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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We compare the performance of 72 
biofuel routes in terms of 12 sustain
ability indicators. 

• DEA assigns an efficiency score to each 
biofuel, ranking them from best to 
worst. 

• Renewable diesel was found the best 
fuel type, followed by biodiesel and 
ethanol. 

• Waste biomass is preferred over ligno
cellulosic and 1st generation carbon 
sources. 

• Benefits from demand-side measures are 
on pair with improving biofuel 
manufacturing.  
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A B S T R A C T   

Liquid biofuels can facilitate the transition towards a more sustainable transportation sector by curbing carbon 
emissions while maintaining most of the current vehicle fleet. Today, a myriad of alternatives are available to 
produce biofuels, where different decisions for the fuel type, blend, conversion process and carbon source will 
affect the final cost and environmental impact of the product. In this contribution, we analyze the performance of 
72 different biofuels routes based on 12 indicators that cover the three sustainability dimensions: economic, 
environmental and social. The proposed multi-criteria approach combines Data Envelopment Analysis with Life 
Cycle Assessment to evaluate biofuels from a cradle-to-wheel perspective, that is, considering the production 
chain spanning from biomass production to the combustion of the biofuel in the engine. Results reveal that there 
are 35 biofuels routes performing better than the rest, with renewable diesel being a better option than ethanol- 
based blends or biodiesel, and waste biomass preferred over cellulosic biomass or bio-oils. The selection of the 
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carbon source proofed to be the most important decision, highlighting the need to consider regional aspects 
related to soil and climate before promoting a certain biofuel. Overall, our results can help to derive effective 
policies for the adoption of biofuels attaining the best performance at minimum cost and environmental risks.   

1. Introduction 

The continued growth of world population and the adoption of 
higher standards of living have risen energy demand to unprecedented 
levels. In the scenarios developed before the COVID-19 crisis, energy 
demand was projected to grow by 12% between 2019 and 2030 [1]. 
Among energy-consuming sectors, transport is the main player by the 
use of oil, covering 92% of fuel demand [2]. The widespread use of fossil 
fuels is the main anthropogenic source of greenhouse gases, responsible 
for climate change [3]. This evidences the fact that current practices for 
energy production are still far from sustainable [4], which raises con
cerns on the associated impacts in several environmental dimensions 
such as global warming, human health, land use or resource depletion 
[3–5]. 

In 2018, only 3.7% of fuel demand for transport was covered by 
renewable energy; with most of this being shouldered by biofuels (93%) 
and the rest provided by renewable electricity [6]. Biofuels such as 
biodiesel and bioethanol have been considered promising alternatives to 
fossil fuels for sustainable development due to their high potential to 
mitigate climate change [7–9]. Environmental pollution policies such as 
the Paris Agreement and the European Green Deal consider the wide
spread use of biofuels could importantly contribute to reaching reduc
tion targets of 80–95% for greenhouse gas emissions by 2050 [10–12]. 
Many countries, e.g., the USA, Brazil, EU, China, have launched biofuel 
programs to reduce the use of fossil fuels in transport, and it is expected 
that the global share of biofuels in this sector will reach 17% by 2050 
[6]. 

Biofuels refer to solid, liquid, and gaseous fuels that are produced 
from renewable biological sources. The most common biofuel is bio
ethanol, representing 82% of the total biofuel produced today [13]. Its 
main manufacturers are the United States and Brazil, with an annual 
production volume of 59.7 and 34.4 billion liters in 2020 and 2019, 
respectively [14–15]. The second most widely produced biofuel –and 
the most common in Europe [16]– is biodiesel, obtained by trans
esterification of oils or fats. Raw materials for biodiesel include vege
table oils, animal fats, and algae (third-generation biofuel), among 
others [17]. Bioethanol and biodiesel share the feature that can be used 
in internal combustion engines due to their high-octane number and 
high heat of vaporization [18], being both suitable either as an additive 
in gasoline blends or as pure fuels in modified engines. 

Another relevant biofuel is renewable diesel (RD), sometimes called 
“second-generation biodiesel,” “green diesel,” or ‘‘HVO’’ (hydrotreated 
vegetable oil) [19]. This biofuel is chemically similar to petroleum diesel 
(i.e., composed mainly of paraffins) but can be produced from a 
renewable feedstock containing triglycerides and fatty acids through 
various processes such as hydrotreating, gasification and pyrolysis [17]. 
Similar to biodiesel, its properties allow its use in conventional engines 
either as an additive or as a pure fuel [20–22]. 

In addition to curbing greenhouse gas emissions, the production of 
biofuels can offer other ancillary benefits to society [23]. On the one 
hand, it can diversify the supply of fuel to the transportation sector, 
providing a sustainable alternative to the existing transportation struc
ture. On the other hand, it can also allow diversification of farmland 
while strengthening domestic agriculture by promoting biofuel feed
stocks according to their geographical location and resource availabil
ity. In many cases, biofuels are suitable for current combustion engines 
and fuel stations, providing an interim solution before the required 
infrastructure for electric vehicles is in place. Note that, while electricity 
is the fastest-growing energy source in the transportation sector, it is 
projected to account for less than 2% of transport fuel consumption in 

2050 in the United States [24]. Despite their advantages, biofuels are not 
exempt from negative side-effects, mainly related to the competition for 
land and water use [25]. 

As aforementioned, biofuels can be produced using different sources 
and processes, each generating different environmental impacts and 
achieving distinct performance in engines. In this context, the identifi
cation of the most convenient biofuels considering simultaneously the 
three sustainability pillars –economic, environmental and social– calls 
for multi-criteria decision-making tools (MCDM) [26]. The usefulness of 
such tools in solving environmental, socio-economic and technical 
barriers involved in energy planning has been widely acknowledged 
[27]. 

Different MCDM methods such as analytical hierarchy process [28], 
Multi-attribute value theory [29] and Data Envelopment Analysis (DEA) 
have been applied to assess different energy systems [30]. Amongst 
MCDM tools, we resort here to DEA, a non-parametric method for 
benchmarking alternatives [31]. The main advantage of DEA over other 
multi-criteria assessment methods is its capacity to combine multiple 
indicators into a single performance score, avoiding the need to define 
subjective weights between the indicators. This is very convenient in 
sustainability assessment as it allows to integrate indicators covering the 
three sustainability dimensions into a single metric, classifying alter
natives as efficient or inefficient. In addition, DEA provides information 
on how much room for improvement is possible in inefficient alterna
tives compared to the best-performing processes. 

During the last years, some authors have combined Life Cycle 
Assessment (LCA) with DEA to assess the overall level of sustainability of 
alternatives, enabling the identification of efficient processes with a 
focus on their sustainable performance. Examples of this combined 
application include liquid fuels production [32], electricity generation 
[33], bioenergy systems, [34], milk production [35], mussel cultivation 
[36], and grape production for vinification [37]. In the case of biofuels, 
previous works using DEA focused on particular features or echelons of 
the biofuel supply chain, e.g., cultivation locations [38], the biofuel 
production process [39], or the logistic network [40]. In other cases, the 
focus was put on a particular carbon source, would it be sugarcane [41] 
or algae [42], evaluating the complete supply chain of individual 
products such as bioethanol [43] and biodiesel [44]. While some of 
these works assessed the life cycle of biofuels, their scope covered, at 
most, stages up to the production of the fuel (cradle-to-tank), thus 
neglecting the combustion of the fuel during vehicle use (tank-to- 
wheel). Since this is the stage where most of the emissions take place and 
acknowledging that not all fuels show the same performance (in terms of 
emissions and energy efficiency) in vehicle engines, the inclusion of this 
stage in the analysis is crucial to obtain a holistic assessment of biofuels 
throughout their complete life cycle. 

In this contribution, we evaluate the performance of 72 different 
routes for the production of biofuels considering the three sustainability 
dimensions, which are quantified here based on 12 different indicators. 
The 72 routes result from selected combinations of four biofuel blends, 
six possible fuels (i.e., ethanol, biodiesel, RD or HVO, diesel and gaso
line) and 19 types of biological feedstocks. The analysis considers the 
whole life cycle of the biofuels, including cultivation, production, dis
tribution, and final use of the fuel in combustion vehicles (i.e., cradle-to- 
wheel), everything quantified via LCA [45]. The resulting MCDM 
problem is solved with DEA [30] with the objective of evaluating and 
identifying the most suitable biofuel routes, which will be deemed 
efficient. For non-suitable biofuel routes, labelled as inefficient, we 
provide quantitative improvement targets that, if attained, would make 
them efficient. Finally, the presented contribution aims to provide a 
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powerful framework for holistic assessments that could help policy- 
makers to develop better-informed regulations and achieve this way 
the emission reduction targets of current environmental policies for the 
transportation sector. 

The remaining of this manuscript is structured in three sections as 
follows. Section 2 describes the methodology developed to evaluate 
biofuel production from a sustainability perspective and a cradle-to- 
wheel scope, paying special attention to DEA and its integration in the 
proposed framework. In Section 3, results are presented and analyzed in 
detail. Finally, in the conclusions, the implications for the technological, 
political and social spheres are discussed. 

2. Methodology 

The methodology used to assess the performance of biofuels consists 
of four main steps articulated around DEA, which is the cornerstone of 
our approach (Fig. 1). These steps are briefly summarized next, while 
further details are provided in the ensuing subsections. 

Step 1 aims to obtain the data required to compute the indicators that 
will be used to assess the sustainability performance of the biofuels. This 
requires the collection of different types of data: from mass and energy 
balances for biofuel production processes, to traditional LCA data and 
complementary information such as costs. 

With this information at hand, efficiency scores are computed for 
each biofuel using DEA in Step 2. To this end, each biofuel is modelled as 
a decision-making unit (DMU) in DEA and each sustainability indicator 
is classified as an input or an output to the DMU (further details in 
section 2.2). This analysis allows to classify biofuels as efficient (i.e., 
showing the best performance among alternatives) or inefficient (i.e., 
inferior to the best-observed practices). For the latter, DEA also provides 
improvement targets that, if attained, would make inefficient biofuels 
efficient. 

On the other hand, biofuels originally deemed efficient are further 
ranked in Step 3 by using a different DEA model based on a so-called 
super-efficiency score [46]. The combination of these results with the 
efficiency scores from Step 2 allows to build a sorted list from the best to 
the worst-performing biofuels that could aid policy-makers in devel
oping effective regulations. 

Finally, in Step 4, results are analyzed and interpreted considering 
the performance that selected biofuels could attain in different sce
narios. Potential roadmaps for improvement are also discussed. 

2.1. Data acquisition 

The methodology described is used to compare the performance of 
72 biofuel routes. This myriad of biofuel alternatives is obtained by 
combining selected options for the carbon source, the production pro
cess, the fuel type and the car engine where the biofuel will be used in 
(Fig. 2). Specifically, 19 types of biological feedstocks are considered as 
carbon sources; these cover lipids (i.e., vegetable oils, animal fats, and 
algae), cellulosic material (e.g., crop residues or woody biomass) and 
dedicated energy crops (e.g., sugarcane, maize) [47]. Regarding biofuel 
production processes, four types are studied: (i) fermentation of sugars 
(i.e., glucids) and (ii) biomass gasification to produce ethanol, (iii) 
transesterification of lipids (i.e., triglycerides) to produce FAME (fatty 
acid methyl esters), and (iv) hydrotreating of lipids (i.e., triglycerides) to 
produce hydrotreated vegetable oil (HVO) or renewable diesel (RD). In 
turn, each of the resulting biofuels can be blended differently to produce 
the final commercial fuel. In the case of bioethanol, two blends with 
gasoline are considered: E10, using 10% ethanol; and E85, using 85% 
ethanol. These blends are used in spark ignition (SI) engines. In the case 
of biodiesels, a blend consisting of 20% biodiesel-80% conventional 
diesel is assumed for use in compression ignition direct injection (CIDI) 
engines. Renewable diesel is obtained from two main processes, Super 
cetane (i.e., labelled here as RDI) and fluid catalytic cracker technology 
(i.e., named RDII) [47] and both are also used in CIDI engines but, in this 
case, as pure fuels as they are not blended. In all cases, engines are 
assumed to belong to a light vehicle carrying one single passenger. 

Throughout this work, we use the term first-generation for biofuels 
derived from edible agricultural feedstock such as grain or sugars (e.g., 
corn, sorghum), the term cellulosic for biofuels produced from ligno
cellulosic biomass (e.g., willow, poplar) and the term bio-oil for biofuels 
obtained from oleaginous plants (e.g., soy, palm) [48–49]. 

Overall, 50 ethanol-based fuel routes are considered as follows. On 
the one hand, we study a total of 19 routes to produce ethanol though 
the fermentation of sugars from dedicated energy crops. Among these, 
10 routes comprise the direct fermentation of biomass sugars. This is the 
case of five different production processes for corn, two processes 
combining usage of corn stover and corn, one process for sweet sor
ghum, one process for grain sorghum and one process for sugar cane. 
The remaining nine routes rely each on a different cellulosic carbon 
source and differ from the previous 10 in that the latter require a pre
vious step consisting of an acid hydrolysis of the lignocellulose to pro
duce simple sugars before these can be fermented into alcohol. Finally, 
six cellulosic carbon sources (i.e., six out of the nine cellulosic sources 
used) are employed to produce ethanol by biomass gasification. Overall, 
this yields a total of 25 routes to produce ethanol from biomass. 
Considering that the final ethanol product can be blended with gasoline 
in two different proportions (E10 and E85), this yields a total of 50 
ethanol-based biofuel production routes. 

Additional 22 routes based on bio-oil are also considered. Biodiesel 
can be produced from 8 additional carbon sources (in blue in Fig. 2) 
through transesterification of lipids. The resulting product is blended 
with diesel to form BD20. On the other hand, seven carbon sources can 
be used to produce RD using two main processes, Super cetane (i.e., RDI) 
and fluid catalytic cracker technology (i.e., RDII) [47]. These results in a 
total of 14 additional biofuels routes (note that RD is used as a stand
alone fuel, i.e., not blended with diesel). Fig. 1. Flowchart for the methodology proposed.  
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Overall, a total of 72 different biofuel routes are obtained: 50 for the 
case of ethanol that will be used in SI engines and 22 biofuels that will be 
used in CIDI engines. 

For each of these 72 biofuel routes, 12 performance metrics covering 
the three sustainability dimensions are considered as follows. The eco
nomic dimension is assessed through the cost and the distance that can 

be travelled with the biofuel; the environmental dimension is evaluated 
through eight life-cycle impacts; and the performance in the social 
dimension is based on water use and land occupation since shortage of 
these resources can trigger social conflicts [50]. These performance 
metrics are assessed from a cradle-to-wheel perspective, thus accounting 
for all the resources and emissions occurring from cradle-to-tank (i.e., 

Fig. 2. Block-diagram providing the different alternatives considered as carbon source, fuel production process, blend and type of combustion engine. Carbon 
sources are depicted with a different color depending on whether they are first-generation (e.g., corn), cellulosic (e.g., poplar) or bio-oils (e.g., palm). SI: Spark 
Ignition; CIDI: Compression Ignition Direct Injection. 
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during the farming stage, biomass transportation and conversion to fuel) 
and from tank-to-wheel (i.e., combustion of the fuel in the vehicle 
engine). 

The starting point for the calculation of the 12 indicators are the data 
collected from the GREET 2020 database [47], which provides infor
mation on the material and energy flows f (e.g., chemical reagents or 
electricity) required in each production stage p (i.e., cultivation, biomass 
transportation or biomass to fuel conversion) involved in the trans
formation of any carbon source into the corresponding fuel. These input 
flows, denoted here by InputRaw

f ,p and reported in Tables S1-S9 in the 
Supplementary Material, are obtained for one liter of biofuel since this is 
the calculation basis selected in this contribution. Arguably, only a 
certain share of these inputs should be attributed to the requirements of 
biofuels themselves since other by-products are also obtained during the 
biofuel production process (e.g., corn-oil, electricity or glycerin). Ac
cording to ISO 14040:2006 [51], allocation is the tool for partitioning 
input and output flows of a system between the product under study (e. 
g., biodiesel) and other by-products (e.g., glycerin). Among the different 
allocation methods available in the literature, here an economic allo
cation is used, as this is the baseline method for most LCA allocation 
situations [52]. The economic allocation generates an allocation factor 
(denoted here by AF , with 0 ≤ AF ≤ 1) based on the quantity and the 
economic value of the biofuel itself and the corresponding by-products. 
This allows to compute the input f of stage p attributed to biofuel pro
duction (Inputf ,p) as a certain share (AF) of the total input for the whole 
process (InputRaw

f ,p ): 

Inputf ,p = Input Raw
f ,p AF ∀f , p = {farm, transport, conversion} (1) 

Note that allocation only affects cradle-to-tank stages (i.e., farming, 
biomass transportation and conversion to fuel), since emissions incurred 
during combustion (i.e., tank-to-wheel) are solely attributable to the 
biofuel itself. The interested reader is referred to section 1.3 in the 
Supplementary Material for further details on the economic allocation. 

With allocated input values available, these are next used to compute 
the different sustainability indicators. Calculations described next are 
repeated for every biofuel j, although subscript j has been dropped from 
equations and variables for simplicity. Since the GREET database builds 
upon United States (US) data, any complementary data used (e.g., power 
generation matrix) will also be based on the US to preserve data ho
mogeneity, as suggested by Dyson. [53] . 

First, the cost indicator (Cost) is computed as the summation of the 
product between the amount of input f required in every stage p (cradle- 
to-wheel) to produce one liter of the biofuel (Inputf ,p) and the corre
sponding unitary costs (UCf ), as shown in Eq. (2). Unitary costs are 
obtained from different sources, as reported in Table S17. 

Cost =
∑

f , p∕=farming

Inputf , pUCf (2) 

Note that the costs of farming inputs and extraction are neglected as 
they are assumed to be included in the cost of the vegetable oil 
feedstock. 

The other economic indicator, i.e., the distance that can be travelled 
by burning the biofuel in the corresponding engine, is directly retrieved 
from GREET, as this information is readily available in the database. 

As aforementioned, the environmental performance of the biofuel 
alternatives is quantified based on eight life-cycle impacts. Precisely, we 
use eight midpoint indicators of the ReCiPe approach following a hier
archical perspective and assuming allocation at the point of substitution. 
We choose midpoint over endpoint indicators as the former are 
considered less uncertain and, therefore, more reliable than the latter 
[54]. The indicators selected cover impacts related to human health (i. 
e., GWP, fine particulate matter formation, human ecotoxicity, photo
chemical oxidant formation potential) and ecosystems (i.e., terrestrial 
acidification, terrestrial ecotoxicity, freshwater eutrophication and 
freshwater ecotoxicity) [55]. The total impact in midpoint category u is 

computed by adding the corresponding impacts from the different life- 
cycle stages p (ImpactStage

u,p ), as shown in Eq. (3). For cradle-to-tank 
stages, impacts are computed as the product between the amount of 
input f required in the stage (Inputf ,p) and the life-cycle impact in 
midpoint category u of producing a unit of input f (Ecovectoru,f ) (see Eq. 
(4)). Ecovectors are obtained from Ecoinvent v3.7.1 database [56], 
using the activities reported in Table S18. For the combustion stage, 
direct emissions for different pollutants e (Emissione,p), also provided by 
GREET, are converted into the corresponding impacts u by applying 
ReCiPe impact factors (IFu,e , Eq. (5)) [47,57–58]. The results of this 
calculation (i.e., impacts for the combustion stage) are reported in 
Table S19 in the Supplementary Material. 

Impactu =
∑

p
Impact Stage

u,p ∀u (3)  

Impact Stage
u,p =

∑

f
Inputf ,pEcovectoru,f ∀u,p={farm, transport,conversion}

(4)  

Impact Stage
u,p =

∑

e
Emissione,pIFu,e ∀u, p = {combustion} (5) 

In the case of the GWP indicator, one final adjustment is required to 
account for the fact that, in the life cycle, emissions from biogenic car
bon do not increase the total amount of carbon in the bio
sphere–atmosphere system. This is because biogenic carbon originates 
precisely by fixation of carbon from the CO2 absorbed during photo
synthesis, thus resulting in a net-zero cycle. Therefore, the CO2 absorbed 
during biomass growth needs to be deducted from the total GWP ob
tained at the end of the fuel life-cycle to obtain the net balance of GHGs. 
To this end, the carbon content of the fuel is expressed in terms of carbon 
dioxide and discounted from the GWP obtained with Eq. (3). Carbon 
contents considered for the different fuels are 54.4 %w/w, 76.2 %w/w, 
84.9 %w/w for ethanol, biodiesel, and renewable diesel, respectively 
[58], while fuel densities are provided in Table S21 in the Supplemen
tary Material. 

Finally, social indicators (i.e., land occupation and water use) are 
obtained as follows. The land occupation indicator (Land , in [ha⋅yr /l 
fuel]) accounts for the annual land used for growing the necessary crops, 
neglecting land requirements for chemicals and energy production as 
these are expected to be significantly smaller than for harvesting 
biomass [56]. This indicator is computed from the amount of carbon 
feedstock needed to produce 1 L of biobased fuel (Crop , e.g., tons of 
poplar needed for 1 L of ethanol) and the annual yield of the corre
sponding crop (YieldCrops , in tons of crop per hectare and year) (see Eq. 
(6)). Data for Crop are obtained from GREET while the data for YieldCrops 

are reported in Table S25-S26, together with the corresponding data 
sources. 

Land =
Crop

Yield Crops (6) 

In the case of the water use indicator (Water), two contributions are 
considered: the life-cycle water consumption for chemicals and energy 
production from cradle-to-wheel (WaterInputs) plus the amount of water 
consumed for growing the corresponding crops (WaterCrops) (Eq. (7)). 
The former contribution is obtained by multiplying the amount of inputs 
(Inputf ,p) by the life-cycle water consumption of producing one unit of 
such input (WCInputs

f , as retrieved from Ecoinvent for activities in 
Table S18)(Eq. (8)). On the other hand, the amount of water required to 
grow the corresponding crop can be calculated from Eq. (9), where land 
requirements are multiplied by the annual water consumption per 
hectare for the corresponding crop (LWCCrops , in mm of water per square 
meter and year, see Tables S23-S24). 

Water = Water Inputs + Water Crops (7) 
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Water Inputs =
∑

f ,p
Inputf ,pWC Inputs

f (8)  

Water Crops = Land⋅LWC Crops (9) 

Note that values for LWCCrops and YieldCrops correspond to agricultural 
land in conditions appropriate for the cultivation of each particular crop, 
with rainfall and artificial irrigation being both valid options to satisfy 
water requirements. If the performance of biofuel routes were to be 
evaluated for specific geographical areas, where annual rainfall is 
known, we suggest computing the water requirements based only on 
irrigation, as this can make a difference in the results obtained for the 
efficiency scores of routes based on certain crops (see Fig. S1 in Sup
plementary Material for further details). However, some of the consid
ered crops (e.g., Miscanthus, switchgrass, poplar, willow) might be 
suitable for marginal land, thus avoiding competition with food at the 
expense of probably lower yields and larger water and chemical 
requirements. 

In the case of materials that are considered residues or by-products of 
other crops (e.g., corn stover and forest residue), economic allocation 
factors of 15% [59] and 38% [60] respectively were applied for water 
use. The land required is obtained by multiplying the yield of these 
materials per hectare [t/ha] by the amount of feedstock needed to 
produce one liter of fuel. 

The final values for the 12 indicators for the 72 biofuels will be 
referred to as the nominal values and are provided in Table S22 in the 
Supplementary Material and summarized here in Table 1, where bio
fuels are grouped into five categories according to their production 
process. 

Note that we retrieved the data used to calculate indicator values 
from the same source for all biofuel routes to ensure a fair comparison 
between them. The only exception is farming data (i.e. water re
quirements and land yield for the different crops), which were retrieved 
from different sources, but always under the common assumption of 
adopting the most suitable conditions for growing each particular crop. 
Similarly, different production routes use different material inputs 
whose cost could not be retrieved from a single data source but were 
always determined by the corresponding commodity market. In addi
tion, an uncertainty assessment was carried out to ensure reliable results 
and conclusions despite any potential data variation stemming from the 
occasional use of different sources or assumptions (see Section 2.5 for 
further details on this matter). 

We next describe how indicator values are used in DEA to benchmark 
the sustainability performance of the different biofuels routes studied. 

2.2. DEA fundamentals 

DEA [31] is a data-oriented approach for evaluating the relative ef
ficiency of a set of n similar entities called decision-making units (DMUs, 
indexed by j), which convert multiple inputs (i = 1,…,m) into multiple 
outputs (r = 1,…,k) [61]. Although DEA was originally devised to assess 
the productivity efficiency of production units, where inputs and out
puts nomenclature was meaningful, later it has been widely used as a 
MCDM tool in any context. In the latter case, inputs and outputs can be 
any performance metric of interest, with the general agreement that 
inputs are metrics one is willing to minimize while outputs are metrics 
one seeks to maximize [61]. Some model variations also consider the 
potential existence of the so-called undesirable outputs, which are out
puts to the production process one might want to reduce, e.g., polluting 
emissions [47]. 

In this contribution, each of the 72 biofuel route alternatives is 
modelled as a DMU whose relative performance is evaluated based on 
the 12 sustainability indicators described in the previous section and 
classified here as either inputs or outputs (desirable or undesirable, see 
Fig. 3). Dyson suggested that an appropriate discriminatory power could 
be achieved in DEA if the number of DMUs is at least 2⋅(m⋅k), where m⋅k 
is the product of the number of inputs times the number of outputs [53]; 
such a condition is satisfied in the present analysis (i.e., 72 > 2(3⋅9)). 

For each DMU, DEA returns a performance score, also called effi
ciency score, lying between 0 and 1. DMUs (i.e., biofuels) with a score of 
1 are referred to as efficient and are linearly combined to form the 
efficient frontier. Meanwhile, DMUs with a score strictly lower than 1 
are considered inefficient and are projected onto the efficient frontier to 
generate the so-called virtual DMUs. Virtual DMUs can be understood as 
efficient versions of the projected DMU and allow the identification of 
the improvements that the inefficient DMUs should target to become 
efficient. 

While these basic elements are common for all DEA approaches, a 
plethora of model variations has been put forward to date with the aim 
of better aligning model assumptions with the problem under study. 
Some of the modelling choices include the returns-to-scale (RTS), model 
orientation or the way in which the efficiency score is evaluated. These 
choices are explained in more detail in the following paragraphs. 

The RTS aims to reflect whether DMUs operate or not at the same 
scale. The most common choices are the constant returns-to-scale (CRS), 
which assumes the ratio between inputs and outputs is constant 
regardless of the level of inputs, and the variable returns-to-scale (VRS), 
assuming a change in the inputs will produce a different change in the 
output depending on the input level [62]. 

Model orientation defines the way inefficient DMUs are projected 

Table 1 
Statistics of the sustainability indicators considered for the 72 biofuel routes. Values are for 1 L of fuel. Acronyms are provided in the table footnote.  

Fuel type BD20 E10 E85 RDI RDII 

Parameter Median (min–max) Median (min–max) Median (min–max) Median (min–max) Median (min–max) 
Cost [US$] 0.80 (0.74–1.12) 0.69 (0.68–0.74) 0.31 (0.21–0.75) 0.62 (0.41–1.17) 0.70 (0.46–1.30) 
LO [m2] 1.14 (0.04–3.65) 0.15 (0.01–0.28) 1.30 (0.001–2.36) 5.69 (0.20–11.04) 6.07 (0.22–11.67) 
Water required [m3] 0.54 (0.01–1.79) 0.16 (0.001–0.43) 1.32 (0.01–3.66) 2.09 (0.23–5.54) 3.46 (0.26–9.02) 
GWP [kg CO2-Eq] 2.52 (2.50–2.63) 2.51 (2.35–2.70) 0.85 (0.71–2.51) 0.59 (0.51–1.10) 0.31 (0.23–0.92) 
FWET [10− 2 kg 1,4-DCE] 0.96 (0.91–1.37) 0.56 (0.01–0.90) 1.23 (0.01–3.62) 0.80 (0.66–2.69) 0.86 (0.75–3.02) 
FWEU [10− 4 kg P-Eq] 0.45 (0.40–2.03) 0.44 (0.01–0.67) 0.85 (0.01–2.49) 0.64 (0.44–7.29) 0.70 (0.45–8.66) 
HT [kg 1,4-DCE] 0.14 (0.14–0.29) 0.11 (0.09–0.15) 0.23 (0.10–0.49) 0.11 (0.10–0.75) 0.12 (0.10–0.88) 
PMFP [10− 3 kg PM10-Eq] 1.59 (1.53–2.33) 1.45 (0.002–1.78) 1.78 (0.001–3.21) 1.04 (0.74–4.10) 1.18 (0.86–4.84) 
POFP [10− 3 kg NMVOC] 5.31 (5.09–6.32) 4.36 (0.005–5.09) 5.64 (0.004–8.67) 4.00 (3.02–8.53) 4.40 (3.27–9.39) 
TA [10− 3 kg SO2-Eq] 4.40 (4.28–5.45) 4.30 (0.005–5.23) 4.34 (0.004–7.91) 1.82 (1.28–6.15) 2.10 (1.50–7.29) 
TE [10− 3 kg 1,4-DCE] 2.58 (2.58–2.63) 0.67 (0.005–3.12) 4.58 (0.004–15.30) 2.45 (2.43–2.67) 2.47 (2.44–2.72) 
Distance (km) 15.12 10.73 8.63 14.57 14.57 

* BD20: Diesel fuel with up to 20 %v/v FAME content; E10: Gasoline fuel with up to 10 %v/v bioethanol content; E85: Gasoline fuel with up to 85 %v/v bioethanol 
content; RDI: Renewable Diesel Production Based on SuperCetane; RDII: Renewable Diesel Production Based on fluid catalytic cracker technology; LO: land occu
pation; Water: water used in farming plus water depletion produced during chemicals manufacturing; GWP: global warming potential; FWEU: freshwater eutrophi
cation; FWET: freshwater ecotoxicity; HT: human ecotoxicity; PMFP: fine particulate matter formation; POFP: photochemical oxidant formation potential; TA: 
Terrestrial acidification; TE: terrestrial ecotoxicity. 
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onto the efficient frontier. In this regard, the most conventional alter
natives are input-orientated, which attempts to minimize inputs while 
securing a certain level of output; and output-oriented models, where 
the opposite holds (i.e., outputs are expanded while maintaining the 
inputs at original levels). Non-oriented models, in which inputs and 
outputs are allowed to change simultaneously, are also widely used. 

Finally, models are commonly grouped in two categories depending 
on whether the efficiency measure is radial or non-radial. Radial mea
sures belong to the Debreu–Farrell measures and force changes in all the 
inputs (or all the outputs in an output-oriented model) to be propor
tional [63]. In contrast, non-radial measures belong to the Par
eto–Koopmans measures [63] and allow inputs and outputs to vary in 
any possible way so that inefficient DMUs attain the efficient frontier. 
Examples of non-radial measures are Range Adjusted Measure, Russell 
Measure, Additive Model and Slack Based Measure (SBM) models. Note 
that not all possible model orientations can be used with any efficiency 
measure as these two choices are not always independent from each 
other. For instance, applying a non-radial model in cases where there is a 
linear dependence between inputs and outputs causes a loss of the 

original proportionality [64]. 
Some of these concepts are illustrated in the following example 

(Fig. 4), where DEA is used to assess the efficiency of four DMUs (A, B, C, 
and D) against each other in a case considering two inputs and one 
output. If the output is dummy (e.g., all DMUs show the same perfor
mance in this output), DMUs can be represented in a two-dimensional 
cartesian plot as in Fig. 4. In this example, DEA would identify DMUs 
B, C, and D as efficient because there is no other DMU showing better 
performance, i.e., attaining lower inputs and/or higher output simul
taneously. Efficient DMUs form the so-called efficient frontier, which 
corresponds to segment C-B-D when a VRS is considered, as in this 
example. Then, the model would project inefficient DMU A onto the 
efficient frontier to obtain the efficiency score and improvement targets 
for this unit. If the efficiency measure is radial and the model is input- 
oriented, then input 1 and input 2 would be decreased proportionally, 
yielding virtual DMU A’. In contrast, using a non-radial SBM model, the 
two inputs would be allowed to change non-proportionally. Indeed, 
Fig. 4 demonstrates this idea of non-proportionally wherein any pro
jection in the quadrant A-A1-A2, as defined by slacks S−

1 and S−
2 (distance 

between the assessed and the virtual DMU) would be permitted in an 
SBM model. In this latter case, the virtual DMU of A could lie anywhere 
in the segment A1-B-A2, provided that inputs are not allowed to worsen. 

DEA models based on non-radial measures are agreed to have a 
greater capacity to discriminate the DMUs under evaluation and yield a 
lower number of efficient units [65], therefore, being the preferred 
choice in environmental assessment. Among non-radial approaches, the 
most widely used one is the SBM model proposed by Tone [66], which, 
in its original formulation, treats undesirable outputs as inputs [67]. In 
our case, this translates into DMUs having 11 inputs (three original plus 
the eight undesirable outputs) and one output (the original desirable 
output). Previous studies have used this model to investigate issues 
related to water use relation with total factor productivity [68–69], the 
relation between energy use efficiency and either GDP [70] or economy 
development [71], the potential emission reductions and marginal 
abatement costs of energy-related CO2 emissions [72], the measurement 
of environmental efficiency of transportation sector based on CO2 
emissions [73], and the relation between social fixed assets investment 
and GDP in the industry with SO2 emissions [74]. The mathematical 
model is described in detail in the next section. 

2.3. SBM non-oriented model 

The SBM efficiency model proposed by Tone [75] is non-radial and 

Fig. 3. Inputs and (desirable and undesirable) outputs considered for each biofuel (DMU). Units for each indicator are provided between brackets. LO: land 
occupation; Water: water used in farming plus water depletion; GWP: global warming potential; FWEU: freshwater eutrophication; FWET: freshwater ecotoxicity; HT: 
human ecotoxicity; PMFP: fine particulate matter formation; POFP: photochemical oxidant formation potential; TA: Terrestrial acidification; TE: terrestrial 
ecotoxicity. 

Fig. 4. Difference in projection onto efficient frontier by the radial and the non- 
radial SBM models. 

R. Cabrera-Jiménez et al.                                                                                                                                                                                                                     



Applied Energy 307 (2022) 118201

8

computes the efficiency score based on the excess of inputs (s−i , which 
henceforth includes the original undesirable outputs) and the shortage 
of outputs (s+r ). There are three variations of this model, i.e., input- 
oriented, output-oriented, and non-oriented, with the latter model 
referring to both input- and output-oriented. Working with the latter 
model prevents the need to decide between considering strong or weak 
disposability of environmental impacts, an assumption often made to 
deal with undesirable outputs [76]. Hence, without loss of generality, 
we use the non-oriented SBM model dealing with undesirable outputs as 
inputs for evaluating DMUs. 

ρ* = min
1 − 1

m

∑m
i=1

s−i
xi0

1 + 1
k

∑k
r=1

s+r
yr0

(m.1)  

s.t.
∑n

j=1
λjxij + s−i = xi0 i = 1, 2,⋯,m  

∑n

j=1
λjyrj − s+r = yr0 r = 1, 2,⋯, k  

s− ≥ 0, s+ ≥ 0  

λj ≥ 0 j = 1, 2,⋯, n 

In this model, ρ is the SBM-efficiency score, xij is the value of input i 
of DMU j, yrj is the value of output r of DMU j, and xio and yro are the 
values of input i and output r of the DMU o under evaluation. In turn, s−i 
and s+r are the input and output slacks, providing the distance from the 
DMU assessed to the efficient frontier. Slack variables in non-oriented 
SBM models provide information regarding the degree of inefficiency 
attained by each input and output individually [77]. 

This fractional programming problem can be transformed into a 
linear programming problem using the Charnes–Cooper transformation 
as follows: 

τ* = mint −
1
m

∑m

i=1

S−
i

xi0
(m.2)  

s.t. 1 = t+
1
k
∑k

r=1

S+
r

yr0  

∑n

j=1
ΛjXij + S−

i = xi0t i = 1, 2,⋯,m  

∑n

j=1
ΛjYrj − S+

r = yr0t r = 1, 2,⋯, k  

S− ≥ 0, S+ ≥ 0, Λ ≥ 0, t > 0 

Note that the optimal solution of model (m.2) (e.g., τ*,Λ*, t*, S− *, S+*)

can be used to derive the optimal solution of model (m.1) using the 
following relationships: ρ* = τ*,λ* = Λ*

t* ,S
− * = s− *

t* ,S
+* = s+*

t* . 

2.4. Super-efficiency 

DEA evaluates the relative efficiency of DMUs but does not further 
rank among the efficient units. This sometimes results in DEA providing 
a long list of promising (efficient) alternatives, upon which decision- 
makers need to choose based on additional criteria. To provide more 
accurate rankings without having to resort to additional considerations, 
the super-efficiency score has become an option to discriminate between 
efficient DMUs. 

Super-efficiency models identify the best-performing DMUs by 
assigning an efficiency score greater than one, thus facilitating com
parison with rankings based on parametric methods [46]. These models 

execute standard DEA models under the assumption that the DMU 
assessed is excluded from the efficient frontier. In other words, in super- 
efficiency DEA models, the virtual DMU must be constructed using the 
remaining DMUs only [78]. For the case of the SBM model m.1, one can 
resort to the super-SBM model proposed by Tone [66] for evaluating 
efficient DMUs (ρ* = 1, S− = 0, S+ = 0) . The model formulation is as 
follows: 

δ* = min
1
m

∑m
i=1

xi
xi0

1
k

∑k
r=1

yr
yr0

(m.3)  

s.t. x ≥
∑n

j=1,∕=0
λjxj  

y ≤
∑n

j=1,∕=0
λjyj  

x ≥ x0, y ≤ y0, λ ≥ 0 

The previous SBM model (m.1) and the super SBM model (m.3) 
selected for this work assume constant returns to scale (CRS), although 
these models could be extended to variable returns to scale (VRS) by 
adding equations 

∑n
j=1λj = 1 and 

∑n
j=1,∕=0λj = 1 in models (m.1) and 

(m.3), respectively. 

2.5. Dealing with data uncertainty in DEA 

Regardless of the efforts invested in collecting data with the highest 
quality, DEA results might always be affected by data inaccuracies or 
simplifications, which could lead to spurious efficiency scores and 
rankings. To overcome this, we consider uncertainty in our data in an 
attempt to obtain more robust results and conclusions under different 
potential realizations of the uncertainty. Without loss of generality, we 
assume each indicator follows a uniform distribution spanning ±10% of 
its nominal value. These distributions are then discretized into 100 
different scenarios for each DMU using Monte Carlos sampling. Finally, 
following the approach of Ewertowska et al. [79] 100 independent DEAs 
(i.e., one for each scenario) are solved, in addition to the nominal sce
nario, yielding a distribution of efficiency scores for each DMU (rather 
than a single value). 

3. Results 

The non-oriented SBM efficiency model (m.2) and the non-oriented 
SBM super-efficiency approach (m.3) were coded in GAMS v32.1.0 
[80] and solved in an AMD Ryzen 5 4500U processor for each of the 72 
DMUs in each scenario. Each instance took less than 1 s of CPU time to 
be solved. The results obtained are described next, starting with the 
efficiency and super-efficiency scores, then moving to the analysis of 
inefficient alternatives and finally exploring different improvement 
scenarios for the transportation sector. For the sake of simplicity, the 
discussion will focus on the results obtained for the nominal scenario, 
except for cases where result distributions are explicitly mentioned. 

3.1. Efficiency assessment 

Fig. 5 provides the combined results for the efficiency and super- 
efficiency DEAs, with inefficient biofuels being represented based on 
their efficiency score and efficient biofuels depicted based on their 
super-efficiency score. Specifically, horizontal bars provide the effi
ciency score in the nominal scenario, while overlapped boxplots provide 
information on the distribution of the efficiency scores obtained in the 
remaining 100 scenarios. Results reveal that 48% of the 72 biofuels 
routes analyzed are efficient in the nominal case (Fig. 5a), meaning that 
there is no other biofuel showing superior performance in all the 
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Fig. 5. Efficiency scores for biofuels. (Super)efficiency scores for the 72 biofuels routes are provided as horizontal bars in subplot (a), with biofuels sorted in 
decreasing order of efficiency and efficient biofuels depicted with a green label. Histograms at the bottom of the figure group results per type of biofuel (subplot (b)) 
or type of feedstock (subplot (c)). ETOH corn A: Dry mill corn without oil extraction; ETOH corn B: Dry mill corn with oil extraction; ETOH corn C: Wet milling corn; 
ETOH corn D: combined dry and wet milling corn; ETOH corn/stover A: integrated corn/stover ethanol (associated with corn); ETOH corn/stover B: integrated corn/ 
stover ethanol (associated with stover); ETOH corn E: Gen dry milling corn with oil extraction; ETOH sweet sorghum A: Conventional; ETOH sweet sorghum B: 
Integrated.*G: Ethanol produced by gasification. BD20: Diesel fuel with up to 20 %v/v FAME content; E10: Gasoline fuel with up to 10 %v/v bioethanol content; E85: 
Gasoline fuel with up to 85 %v/v bioethanol content; RDI: Renewable Diesel Production Based on SuperCetane; RDII: Renewable Diesel Production Based on fluid 
catalytic cracker technology. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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sustainability indicators simultaneously. This implies there is a pool of 
35 biofuels from which policy-makers can select the most suitable al
ternatives to promote according to the regional context (e.g., land 
availability, farmer preferences or the most abundant type of vehicle -SI 
vs. CIDI-). 

The highest efficiency score, standing at 1.61, is achieved by the 
blend using 85% of ethanol from municipal waste, owning to different 
factors. On the one hand, low cost, water and land occupation re
quirements are allocated to MSW compared to other feedstocks (e.g., 
0.01 m3 of water/liter of E85 from MSW, compared to 0.76 m3 of water/ 
liter of E85 from dry mill corn without oil extraction). On the other 
hand, this is also attributable to the production process itself, which 
takes advantage of low-cost fermentable sugar sources. In the case of 
MSW, the energy demand of the process is self-satisfied by using either a 
fraction of the biomass feedstock or the residues from the fermented 
biomass, also exporting any surplus of energy that might be produced. 
This makes the fossil carbon emissions, as well as the impacts associated 
with energy generation and transportation, lower for MSW than for any 
first-generation biomass. Indeed, the production of 1 L of ethanol from 
first-generation biomass (i.e., fermentation of simple sugars) emits on 
average 0.47 kg CO2 eq, while the production of 1 L of ethanol from 
cellulosic materials and an acid hydrolysis process emits only 0.21 kg 
CO2 eq. 

Interestingly, the blend using 10% ethanol from MSW shows a 
modest efficiency in the nominal scenario (1.00) and even has an 11% 
chance of being inefficient. This inferior result compared to the E85 
blend stems from the increased amount of poor-performing gasoline 
present in the blend. Still E10 from MSW can achieve efficiencies as high 
as 1.11 in some scenarios; this would place it as the eighth fuel if sorted 
according to the maximum efficiency score displayed in any scenario. 

Despite the promising results of biofuels based on MSW, the avail
ability of waste suitable for biofuel production could limit the 
displacement of fossil fuels with these alternatives. As an example, 0.23 
kg of dry MSW is generated per day and person in Europe. If all this 
waste were used to produce E85, 0.08 L would be obtained, yet this 
would only cover 1.8% of the daily per capita demand for fuel in the 
region (i.e., 4.4 L/day person) [81–82]. 

We next turn our attention to the lowest efficiency score in the 
nominal scenario (0.26), which corresponds to ethanol from corn (i.e., 
E85 from combined dry and wet milling corn). This can be explained by 
its high resource requirements and low mileage achieved per liter of 
biofuel (i.e., 8.63 km compared to 14.57 km in the case of any renewable 
diesel). 

Comparing the five different types of fuels studied (i.e., E10, E85, 
BD20, RDI, RDII), it is observed that there is at least one efficient biofuel 
for each of them in the nominal scenario (Fig. 5b). This does not mean 
that all fuel types performed equally well: whilst almost all the BD20, 
RDI and RDII fuels are found efficient, only 30% of ethanol-based fuels 
(15 out of 50) achieve the efficient status (Fig. 5a). This indicates that 
the fuel type alone is not enough to draw strong conclusions, and that 
the carbon source should also be explored. 

To this end, we classify biofuels into three groups depending on their 
carbon source: (i) bio-oils, consisting of animal fat and vegetable oil; (ii) 
cellulosic material, i.e., those made of lignocellulosic biomass; and (iii) 
first-generation sources, including sugars and starch (Fig. 5c). Again, we 
find examples of efficient biofuels for any type of carbon source, yet 
some patterns can still be observed. Bio-oil-based fuels (e.g., BD20, RDI, 
RDII) show, on average, the highest efficiency scores, standing at 1.03, 
compared to 0.91 for biofuels based on lignocellulosic biomass and 0.56 
for those based on first-generation biomass. This also translates into a 
larger share of bio-oil-based fuels deemed efficient: 90%, compared to 
46% in the case of biofuels from lignocellulosic feedstock and 59% for 
those based on first-generation biomass. These results are explained by 
the lower fuel consumption in CIDI engines compared to SI engines and, 
in the case of renewable diesel, by the possibility of using 100% bio- 
based fuels (i.e., no blends) without affecting the engine performance 

[83–85]. Inspection of data (see Table 1) reveals that fuels used in SI 
engines have 15% lower median prices than the fuels used in CIDI en
gines, 0.67$/liter vs. 0.78$/liter. This difference is reversed when the 
comparison considers fuel consumption per km, where CIDI-type fuels 
achieve a lower price (0.054$/km vs. 0.07$/km). Therefore, while 
renewable diesel generates greater environmental impacts per liter of 
fuel burned (see Table S19 and S20), this is offset by the achievement of 
longer distances travelled, which ultimately translate into lower impacts 
per km (i.e., lower inputs for the same level of output). 

Overall, these results call for encouraging the use of renewable diesel 
over traditional biodiesel or bioethanol owing to their lower GWP in the 
life cycle, their lower fuel consumption rate, and their lower exhaust 
particle emissions per km [86]. In cases where biodiesel is still to be 
used, cellulosic carbon sources are preferred over first-generation 
biomass; this might also avoid concerns about competition with food 
by growing crops in marginal land. In addition, the processes for con
verting cellulosic biomass into bioethanol typically devote part of the 
biomass feedstock to the cogeneration of heat and electricity for self- 
consumption. This not only reduces the input requirements allocated 
to the biofuel, but also lowers the dependence on the domestic elec
tricity mix by satisfying part of the energy demand of the process 
through renewable sources (~74% on average) [47]. Cellulosic mate
rials are currently becoming more competitive, achieving better per
formance and lower cost thanks to advances in the production of 
enzymes for the degradation of lignocellulosic materials into simple 
fermentable sugars (e.g., pentoses, hexoses) [87]. However, replacing 
the total diesel consumption in Europe (i.e., 287Mtoe [88]) with 
renewable diesel from canola would require exploiting 90% of the total 
agricultural land available in the region (1.15 million km2 [89]), clearly 
an unrealistic scenario. 

Inefficient units are mostly based on corn and sorghum grains, also 
part of first-generation ethanol blends. Their low performance is due to 
different factors. On the one hand, the feedstock costs are higher for 
these fuels than for lignocellulosic materials (e.g., 130$/t or 350$/t of 
corn and sorghum, respectively, compared to 58$/t for Miscanthus, as an 
example of lignocellulosic material) [90]. Besides, environmental im
pacts generated during the farming stage of corn and sorghum are more 
significant owing to the higher use of machinery, transportation, pesti
cides and fertilizers (e.g., 194 g of fertilizer per liter of corn-based 
ethanol, compared to 10 g of fertilizer per liter of willow-based 
ethanol, see Tables S1 and S5). 

One aspect that stands out is the low efficiency of fuels based on 
Jatropha compared to soybeans, even though the former has a higher oil 
content, lower water requirements, and lower land occupation (see 
Table S28). This might be due to the three times higher energy 
requirement for the farming stage per kg of feedstock compared to 
soybeans. 

Inefficient biofuels based on bio-oil correspond to those coming from 
corn and algae sources. This is not only due to the carbon source but 
rather to the need to mix these fuels with fossil diesel. Indeed, corn and 
algae are efficient when they are used to produce a fuel based on 100% 
renewable carbon (RDI and RDII), allowing for the reduction of carbon 
emissions and other environmental impacts associated. 

It is also observed that data uncertainty has a marginal role in 
shaping efficiency scores, at least to the extent of affecting the trends 
observed. Most of the biofuels are efficient or inefficient in all the sce
narios and the nominal case, with only five biofuel routes changing 
depending on the realization of the uncertainty. These are E85 Mis
canthus (with a 74% chance of being efficient), E10 sugar cane (90% 
chance), E10 willow (90% chance), E10 poplar (60% chance) and E10 
MSW (89% chance). Among them, only the aforementioned E10 from 
poplar and E85 from Miscanthus show their performance clearly affected 
(efficiency score between 0.76–1.00 for the former and 0.62–1.05 for the 
latter). 

Given that biofuels are mainly considered a potential solution for the 
climatic problem, and acknowledging that other environmental impacts 
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are also important, we next explore in detail the performance achieved 
by some biofuels in terms of their GWP (Fig. 6a). It is observed that the 
combustion stage is the one that contributes the most to this impact 
category, being responsible for 80% of carbon emissions on average. 
However, part of these emissions would come from biogenic carbon, 
which does not contribute towards the GWP because it does not increase 
the total amount of carbon in the biosphere–atmosphere system in the 
life cycle. The share of emissions stemming from biogenic carbon de
pends on the fuel and the carbon source used, and can be as high as 93% 
of combustion emissions for renewable diesel made from palm (i.e., 93% 
of total GWP without deducting biogenic CO2). In this particular 
example, subtracting biogenic emissions would place the combustion 
stage at 53% of the total GWP of the fuel. In contrast, biogenic emissions 
are low for biofuels based on blends with gasoline (e.g., E10 from wil
low) or with conventional diesel (e.g., BD20 from palm), where even 
after discounting biogenic emissions, the combustion stage still repre
sents 82% and 81%, respectively, of the cradle-to-wheel GWP. Overall, 
this suggests that blends with low biofuel content (e.g., 20%) will have a 
limited benefit on climate change, which calls for policies promoting 
pure biofuels or blends with higher biofuel shares. 

A totally different picture emerges when other environmental im
pacts are assessed. In the case of terrestrial ecotoxicity (Fig. 6b), the 
production stage contributing the most towards the total impact de
pends strongly on the fuel type and carbon source. For biofuels based on 
bio-oil, the combustion stage contributes 33% of total terrestrial eco
toxicity, while for biofuels based on ethanol, combustion emissions 
represent only 1% of the total terrestrial ecotoxicity. Indeed, the emis
sions of polycyclic aromatic hydrocarbons (PAHs) released during bio
fuel combustion in a vehicle engine significantly affect the difference in 
terrestrial ecotoxicity between the two fuel types. Note that, in the 
absence of more specific data, we only differentiate PAH emissions be
tween the two types of engines considered (CIDI vs SI), but not between 
different blends used in the same engine. This assumption is based on the 
observation that PAH emissions are mostly dictated by the engine 
operating conditions [91]. 

In the case of third-generation biofuels, i.e., those using algae as 
feedstock, the stage where algae is converted to renewable diesel is 
highly energy-intensive, mainly due to the oil extraction process. This 
makes this stage the most important in terms of terrestrial ecotoxicity 

(70%) and the second most important in GWP (25%) for algae-based 
renewable diesel, and therefore could be object of further research 
aiming at improving the sustainability level of these biofuels. 

The results obtained through the methodology applied in this 
contribution for the evaluation of biofuels are in agreement with those 
found using other metrics such as RepSIM [92]. Despite differences 
between the two approaches exist, both methodologies combine eco
nomic, environmental and social indicators to perform a holistic sus
tainability assessment, finding that the most sustainable alternatives 
result from using low-value waste products as carbon sources (i. e., 
MSW, tallow) and processes that involve cracking energy dense mole
cules and reforming them in the presence of hydrogen (e.g., HVO or 
Fischer-Tropsh). 

3.2. Inefficiency assessment 

Once identified, inefficient units are projected onto the efficient 
frontier, and improvement targets are computed for their different sus
tainability indicators. These improvement targets are provided per DMU 
in Fig. 7 as the median percentual changes required with respect to the 
nominal values across the 100 different scenarios (i.e., decrease for in
puts and undesirable outputs, and increase for outputs). In the interest of 
clarity, the information for the 37 inefficient DMUs is lumped, here, into 
ten groups with similar carbon sources; the complete results are pro
vided in Table S32 in the Supplementary Material, while detailed results 
for the nominal scenario are given in Table S31. 

Most inefficient units need to achieve significant reductions in land 
occupation, water use, and terrestrial ecotoxicity to become efficient. 
This is especially evident in the case of E85 fuels due to the higher fuel 
consumption of SI engines, causing, in turn, the increase of impacts from 
fuel production for the same mileage. 

Corn-based E10 requires improvements in all the inputs, with the 
largest reductions observed in water use (96%), terrestrial ecotoxicity 
(73%), land occupation (63%) and freshwater eutrophication (27%). 
This poor performance is mainly due to two factors. On the one hand, 
corn farming is a very demanding process, requiring significant amounts 
of land, water and energy compared to other crops (e.g., on average, 
200% more energy than for cellulosic materials such as Miscanthus or 
poplar). On the other hand, the conventional conversion process from 

Fig. 6. Breakdown of the GWP (subplot (a)) and terrestrial ecotoxicity (subplot (b)) generated in the life cycle of selected biofuels. CMB: Combustion; FF: Fossil fuel 
production; CM: Materials for the biofuel production; CE: Energy for biofuel production; FM: Farming materials; FE: Farming energy; BC: Biogenic Carbon. 
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first-generation biomass to E10 covers all its energy demand with the 
domestic energy matrix, being exposed to the cost and impacts of the 
country mix. This is a clear disadvantage compared to the conversion 
process for cellulosic feedstocks, which satisfy part of their energy de
mand by using a certain share of the biomass feedstock to generate heat 
and electricity for self-consumption. 

The higher ethanol content of corn-based E85 increases the resources 
needed for crop farming, which in turn raises the improvements 
required for water use (94%), land occupation (95%) and terrestrial 
ecotoxicity (98%) to levels hardly achievable. Indeed, the first two in
dicators, clearly associated with farming of the grain, seem already 
unattainable. Even if irrigation could be fully covered by rainfall in 
certain regions, meeting the improvement target for land occupation 
would entail almost doubling the yield: from the current 17.31 t/ha/yr 
(Table S25) up to a target yield of 34.27 t/ha/yr. On the other hand, 
fertilizers and pesticides used during farming have a significant contri
bution to terrestrial ecotoxicity (Fig. 6b), and again it is challenging to 
imagine that magnitude of reduction without affecting a crop yield that 
should be further improved. In addition, E85 shows the lowest mileage 
per liter of fuel used (i.e., higher fuel consumption per kilometer), which 
result in higher emissions from combustion and, therefore, higher re
ductions in human ecotoxicity (74%), freshwater eutrophication (74%), 
photochemical oxidant formation potential (57%), GWP (62%), fresh
water ecotoxicity (57%), fine particulate matter formation (57%) and 
terrestrial acidification (46%). Furthermore, the mileage achieved 
should be improved by 2%; this could be pursued by using engines built 
to work with ethanol-blends (flex-fuels vehicles) or by incorporating 
turbochargers [93]. 

In the case of E10 from cellulosic feedstocks, reductions are required 
in most inputs, yet these are more modest compared to E10 based on 
first-generation biomass. The reason is that farming of cellulosic feed
stock requires less energy and materials than farming of first-generation 
biomass does, thus penalizing the contribution of biomass production 
for the latter. The most important improvements requested for E10 
based on cellulosic biomass are reductions of 55% and 74% in water 

requirements and land occupation, respectively. The former impacts are 
mainly caused by the use and production of fertilizers, leaving rotational 
crops and organic fertilizers as the most promising option for their 
abatement [94,95]. On the other hand, impacts on land occupation 
might imply a yield increase that could be pursued by growing crops in 
best-endowed regions, i.e., on soils with adequate natural moisture 
available and non-winter climates [96]. Works by Castillo et al. [97] and 
Zhang et al. [98]offer a suitability analysis of soils for different crops (e. 
g., Miscanthus, switchgrass, poplar, Jatropha). 

The production process for E10 and E85 based on cellulosic sorghum 
(i.e., sweet and forage sorghum) is the same as for the other cellulosic 
feedstocks, devoting part of the biomass to satisfy its own energy re
quirements. Despite this, more demanding improvements are found 
when using sweet, and forage sorghum since growing these crops entails 
higher costs and water requirements than other cellulosic feedstocks, 
making them a poorer choice. 

The inputs requiring the highest reductions for corn-based BD20 are 
water use (72%) and land occupation (34%). Inefficiencies in these 
categories are due to the low oil content of the corn grain (about 3–4%), 
which results in larger feedstock requirements even after the economic 
allocation (i.e., only 17% of the inputs for corn production are allocated 
to the biodiesel). An energy sector with a strong dependence on biomass 
might alleviate global warming at the expense of imposing additional 
burdens on land or freshwater use; however, the urgency to solve the 
climatic problem and the fact that land-system and freshwater use 
planetary boundaries are not yet transgressed might fully justify the 
transition [99,100]. 

Algae-based BD20 shows high oil content (up to 35% in dry weight) 
and low water requirements, which do not prevent it from needing 
important improvements in human toxicity (44%) and land occupation 
(35%). These two impacts are directly related to the energy needs for 
algae drying and oil extraction, so advances in energy efficiency and the 
oil extraction process, such as supercritical fluid extraction [101], could 
reduce the existing gap between the current and the target performance. 
In addition, a reduction of 74% is required for terrestrial ecotoxicity. 

Fig. 7. Median improvement targets for inefficient biofuels to become efficient considering 100 possible scenarios. E10 cellulosic: median improvement targets 
across E10 switchgrass, E10 Miscanthus & E10 corn stover; E10 cellulosic sorghum: median improvement targets across E10 sweet sorghum B & E10 forage sorghum; 
E10 corn: median improvement targets across E10 corn A-B-C-D-E & E10 corn/stover A-B; E85 cellulosic: median improvement targets across E85 switchgrass & E85 
corn stover; E85 cellulosic sorghum: median improvement targets across E85 sweet sorghum A-B & E85 forage sorghum; E85 corn: median improvement targets 
across E85 corn A-B-C-D-E & E85 corn/stover A-B; LO: land occupation; Water: water used in farming and water depletion; GWP: global warming potential; FWEU: 
freshwater eutrophication; FWET: freshwater ecotoxicity; HT: human ecotoxicity; PMFP: fine particulate matter formation; POFP: photochemical oxidant formation 
potential; TA: Terrestrial acidification; TE: terrestrial ecotoxicity. 
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Impacts in this category are generated mainly during diesel combustion 
due to the generation of anthracene, fluoranthenes and pyrene [57]. 
This could be mitigated with the installation of Urea-based SCR systems, 
LNT Lean NOx Trap, or Exhaust Gas Recirculation that reduces the 
combustion temperature [102]. Finally, freshwater eutrophication 
should be reduced by 61% for these biofuels. Although one could think 
this is the consequence of the water used for growing the algae, culti
vation is typically carried out in closed circuits where water is recircu
lated. Consequently, 90% of the freshwater eutrophication stems from 
the use of energy from the grid, which, in the case of the US-WECC 
power mix, is dominated by coal (34%) and natural gas (18%). 

Therefore, trying to meet this target implies either generating the 
required energy internally using cleaner sources or relying on a more 
sustainable energy mix. This latter option is explored in more detail in 
the next section. 

3.3. Enhancement scenarios 

After identifying hotspots for inefficient biofuels in the previous 
section, we next quantify the impact of adopting certain supply and 
demand-side measures to improve their sustainability performance. For 
the former, we focus on an improvement measure recurrently identified 
as promising in the previous section, considering only nominal values 
for the indicators, namely the use of a renewable-based electricity ma
trix to supply energy for foreground processes. The mix proposed follows 
the guidelines of the European Green Deal [12] for reduction of GWP 
emissions and is based on 74% hydroelectric, 25% geothermal and 1% 
wind. To complement the demand-side measures, we also analyze the 
significance of adopting different demand-side measures, represented 
here by the use of different vehicles and passenger loads. Four scenarios 
are considered in this regard on top of the reference case discussed so far 
(i.e., labelled as scenario LVO1): light vehicles at minimum capacity (i. 
e., one passenger, LV1); light vehicles at maximum capacity (i.e., five 

Fig. 8. Changes achieved in inputs (i.e., costs, land occupation and water use) and selected undesirable outputs (i.e., global warming potential, freshwater eutro
phication and fine particulate matter formation) by replacing the current mix (i.e., US-WECC) and vehicle type/usage for three fuels obtained from different types of 
carbon sources: bio-oil, cellulose and first-generation feedstock. LVO1: base case without modifications (1 passenger); LV1: modified base case (1 passenger); LV5: 
modified base case (5 passengers); PB10: public transport (10 passengers); PB30: public transport (30 passengers). 
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passengers, LV5) and the use of public transport (i.e., a bus) at 30% of its 
maximum capacity (i.e., ten passengers, PB10) and at maximum ca
pacity (i.e., 30 passengers, scenario PB30). All these scenarios adopt the 
sustainable mix. 

The consequences of adopting such measures and scenarios are 
calculated for a subset of six of the 12 performance indicators considered 
so far (i.e., cost, land occupation, water use, global warming potential, 
freshwater eutrophication and fine particulate matter formation) for 
three different biofuels (i.e., RDI based on algae, E85 based on corn and 
E85 based on corn stover). The results obtained are shown on a per- 
capita basis in Fig. 8, where a comparison of scenarios LV1 and LVO1 
allows us to assess the impact of the ceteris paribus change of the elec
tricity source. 

Modifying the electricity matrix (i.e., comparison of scenario LV1 
with LVO1) allows algae-based RDI to achieve important reductions in 
FWEU (82%), PMFP (52%) and GWP (44%). This change can be 
explained by the high electricity requirements of algae-based biofuel 
production and would suffice to attain the targets suggested by DEA for 
some inefficient biofuels such as algae BD20 (e.g., 61% FWEU, 18% 
PMFP). In contrast, improvements in these three indicators for E85 
biofuels are inexistent. This is because their production process requires 
thermal energy rather than electricity. Although not explored here, the 
implementation of heat pumps for waste heat recovery [103] could help 
these fuels to meet their improvement targets. Similarly, the remaining 
three indicators (i.e., cost, land occupation and water use) are barely 
affected by the change of the electricity mix, which suggests that other 
measures would need to be pursued before improvement targets can be 
attained. For the case of cost reduction, governments can play a key role 
by providing economic incentives for biofuel production or discounting 
certain taxes for the production or sale of biofuels. This would help 
alleviate the economic burden of some alternatives that can be key in the 
achievement of environmental targets, that are becoming more 
demanding. Meanwhile, we note that adopting the latest standards in 
farming practices is not the only way to pursue improvements in land 
occupation and water use: increasing the efficiency of processes down
stream the supply chain (i.e., hydrolysis of lignocellulosic materials 
[104] or the fermentation process [105] will ultimately result in a lower 
demand for biomass feedstock and, therefore, lesser impacts from 
farming. 

More optimistic improvements are observed in all the cases when 
supply and demand-side measures are combined (i.e., comparison of 
scenario PB30 with LVO1). Revisiting the case of algae-based RDI, re
ductions in FWEU, PMFP and GWP reach values as high as 97%, 93% 
and 92%; on average, 68% higher than in scenario LV1. Similar patterns 
are also observed for the rest of the biofuels and indicators, which, in 
this case, achieve improvements between 86% and 90%. These would 
allow meeting the improvement targets requested by DEA for all the 
indicators in the case of E85 from corn stover and almost all the in
dicators except for land occupation, water use and terrestrial ecotoxicity 
in the case of corn-based E85. 

These results highlight the importance of demand-side measures, 
often overlooked in biofuel studies [106,107], since adopting a 
responsible behavior can be, at least, as impactful as shifting to cleaner 
energy sources. Indeed, the greater the number of passengers in a certain 
vehicle, the greater the improvement in the performance of biofuels. The 
only exception to this rule is the use of public transport at 30% of its 
capacity, which results in a worse alternative than a light vehicle with 
five passengers. 

4. Conclusion 

In an effort to identify patterns that can aid in the development of 
effective policies ensuring the sustainability transition in the trans
portation sector, we combined LCA with DEA to assess the performance 
of 72 biofuel routes through the lens of sustainability. The different al
ternatives result from the combination of 19 biological feedstocks, four 

biofuel production processes and five biofuel blends. 
The biofuel alternative with the highest efficiency score was based on 

MSW, which suggests that these should be prioritized over other carbon 
sources. Fuels from natural oils also show a promising performance, 
with 20 of the 22 units analyzed deemed efficient. Among the remaining 
carbon sources, results agree with the recent trend of promoting the use 
of cellulosic material for ethanol production. In terms of fuel type, our 
results suggest that policies should favor the widespread adoption of 
renewable diesel over traditional ethanol or biodiesel, since the former 
achieved the best performance thanks to a higher fuel economy and a 
higher biogenic carbon content in the fuel. The fuel type, however, was 
not found as impactful as the carbon source in achieving high efficiency 
scores. 

To complement policies for regulating biofuel supply, we also 
explored the effectiveness of demand-side measures for the trans
portation sector. We found that adopting responsible practices for 
vehicle use could bring even more benefits than improving the biofuel 
production processes or using cleaner energy sources. 

Finally, our analysis also provided targets for the improvement of 
inefficient biofuels that, if attained, would make them efficient. In this 
regard, reductions in land occupation and water use, although highly 
relevant and often identified as key in our results, might not be possible 
to achieve depending on the type of crop and region. A case-by-case 
analysis is necessary for the farming stage to avoid the transportation 
of biomass over long distances and ensure no risks are imposed on food 
security. Indeed, the most appropriate feedstock might depend on the 
region of interest. 

Promoting biological carbon sources today as an interim solution for 
the transportation sector might proof useful even if the future is finally 
dominated by electric vehicles since the infrastructure created for 
growing and transporting the biomass today could still be exploited by 
bioenergy plants tomorrow. If combined with carbon capture and stor
age, these plants will remove carbon dioxide from the atmosphere, a 
strategy deemed essential for meeting net-zero targets. In this context, 
multi-criteria approaches, such as the one presented in this contribution, 
offer a powerful framework to perform holistic assessments with the 
capacity to minimize burden-shifting episodes and aid policy-makers in 
the development of better-informed policies. 
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