. before executing the sentences, context is changed to
the new context and after the sentences have heen executed, context is changed back to the original
context.

As you will notice in Chapter 5 [Application Description File], page 35, a graph of allowed
transitions from one context to another exists for every application. Therefore, the context switch
correctness is defined in terms of the later. Because of command language structure, this correctness
can be verified during compilation time. See Section 4.8 [Subprograms], page 26. Thus, the following
rules are applied:

1. Before executing a CONTEXT sentence, the set of possible contexts in which command system
can be are known to the compiler. Let’s name it BC. You can understand why the compiler

knows this set by remembering that the CONTEXT sentence can be in one of this two situations:

e It is inside another CONTEXT sentence like

CONTEXT ci DO
CONTEXT c2 DO

In this case, compiler knows that BC={c1}

e It is inside a subprogram. In this case BC is the set of contexts for which the subprogram
is allowed to be executed.

2. The CONTEXT c1 ... sentence is correct iff there exists an allowed transition from each context
belonging to BC to the context c1 in the application graph.

Note that this rule has an important defect: it should be also necessary, to be consistent, to
force the existence of an allowed transition from context c1 to every context in BC. At moment,

this is considered an error and can cliange in future versions of TSC.

For knowing more about contexts and its use, please refer to Section 4.9 [Managing Contexts],
page 30.

4.8 Subprograms

Three kind of subprograms are provided by the language. While procedures and functions have
a similar meaning and utilization that in any programming language. commands have a special role

in the command definition language. Let’s see all of them.

Chapter 4: The command language 27

4.8.1 Commands

The command language has as a main goal the definition of commands that an user can exe-
cute. These commands are built relaying on the primitives offered by the programmer. Command
subprograms are the given tool to define this user executable commands. In fact, command subpro-
grams are a special kind of procedures without parameters that can be executed on user demand.
Thus, the set of defined command subprograms for an application automatically define the set of
commands that the user can type.

The syntax of a command is given by the following rule:

COMMAND <identifier> WITHIN <context-1>, ... ,<context-i> IS
<list-of-variable-declarations>
BEGIN
<sentences>
ENDCOMMAND

This defines a command named <identifier> that can be executed while the command system
is within any of the <context-1>...<context-i> contexts. For executing the command a set of
variables can be optionally declared. These variables are local to the lexical scope of the command
and they will exist only during the command execution time interval. Obviously, execution of the
command implies sequential execution of its defining sentences. Examples of typical commands
can be:

COMMAND ERASE WITHIN TwoDEditor IS
WINDOW w;
BEGIN
w := FirstAppWindow();
WHILE NotLast(w) DO
EraseWindow(w) ;
w := NextWindow();
ENDWHILE;
ENDCOMMAND

In this case, it should be understood that

WINDOW type,
FirstAppWindow,
NotLast,
EraseWindow and
NextWindow

TSC V1.2

are data types and operations defined by the programmer. Thus, they can be considered as -

primitive tools for the given application.

4.8.2 Procedures

As in most programming languages, command definition language support the use of procedures.

These subprograms have the following syntax:

g

PROCEDURE <identifier> (<par-list>) WITHIN <context-1>, ... ,<context-i> IS
<list-of-variable-declarations>
BEGIN
<sentences>
ENDPROCEDURE

where

<par-list>::= <type> <par-identifier>, ... ,<type> <par-identifier>
The following topics should be given about procedures:

Procedures can only be called from other procedures, from function or from commands but
they cannot be called directly by the user.

Procedures can be recursive.

A procedure can be called iff the actual context of the execution belongs to the context list of
the procedure. The compiler checks it during compilation time. Therefore, a given procedure
cannot be called from another subprogram if the subprogram context characteristic set isn’t
contained in the procedure characteristic set.

Parameters of a procedure can be only input parameters.

A procedure is called giving the actual parameters as expressions of the same type. See for
instance:

PROCEDURE DrawPoly(POLYLINE p) WITHIN TwoDEditor IS

p := CanonicalPolyline();
DrawPoly(p);

Chapter 4: The command language

29

4.8.3 Functions

1.

Functions are also supported like procedures. Their syntax is defined by the following pattern:

FUNCTION <identifier> (<par-1list>) RETURN <type-identifier>
WITHIN <context-1>, ... ,<context-i> IS
<list-of-variable-declarations>
BEGIN
<{sentences>
RETURN <expression>;
ENDFUNCTION

where

<par-list>::= <type> <par-identifier>, ... ,<type> <par-identifier>

The following topics apply to functions:

Functions can only be called from other procedures, from functions or from commands but
they cannot be called directly by the user.

Functions can be recursive.

A function can be called iff the actual context of the execution belongs to the context list of
the function. The compiler checks it during compilation time. Therefore, a given function
cannot be called from another subprogram if the subprogram context characteristic set isn’t
contained in the function characteristic set.

Function parameters might be of input type.
A function can return a value of any type.
A function implementation can only contain one RETURN statement.

A function is called giving the actual parameters as expressions of the same type. See for
instance:

FUNCTION Color0fObject (OBJECT o) RETURN Color WITHIN TDE IS

COLOR a;
a := Color0fObject(SelectObject());

30 TSC V1.2

4.9 Managing the contexts

The context mechanism is one of the most salient characteristics included in command language.
The main purpose of this mechanisi is to help the application programmer to build a state sensitive
application.

Command language is the description tool used to define the commands understood by the
command system and thus user available. The command system can be modeled by a virtual pro-
grammable computer. Its ’assembler language’ is the command language. This virtual computer
has a state register. The register value is named the current context and the set of allowed valued
is the set of contexts The user can change this state see Section 7.2.3 [Context Change Command],
page 42 following certain rules. The actual context, define the set of subprograms (including com-
mands) that the command system can execute at a given time. Therefore, from a user standpoint,
the set of commands isn’t always the same: it changes depending ou the actual context.

The set of supported contexts is defined in the application description file. Therefore it is
established by the programmer during design time. Every context has an unique context-identifier.
There is an authorization graph that describes which context changes can he made. See Chapter 5
[Application Description File], page 35.

Every subprogram, including commands, is tagged with a set of contexts in which the subpro-
gram is allowed to execute. This is done using the WITHIN clause. Thus, the set of subprograms
available within a context A are those the tag of which contains the A context. This subprograms
set is named the subprograms set of a context. From the command language, every subprograims
set becomes a referencing environment inside of which, the name space is unique. Therefore, only
one subprogram with a given name can exist within a subprogram set. Of course, it is possible that

two subprograms with the same name exist in two distinct subprograms set.

Because of expression econowmy, it is possible for two given subprograms belonging to distinet
subprograms sets, A and B, and having the same name, say (!, to share the same implementation
too. This can be achieved by declaring the subprogram implementation available to both contexts
via the WITHIN clause. In fact, this is somewhat tricky: all the subprograms called from C should be
able to run on both the A and B contexts. 1t can be seen as having two identical implementations

for the subprogram C one within A subprograms set and another within B subprograms set.

The context change statement allows a given subprogram to execute part of its code within a
fixed context. Thus, the effect of using it is to change the virtual computer current context. This
context change has the same restrictions that the others see Chapter 5 [Application Description
File], page 35. Most of the applications use this sentence to simulate the invocation of a shell running

Chapter 4: The command language 31

in another context than the current. This can be achieved by using the command iuterruption
mechanism. See Section 7.3.1 {Interrupt Mechanism], page 43 for more information about it. A
sketch of this usage is given below:

COMMAND TWODIM WITHIN TREEDIM IS
STRING s;

CONTEXT TWODIM DO
s := ReadString("GiveMe TwoDim Commands");
WHILE StringCompare(s,"EXIT")=0 DO
s := ReadString("Give me TwoDim Commands");
ENDWHILE
ENDCONTEXT

This code iterates continuously within the TWODIM context until the user types the keyword EXIT.
While ReadString is waiting, the user can supply any TWODIM command name and the command
will be executed by means of interruption mechanism. Therefore a new command shell has been
created.

4.10 Miscellaneous TSC primitives

Abort This is a predefined procedure with the following prototype:
PROCEDURE Abort()

When called from a subprogram causes the command to abort its execution. (Veure si
aborta la comanda o tots els processos actius i congelats.

4.11 Compilation units

This language doesn’t look like the conventional ones in that the former is used to build a virtual
machine while the later do not. Therefore, if we think in the time the virtual machine is alive as
an infinite time, every compilation unit satisfactorily compiled increases the virtual machine set of
operations. It is in this context that it can be established what the compilation units are:

e Individual subprograms: that is procedures, functions or commands,

e Prototypes: that is subprogram definitions without implementation,

32 TSC V1.2

The compiler always take files to compile see Section 7.2.1 [Command Loading Commands],
page 42. These files can contain any number of compilation units everyone of which is independently
processed.

4.11.1 Referencing environment and prototypes

Also in this context the referencing environment can be defined. At some given time instant, the
referencing environment is the set of subprograms that the virtual machine knows. Of course, these
subprograms are classified into subprograms sets see Section 4.9 [Managing Contexts], page 30.
This referencing environment let’s us to state an important rule:

Given a subprogram A, all the subprogramns called by A must be known inside the referenc-
ing environment during compilation time. If it is impossible due to recursive calls, for instance,
then prototypes must be used to insert a new operation into the referencing environment without
implementation. It is important to remember that the implementation must be compiled before
running the virtual machine. Prototypes are built by only taking the header of a subprogram. See
for instance:

PROCEDURE Test (INTEGER a, OBJECT c) WITHIN C22;
COMMAND OPEN WITHIN C22, C45;

If at run time a subprogram is called with unknown implementation because only its prototype
was given, the execution aborts raising a run time error.

4.11.2 Replacement rules

When a subprogram is compiled that exists before in the referencing environment, a set of rules
is applied to know what is the final state. These rules are the following;:

1. The compiled subprogram, as stated in Section 4.9 [Managing Contexts], page 30, is considered
as a set of subprograms with identical implementations within several, or one, subprograms
set. Let’s name these subprograms as 51,52...,5n and the corresponding contexts (!1,(2,...,Cn.
The existing subprogram is also considered as a set of subprograms 01,02,...,0m within the
contexts CO1,C02,....COm.

2. If Oj is an older implementation of Si for a context Ci=CQj then Qj is replaced by Si.

3. If for a given Si doesn’t exist any Oj such that COj=Ci, then Si is incorporated to the virtual
machine operations set.

Chapter 4: Tlie command language 33

4. If for a given Oi doesn’t exist any Sj such that COi=Cj, then O remains into the virtual

machine operations set.

34

TSC V.2

Chapter 5: The application description file 35
1 Pl 1

5 The application description file

This file is intended to be the complete description of the bare virtual machine. See Chapter 7
[Command System], page 41. It contains a description of the application defined data types,
contexts and operations. The syntax looks like the command langnage but a more rigid approach
is taken. File is divided into five sections enclosed by the construction DEFINE...END DEFINE. All
the sections are mandatory although some of them can be empty. This will be explained later. The
order hetween the sections is fixed and it is given below:

DEFINE CONTEXT ... END DEFINE

DEFINE INITIAL CONTEXT ... END DEFINE
DEFINE VALID CONTEXT CHANGE ... END DEFINE
DEFINE TYPE ... END DEFINE

DEFINE USER ... END DEFINE

Below, each section and its contains is explained.

5.1 Defining the contexts
To define the contexts related data it is necessary to establish the following topics:

o The set of existing contexts (context identifiers).
e The current context at virtual machine initialization time (usually named initial context).

e The graph of allowed transitions from one context to the rest of them. This graph sets a
security policy about the allowed context changes.

Everyone of the topics is set by a DEFINE sentence. The set of context is established by the

sentence

DEFINE CONTEXT <context-id-1>, <context-id-2>, ... END CONTEXT

where the context identifiers follow the same rule that the command language identifiers. See

Section 4.1 [Identifiers], page 17.

The initial context is established by means of the following sentence:

DEFINE INITIAL CONTEXT <context-id> END DEFINE

36 TSC V1.2

And, finally, The graph of allowed context changes is defined by the sentence:

DEFINE VALID CONTEXT CHANGE
<context-id>, <context-id>, ..., <context-id> TO <context-id>;

END DEFINE

The meaning is obvious: it is allowed to change from any of the context in the left list to the
right context.

5.2 Application data types

Trewis

Any number of new types can be predefined by aggregation of predefined data. types. Every new
data type (usually named user defined data type) has its own identifier following the same rules
that those of command language. To define new data types, the sentence shown below should be
used:

DEFINE TYPE
<type-id> IS <list-of-predefined-types>;

END DEFINE

where <list-of-predefined-types> is a comma separated list of TSC data types. See, for
instance:

DEFINE TYPE

POINT3 IS REAL, REAL, REAL;
PointSym IS INTEGER;

END DEFINE

5.3 Specifying the operations

Operations of the bare virtual machine are defined using the prototype syntax as explained in
Section 4.11.1 [Referencing Environment], page 32. Thus the section has the following aspect:

DEFINE USER
<prototype-1>;
<prototype-2>;

Chapter 5: The application description file 37
1 1 1

END DEFINE
There are two restrictions to the prototypes:

1. Prototypes must be of procedures or functions but not of commands.

2. Every prototype must contain a WITHIN clause with one and only one context identifier.

The last conditions should be understood by examining how these operations are hound to the
process that execute them. See Chapter 2 [Architecture], page 3 and Chapter 6 [Process-Context
Mapping File], page 39.

TSC VI.2

Chapter 6: The process-context mapping file 39

6 The process-context mapping file

This file reflects the binding between contexts and the processes. You should remember that
the every primitive operation of the bare virtual machine must be executed by a fixed user process
Section 3.2 [Define Application], page 8. By design decision, every primitive helonging to a given
context should be executed by the same process. Thus there is a binding that relates a context
with a process. In fact, a process can attend more that one context but a given context cannot be
attended by more than oune process.

This file states which contexts are attended by every application process in the application. Its
syntax is extremely simple:

<process-name> <context-id-1> <context-id-2>
<process-name> <context-id>

It should be remarked that the process name must coincide with the real executable name of
the process. See Section 3.3 [Implement Application], page 10.

40

TSC V1.2

Chapter 7: The Command System: sc 4]

7 The Command System: sc

This system is the kernel of TSC. Its main responsibility concerns interpreting the commands
issued by the user. The system hasn’t any mechanism in order to maintain a communication with

the user: this task is assigned to the input system. See Chapter 8 [Input Output System], page 47.

7.1 Starting-up an application

Command system is an universal process: it is the same for all applications built. Every ap-
plication defines the adequate bare command system by means of the application description file.
See Chapter 5 [Application Description File], page 35. To achieve this result, the application de-
scription file name should be given on the command line when running command system. In fact,
this is not usually important because the task is transparently done by the loader generator see
[Source Generator], page 49.

After command system is started and initialized for a given application, default commands for
this one are read-in if needed. This process takes place automatically by checking the existence of
several predefined files in standard places. These files should contain correct command definitions
as explained in Chapter 4 [Command Language], page 17. The algorithm describing this loading
process is the following:

IF exists($PWD/.tsccomrc) THEN
load-commands-from($PWD/.tsccomrc)
ELSEIF exists($HOME/.tsccomrc) THEN
load-commands~from($HOME/ .tsccomrc)
ELSE
load-no-commands
ENDIF

Note that, in DEC/VMS environment. the file *.tsccomrc’ is named ‘TSCCOMRC. ",

If no commands are loaded. application has no utility. Therefore, coommands must be loaded

using a metacommand (see explanation below).

Care should be taken because incorrect definitious of commands will cause the commands not
to be loaded. Thus, user can perceive an incorrect application because of this. This fact can be

detected by looking into the command system log file.

42 TSC V1.2

7.2 Controlling the CS: the metacommands

Metacommands are, from an user point of view, nothing but predefined commands. Nonetheless,
there is a big difference between both: metacommands are special commands to control command
system while regular commands control the application. Following there is a table with all the
existing metacommands:

7.2.1 Command loading metacommands

Compile This metacommand is used to load new commands. The commands must be defined in
a text file. The file name is asked by the metacommand. If errors are detected during
load process, they are written to the command system log file.

7.2.2 Statistical and informative metacommands

RepositoryStatistics
The command asks for a file name and dumps into it a lot of statistical data about the
subprograms repository usage. This command is mainly used to verify the repository
performance.

ListSymbolTable
The command asks for a file name and dumps into it the contents of the virtual machine
symbol table. Mainly used for debugging purposes.

7.2.3 Context change metacommand

ChangeContext
This metacommand followed by a context identifier changes the current context of
command system (if allowed). See Section 4.9 [Managing Contexts], page 30.

7.2.4 Journaling metacommands

OpenJournal
The command prompts for a file name and puts it as the current output journal. This
doesn’t mean that the logging process begins but that the log file is established.

Chapter 7: The Command System: sc 43

CloseJournal
Closes the current output journal file and ceases the logging activity (if existing).

ActivateRecording
This command can only be issued if a current output journal file exists. When executed,

it activates the logging mechanism on the current journal file.

DeactivateRecording
This command can only be used when the logging mechanism is activated. When
issued, the logging ceases.

ReadJournal
The command prompts for a journal file name and reproduces it.

ReadStepJournal
The command prompts for a journal file name and reproduces it step by step.

7.3 User oriented facilities

The command system offers a set of generic user oriented facilities. These facilities are provided
to allow the user to achieve an higher degree of freedom while dialoguing with the application.
Although these facilities are offered by the command system, in fact the user will be using it
through the input-output system. Please read Chapter 8 [Input Output System), page 47 for more
information.

7.3.1 The command interrupt mechanism

This mechanism lets the user to issue a new command, say A, while another one, say B, is being
executed. The B command is frozen and the A command is executed. When the A command finish,
the B command is waked up and its execution continue at the place where it has been frozen.

A command can be only frozen while it is waiting for a user input. This should easily be done
by issuing the name of the new command.
7.3.2 The function call substitution mechanism

This mechanism is provided to allow for a flexible set of input techniques to be easily used and
implemented. The mechanism can be used while the command system is waiting for a input data

44 TSC V1.2

to came from the user. At this moment, there is a set of subprograms called ending up with the
subprogram asking for input. Let’s represent the stack of called subprograms by:

Sk <---- Input asking subprogram
Sk-1

53

S2

S1 <---- Command issued by user

The user can dynamically substitute the Si by another equivalent subprogram Sj. To do this
the following conditions should be stated:

1. Si must be a function subprogram not predefined or belonging to the bare virtual machine.

no

Si and Sj must be equivalent functions . That is, both should have the same return type and
the same type for all its parameters. For instance,

FUNCTION PickPoint(STRING mess) RETURN Point WITHIN CTD;

FUNCTION OriginPoint(STRING mess) RETURN Point WITHIN CTD;

are equivalent functions.

When a substitution by Ss is requested, the stack of subprogram calls is scanned from top to
bottom and the first function S found that is equivalent to Ss is substituted by Ss. All the stack
frames from Ss to the top of stack are discarded and execution is restarted. If no function id found
equivalent to Ss, an error warning is issued and execution continues. Therefore, in the example
before, if we substitute S3 by Ss, execution is restarted with the following state:

Ss
52
S1 {=---- Command issued by the user

This mechanism allows the user to change the method (function) he is using for doing a certain
input request by another method giving the same information. For instance, suppose the two
functions given before: the first one returning a point by the user picking it using the mouse; the
second one returning a point by reading the two coordinates from the keyhoard. Its implementation
should like

FUNCTION PickPoint(STRING mess) RETURN Point WITHIN CTD IS
BEGIN

RETURN ConvertPh(ReadPhPoint(mess));
END FUNCTION

FUNCTION OriginPoint(STRING mess) RETURN Point WITHIN CTD IS

Chapter 7: The Command System: sc 45

BEGIN
RETURN ConvertRe(ReadReal (mess),
ReadReal (mess),
ReadReal (mess));
END FUNCTION

A given command to trace a line should like

COMMAND LINE WITHIN CTD IS

Point pi1;

Point p2;

BEGIN
pl := PickPoint("First point");
p2 := PickPoint("SecondPoint");
Line(p1, p2);

END COMMAND

When this command is issued by the user, the stack looks like the following:

ReadPhPoint <--- Function asking user
ConvertPh

PickPoint

LINE <--- Command issued

Therefore, user is prompted to input a point by picking it on the screen. If the user prefers to in-
put it by giving the coordinates, a substitution must be issued changing PickPoint by OriginPoint.
After that, stack will look like

OriginPoint
LINE <~-- Command issued

and when restarted stack will grow to

ReadReal <--- Function asking user
ConvertRe

OriginPoint

LINE <--- Command issued

that is the desired result.

As a consequence of this mechanism, care shoul be taken when designing functions using the
command definition language. A correct set of function definitions will establish a correct set of

46 TSC V1.2

equivalent functions being able to be substituted. In fact, sets of equivalent functions play the role ~
of being set of alternative input methods from a user standpoint.

7.3.3 The command completion mechanism

This mechanism allows a user to ask the system for command names beginning by a given prefix.
The system will answer with the command names of all the matching commands, thus allowing the
user to select the correct one.

Chapter 8: The Input-Output System: se 47

8 The Input-Output System: se

At the moment, this system don’t offers any kind of special services other that oflered by the
command Motif widget. Thus please refer to the Motif documentation to achieve more information.

TSC V1.2

Chapter 9: The source code generator: gu 49

9 The source code generator: gu

This utility command is the only tool needed by an application builder to construct a new
application. Its main objective is to automatically write distinct pieces of code needed for building
the application. See Chapter 3 [Toy Application], page 7. At the moment, the code produced
in POSIX environment is ANSI-C and the only system resources needed are POSIX.1 compliant,
therefore a POSIX.1 environment is needed to take advantage of it. There is an exception to this
rule that needs a POSIX.2 compliant shell (see option -loader below). In the other hand, the code
produced in the DEC/VMS environment is DEC-C compliant and includes VMS specific library
calls. For obtaining information about how to use this tool, please refer to Chapter 10 [Building
User Process], page 51, Chapter 11 [Building Input User Process], page 53 and Section 3.1 [Building
Steps], page 7.

Command syntax

gu [parameters] <resource-description-file> <process-description-file>

Command parameters

-h Prints on the standard output a usage message showing all the command options.
-V Prints on the standard output a message informing about the version of the utility
itself.

~loader <file>
Generate an executable file named <file> that, when executed starts the application.
The generated file is a shell script, thus a Bourne compatible shell is needed in order
to be executed. This includes the POSIX.2 compliant shell and the Korn shell. If
you are working in the DEC/VMS environment, then the option produces a command
procedure file fully compatible with VMS JCL. See Section 3.1 [Building Steps], page 7
to know how this executable should be used.

-dist <file>
GGenerate a self-contained source code file named <file>.c that, after being compiled
and linked, became the distributor process. In order to be compatible with the gener-
ated loader, this process must always be named ‘dist’. See Chapter 3 [Toy Applica-
tion], page 7.

50 TS5C V1.2

-userp <process>
Generate a file named ‘<process>.h’ containing the prototypes of the functions that an
application builder should provide in order to compile and link the process ‘<process>’.
See Chapter 10 [Building User Process], page 51.

-main <process>
Generate a source file named ‘<process>.c’ that, when compiled, became the main
function to be linked with the user provided functions in order to obtain a regular user
process. See Chapter 10 [Building User Process], page 51.

-inputp <file>
Generate a source file named ‘<file>.h’ that contain the prototypes of the functions
that can be used and the functions that must be used to built an input providing
process. See Chapter 11 [Building Input User Process], page 53.

-input <process>
Generate a source file named ‘<process>.c’ that, when compiled, must be part of the
input providing process. See Chapter 11 [Building Input User Process], page 53.

Chapter 10: Building a standard application process o1

10 Building a standard application process

e A TSC system implements a subset of the primitives defined by the programmer in the appli-
cation description file. An application system does not need any specific input function.

e There is a tool in TSC that generates the main program of the application system. Thus, the
user of TSC will only have to implement the primitives of the system.

e The main program is generated by typing
gu -main app_system_name app_desc_file proc_cont_ file

o where user_system_name is the name of the application system for which we want to generate
the main program. app_system_name must be the name of one of the processes described in
the process-context mapping file ‘proc_cont_file’.

e The former tool generates the main program in the file ‘app_system_name.c’.
e The main program
manages the communication with the command system

calls the primitive functions implemented by the application system when requested by
the command system.
e Once obtained, the user of TSC only have to compile the main program and link it with the
other modules of the application system.
¢ The user of TSC can get the ANSI-C prototypes of the primitive functions that the application
system implements typing
gu -userp app-system_name app._des_file proc_cont_file
where app_system_name is the name of the application system for which we want to generate

the primitive function prototypes. app_system_name must be the name of one of the processes
described in the process-context mapping file ‘proc_cont_file’.

¢ The former tool generates the primitive function prototypes in file ‘app_system_name.h’

TSC V1.2

Chapter 11: Building an input-providing application process 53

11 Building an input-providing application process

An input-providing application system implements a subset of the primitives defined by the
programmer in the application description file. In addition, it implements user specific input
functions.

An input-providing application system deals with two different tasks:

1. calling the primitive functions implemented by the input-providing user system when
requested by the Command System.

2. sending the tokens generated by the user specific input functions to the Command System.

The main program of the input-providing user process must deal, at least, with two input
sources: the communication channel with the command system and an specific input channel,
used by the application specific input functions. Thus, the TSC cannot offer a tool to generate a
main program (because it depends on the number and type of the specific input channels used).
What can be generated is a communications module that offers functions to manage the call-
to-primitive requests of the Command System and to send tokens to the Command System.
Actually, these functions aren’t the same for a DEC/VMS environment that for a POSIX
environment due to deep differences in the operating system resources. See Section 11.1.3
(Input Providing Examples], page 58 to appreciate the differences.

The set of functions provided by this module is immutable. The ANSI-C prototypes of this
function can be obtained by typing:
gu -inputp file_name app_desc_file proc_cont file

This tool generates the communications module prototypes to file ‘file_name.h’. It contains
the prototypes of the following functions:

1. Initializes the communications. It should be called before any other function of the module.

void TscIni(int argc, char *xargv);

2. Inquire the file descriptor bound to the communication channel and returns it. It only
exists in POSIX environment.
int TscConsFileDesc(void);
3. Inquire the EFN bound to the communication channel and returns it. It only exists in
DEC/VMS environment.
int TscConsEFN(void) ;

4. Inquire the address of the IOSB bound to the communication channel and returns it. It
only exists in DEC/VMS environment.
const io_statblk #*const TscConsIOSB(void);
5. Starts the mechanism that raises the EFN every time that the communication channel

should be read. This function should be called when the process is ready to receive data
from the channel. If it is not called, EF is never raised. It only exists in DEC/VMS

4 TSC V1.2

environment. See Section 11.1.3 [Input Providing Examples], page 58, for an example on
how to use it.

void TscArrenca(void);

6. Receives communication from the command system and dispatches the call-to-primitive
requests to the correspouding primitive. This function should be called whenever input is
detected in the file descriptor returned by Tsclni.

void TscReb(void);

7. Sends a token to the Command System.

void TscEnvToken{const char *token);

The token can be of type integer, real or string, but with its textual representation. The
syntax of textual representations of values of the former types follows:

integer ::= [-]<digit><digit>
real ::= [-]<digit><digit>.<digit><digit>[(el|E)[-]<digit><digit>]
string ::= ["J<character>["]

The token can also be a function substitution or a command interruption with the following
syntax:
function substitution

@<identifier>
command interruption

<identifier>

o]

Sends a token of type PUNTF to the command system.
void TscEnvPunt(int winddn, float x, float y);

9. Sends an special value of type PUNTF denoting end of sequence.
void TscEnvPuntFinal(void) ;

10. Sends a command abort notification to the command system. The user wants to abort
the execution of the current command.
void TscEnvAbort(void);

11. Sends an end-of-application notification to the command system. The user wants to finish
the execution of the application.
void TscEnvFi(void);

e There are applications that use the context change information sent by tlie Command System.
The communication module also offers function to get a context name from a context identifier
and vice versa.

const char *TscNomContext(int context_id);
int TscContextId(const char *context_name);
int TscDefaultContext(void);

#define TscNullContext -1

Chapter 11: Building an input-providing application process

ot
o

¢ The communications module can be generated by typing

gu -input input_system_name app_desc_file proc_cont file

where input_system_name is the name of the input providing application system and must be

the name of one of the processes described in the application description file proc_cont_file.

¢ Once compiled, the communications module must be linked with the other modules of the
input-providing user system, included the main program (that must he written by the TSC
user).

11.1 Examples of main programs of input-providing user systems

11.1.1 Working with Motif (POSIX environment)

This is not intended to be an tutorial to Motif, thus Motif and Xt functions are not explained.
See OSF/Motif Programmer’s Guide and X Toolkit Intrinsics Programming Manual for more in-
formation.

#include <Xm/Xm.h>

/*

* Prototypes of the input-providing user system.

* The file menus.h has been generated with

* gu -userp menus fr fp

* where menus is the name of the input-providing user process,
* fr is the User Systems Resource Description File and

* fp is the Processes Description File

*/

#include "menus.h"

/*

* Prototypes of the functions of the communications module generated with
* gu -inputp tscenv fr fp

*/

#include "tscenv.h"

/*

* Xt alternative source of input function.

* This function is called when the data is available in the file
* descriptor fd.

TSC V1.2

*/

static void connexio_sc(XtPointer client_data, int *fd, XtInputId *id)

{
}

/%

* Xt Callback function.

* This function will be called when the user has clicked on a button.
* The button is associated with a command. The command which is

* associated with corresponds to the parameter client_data.

*/

void ButtonCB(Widget w, XtPointer client_data, XtPointer call_data)

{

TscReb();

TscEnvToken((char *)client_data);

}
void main(int argc, char **argv)
{
/*
* Initialize communications.
*/
TscIni(arge, argv);
/*
* Create widgets, add callbacks,
*/

optionl = XmCreatePushButtonGadget (parent, "Option 1", NULL, 0);
XtAddCallback(optionl, XmNactivateCallback, ButtonCB, "Commandi");

/*
* Add a new input source corresponding to the communication
* channel to the Command System.
*/
XtAppAddInput (MnAppContext,
TscConsFileDesc(),
(XtPointer)XtInputReadMask,
connexio_sc,
NULL) ;
XtAppMainLoop (MnAppContext) ;

Chapter 11: Building an input-providing application process 57

11.1.2 Working with Motif (DEC/VMS environment)

This is not intended to be an tutorial to Motif, thus Motif and Xt functions are not explained.
See OSF/Motif Programmer’s Guide and X Toolkit Intrinsics Programming Manual for more in-
formation.

#include <Xm/Xm.h>

/*
* Prototypes of the input-providing user system.
The file menus.h has been generated with

*

* gu -userp menus fr fp

* where menus is the name of the input-providing user process,

* fr is the User Systems Resource Description File and

* fp is the Processes Description File

*/

#include "menus.h"

/*

* Prototypes of the functions of the communications module generated with
* gu -inputp tscenv fr fp

*/

#include "tscenv.h"

/*

* Xt alternative source of input function.

* This function is called when the data is available in the
* communication channel. This is known via a EFN+IO0OSB

*/

static void connexio_sc(XtPointer client_data, int *fd, XtInputId *id)

{
}

TscReb () ;

/*

* Xt Callback function.

* This function will be called when the user has clicked on a button.
* The button is associated with a command. The command which is

* associated with corresponds to the parameter client_data.

*/

void ButtonCB(Widget w, XtPointer client_data, XtPointer call_data)

{

TscEnvToken((char *)client_data);

}

58 TSC V1.2

void main{ int argc, char *x*argv)

{
/*
* Initialize communications.
*/
TscIni(argec, argv);
/*
* Create widgets, add callbacks,
*/
optionl = XmCreatePushButtonGadget(parent, "Option 1", NULL, 0);
XtAddCallback(optionl, XmNactivateCallback, ButtonCB, '"Commandi");
/*
* Add a new input source corresponding to the communication
* channel to the Command System.
*/
XtAppAddInput (MnAppContext,
TscConsEFN(),
TscConsIOSB(),
connexio_sc,
NULL) ;
/*
* Activate EFN+IO0SB mechanism
*/
TscArrenca();
XtAppMainLoop (MnAppContext) ;
}

11.1.3 Working with Xlib (POSIX environment)

#include <X11/X1ib.h>
#include <X11/Xutil.h>

Chapter 11: Building an input-providing application process

void main(void)

{

Display *display;

XEvent event;

int fd, xcn;

/*

* Initialize communications.
*/

TscIni(argc, argv);

/*

* Initialize connection with default display.
*/

display = XOpenDisplay(NULL);

assert(display !'= NULL);

/*
* Get the file descriptor assotiated with display
*/

xcn = XConnectionNumber (display);

fd = TscConsFileDesc();

for (55) {
/*
* Select the input source.
* The UNIX select system call can be used.

*/
/*

* Call the apropiate function depending on the file descriptor
* that has data available.

* if data on xcn call XNextEvent
* if data on fd call TscReb()
*/

60 TSC V1.2

Chapter 12: Building the distributor system 61

12 Building the distributor system

o The distributor system is the process that distributes call-to-primitive requests issued by the
command system to the application process (or input-providing application process) that im-
plements the requested primitive.

e The distributor system depends on which are the systems that form the whole application.

Thus, an specific distributor system must be generated for each application.

¢ The distributor system is generated with the utility
gu ~dist dist resources processes

o This tool generates the distributor process to file

dist.c
¢ The file name must be ‘dist’ if the tool that builds the loader shell script is used.

¢ The file ‘dist.c’ must be compiled and linked to get the distributor process.

62

TSC V1.2

Chapter 13: Building the application loader shell script 63

13 Building the application loader shell script

o A TSC application is composed of a set of systems. Three of them are provided by the TSC
itself (TSC systems). These are

‘sc’ Command System
‘se’ Input System
‘dist’ Distributor System. See Chapter 12 [Building Distributor], page 61, for details.

e The rest of the systems are built by the programmer (with the aid of the gu tool) and are
called application systeins.

¢ The systems that compose the applications are implemented as separate processes that com-
municates between them.
¢ A tool that loads all processes of an application is needed. These task will be performed by a
shell script called application loader shell script.
e The application loader shell script is generated by typing
gu -loader shell_script_name app.desc_file proc_desc_file

where shell_script_name is the name of the file thaw will contain the generated shell script.

¢ Running the application is achieved running the application loader shell script. In POSIX
environment this is
shell _script_name
in DEC/VMS environment this is

@shell _script_name

e The application loader shell script understands the following options

-u Usage message
-v Print TSC version and generation date
-e Verbose mode

-1 Processes stdout and stderr redirected to log files

64 TSC V1.2

Appendix A: Toy application listings

Appendix A Toy application listings

A.1 Thefile ‘. tsccomrc’

{
}

Funcions d’utilitat.

FUNCTION LlegirSReal(STRING missatge) RETURN REAL WITHIN QUA IS
BEGIN

RETURN ReadReal(missatge);
ENDFUNCTION

FUNCTION LlegirSEnter(STRING missatge) RETURN INTEGER WITHIN QUA IS
BEGIN

RETURN ReadInt(missatge);
ENDFUNCTION

FUNCTION LlegirQuadrat(STRING missatge) RETURN QUADRAT WITHIN QUA;

FUNCTION ColorQ (STRING missatge) RETURN INTEGER WITHIN QUA IS
BEGIN

RETURN ColorQuadrat(LlegirQuadrat(missatge));
ENDFUNCTION

FUNCTION PosQ (STRING missatge) RETURN PUNT WITHIN QUA IS
BEGIN

RETURN PosQuadrat(LlegirQuadrat(missatge));
ENDFUNCTION

FUNCTION LongQ (STRING missatge) RETURN REAL WITHIN QUA IS
BEGIN

RETURN LongQuadrat(LlegirQuadrat(missatge));
ENDFUNCTION

FUNCTION LlegirPunt(STRING missatge) RETURN PUNT WITHIN QUA IS
{

Llegeix un punt.

}
BEGIN

RETURN FisicPunt(ReadPhPoint(missatge));
ENDFUNCTION

FUNCTION RealPunt(STRING missatge) RETURN PUNT WITHIN QUA IS

66 TSC V1.2

{

b
BEGIN

Llegeix les coordenades numeriques.

RETURN CreaPunt(ReadReal("Punt X"), ReadReal("PuntY"));
ENDFUNCTION

FUNCTION LlegirQuadrat(STRING missatge) RETURN QUADRAT WITHIN QUA IS

{
Llegeix punts fins que un es correspon amb un quadrat.
}
QUADRAT q;
BEGIN
q := QuinQuadrat(LlegirPunt(missatge));
WHILE EsQuadratNul(q) != 0 DO
WriteString(“ERROR: El punt no correspon a cap quadrat");
q := QuinQuadrat(LlegirPunt(missatge));
ENDWHILE;
RETURN q;
ENDFUNCTION
{
Accions d’utilitat.
}
PROCEDURE ErrorQuadrat(QUADRAT q, STRING missatge) WITHIN QUA IS
{
Si q es el QuadratNul escriu el missatge. Altrament no fa res.
}
BEGIN
IF EsQuadratNul{ q) != O THEN
WriteString(missatge);
ENDIF;
ENDPROCEDURE
{
Comandes.
X

COMMAND CREA WITHIN QUA IS
PUNT p;
QUADRAT q;

Appendix A: Toy application listings 67

BEGIN

p := CreaPunt(50.0, 50.0);

q := CreaQuadrat(p, 10.0, 3);
ENDCOMMAND

COMMAND Quadrat WITHIN QUA IS

QUADRAT q;
BEGIN
q := CreaQuadrat(LlegirPunt("Quadrat, centre"),
LlegirSReal("Quadrat, costat"),
LlegirSEnter("“Quadrat, color"));
ErrorQuadrat(q, "ERROR: Quadrat Invalid");
ENDCOMMAND

COMMAND Consulta WITHIN QUA IS

QUADRAT q;

BEGIN
q := LlegirQuadrat("Consulta, Quin quadrat?");
WriteString("Centre, Longitud, Color");
WriteReal(CoorX(PosQuadrat(q)));
WriteReal(CoorY(PosQuadrat(q)));
WriteReal(LongQuadrat(q));
WriteInt(ColorQuadrat(q));

ENDCOMMAND

COMMAND Esborra WITHIN QUA IS
QUADRAT q;

BEGIN
q := LlegirQuadrat("Esborra, Quin quadrat?");
BorraQuadrat(q);

ENDCOMMAND

COMMAND Escala WITHIN QUA IS
QUADRAT q;
QUADRAT p;
BEGIN
p := LlegirQuadrat("Escala, Quin quadrat?");
q := CreaQuadrat(PosQuadrat(p),
LongQuadrat(p)*LlegirSReal("Escala, Factor escalat"),
ColorQuadrat(p));
IF EsQuadratNul(q) != O THEN
WriteString("ERROR: Quadrat Invalid");

ELSE
BorraQuadrat(p);
ENDIF;
ENDCOMMAND

68 TSC V1.2

COMMAND Color WITHIN QUA IS
QUADRAT gq;
QUADRAT p;
PUNT a;
REAL 1;
INTEGER c;
BEGIN
LlegirQuadrat("Canvi Color, Quin quadrat?");
PosQuadrat(p);
:= LongQuadrat(p);
:= LlegirSEnter("Canvi Color, Nou color");
BorraQuadrat(p);
q := CreaQuadrat(a, 1, c);
ErrorQuadrat(q, "ERROR: Quadrat Invalid");
ENDCOMMAND

0O = p o
W uwn

A.2 The file ‘context.h’

#define CONTEXT_NUL
#define CONTEXT_QUA 1

#define DEFAULT_CONTEXT 1

A.3 The file ‘initial.sc’

DEFINE CONTEXT QUA END DEFINE
DEFINE INITIAL CONTEXT QUA END DEFINE
DEFINE VALID CONTEXT CHANGE END DEFINE
DEFINE TYPE

QUADRAT IS INTEGER;

PUNT IS REAL, REAL;
END DEFINE

Appendix A: Toy application listings 69

DEFINE USER
{ Square related operations }
FUNCTION CreaQuadrat(PUNT p, REAL c, INTEGER color) RETURN QUADRAT

WITHIN QUA;

PROCEDURE BorraQuadrat(QUADRAT q)
WITHIN QUA;

FUNCTION QuinQuadrat(PUNT p) RETURN QUADRAT
WITHIN QUA;)

FUNCTION ColorQuadrat(QUADRAT q) RETURN INTEGER
WITHIN QUA;

FUNCTION PosQuadrat(QUADRAT q) RETURN PUNT
WITHIN QUA;

FUNCTION LongQuadrat(QUADRAT q) RETURN REAL
WITHIN QUA;

FUNCTION EsQuadratNul(QUADRAT q) RETURN INTEGER
WITHIN QUA;

{ Point related operations }

FUNCTION CoorX(PUNT p) RETURN REAL
WITHIN QUA;

FUNCTION CoorY(PUNT p) RETURN REAL
WITHIN QUA;

FUNCTION CreaPunt(REAL x, REAL y) RETURN PUNT
WITHIN QUA;

FUNCTION FisicPunt(PUNTF p) RETURN PUNT
WITHIN QUA;

END DEFINE

A.4 Thefile ‘quadrador.h’

void IniUsuari(int argc, char **argv);
void FiUsuari(void);
void CanviContext(int ContextPrevi, int ContextNou);

void CreaQuadrat(/* PUNT */ float pO, float pl /* Fi PUNT */,
float c, int color,

/* QUADRAT #*/ int *RetValO /% Fi QUADRAT */);
void BorraQuadrat(/* QUADRAT #/ int qO /% Fi QUADRAT */);
void QuinQuadrat(/* PUNT */ float pO, float pl /% Fi PUNT */,

/* QUADRAT */ int *RetValO /% Fi QUADRAT */);
void ColorQuadrat(/+# QUADRAT */ int qO /* Fi QUADRAT */,

int *RetVal);
void PosQuadrat(/* QUADRAT */ int qO /% Fi QUADRAT */,
/* PUNT #/ float *RetValO, float *RetVall /# Fi PUNT %/);
void LongQuadrat(/* QUADRAT */ int qO /* Fi QUADRAT */,

float *RetVal);

void EsQuadratNul(/* QUADRAT */ int q0 /* Fi QUADRAT =/,
int *RetVal);

70 TSC V1.2

void CoorX(/* PUNT %/ float pO, float pl /* Fi PUNT */,
float *RetVal);
void CoorY(/* PUNT #/ float pO, float pi /* Fi PUNT */,
float *RetVal);
void CreaPunt(float x, float y,
/* PUNT x/ float *RetValO, float *RetVall /* Fi PUNT %/);
void FisicPunt(/* PUNTF */ int pO, float pl, float p2 /* Fi PUNTF */,
/* PUNT */ float *RetValO, float *RetVall /* Fi PUNT */);

A.5 The file ‘quadre.c’

#include <math.h>
#include <float.h>
#include <limits.h>
#include '"quadrador.h"
#include "context.h"
#include "tscg.h"

/*

* Constants del modul
*/

#define MAX 200
#define NUL -1
#define TRUE 1
#define FALSE O
#define EPSILON 2.0

/*
* Estructures de dades
*/
struct quadre {
float x,y;
float lon;
int color;
int ident;

};

static struct quadre tq[MAX];
static int pbuit;
static int identificador;

/*
* Funcions de control

*/

Appendix A: Toy application listings

void CanviContext(int a, int b)

{3

void FiUsuari(void)

28
void IniQuadre(void);

void IniUsuari(int argc, char **arcv)

{
float r(256], gl256], b[256];
float zero = 0.0;
float cent = 100.0;
float setcents = 700.0;
int un = 1;
int i;
FORTRAN(g_ini) ();
/* carreguem paleta */
r[0] = 1.0; g[O] = 0.0; b[0] = 0.0;
r(1] = 0.0; g(1] = 1.0; b{1] = 0.0;
r[2] = 0.0; gl2] = 0.0; b[2] = 1.0;
r[3] = 1.0; g[3] = 1.0; b[3] = 0.0;
r{4] = 1.0; gl[4] 0.0; b[4] = 1.0;
r(5] = 0.0; g[5] = 1.0; b[s] = 1.0;
r[6] = 1.0; gl6] = 0.0; b[6] = 0.0;
for (i=7; 1<256; i++)

r(i] = gli] = b[il = 0.0;
FORTRAN(g_pal) (r,g,b);
/* creem finestra */
FORTRAN(g_cregra) (&un,
&zero, &zero, &setcents, &setcents,
&zero, &zero, ¢, ¢);

FORTRAN(g_switch) (&un);
FORTRAN(g_syncro) () ;

¥

/*

* Funcions privades del modul

*/

static int cerca(int q)

{

int i;

i=0;
while (i < pbuit &% tq[il.ident != q) i++;
return i;

void pinta(float x, float y, float 1, int c)
{

float dx, dy;

int un = 1;

/* pinta x/

FURTRAN(g_lcol)(&c);

dx = x - 1/2;

dy = y - 1/2;
FORTRAN(g_move) (&dx, &dy);
dy += 1;

FORTRAN(g_draW)(&dx, &dy);
dx += 1;

FORTRAN(g_draw) (&dx, &dy);
dy -= 1;

FORTRAN(g_draw) (&dx, &dy);
dx -= 1;

FORTRAN(g_draw) (&dx, &dy);

FORTRAN(g_marker) (&un, &x, &y);
FORTRAN(g_syncro) () ;
}

/*
* Primitives del modul

*/

void IniQuadre(void)
{

int 1i;

identificador = pbuit = 0;

}

void CreaQuadrat(float x, float y, float 1, int col, int *ret)
{

int i;

float dx, dy;

TSC V1.2

Appendix A: Toy application listings

/* verifiquem que el quadre cap */
if ((x - 1/2.0) < 0.0 I
(x + 1/2.0) > 100.0 ||
(y - 1/2.0) < 0.0 ||
(y + 1/2.0) > 100.0) {
*ret = NUL;
return;

/* cerquem lloc buit */
if (pbuit >= MAX) {
*ret = NUL;
return;
} else {
/* reservem el buit */
i = pbuit++;

}

/* assignem valors */
tqli].x = x;

tqlil.y = y;

tqli]l.lon = 1;
tq[i].color = abs(col ¥ 6);
tq[i].ident = identificador++;

pinta(x,y,1,tq[i].color);

/* retornem el valor del quadre */
*ret = tq[i].ident;

void BorraQuadrat(int q)

{

int i;

q = cerca(q);
/* verifiquem quadre existent */
if (q < pbuit) {
pinta(tqlql.x, tqlql.y, tqlql.lon, 7);
for(i=q; i < pbuit-1; i++)
tqlql = tqlq+1];
pbuit--;

74

void EsQuadratNul(int q , int *res)

{
3

*res = (q == NUL) 7 (1) : (0);

void QuinQuadrat(float x, float y, int *res)
{

int i;

float d;

i = 0; d = FLT_MAX;
while (d > EPSILON && i < pbuit) {
d = (tqlil.x - x) * (tq[il.x - x) +
(tqlil.y - y) * (tqlil.y - ¥);
i++;

}

if (d <= EPSILON)

*res = tq[i-1].ident;
else

*res = NUL;

void ColorQuadrat(int q, int *res)

{
}

*res = tql cerca(q)].color;

void PosQuadrat(int q, float *x, float *y)

{

int i;
i = cerca(q);

*x = tq[il.x;
xy = tqlil.y;

void LongQuadrat(int q, float *res)

{
}

*res = tql cerca(q) J].lon;

TSC V1.2

Appendix A: Toy application listings

void CoorX(float x, float y, float *res)

{
}

*res = X;

void CoorY(float x, float y, float *res)

{
}

*res = y;

void CreaPunt(float x, float y, float *rx, float *ry)
{

*rx = Xx;
*ry Yy

void FisicPunt(int f, float x, float y, float *rx, float *ry)
{

int un = 1;

FORTRAN(g_ingreal)(&un, &x, &y, rx, ry);

A.6 Thefile ‘trans.sc’

COMMAND Transllada WITHIN QUA IS
QUADRAT q;
QUADRAT p;
BEGIN
p := LlegirQuadrat("Transllada, Quin quadrat?");
q := CreaQuadrat(LlegirPunt("Transllada, Nou centre"),
LongQuadrat(p),
ColorQuadrat(p));
IF EsQuadratNul(q) !'= O THEN
WriteString("ERROR: Quadrat Invalid");

ELSE
BorraQuadrat(p);
ENDIF;
ENDCOMMAND

]

76

TSC VI.2

Appendix B: DEC/VMS vs. POSIX environment

~1
=1

AppendixB DEC/VMS vs. POSIX environment

Working in the DEC/VMS environment or in the POSIX environment is acomplished in a very
similar way. Nometheless, due to deep diferences between hoth environments, TSC: programmer
and customizer will observe some differences. These differences are sketched helow:

1. The set of operations available to build input-providing application systems is distinct when
working on DEC/VMS. In fact, while POSIX operations relay on the file descriptor concept,
DEC/VMS equivalent operations relay on the event flag mechanism. See Chapter 11 [Building
Input User Process], page 53.

2. The application loader generated by gu is a Bourne compatible shell script in POSIX envi-
ronment. In DEC/VMS environment it is a proper command procedure. Because of this,
the POSIX invocation is done bye typing the filename while in DEC/VMS environment the @
symbol should precede the command procedure file name. See Chapter 13 [Building Loader],
page 63.

3. There may exist differences in the TSC installation on your site. Ask your system manager
about.

79 TSC V1.2

Appendix C: Installing TSC 79

Appendix C Installing TSC

C.1 POSIX installation

TSC is distributed in source form. All the files are packed in a tar file usually named ‘TSCv*.tar’
where the star means the version number. Suppose that the file is named ‘TSCv1-2.tar’, then it
should be expanded doing

$ tar xvf TSCvi-2.tar

after that, a directory named ‘tsc’ is created which contains all the source files. The directory
structure resembles the following;:

tsc +--> Makefile
+--> Make.sun4
+-=> Make.hp
+--> Make.hp_cc
+--> comp.awk
+--> comandes +--> Makefile

| +-=>
+--> contrib +--> Makefile
| +--> menus +--> Makefile
| | 4-o>
| +==>
+--> doc +--> Makefile
| +--> README
| +-=>
+--> drivers +--> Makefile
| +==>
+--> entrada +--> Makefile
| +-=> .
+--> gentsc +--> Makefile
| +==>
+--> tads +--> Makefile
+-->

Once the is tar file is extracted, installation process! can begin. Please follow the points below:

' Installation process requires a GNU make compatible make and a flex compatible utility. Thus
if your installation doesn’t have this tool. please get GNU make and flex from Frec Software
Foundation and install it.

30

(e}

6.

TSC VI.2

Change the current directory to the root directory of the extracted tree:
$ cd tsc

Set the host type where you want to compile. Nowadays, allowed host types are:

sun4 Sun workstations under Solaris 1.x and running GNU gce.
hp HP workstations running hp-ux and using the native compiler.
hp_cc HP workstations running hp-ux and using the GNU gec.

To set the correct host define the HOSTTYPE environment variable to the host type identifier.
For instance, using Bourne shell the sun4 host type can be set doing
$ HOSTTYPE=sun4; export HOSTTYPE

If your host type isn’t defined, you should establish a new identifier (say sg) and copy any one
of the files named ‘Make.*’ to ‘Make.sg’. For instance.
$ cp Make.sun4 Make.sg

now, edit the ‘Make.sg’ file and try to define the correct environment following the comments
in it. When you have finished, define the new HOSTTYPE value.

The installator must decide where TSC applications should live. This should be done hefore
TSC is generated because this information is needed during compilation time. By default TSC
is installed in the ‘/usr/local/tsc’ directory and this is the recommended place. If you choose
the default, nothing special should be done when using make. Otherwise, you must select two
directories (that can be the same) where TSC will be installed. The first one containing the
executables and the second one containing other files. Let’s say, for instance, that the first
is ‘/usr/local/bin’ and the second ‘/usr/local/etc’. Then every invocation of make from
now to the very end of the installation process should be done as in the example:

$ make \
INSTALL_TSC_EXE=/usr/local/bin \
INSTALL_TSC_AUX=/usr/local/etc \
chkvars
Configuration variables can be verified by typing the command:

$ make chkvars

If variable contents are correct start TS(! generation by typing
$ make all

TSC generation should run fine. After that, installation process can be done by typing
$ make install

Remember that you need permission to create files in the directories where TSC is being
installed.

C.2 DEC/VMS installation

Appendix C: Installing TSC 81

. The DEC/VMS version of TSC' is automatically built from the POSIX one. To get a tarfile

containing the DEC/VMS version, you should first get a copy of the TSC distribution directory
tree on a Sun host? as done in the POSIX installation. Then, you must do the following steps:
1. Change the working directory to ‘tsc’.
2. Execute the following GNU make target:
$ make vms

3. The result must be a tarfile named ‘TSCvms.tar’

Now, the file ‘TSCvms.tar’ must be copied to the DEC/VMS host where you want to install
it. Use any kind procedure (ftp for instance).

Now, in the DEC/VMS host, change the default directory to the place where ‘TSCvms.tar’
has been copied. Be sure that this directory doesn’t contain anything else,

Using the tar command in VMS/POSIX environment, extract the ‘TSCvms .tar’ files doing:
VMS> posix
POSIX> tar xvf TSCvms.tar

POSIX> exit
After that, the directory must contain the extracted files.
Start building and installing the product by typing:

VMS> Qcompile
This command procedure will ask for the directory where TSC should be installed. Please
answer an absolute path name for the directory NOT A RELATIVE ONE. Be careful with the
directory protections: you must have permission to create files in the directory. For instance
you can answer:

Installation directory for TSC: DISK$A:[TOOLS.TSC]
Compilation and installation process begins automatically.
After that, installation is complete. If an user wants to use TSC, he must include in his login
file a call to execute the command procedure ‘INITSCENV®. This file is located in the TSC

installation directory. Thus a line like the following must be added to the ‘LOGIN.COM:
$ @ DISK$A:[TOOLS.TSC]INITSCENV

* In future versions any POSIX host will be sufficient

82

TSC VIR

Appendix D: Formal syntax descriptions

Appendix D Formalsyntax descriptions

D.1 Command definition language syntax

command

proc_proto

procedure

func_proto

function

var_decl
param_list
param
context_list

sentences

BEGIN

COMMAND command_name WITHIN context_list IS
var_decl

sentences
ENDCOMMAND

PROCEDURE proc_name "(" param_list ")"
WITHIN context_list ";"

PROCEDURE proc_name "(" param_list ")"
WITHIN context_list IS
var_decl
BEGIN
sentences
ENDPROCEDURE

FUNCTION func_name "(" param_list ")" RETURN type_name
WITHIN context_list ";"

FUNCTION func_name "(" param_list ")" RETURN type_name
WITHIN context_list IS
var_decl
BEGIN
sentences
RETURN expression ";"
ENDFUNCTION
{ type_name variable ";" }
[param { "," param }]
type_name param_name

context_name { "," context_name }

{ sentence ";" }

83

84

sentence

assignement

condicional

case

a_case

otherwise

iteration

context_chng

procedure_call

expr_list

assignement
condicional
case

iteration
context_chng
procedure_call

variable ":=" expression

IF expression THEN
sentences
ENDIF
IF expression THEN
sentences
ELSE
sentences
ENDIF

CASE expression IS
{ a_case }
[otherwise]
ENDCASE

WHEN constant DO
sentences

OTHERWISE sentences

WHILE expression DO
sentences

ENDWHILE

CONTEXT context DO

sentences
ENDCONTEXT

proc_name "(" expr_list ")"

[expression { "," expressio }]

TSC V1.2

expression ::= "(" expression ")
| expression OR expression
| expression AND expression
| expression "<" expression
| expression "<=" expression
| expression ">" expression
| expression ">=" expression
| expression "=" expression
| expression "!=" expression
|" NOT expression
| expression "+" expression
| expression "-" expression
| expression "*" expression
| expression "/" expression
| expression "Y' expression
| "-" expression
| variable
| constant
| function_call
constant integer | real | string
integer ["-"1] digit { digit }
real ["-"1] digit { digit } "." digit { digit }
string "t { character } """

function_call

Appendix D: Formal syntax descriptions

func_name "(" expr_list ")*

variable identifier
param_name identifier
command_name identifier
proc_name identifier
func_name identifier
context_name identifier

type_name INTEGER | REAL | STRING | identifier

identifier ::= letter { letter | digit | "_" }

D.2 Resource description file syntax

36

file

def_context

context_list
context_name
def_ini_context

def_cha_context

def_type

type_name
elem_type_list
elem_type

def_user

subprog

procedure

proc_name

function

funct_name
param_list

parameter

def_context
def_ini_context
def_cha_context
def_type
def _user
DEFINE CONTEXT
context_list
END DEFINE
context_name { "," context_name }
identifier
DEFINE INITIAL CONTEXT context_name END DEFINE
DEFINE VALID CONTEXT CHANGE
{ context_list TO context_name ";" }
END DEFINE
DEFINE TYPE
{ type_name IS elem_type_list ";" }
END DEFINE
identifier
elem_type { "," elem_type }
INTEGER | REAL | STRING | PUNTF
DEFINE USER
{ subprog }
END DEFINE

procedure | function

PROCEDURE proc_name "(" param_list ")"
WITHIN context_list "“;"

identifier

FUNCTION funct_name "(" param_list ")"
RETURN type_name WITHIN context_list ’;°

identifier
[parameter { "," parameter }]

type_name parameter_name

TSC V1.2

Appendix D: Formal syntax descriptions 87

identifier

parameter_name

identifier -~

letter { letter | digit | "_" }

D.3 Proces-Context Mapping File syntax

file = line { NEWLINE line }

line = process_name context_id { context_id }
process_name = identifier

context_id = identifier

identifier letter { letter | digit | "_" }

38 TSC V1.2

Appendix E: Known errors 89

Appendix E Known errors

When somebody aborts a virtual machine process. The virtual machine doesn’t recover grace-
fully the correct state.

The journaling system is hardware is hardware-dependent. Therefore, the Journal files cannot
be re-executed at distinct sites. This is only true for the applications using graphic input.
The journaling system doesn’t correctly support a command abort.

When somebody has defined a subprogram prototype but the implementation of the former
hasn’t been given in a command definition file, the compiler only emits a warning about. An
error should be raised instead.

Sometimes, the command compiler produces wrong results when a function is defined and a
syntactical error exists in the parameter list. The bug is related to the mechanism used to
insert the function being defined into the correct family list.

When a subprogram without known implementation is called —at run time—— it simply returns.

It should abort the current command and print an error message.

The command completion mechanism has an undesirable side effect: it is imipossible to execute
a command with a name that is a prefix of another command.

90

TSC V1.2

Appendix F: Wish list 91

Appendix F Wish list

N o

O

10.
11.
12.
13.

16.

17.
18.

19.

20.

It can be useful to allow the boolean data type as a predefined type.
Review the command completion mechanism:

¢+ Allow functions to be included in the completion mechanism. Study a clever mechanism
allowing only the subset of correct functions to be completed.

e Modify the mechanism to achieve something similar to the tcsh completion mechanism.
Study the case-sensitivity of the commands. Is it possible to give a good solution for all users?

Provide the applications builder with tools that allow him to know accounting data for the
application: statistics about the commands and primitives issued by the user, statistics about
the response time of the primitives and commands, statistics about memory usage, etc.

Generate code for languages other than ANSI-C (C++, F...)
Change the prompt for input system depending of context.

Add some metacommands to let the user know space left in the repository, symbol table and
other fixed size structures.

Reduce fixed size data structures to the minimum.

Study the problem of multilingual sets of commands. Study what about the standards.
Improve the treatment of messages (ervors, warnings, ...) in the compilers used by the system.
Add a user-friendly feature to allow the user to define commands interactively.

Make the systems communicate via network.

Let the command interpreter to parse and understand expressions. How to allow the user
defined functions to participate in this expressions?

Make processes and contexts and independent matter as it really is.

Study the complex problem of the input functions. Don’t forget the relationship with the
interruptibility.

Study a new communication protocol solving some of the main problems: crash recovery and
others.

Add the ability to generate const modifiers for the automatically generated ANSI-C code.

Study how the command syntax that the user should follow can be flexibilized. I'm talking
about what the user should type to run a command. This is the dialog syntax.

Think about adding a window showing a selectable set of replaceable functions. This would

allow the user to easily perform a substitution.

Wrote a set of man pages for the TSC.

92 TSC V1.2

Appendix G: Version to version change log 93

Appendix G Version to version change log

G.1 From V1.1to V1.2

N

O

10.

Communication mechanism has been rewritten layering on pipes.

Implementation of the context mechanism has been partially redesigned and reimplemented
in order to achieve extensibility on the number of allowable contexts. Now, increasing the
number of allowable context should take little work.

The number of allowable contexts has been raised to 32 (on most of the architectures).

The set of tools allowing the generation of part of the application have heen completely re-
designed and reimplemented. All the old tools (gu, gc, gd, gm) have been substituted by an
integrated tool (gu) written in € that can do the same work. The main goal achieved with
this change is the elimination of a lot of operating-system dependent scripts thus making the
new product more transportable, fast and reliable.

The generated scripts that load the application have been enhanced. Now, several options are
ofered about the verbosity of the application and the creation of log files is optional. Care has
been taken in making the script robust an the use of kill... has been replaced by the less
awkful “C. The new generated script assures that any number of applications can be executed
simultaneously in distinct working directories. If an application is working already in the same
directory, the starting application detects it and aborts gracefully.

Now, generation tools don’t produce object files or executable ones. This policy don’t enforces
the application’s designer to be chained to a given compiler as in previous version. In addition,
a greatest independence of the tools from the operating system is achieved.

Because of the change in the communication mechanism, now time consuming processes have
been eliminated. Thus the consume of CPU time has drastically decreased.

A lot of work has been spent in achieving a higher degree of portability. Now all the TS(! set
falls into the POSIX.1 and X11R4 standard thus allowing to be ported easily to a great number
of architectures. Modules have been classified into categories depending on the standard that
they require. This policy assures an easy maintenance without breaking the portability rules.

Installation policy has been redesigned. Now public executables of TS(! can be installed into
an path contained directory (say for instance ‘/usr/local/bin’). This makes the TSC user
not to worry about where the utilities are. Other useful files and internal executables are
located in a private directory (say for iustance ‘/usr/local/tsc’).

Work has been spent in offering a common aspect to the commands of TSC. Now most of the
comma’s accept minimum set of flags and all of them can show a little Lelp on error or user
demand.

94

11.

12.

13.

TSC V1.2

Project organization has been notably improved. Now it’s easy to maintain a multi-architecture
set of executables and installation procedures have been automatized.

An extensive user manual has been writfén. The manual contains all the information needed
by an application designer that wants to use TSC. The manual is intended to be useful to the
novice user as well as to the expert one.

TSC has been ported to DEC/VMS. Communication drivers have heen rewritten using mail-
boxes and a slightly distinct set of primitives. Therefore, the Event Flag synchronization
mechanism is now supported in the DEC/VMS configuration. Given that improvement, it is
possible to write portable applications spending a small effort.

r

Index

Index

CBSCCOMIC ... i e e e 41

‘.tscomrc’ file, example of use, 11
& N R N T e e e T E e e 01 st s man 23

3

$iin s e i 45 R 8 B e S 24

Abort 31
ActivateRecording......................l 43
ARD 23
application architecture............................. 3
application contexts set............................ 35
application data type, definition.................... 21
application data type, definition of 36
application data type, example................]
application description file......................... 35
application description file, example. 9
application loader, example of obtaining........ 11
application loader, generation of 63
application primitives, definition.............. 11
application primitives, definition of............, 36
application primitives, example........... 8
application primitives, example of building, ... 10
application system, definition 4
application system, example of building 10
application, basic building steps..................... 7
assignment i 23

authorization graph, context change sent. and...... 26

authorization graph, description of 35
authorization graph, use of......................... 30
auxiliary systems, definition. 4

B

95
C
CanviContext......... oiiiiiiiiiinniinann.. 7
CASE ... 24
ChangeContext.............ciiiivnniinnn. 42
CloseJournalc.ciiiiiiiiiinnninnnn 43
command. ... 27
COMMAND e 27
command compilation, definition................... 17
command language, definition. 17
command language, example ol use 11

command loading, in command system start-up.... 41

command system, definition., 5
compilation unit. L, 31
Compile i i 42
completion mechanism, example of nse............. 14
completion mechanism, nse of 46
conditional sentence 24
CONTEXT ... e 25
context change rules, list ol 26
context change sentence......................... ... 25
context change statement, useof 30
context mechanism 30
current context e, 30
customizer, definition 3

D

DeactivateRecording 43
DEFINE CONTEXT i, 35
DEFINE TYPE i, 36
DEFINE USERo 36
dist.. .o e 63
dist source. 8
distributor system, definition. 5
distributor system, example of obtaining 1
distributor, generation of., 61

ELSE 24
equivalent functions, definition 44

expression, assoclativityo oo, 23
expression, definition. i 22
expression, operator priority 22

F

L B o 8
function .izermsmra s S SRR T F R S 29
FUNCTION .. oot i e e i 29

G

generalized cond. sent., definition.................. 24
generalized cond. sent., discriminant 25
generalized cond. sent., run-time ervor 25
generator, definition L 1
BU generator. e 8
guutility49

I

identifier.o 17
T e . ST 24
initial context....... ... i 35
initial context, definition 35
IniUsuari.... o i, 8
input output system, definition. 5
input-output system, window appearance,.......... 13
installation procedure.............................. 79
INTEGER i 18
INTEGER, arithmetic operations. 18
INTEGER, boolean operations.................... ... 18
INTEGER, constants................... . .ooiiuii.. 19
interrupt mechanism, example of use............... 14
interrupt mechanism, use of 43
iterative sentence, 25

L

‘Libtscg’library.oooooiiiiiiiii 10
ListSymbolTableooviiviiinennininnnn.s 42

M

main loop, definition............ 11
main loop, example of building.. 10
metacommand, example ol use.. 15

TSC V1.2

OpenJ ournal s « o s o i s a2 42
OTHERWISE i i 24

P

Parameter e 28
PATAMELErS .. .o e 29
Procedure.o.vu i 28
PROCEDURE i 28
process-context mapping file A rmas 39
process-context mapping file, example............... 9
programmer, definition. 3
Prototype. . ..o 32
PUNTF .. s 21

ReadInt 18
ReadJournal................ 43
ReadPhPoint.......... 21
ReadReal 19
ReadStepJournal 43
ReadString..........l 20
REAL . 19
REAL, arithmetic operations........................ 19
REAL, boolean operations........................... 19
REAL, constants, 20
TECUTSIVILY ... 28, 29
referencing environment, refered to contexts........ 30
referencing environment, refering to subprograms. .. 32
replacement rules, list ol 32
repository, definition........... 17
RepositoryStatistics............................ 42
RETURN 29
run-time set of systems, definition.................. 12

S C R R A T R S T A S S S S S 305 63
B s e m e WIS B e s e ek T R 63
sequence control 24

Index

set of contexts.......... i, 30
STRING ... e 20
STRING, constants............ccouuienennnnonnonnn., 20
StringCompareooeeiiiniiii i, 20
StringConcat i, 20
subprogram. 26
subprograms set i i 30
substitution mechanism, example of use............ 14
substitution mechanism, useof..................... 43
T

THEN ... 24
token syntax, application input providing systems.. 54
TSC datatype, definition. 18
TSC primitives ..., 18
TSC systems, definition. 4
TscArrenca................... i a4
“TSCCOMRC. ... ittt e 41
TscConsEFN.. i, 53
TscConsFileDesc...........ooiiiiiinniinnnan... 53
TscConsIOSB.............coooiii ... 53
TscContextId........, 54
TscDefaultContext......o.vouenuinnenninnnn.u.. ., 54
TscEnvAbort...... ..o, 54

97
TscEnvFi o 54
TscEnvPunt........ 54
TscEnvPuntFinal.................c.o.iiiiinnnn... 54
TscEnvToken........., 54
Taclni ;c;ovecesssmaassn. anaTisies 53
TscNomContexto, 54
TscNullContexto.ooviorirnnine .. 54
TscReb ... s s RS S 54
U
user categories, definition i, 3
user, definition. 3
vV
ValidPhPointo, 21
variable object......... 22
\%%
WHEN. i s s, SR « @ o 24
WHILE.. ... i s 25
WITHIN.. i 27, 30
WriteInt i i 18
WriteReal i i, 19
WriteString............ ... i i 20

TSC VIR

