o 14OG K 20\
((p\(\
{

Prettyprint: A simple tool
for typesetting algorithms

Conrado Martinez

Report LSI-94-7-T

322 UPC

vat &'Informbtica

cu
ke Biblioteca

de Barcelona -

44 JUN, 1995

Prettyprint: A Simple Tool for Typesetting
Algorithms

Conrado Martinez*

March 16, 1994

1 Introduction

This document presents a suite of tools for producing prettyprinted algo-
rithms using IXTEX [2]. Writing an algorithm like the one in Figure 1 using
standard IATEX can be a cumbersome activity, since one must take care of
a bunch of minor details: set proper fonts for keywords and identifiers, keep
track of the indentation of each line of code, etc.

For this reason, many people use IATEX’s verbatim environment to in-
clude algorithms and programs in their documents. Everything written in-
side this environment is typeset in the output with \tt font. All characters
go to the final output as they were typed in the input. The rule also applies
to white space: spaces, tabs, newlines, etc. are retained. Therefore, it is
really easy to write pieces of code, but you lose the ability to include special
symbols, mathematical formulas, etc.

The main tool that we present is a small program, prettyprint, that
replaces the keywords appearing in the input by corresponding macros (for
example, if by \IF) and does its best at identifying some identifiers to
typeset them in a different font. In particular, it recognizes type names
and procedure names, and marks them in order to typeset them in ordinary
roman font. The language that one should use to express the algorithms
is a mixture of Dijkstra’s guarded commands and PascaL-like constructs.
All the manipulations are done using pattern-matching and some reasonable
heuristics. Therefore, the program is not as reliable as a true prettyprinter

*Departament de Llenguatges i Sistemes Informatics.Universitat Politecnica de
Catalunya.Pau Gargallo 5, 08028-Barcelona, Spain.Contact e-mail: conrado@lsi.upc.es

program hello_world
var i, n : integer
end;

Read(n);

for i:=1 to n do
Write(”Hello world!”)

end

end.

Figure 1: A short prettyprinted program.

can be, but on the other hand it is very short and simple. It is not very
difficult to include new features and, last but not least, it is amazingly easy
to extend or change the “language” used to write the code. A more complete
description of the program and a short explanation about how it works is
given in Section 2.

The task done by prettyprint is completed by means of a new IATEX
environment called pcode and appropiate definitions for the macros intro-
duced in the first step by prettyprint. The environment pcode is throughly
explained in Section 3. Several other useful macros and variants of the basic
pcode environment are described in Section 4.

Although the algorithms that prettyprint is meant to typeset are not
written in a language that can be compiled and executed, I decided to make
the tools compatible with noweb, a language-independent literate program-
ming tool developed by Norman Ramsey [3]. The joint use of noweb and
prettyprint, as well as some technical details on the way the compatibility
is achieved, is described in Section 5.

2 prettyprint

The first step of the prettyprinting process is done by a simple UNix filter
called prettyprint!. To use it type:

It was recently distributed as part of noweb release 2.5, under the name d2tex.

prettyprint [options] filenamel! filename?2 ...

Each of the files specified in the command-line is proccessed in turn. If
no file name is given then the input comes from the standard input stream.
The output of the program is printed in the standard output stream.

To understand better what the program does, it is interesting to give
some details of its implementation. The script prettyprint is written in
AwK and relies heavily on pattern-matching; in fact, it does not know any-
thing about the syntax of the programming language that it is supposed to
prettyprint.

Only those lines of the input that go inside a IATEX environment starting
with \begin{pcode} and ending with \end{pcode} are processed; the rest
is directly copied to the standard output. There are three basic things that
the program does to the lines inside the pcode environment:

1. It spots the places where special patterns (the keywords) occur and
replaces them by corresponding TEX macros. The keywords that the
program recognizes are specified in the so-called keywords file and the
corresponding macros are specified in the macros file. For instance,
all isolated apparitions of the string if are replaced by \IF. Similarly,
while is replaced by \WHILE, array by \ARRAY, etc.

2. Since we want to typeset in roman font the identifiers of types, pro-
cedures, modules and functions, the script tries to identify these. It
follows some heuristic rules to do this: if an identifier follows a semi-
colon ’:” and another identifier precedes the semicolon, it is likely that
the former is the name of a type in a variable declaration or parameter
list; if an identifier precedes an equal sign =’ and then it follows the
macro \RECORD? or the macro \ARRAY then it must be a type identifier
in a type definition; if an identifier precedes an opening parentheses ’(’
then the identifier should be a procedure or function name in a defini-
tion or a call, etc. Whenever a type or procedure identifier is “recog-
nized”, prettyprint encloses it inside vertical bars; e.g. integer —

|integer| .

3. None of the rules above applies to text that is inside a comment. Ev-
erything between the symbols /* and */ is considered by prettyprint
as a comment, and replaced by

2The first phase should replace the keyword record by the macro RECORD,

\COMMENT{the original comment}

Of course, these rules fail sometimes (specially the second one) and in-
troduce some restrictions on the layout of the input: for instance, if one
writes

type intvector =
array [1..10] of integer

then prettyprint does not recognize intvector as the identifier of a type.
The next two excerpts show part of the input given to prettyprint and
its corresponding output (these lines were the ones written to produce our
first example in Figure 1).
If the input contains the following lines inside a pcode environment

program hello_world
var i, n : integer
endvar;

Read(n);
for i:= 1 ton do

Write({\tt "Hello\ World"})
endfor

endprogram.
then the output should look like:

\PROGRAM |hello_world|
\VAR i, n : linteger]|
\ENDVAR;

|Readl(n);

\FOR i:= 1 \TO n \DO

IWrite| ({\tt "Hello\ world!"})
\ENDFOR

\ENDPROGRAM.

The prettyprinter is really simple and easily modifiable. Also the fact
that it works with two files makes it easy to use it for different “programming

languages”. The default macros and keywords files, to write algorithms in
English, are the file NAMES and the file names, respectively.

But you can use other different files, other than the default ones. For
instance, I use the file NAMES as the macros file and nombres as the keywords
file, to write algorithms using keywords in Spanish. This behavior can be
achieved using option -s of the prettyprinter.

I shall not describe the syntax of the “programming language” used to
write the algorithms. Therefore, I strongly recommend to have a look at the
keywords file(s) you plan to use, and the sample files in the distribution.

The macros defined in the standard file called NAMES are a kind of “in-
termediate” language that can be easily modified, extended, etc. The first
rule that you must follow to build or modify a macros-keywords pair is that
every macro and the keyword it translates should appear a matching po-
sitions in the corresponding file. Furthermore, keywords are not restricted
to be words: for instance, the patterns [], '=, >= and many other non-
alphabetic patterns are defined as keywords in the standard keywords files:
names, nombres, noms. The second rule is that only letters can be used for
the words that appear in the macros file since these words are names for
TEX macros; in order to avoid confusions with other TEX macros, it is wise
to use only uppercase letters for these macros.

Finally, the program has several available options:

-s to prettyprint code that is written using Spanish keywords
-c to prettyprint code that is written using Catalan keywords

-f F1 F2 to prettyprint code that is written using keywords file F1 and
macros file F'2.

3 The pcode environment

The prettyprinter translates the input to some suitable representation for
the second step. Interspersed with text, figures, tables, etc. we should find
some pieces that look like

\begin{pcode}{}
\IF

a > b \THEN max:= a
\ELSE a \LEQ b \THEN max:= b
\ENDIF

\end{pcode}

The definition of the macros \IF, \THEN, etc. and the pcode environment
are the responsible for producing the following output, given the input above:

if

a>b — maz:=a

la<b — maz:=1b

fi

The pcode environment is the main definition in the style file called
algoritmos.sty. This style file also contains several other useful definitions
and variations of the pcode environment, that are explained in section 4.

I have been heavily influenced by Martin Ward’s program.sty and to a
less extent by George Ferguson’s code.sty, when writing the definition of
the pcode environment.

The specific characteristics of the environment are:

1.
2.

It has an additional parameter for cross-referencing (see Section 5).

There is a separation between the code and the surrounding text that
can be controlled using the length parameter \algosep.

. A rule is drawn at the top and bottom of the code. The width of the

rules is defined by the length parameter \algoruleheight. Its default
value is Opt.

. The font size of the output is controlled by the macro \algofontsize.

The default vaule is \footnotesize.

. All lines are typeset in math mode; the exception to this rule is the

text written inside a comment, which is typeset in paragraph mode.

. The vertical bars are active characters. The sequence |something|

prints something in the font specified by \identinfont (\rm is the
default), if it appears anywhere inside the pcode environment. On
the other hand, |something| prints something in the font specified
by \identoutfont (\sl is the default), if it appears outside a pcode
environment.

7. Underscore characters issued inside a pcode environment produce .’ in
the output; inside any other math environment they are used for sub-
scripts, as usual, e.g. x_2 produces z;. Finally, they also produce an
underscore if they appear outside of the pcode or math environments.

8. Newlines are obeyed; if you want to break a line in the input, but not
in the output, put a character % at the end of the first line of the input.

A few comments on the specific characteristics listed above are in order.
First, if you are not using these tools with the literate-programming tool
called noweb, the cross-referencing parameter of the environment is useless.
Nevertheless, you must write it, even if it is empty. Second, the vertical
bars can be used outside the pcode environment, as a quoting mechanism.
If you need the vertical bars to appear in your document, you can use one
of the following alternatives: use the macro \vert, use the macro \origbar
or temporarily disable the vertical bar as an active character. Third, if you
want to have subscripts anywhere inside a pcode environment you must
use the macro \sb instead of the underscore. Fourth, you can use standard
IATEX commands to produce mathematical symbols, such as \alpha or \sum
inside a pcode; but do not forget, that comments are processed in paragraph
mode!

It is clear that the special macros, the ones likely produced by prettyprint,
appearing inside a pcode environment are defined in such a way that: 1)
they produce a symbol or keyword in the appropriate font; 2) they introduce
or remove some amount of indentation.

For instance, \THEN prints in the current definition a long right-pointing
arrow (—) and sets a tab. The following lines will be indented and aligned
with the right end of the arrow, unless one of them starts a new guarded
command, i.e. begins with \ELSE. This last macro prints a small box ([)
and removes the indentation introduced by the last \THEN command.

The exception to the rules 1 and 2 above is the macro \COMMENT, that
has an argument and processes it in TgX’s paragraph mode. Hence, if you
need to write a formula or mathematical symbol inside a comment, you must
change to math mode, i.e. enclose it within $’s.

If you want to change the behavior of some macros you can redefine them
at the beginning of the document. Also, you can produce a totally new set
of macro definitions and forget about the standard ones.

The three-part design of the “system” (keyword — macro — TEX defi-
nition) allows to generate prettyprinted output that seems out of reach for

a simple tool like prettyprint. For instance, assume that we want to use
brackets to delimit conditional constructs, that is, pure Dijsktra’s notation.
The prettyprinter would have to know about the syntax of the language
if we were using [and] in the input file, because there are several other
meanings for these symbols.

But we want to keep our prettyprinter really simple; hence, we give
it clues using if and endif in the input. The pattern-matching engine
substitutes them by \IF and \ENDIF. Finally, a proper definition of these
macros produces the desired output?:

(
a>b — mazr:=a
Ja<b — maz:=0b

]

There are two additional IATEX commands that are useful to specify
indentation. Their names are \tab and \untab. The first one sets a tab
and pushes it, so the left margin of the following lines is aligned with the
tab. The other one pops and removes a tab previously set with \tab. Other
tabbing commands can be used inside the pcode environment (for instance,
\>, \¢, etc.) but they are seldom needed. Almost all macros, like \THEN,
\WHILE, \ENDIF, etc. are defined using \tab and \untab. \tab and \untab
can also be used to override the default indentation. For example, the
\PROCEDURE macro prints the keyword procedure in boldface and sets a
tab between pro and cedure. The next lines in the input will be indented
slightly to the right, so they are aligned with the c of procedure. Suppose
that you have a very long parameter list; you want to break it into several
lines and that each of these lines is aligned with the opening parentheses of
the parameter list.

You can do this as follows:

procedure my_proc(\tab inp a : T1; inp b : T2; inp ¢ : T3;

3For similar reasons to the one discussed here, I think is useful to have a full parenthetic
“language”: endprocedure, endwhile, endfor, ..., although in the standard definition all
these keywords produce the same: remove a tab and print end in boldface.

in/out d : T4; in/out e : T5;
out £ : T6; out g : T7) \untab
var x : integer;

The filter prettyprint writes the indentation commands in the output
without modifying them. The final result, after you process the original
input with both prettyprint and IKWTRX, is:

procedure my_proc(in a : Tl;in b : T2;in ¢: T3;
in/out d: T4;in/out e : T5;
out f:T6;0ut g:T7)
var z :integer;

To use the pcode environment you must include the option algoritmos
in the \documentstyle declaration of your document. The definitions of
the macros are in a different file. The standard file for keywords in English
is called keywords.tex. To simplify the process of building or updating a
set of macro definitions, there is a simple script called genkeyw to merge
the names of macros given in a macros file with its definitions. The script
is given two files, one with the names of the macros (for instance, NAMES)
ending with the special name @@, and the other with the matching TEX
definitions. The result is a file that contains lines of the form

\def\<macro name>{<definition>}.

The directory genkey of the distribution package contains several def-
initions files. For instance, the file keywords.tex is the result of merging
the macros file NAMES and the definitions file called dkeywords.

4 Other features of algoritmos.sty

The style file algoritmos.sty defines two variations of the basic pcode
environment: the *-form and cntpcode.

The pcode* environment is much like the pcode environment, but it
numbers sequentially each line of code. Comments that span several lines
count just as a single one. The label in front of each line can be customized
by redefining the macros \codelinelabel and \thecodeline. The name
of the counter is codeline.

Another difference between the pcode and pcode* environments is that
the last does not have the additional parameter for cross-referencing.

The cntpcode environment defines a minipage, centers it and puts inside
a pcode environment its own body. It is useful for small chunks of code,
specifications, short declarations, Larger pieces of code can get into
trouble, since no page breaks are allowed inside a cntpcode.

The prettyprinter recognizes both the pcode* and cntpcode environ-
ments as variants of the pcode environment and applies the same manipu-
lations to the text that appears inside them.

Another feature of the style file is the algorithm environment. This
environment works as the figure and table environments, enclosing a float
object that gets its own numbering. The string “Algorithm <number>:”
precedes the captions and the corresponding entry is written in a .1lop file.
To get an index or list of the algorithms, a \listofalgorithms should
be issued. Both the title of the list of algorithms and the labels of cap-
tions can be changed by redefining the macros \listofalgorithmsname
and \algorithmname. It also exists an algorithm* environment for double
column algorithms.

Finally, there exists a declaration \noprettyprint that makes the pcode
environment and its variations behave as a verbatim environment. You can
use it to avoid proccessing the file through prettyprint until the final
stages. The prettyprint filter is slow (especially for long pieces of code),
so it is wise to use this strategy.

5 Using noweb and prettyprint

I assume that the reader is already familiar with the concept of literate
programming (LP) and the tool called noweb. If this is not the case, the
seminal paper by Don Knuth [1] can be a good starting point for those that
are interested in the topic. The standard reference for noweb is [3]; the IXTRX
source of this last reference is available as part of the noweb distribution.
Norman Ramsey’s noweb is a LP tool that does not prettyprint the
chunks of code nor does it maintain an index of identifiers, etc. Therefore,
it is not dependent of the programming language and is extremely easy to
use it. The noweb system is an integrated set of UNIX filters that can be
composed to do many different tasks. New filters can be written to pro-
vide new features, connecting them with the existing ones. Examples of
extensions that several people have contributed (including noweb’s author)

10

The main loop generates a random number in each iteration.

If it is different from all previously generated numbers,

wo add it to the set where we keep different values, whereas

it is rejected if we had already generated it at some iteration.
The loop ends when the set contains n different values.

<<generate n distinct random numbers>>=

while size(C) != n do

<<generate a random number x>>

<<if x is not in C put it into C>>
endwhile
Q

Figure 2: An example of input for noweave.

include tools for automatic indexing of identifiers, cross-referencing of code
chunks or modules by number (not by page), prettyprinting, etc. In partic-
ular, I have tried to make prettyprint and noweb work together for two
reasons: 1) To provide another working example of the advantages of Ram-
sey’s approach to LP; 2) To be able to use several nice features of noweb,
as named chunks and module cross-referencing. Moreover, prettyprint is
intended to enhance the exposition of algorithms. Since the fundamental
paradigm of literate programming is “write your program as an exposition
for human readers”, making both noweb and prettyprint compatible seems
to be natural.

To use both systems in a combined way, you first write your source files
using noweb’s conventions and the “language” recognized by prettyprint.
Figure 2 gives an example of input for noweave.

The following step is to process the source file using noweave’s option
-delay, since you should make sure the style file algoritmos.sty and the
macros file, say keywords.tex have been included. That is, your file should
start with something like:

\documentstylel[...,noweb,algoritmos]{...}
\input{keywords}

11

The main loop generates a random number in each iteration. If it is different
from all previously generated numbers, we add it to the set where we keep
different values, whereas it is rejected if we had already generated it at some
iteration. The loop ends when the set contains n different values.

(generate n distinct random numbers)=
while size(C) # n do
{ generate a random number z)
{ if z is not in C put it into C)
end

Figure 3: Output of the example of Figure 2.

and the command to use is:
% noweave -delay [other options] files > tmp

The resulting file tmp can be supplied to IANTRX (or TEX) as usual, and
the code gets printed in the standard way, i.e. in \tt font.

But you can give tmp as the input to prettyprint and get the code
prettyprinted. Of course, you can avoid the temporary file and connect
both programs through a pipe:

% noweave -delay [other options] files | prettyprint > doc.tex

Figure 3 shows the result of applying noweave and prettyprint to our
example in Figure 2.

You can use all features of algoritmos.sty in your source files without
any trouble, and intermix the facilities provided by the two systems: for ex-
ample, you can use noweb’s quoting mechanism ([[...]]) or prettyprint’s
quoting bars |...|; you can put a chunk <<...>> inside an algorithm envi-
ronment, mathematical formulas can appear inside the code, and so forth.
Also, the cross-referencing parameter of the pcode environment allows using
noweave'’s -x option to get chunks/module cross-referencing.

The last paragraphs are intended for those readers that have some knowl-
edge of noweb internals and/or would like to introduce changes to the pret-
typrinter or in algoritmos.sty.

12

The prettyprint script has some built-in rules to process the output of
noweave: it changes every begincode and endcode by a corresponding pair
begin{pcode}-end{pcode}, and does not apply any modification to the text
appearing inside chunk name delimiters (\LA...\RA, moddef. .endmoddef),
just acting as if they were comments.

Moreover, some macros of the noweb. sty file are redefined in algoritmos
because they won’t work otherwise inside a pcode environment. For in-
stance, the macro \LA has to work in math mode if it is inside the pcode
environment, whereas it has to work in a verbatim-like mode if it is inside
noweb’s standard \begincode. ..\endcode, and therefore, I had to slightly
change its definition.

I shall remark that prettyprint would be much easier than it actu-
ally is, should it always be used in combination with noweb. If that were
the case, prettyprint could be written as a preprocessor and called using
noweave’s -filter option. The prettyprint filter would then receive as
input a sequence of lines produced by markup and both the number and the
complexity of pattern-matching rules in prettyprint would be reduced.

Acknowledgements

I thank Norman Ramsey for encouranging me to put prettyprint and the
other tools in the public domain, and Borja Valles for his useful suggestions
from a user’s point of view.

References

1. D. E. Knuth. Literate programming. The Computer Journal, 27(2):97-
111, 1984.

2. L. Lamport. IATgX: A Document Preparation System. Addison-Wesley,
Reading, MA, 1986.

3. N. Ramsey. Literate-programming can be simple and extensible, 1993.
Submitted to IEEE Software. Available as part of the documentation of
the noweb package (release 2.5).

13

.sty,

Representaci6 realista d’entorns
amb medis participatius.
Estat de ’art

Frederic Pérez
Xavier Pueyo

Report LSI-94-8-T

tUPC

