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Abstract

In the graph searching problem, we are given a graph whose edges are all “contaminated”,
and, via a sequence of “steps” using “searchers”, we want to obtain a state of the graph in which
all edges are simultaneously “clear”. A search strategy is a sequence of search steps that results
in all edges being simultaneously clear. The search number s(G) of a graph G is the smallest
number of searchers for which a search strategy exists.

A search strategy is monotone if no recontamination ever occurs; it is contiguous if the set of
clear edges always forms a connected subgraph; and it is internal if searchers, once placed, can
only move along the graph edges (i.e., the removal of searchers and their placement somewhere
else is not allowed). Depending on the context, each combination of these characteristics may
be desirable. Lapaugh proved that, for any graph G, there exists a monotone search strategy for
G using s(G) searchers. Obviously, for any graph G there exists an internal search strategy for
G using s(G) searchers, but it is not necessarily monotone. We denote by is(G) (resp. es(())
the minimum number of searchers for which there exists a monotone internal (resp. contignous)
search strategy in G. )

We show that, for any graph G, s(G) < is(G) < ¢s(G) < 2 5(G). Bach of these inequalities
can be strict. The last inequality is tight. We actually prove the stronger result stating that, for
any graph G, there exists a monotone contiguous internal search strategy for (G using at most
2 s((7) searchers. As a consequence, the contiguous search number ¢s is a 2-approximation of
pathwidth. Finally, we show that there is a unique obstruction for contiguous search and for
monotone internal search in trees, in contrast with standard search which involves exponentially
many obstructions, even for trees. We prove this result by giving a complete characterization
of those searches in trees.
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1 Introduction

Graph searching refers to a problem that has been throughly and extensively investigated in the
literature, and that describes a variety of application scenarios ranging from “decontaminating a
set of tunnels” to “capturing an intruder in a network”.

Using the original metaphor (8, 28, 29], we are given a graph whose edges are all “contaminated”,
and a set of “searchers”. The goal is to obtain a state of the graph in which all edges are simultane-
ously “clear”. To clear an edge e = (u, v), a searcher must traverse the edge from one end-point u
to the other end-point v; a clear edge is preserved from recontamination if either another searcher
remains in u, or all other edges incident to u are clear. In other words, a clear edge e is recontam-
inated if there exists a path between e and a contaminated edge, with no searcher on any node of
the path. The basic operations, called search steps, are: (1) place a searcher on a node, (2) move
a searcher along an edge, (3) remove a searcher from 2 node.

Graph searching is the problem of developing a search strategy, that is a sequence of search steps
that results in all edges being simultaneously clear. The main complexity measure is the number of
searchers used by the strategy; the smallest number of searchers for which a search strategy exists
for a graph G is called the search number s(G) of G.

The study of graph searching has both practical and theoretical motivations. In particular, graph
searching arises in VLSI design, through its equivalence with the gate matrix layout problem (see,
e.g., [11, 13, 22]). It is also related to network security for its relation with the capture of an intruder
by software agents (see, e.g., [1, 17, 35]), and protection from mobile eavesdroppers [16]. Moreover,
the problem and its variants, i.e., node-search, mized-search, inert-search, etc., are closely related
to standard graph parameters and concepts, including treewidth, cutwidth, pathwidth, and linear-
width [2]. For instance, s(G) is equal to the cutwidth of G for all graphs of maximum degree 3
(see [25]). Similarly, the node-search number of a graph is equal to its pathwidth plus one, and also
to its vertex separator plus one [18, 19, 20]. The inert-search number is equal to the treewidth plus
one [10, 32], and the mixed-search number is equal to the proper pathwidth [38, 39]. For more on
graph searching, we refer the reader to, e.g., [9, 12, 14, 15].

Graph searching is a non-trivial interesting and challenging problem; even determining whether
s(G) < k for arbitrary G and k, is NP-complete [26]. Not surprisingly, the research has focused
on restricted classes of graphs (e.g., [19, 25, 27, 33, 34]), and on bounded search numbers (e.g.,
see [6, 28, 37, 39]). In particular, for any fixed k, the class of graphs that can be cleared with up
to k searchers is minor closed. Therefore, there is a finite number of obstructions for this class
[31]; hence, there is a polynomial-time algorithm for testing whether an arbitrary graph G satisfies
s(G) < k, for a fixed k. Of course, the algorithm requires the knowledge of the whole set of
obstructions. Unfortunately, the number of obstructions for search grows super-exponentially with
k, even for trees [28, 37]. More precisely, for any k, there are at least (k!)? obstructions for the
class of trees T such that s(T) < k.

Another interesting line of investigation is the determination of efficient search strategies satistying
additional properties, which are desirable or even necessary for some applications. Three proper-
ties are of particular interest: absence of recontamination, connectivity of the cleared area, and
restricting searchers to move only along the edges.

A search strategy is monotone if no recontamination ever occurs. The importance of monotone
searching arises in applications where the cost of clearing an edge by far exceeds the cost of traversing
an edge. Hence each edge should be cleared only once. Lapaugh [21] has proved that for every G



there is always a monotone search strategy that uses s(G) searchers; a similar positive result exists
also for node-search and mixed-search [2, 3].

A search strategy is contiguous if the set of clear edges is always connected. The necessity for
contiguity arises e.g., in applications where communication between the searchers can occur only
within completely clear areas of the network; hence connectivity is required for their coordination.
Safety is another motivation for contiguity, as it would always ensure the presence of secure routes
between all the searchers. Notice that connectivity does not imply nor is implied by monotonicity.
In fact, most existing monotone solutions, after clearing a connected set X of edges, remove the
searchers and place them in another part of the graph, usually disconnected from X. The problem
of determining minimal search strategies under the contiguity constraint is still NP-complete in
general (it follows from the reduction in [26], as observcd in [1]); it has been shown in [1] that
minimal contiguous strategies can however be computed in linear time for trees.

The next property is perhaps the more practically relevant. A search strategy is internal if, once
placed, searchers can only move along the graph edges (i.e., they cannot be removed and placed
somewhere else). The removal of a searcher from a node z, and the placement of this searcher in
another node y, might be difficult or impossible to implement; in fact, it assumes that a searcher
is able to go “out of the system” and to reenter the system elsewhere. This assumption is clearly
unrealistic e.g., in the case of software mobile agents; in this case the searchers can only move in the
network from site to neighboring site. Actually, it does not hold even in the original setting of a maze
of caves [28]. Hence the importance of internal search strategies. Restricting the searchers to move
only along the graph edges considerably changes the nature of the problem. For instance, there are
trees for which minimal internal search strategies require Q(n log n) moves (i.e., edge traversal) [26],
whereas, if the removal of searchers (and their arbitrary placement somewhere else) is allowed, then,
for any graph G, there exists a minimal search strategy that requires at most O(n) moves in G [21].
Obviously, for any graph G there exists an internal search strategy for G using s(G) searchers.
Interestingly, monotone minimal strategies do not always exist for internal searching. This makes
internal search a singular point in the zoology of search problems. The natural open problem is
thus determining the properties of search strategies which are both monotone and internal.

Surprisingly, unlike the case of monotone strategies for which there exist detailed studies and
characterizations (e.g., (2, 3, 15, 21, 36]), very little is known about contiguous search strategies
and monotone internal strategies. Unfortunately, the existing techniques and results for (the many
variants of) the problem not only cannot be employed but do not even provide any direct insight
on these two important properties.

In this paper we study the properties of these strategies and their relationship with regard to the
minimum number of searchers required for their existence.

Our results. Let us denote by cs(G) (resp., is(G)) the minimum number of searchers for which
there exists a contiguous (resp., monotone internal) search strategy in G. In this paper, we show

that for any graph G,
5(G) < is(G) < es(G) < 2 5(G). (1)

Moreover, we show that each of these inequalities can be strict for infinitely many graphs. The
last inequality is actually a corollary of a stronger result. In fact, we prove that, for any graph G,
there exists a monotone contiguous internal search strategy for G using at most 2 s(G) searchers.
Hence, all these desirable properties can be satisfied simultaneously by a single search strategy, with
no more than twice the minimum number of searchers required to clear the graph without those



properties. This also implies that the contiguous search number is a 2-approximation of pathwidth.

To obtain these results, we extend the notion of crusades defined by Bienstock and Seymour [3],
and use it in a novel way; in fact, we employ it not to prove monotonicity, but to transform a
contiguous strategy into a monotone internal one with the same number of searchers. We also
adapt to contiguous search the techniques used by Ellis, Sudborough and Turner [12] for linking
search numbers and vertex separation.

We then prove a strong difference between traditional search and both contiguous and monotone
internal searches. In fact, we show that, in trees, there is only one obstruction for monotone
internal search, as well as for contiguous search. This must be contrasted with the fact that,
for traditional search, the number of obstructions in trees is super-ezponential in the number of
searchers [28, 37]. We actually provide a complete characterization of the set of trees that can
be cleared by k searchers; this characterization is given both explicitly, in terms of k-caterpillar
(related to the notion of caterpillar dimension of [24]), and implicitly in terms of minimal forbidden
minors (i.e., obstructions). As a consequence, we show that there is an infinite family of trees T
for which ¢s(T) = 2 s(T) — 2, proving tightness of the last inequality in equation (1).

Structure of the paper. The paper is organized as follows. In the next section, we prove that
is(G) < c¢s(G) for any graph G. In the same section, we also show that there exists graphs G
for which is(G) < ¢s(G). In Section 3, we prove that, for any graph G, there exists a monotone
contiguous internal search strategy for G using at most 2 s(G) searchers. In Section 4, we provide
the characterization of the trees that can be cleared by k searchers, proving the uniqueness of the
obstruction. Finally, Section 5 contains some concluding remarks and open problems.

2 Contiguous vs. Internal Graph Searching

In this section, we prove that is(G) < c¢s(G) for every graph G. We use a generalization of the
concept of crusade introduced in the short and elegant proof of Bienstock and Seymour [3] of
Lapaugh’s Theorem.

For a set X of edges in a graph G, we denote by §(X) the set of nodes in G having at least one
incident edge in X, and at least one incident edge not in X.

Definition 2.1 [3] Given a graph G = (V,E), a sequence (Xo, X1,...,Xr) of subsets of edges
is a crusade if Xo = 0, X, = E, and |X;\ Xi—1| < 1 for any 1 < ¢ < r. The frontier of a
crusade (Xo, X1, ..., Xr) 18 maxi<i<r |6(X;)|. A crusade is progressive ifXoCX;C...CX, and
X\ Xig| =1 for1<i<r.

We say that a crusade is connected if the subgraph induced by X; is connected forany 1 <i<r.
Lemma 2.1 If cs(G) < k then there ezists a connected crusade of frontier at most k in G.

Proof. Given a search strategy S in a graph G, let C = (Xo,X1,...,X;) be the sequence of
subsets of edges such that Xy = 0, and X is the set of clear edges after step ¢ of S. At most one
edge is cleared at every step of S, and hence |X;\ X;_4| < 15ie., Cis a crusade. If S is a search
strategy in G using at most k searchers, then obviously the frontier of C' is at most k. Clearly, all
X;’s are connected for 1 < ¢ < r by definition of contiguous search. ]



Given a crusade C = (Xo, X1,...,X;), we define the skeleton S of C as the directed graph of
r+1levels L;, i = 0,...,r such that L; consists of as many nodes as the number of connected
components of X;. There are edges only between levels of consecutive indices in § (i.e., each L;
forms a stable). More precisely, there is an edge from the node a € L, representing a connected
component A of X;, to the node b € L;41, representing a connected component B of Xy, if and
only if:

e cither X;41\ X; ¢ B and B C 4;

e or X;31\ X; € B and one of the (at most two) connected component(s) of B\ (Xi41 \ X;i) is
included in A.

Note that the out-degree of a node in S can be greater than 1 because a connected component of
X; can split in several connected components of X,y due to recontamination. On the other hand,
the in-degree of a node is at most 2 because | Xiy \ X;| <1 (i.e., there is at most one new clear edge
in X;;1); hence at most two distinct connected components of level ¢ can form a unique component
at level i + 1. More precisely, there is at most one node of in-degree 2 at every level of S, and all
the other nodes have in-degree < 1. Note also that all nodes in a skeleton of a progressive crusade

have out-degree 1 because X; C X1, and hence a connected component never splits.

We denote by 't (u) (resp., I'"(u)) the set of edges in & out-going from (resp., incoming to) node
w € S. Since a node u € S represents a set of edges X in G, by extension we denote by &(u) the
set of nodes in 6(X).

We now define the concept of consistent crusade.

Definition 2.2 A crusade C 1is k-consistent if its frontier is at most k, and every node u (resp.,
edge e) of its skeleton S can be labeled by a positive integer ky (Tesp., ke ) satisfying:

(1) ky > |6(w)| for every u € S;

(2) Yuer; ku < k for every level L;;

(3) ky = ZeEF‘*‘(u) ke = EeEF_(u) ke

Intuitively, k, represents the number of searchers in the connected component represented by u.
The labels ke, € € T'T(u), represent how the searchers are distributed among the possibly many
connected components resulting from a split of the component represented by u. Condition (1)
states that the number of searchers in each component is sufficient to protect the component from
recontamination. Condition (2) states that the total number of searchers in the graph at any step of
a search strategy cannot exceed k. Condition (3) states that: on one hand, a connected component
A of X; shares its searchers among the connected component(s) resulting from the split of A in
Xit1. On the other hand, it also states that the number of searchers in a connected component B
of Xi; is equal to the sum of searchers coming from component(s) of X; whose merging results in

B.

Observe that the skeleton S of a connected crusade C'is a path. Labeling every node and edge of
S by k makes it k-consistent. Therefore, a connected crusade of frontier at most k is k-consistent.
The main reason for introducing consistent crusades is actually the following lemma.

Lemma 2.2 If there exists a k-consistent crusade in G, then there ezists a progressive k-consistent
crusade in G.



Proof. The proof is inspired by (2.2) in [3]. Among all k-consistent crusades, choose a k-consistent
crusade C = (Xo, X3, - . -, Xr) which satisfies:

(c1) S2i_o(J6(Xy)| + 1) is minimum, and

(c2) °0_,|Xi| is minimum subject to (c1).
Let us show that this crusade is progressive.
Claim 2.1 |X;\ Xi—1| =1 for every1 > 1.

Indeed, by contradiction, let 7 be such that |X;\ Xi-1| =0, ie, Xi C Xi1. Then
Cl = (X01X17 © 'a-Xi—-laXi-I-la B '1-X7‘)

is a crusade of frontier < k. Let us show that C' is k-consistent.

In a skeleton, the out-neighbors of a node u are called the children of u, and the out-neighbors
of the children of u are called its grandchildren. We define similarly the notion of parents and
grandparents.

The skeleton S’ of C’ can be obtained from the skeleton S of C by removing level i, and connecting
every node of L;_; to its grandchildren in S. See Figure 1.

i+1

i-1
Figure 1: Skeleton &'

We show that we can label &' so that the three conditions of Definition 2.2 are satisfied. The
node-labeling of 8’ is the node-labeling of S. The edge-labeling of 8’ is the edge-labeling of S, but
between L;_; and L;;,. Edges from L; to L;41 are labeled as follows. Let v € L;4,. Let u be
a grandparent of v in §. There can be at most two distinct paths from u to v in S because the
in-degree of v is at most 2. The edge (u, v) of & receives the label of (w, v) of S if there is a unique
path (u, w,v) from u to v in S. It receives the sum of the labels of (w,v) and (w’,v) if there are two
paths (u,w,v) and (u,w’,v) from u to v in §. Since | X;\ Xi—1]| = 0, there is no node of in-degree 2
in L; of S, and hence this labeling gives k-consistency to S .

Hence C' is a k-consistent crusade contradicting (C1), and therefore Claim 2.1 holds, i.e., |X;\
X;_1| =1 forevery: > 1.

Next, we show that X;_; C X; for every ¢ > 1.
Claim 2.2 |6(X;—1 U X;)| > |6(X;)| for every i > 1.

Indeed, by contradiction, let

c" = (Xo,Xl, e, Xio1, Xic UXi, Xt .,Xr).



C" is a crusade of frontier < k. Let us show that it is k-consistent.

The skeleton §” of C” can be obtained from the skeleton S of C' by replacing L; by a copy L
of L;_, and by placing edges between each node and its copy. If the edge X; \ X;-; merges two
components of X;_1, then the corresponding two nodes of L’ are merged into one. Finally, there is
an edge from node u’ of L! to all the grandchildren (in S) of its copy u of L;_;. See Figure 2.

i+1

Figure 2: Skeleton S”.

We show that we can label §” so that the three conditions of Definition 2.2 are satisfied. The
node-labeling of §” is the node-labeling of S for all nodes of levels j # 7. If a node u of L! does
not results from the merging of two nodes u’ and u”, then u receives the label of its copy in L;_;.
Otherwise u receives the sum of the labels of the copies of v’ and u” in L;_;. The edge-labeling
of 8" is the edge-labeling of S except between levels i — 1, i, and i + 1. The out-going edge of
any node u of L;_; receives label k,. The setting of the edge-labeling between levels : and 7+ 1 is
slightly more complex. (Recall that there is at most one node of in-degree 2 at every level.) There
is a clear one-to-one correspondence between incoming edges to nodes with in-degree 1 in §” and
8. Thus, the incoming edge of a node at level 7 + 1 with in-degree 1 in 8" receives the label of
the corresponding edge in S. Let u be a node at level i + 1 of S, with in-degree 2. If u is still of
in-degree 2 in §” (like in Figure 2), then the two incoming edges of §” take the same labels as the
corresponding edges in §. Otherwise, the unique incoming edge to node u in 8" takes the sum of
the labels of the two incoming edges to node u in §. One can easily check that this labeling gives
k-consistency to S”.

Therefore C” is a k-consistent crusade, in contradiction with (C1). Therefore Claim 2.2 holds, i.e.,
16(Xim1 U X0)] > [6(X)].
Now, for any two edge-sets A and B, |6(AN B)| + |6(AU B)| < |6(A4)| + |8(B)| because every node

appearing on the left hand side contributes at least as many times on the right hand side. Thence,
we get from Claim 2.2 that [6(X;_; N X;)| < |§(X;-1)| for any ¢ > 1. Let

c" = (Xo, X1, Xio, Xis1 N X3, X5,y ..., X.).

C"" is clearly a crusade of frontier at most k.
Claim 2.3 C" is k-consistent.

The skeleton §" of C" can be obtained from the skeleton S of C' by replacing Li_; by a copy
L;_, of L;, and by placing edges between copies, with the following modification. The node z
with in-degree 2 at level 7 of S (if any) has two copies in L:_,. Each copy is connected to u by
an edge. We characterize now the edges between level L;_; and L!_,. Let w be a node of S at
level L;_;. If w has in-degree 1, then the parent of w is connected in S’ to all the copies of the
children of w. If w has in-degree 2, let u and v be the two parents of w in &, and let z,,.. S Tp,



p > 0, be the children of w in §. If p > 1, then the connected component w resulting from the
merging of two (sub)components (of) v and v is split into pieces. The merging is due to the unique
new edge e;_y = X,;—1 \ X;—2. Therefore, if w splits into subcomponents, there is at most one
subcomponent w’ of w that contains e;_;. Any other component is either a subcomponent of u or
a subcomponent of v, but not both. Hence, there is an edge from u (resp., v) only to the z;’s which
are subcomponents of u (resp., v). See Figure 3.

i-1

i-2

Figure 3: Skeleton 8".

Knowing the structure of &”, let us show that we can label §" so that the three conditions of
Definition 2.2 are satisfied. The node-labeling of & is the node-labeling of S, except for level
L!_,. Similarly, the edge-labeling of §" is the edge-labeling of &, except between levels ¢ —2, 1 —1,
and 7. A copy v’ of a node u € L; with in-degree 1 receives label ks = k,. Each of the two copies
2’ and z" of node z of L} with in-degree 2 receive labels that will be specified later. There is a clear
one-to-one correspondence between the edges of §”” and 8 incoming to level i. An edge in-coming
to L; in 8" hence receives the label of its corresponding edge in §. Now, we set up k,» and k;» as
the label of the edges (', z) and (2", z), respectively. The edge incoming to a node y of in-degree 1
in L!_, receives the label k,. The edge e = (u,w’) incoming to the node w’ of degree 2 in L;_,
receives label &, — Ee’el—‘+(u),e’¢e k.. We do the same for the edge (v, w’). One can easily check
that this labeling gives k-consistency to S".

From (€2), Claim 2.3 holds; i.e., | X;-1 N X;| > | Xi—4].

A direct consequence of Claim 2.3 is that X;_; C X;. Therefore C is a progressive k-consistent
crusade, which completes the proof. [ |

Lemma 2.3 Let G be a graph such that every edge has one of its eztremities incident to ezactly
one other edge. If there 1s a progressive k-consistent crusade in G, then is(G) < k.

Proof. Let C = (Xo,X1,...,X,) be a progressive k-consistent crusade in G, with skeleton S
labeled as in Definition 2.2. Let e; = X;\ X;_1 = {=i,y;}. We construct an internal search strategy
that successively clears the edges ey, e, ..., e,. Note that every node of S has out-degree 1 because
C is progressive.

In S, X, consists of a unique node u representing {e;}. We use k, searchers to clear e;. Since,

ky > |6({e1})], this number of searchers is sufficient.

Assume now that we have cleared all edges ej,...,e;—1 with an internal strategy. Assume more-
over that the number of searchers in each connected component of X;_; is the label of the node
corresponding to that component in S.



Let u be a component of level 7 of S. We consider three cases depending on the in-degree deg™ (u)
of node wu.

Case 1: deg™(u) = 0. Then u consists of a unique edge e;. It is cleared with k, searchers.

Case 2: deg™(u) = 2. Then e; connects two connected components Y;_; and Z;_; of clear edges.
One of the two extremities of e;, say z;, is of degree 2 by definition of G. One searcher is staying at
z; to avoid recontamination. The edge e; is cleared by moving this searcher from z; to y;. Hence
ky,_, + kz,_, searchers are sufficient.

Case 3: deg™(u) = 1. Then e; is incident to a unique connected component Y;_; of clear edges.
Assume, w.l.o.g., that z; is the end-point of e; with degree 2. If z; € §(Y;—1), then e; is cleared by
moving one searcher from z; to y;. Thus assume now that z; ¢ §(Y;_1), which implies y; € §(Y;_1).
If y; ¢ §(Yi—1 U{e;}), then one searcher can clear e; by moving from y; to z;. Hence assume finally
that y; € §(Y;—1 U{e;}). We get that |6(Yi—1 U {e;})| = |6(Yiz1)| + 1. Now, ky, > |6(Yic1 U {ei})],
and hence there is a free searcher in Y;_; that can move to y;, and clear e; by moving from y; to z;.

Clearly, the search strategy obtained by clearing all edges as explained above is internal. |
Theorem 2.1 For every graph G, is(G) < ¢s(G).

Proof. Let G be any graph with ¢s(G) < k. The l-expansion of G is the graph H obtained
from G by replacing every edge e by two consecutive edges ¢’ and e’. We have cs(H) < ¢s(G), by
transforming any move along e € F(G) of a search strategy for G into two moves in H along ¢’ and
e”. Therefore, thanks to Lemma 2.1, there exists a connected crusade of frontier < k in H. As we
noticed before, a connected crusade is k-consistent. Therefore, applying Lemma 2.2, we get that
there exists a progressive k-consistent crusade in G. Now, since H is the 1-expansion of G, each of
its edges has one of its extremities incident to exactly one other edge. Therefore, by Lemma 2.3,
is(H) < k. We complete the proof by observing that ¢s(G) < is(H). Indeed, an internal strategy
S for G can be obtained from an internal strategy Sy for H as follows. Let ¢’ and e” be the
two incident edges of H resulting from the expansion of an edge e of G. Assume ¢’ = {z,y} and
e’ = {y, z}. If one searcher moves from z to y, or from z to y in Sy then this searcher remains in
place in Sg. If one searcher moves from y to & (resp., from y to z) in Sy then this searcher moves
from z to z (resp., from z to z) in Sg. [ ]

We conclude the section by proving that the contiguous search number is distinct from the internal
and monotone search number, in the sense that there are graphs for which they differ.

Property 2.1 There ezists an infinite family F of graphs such that is(G) < ¢s(G) for any G € F.

Proof. Let k > 5, and let G be the graph obtained by “gluing” four copies of the complete graph
K1 to the four corners of a (2k —1) x m mesh M with m > 2(2k—1), m even. More precisely, each
corner of M is one of the k — 1 nodes of a clique of size k — 1. G has therefore m(2k — 1) +4(k — 2)
nodes.

Let us first show that ¢s(G) < 2k. There is an internal and monotone search strategy for G, using
2k searchers. Place 2k searchers in two corners ¢ and ¢’ at distance 2k — 2 in M, k searchers in each
corner. At the corner ¢, one searcher stays at ¢, while k — 2 others move to a distinct neighbor in
the associated clique. The remaining free searcher is then used to clear all edges of the clique. The
same strategy is applied at ¢/. Once the two cliques are cleared, the 2k searchers are distributed
along the shortest path connecting ¢ to ¢/, one searcher per node. The m lines of G are then cleared



by moving the 2k — 1 searchers “in parallel”, line after line, one free searcher being used to clear all
edges of the current line. Once M has been completely cleared, the searchers split into two groups
of size k, and each group clears one of the two remaining contaminated cliques.

Let us now show that ¢s(G) > 2k+1. Let S be a contiguous search strategy for G. For any ¢ > 1, let
X, be the set of clear edges in M at step t of S. Let V; be the set of nodes in M incident to at least
one edge of X;. Let to be such that |V;,| = m(2k — 1)/2. Note that S is not necessarily monotone,
and the recontamination of an edge at a given step ¢ may imply the simultaneous recontamination
of several edges; hence, V; can be much smaller than V;_;. However, the clearing of an edge can
add at most one node at a time in V;. Hence at least one such a to exists, and, if S is not monotone,
may not be unique.

We claim that |6(X,,)| > 2k — 1. (Recall that §(X) denotes the set of nodes having one incident
edge in X, and one incident edge not in X.) Indeed, let I be the smallest rectangle h X b which
contains V;,, i.e., |[I| = hb > m(2k — 1)/2.

If h < 2k — 1 then §(X,,) contains at least b nodes because there are b “unprotected” columns.
Thus, since b > 2 > 2k — 1, we get [§(Xy,)| > 2k — 1.

If h = 2k —1, then V;, touches two opposite sides of the grid. V;, can thus be decomposed in 2k — 1
rows of different lengths. If there is no row of length m, then every row needs at least one agent
for its protection, and thus |§(X;,)| > #rows = 2k — 1. If there is a row R of length m, then there
is another row R’ of length £ < m/2, and thus each of the m — £ nodes of R’ which are not in V4,
requires at least one agent for its protection. Therefore |§(X;,)| > m —£€> 3 > 2k — 1.

In all cases, |§(X;,)] > 2k — 1. In fact, unless two cliques at distance 2k — 2 are completely
decontaminated at time to, |6(Xy,)| > 2k.

Assume that no two cliques at distance 2k — 2 are completely decontaminated at time fo. If
|6(Xy,)| > 2k then S uses more than 2k searchers, and we are done. Hence assume |6(Xy,)| = 2.
Then the situation is as follows: one searcher is used to protect the mesh from recontamination
from a clique, and 2k — 1 searchers form a “front” protecting the mesh from recontamination from
the contaminated part. These 2k — 1 searchers alone cannot make much progress towards the
other side of the mesh: each searcher can make at most a single move to clear a new edge without
recontamination. Therefore, the searchers must backtrack in order to decontaminate two cliques
at distance 2k — 2 before trying to clear the mesh. However, this task is impossible if one forces
contiguity. Indeed, clearing a clique is fine (using at least k searchers). Then this clique must be
protected from recontamination, while a clear path must be created from the clique to the other.
However, any such path is contained into a set of clear edges of frontier at least 2k — 1, and two
searchers are not enough to clear a clique of size k — 1 > 4. Therefore, S must use more than 2k
searchers, and thus ¢s(G) > 2k + 1. (Note that in fact ¢s(G) = 2k 4 1.) [ ]

3 Monotone Contiguous Internal Graph Searching

In this section, we prove that, for any graph G, there exists a monotone contiguous internal search
strategy using at most 2 s(G) searchers. Obviously, any monotone contiguous search strategy can
be transformed into a monotone contiguous internal search strategy using the same number of
searchers. Indeed, the searchers can move freely in the clear-edges component, to reach any point
of the frontier. Therefore, we focus on monotone contiguous search strategies, and characterize
those strategies that are minimal.



First let us recall some standard definitions. A linear layout, or simply layout, of an n-node graph
G = (V, E) is a one-to-one mapping L : V. — {1,.. .,n}. For G’ = (V', E'), we denote by G' C G
the fact that G is a subgraph of G, i.e., V/ CV, E' C (V! x V)N E. For any layout L of G' C G,
and 1 <17 < |V'], let

vsp(i) = {z € V' / L(z) < 1,and there exists y € V such that:
either {z,y} € E' and L(y) > 1, (2)
or {z,y} € E\ E'}

The vertex separation of G' C G with respect to L is defined by:
vsp, (G, G) = max{|vsp,(¢)],1 < ¢ < [V'[},
and the vertex separation of G’ C G is defined by:
vs(G', G) = min{vs. (G, G), L layout of G' C G}. (3)

A search strategy for G C G is a search strategy which results in all edges of G’ simultaneously
clear, and preserved from recontamination from edges in G \ G'. The search number of G CGis
the minimum number of searchers required for a search strategy in G'. It is denoted by s(G', G).

Let the 2-expansion of G be the graph H formed by replacing each edge {z,y} of G by two new
vertices, say @ and b, and edges {z,a}, {a,b}, and {b,y}. Nodes of the 2-expansion H of a graph
G are thus either original (i.e., nodes also in G) or added (i.e., nodes that have been placed on the
edges of G). Let z and y be any pair of original nodes in H. Suppose L(z) < L(y) in some layout
L of H. Let a and b be the two nodes added on the edge {z,y}, where a is adjacent to z, and b to
y. L is standard if L(z) < L(a) = L(b) — 1.

Lemma 3.1 (Theorem 2.2 and Lemma 2.3 in [12]) Let G' C G, and H (resp., H') be the 2-
ezpansion of G (resp., G'). The three following properties are equivalent:

(P1) s(G',G) <k

(P2) vs(H',H) < k

(P3) There ezists a standard layout L of H' C H with vsp(H',H) <k.

We now extend the theory of Ellis, Sudborough and Turner [12] so to capture the contiguity of
the search strategies. A layout L is connected if, for any i > 1, the subgraph of G’ induced by
vertices L™1(1),...,L7(4) is connected'. The contiguous verter separation of G’ C G is denoted
by cvs(G', G), and is defined by:

cvs(G', G) = min{vs,(G’, G), L connected layout of G' C G}. (4)

Lemma 3.2 The minimum number of searchers required to clear a graph G' C G by a monotone
contiguous search strategy (and to protect G' from recontamination via edges in G\ G') is equal to
the contiguous verter separation cvs(H', H) of H' in H, where H (resp., H ') is the 2-ezpansion of
G (resp., G').

Proof. A straightforward adaptation of the proof of Lemma 2.1 in [12] allows to show that
the minimum number of searchers required to clear a graph G’ C G by a monotone contiguous

Recall that, for any graph H, a subgraph H' of H is an induced subgraphof H if E(H') = E(H)N(V(H)xV(H")).
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CoNTIGUOUS SEARCH(L, H', H)
Place cvs(H', H) searchers at node L~!(1);
for i :=2 to |H'| do
x = L71(3);
if z is an original node then
/* & has necessarily a neighbor y with L(y) < L(z) */
/* moreover, y is necessarily an added node */
(A) move a searcher from each neighbor y of z with L(y) < L(z) to z;
else
/* z is added, with two neighbors y (added) and z (original); */
/* at least one of them has a label smaller than L(z) */
if L(y) < L(z) and L(z) < L(z) then
(B) move a searcher from y to z, and then from z to z;
else /* exactly one node u € {y, 2} satisfies L(u) < L(z); */
if © has no neighbor v with L(v) > L(z) then

(9); move a searcher from u to z along the edge {u, z};
else /* node z satisfies L(z) < L(x) */
(D) move a free searcher from its current position to z, and

move that searcher from z to z;

Figure 4: Search strategy in a 2-expansion graph H' C H with connected layout L.

search strategy is at least cvs(H', H). The proof of the reciprocal uses arguments similar to the
ones employed in the proof of Theorem 2.2 in [12]. We sketch these arguments for the sake of
completeness. Assume we are given a connected layout of H' C H with vertex separation k. The
proof of Lemma 2.3 in [12] can be easily adapted to show that there is a standard connected layout
L of H' C H with vertex separation < k. Based on this layout, we define the search strategy given
in Figure 4. The reasons why this strategy is valid are of same nature as those given in [12] for the
validation of the procedure SEARCH2. [ |

Theorem 3.1 For any graph G, there ezists a monotone contiguous internal search strategy using
at most 2 s(G).

Proof. Let G be a connected graph, and let G’ C G. Recall that all considered graphs are
simple and loop-less. We prove by induction on the number of nodes in G’ that the minimum
number of searchers a(G’,G) required to clear G’ C G by a monotone and contiguous strategy
satisfies o(G', G)/s(G',G) < 2. For G’ = G, we shall hence get the result claimed in Theorem 3.1
because a monotone contiguous search strategy can be easily transformed into an internal monotone
contiguous search strategy.

The result trivially holds for |G| = 1. Hence assume that G’ has at least two nodes. Let S
be a minimal search strategy for G’ using k = s(G’, G) searchers. Using Lapaugh’s theorem, we
choose S monotone. We transform S into a monotone and contiguous search strategy S’ using
< 2k searchers. From Lemma 3.1, there exists a standard layout L of the 2-expansion H' of G’
(considered as a subgraph of the 2-expansion H of G) such that vs,(H',H) = k. Let z be the
original node in the 2-expansion of G’ whose label L(z) is maximum among all original nodes of
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H'. Since L is standard, all added nodes with labels larger than L(z), if any, are grouped by pairs.
Each pair is formed of two consecutive added nodes corresponding to an edge of G'. Therefore, the
graph composed of all nodes of H' with label strictly smaller than L(z) is the 2-expansion H" of
some subgraph G’ C G’ with |G| = |G| - 1.

First observe that, for such a subgraph G”, s(G”,G) < s(G’,G). Indeed, the strategy SEARCH2
described in [12] to prove Lemma 3.1, clears the edges by visiting the nodes in increasing order
of their label in a standard layout L (in the same way the algorithm described in Figure 4 does).
Therefore, the strategy for G’ can be stopped after step L(z) — 1, resulting in all edges of G”
cleared.

By induction hypothesis, a(G”,G) < 2-s(G",G), and hence «(G”,G) < 2k. From Lemma 3.2,
there exists a connected layout L” of the 2-expansion ot G” whose vertex separation is at most
2k. We complete L” into a connected layout L’ of the 2-expansion H’ of G’ as follows. We set
L'(z) = |G'|, and, for every added nodes @ in L with L(a) > L(z), we set L'(a) = L{a) — 1. In
other words, drawing from left to right the nodes labeled in increasing order in L, L' is obtained
by: (1) reordering all nodes to the left of @ according to L”, (2) placing all added nodes, initially to
the right of & in L, in the same order but directly after the rightmost node of L”, and (3) placing
z in the rightmost position.

We prove that vsp/(H', H) < 2k. Let tg = L(z). For i < ig, vsps(¢) = vspn(t) < 2k. For i > ig,
vsr/(i) < vsr(i) + p where p is the number of neighbors ay,...,ap, of ¢ such that L(a;) > L(z).
Recall that all a;’s are added nodes. Let b; be the node of H' added on the same edge as aj,
j =1,...,p. Let y; be the neighbor of b; such that L(y;) < L(z). We have y; # y; for j # j
because the graph G is simple, and y; # « for every j because G is loop-less. Therefore, vsr, (o) > p,
and thus p < k. Therefore, vsy: (i) < var(i) + k < 2k for every 7 > g, and hence vsp,(G',G) < 2k.

We then apply Lemma 3.2 to get o(G’,G) < 2k, which completes the induction step, and thence
the proof. ]

In the next section, we show that the bound of Theorem 3.1 is essentially tight.

4 Obstruction Set for Trees

In this section, we show that there is a unique obstruction for both the class of trees T' such that
cs(T) < k, and the class of trees T such that is(T) < k. Actually, since, in the case of trees,
monotone internal search number and contiguous search number are the same [1], we consider
contiguous search only. Our proof is based on the notion of k-caterpillar and spine. A spine is a
path. A O-caterpillar is also a path, and it is its own spine. For k > 0, a tree T is a k-caterpillar
with spine P if, for every connected component T' of T \ P, the two following properties hold:
(1) there is a path P’ such that T” is a (k — 1)-caterpillar with spine P’, and (2) one of the two
extremities of P’ is adjacent to P. A 1-caterpillar is hence a subdivision of a caterpillar in the usual
sense, i.e., a path zy,...,z; with k; > 0 paths pending from every z;.

Notice that any tree is a k-caterpillar for k large enough. The notion of k-caterpillar is related to
the notion of caterpillar dimension introduced in [24] (see also [23]). One can easily show that the
contiguous search number of a tree, starting from node v, is at most the caterpillar dimension of the
tree rooted at v plus 1. However, as far as we know, there is no characterization of contiguous search
number in terms of caterpillar dimension, whereas we establish an equivalence between contiguous
search numbers and k-caterpillars. Indeed, we show that k-caterpillars form the class of trees that
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can be contiguously cleared with at most k 4 1 searchers.

Given a tree T and two vertices v, w of T, we denotes by T}, the tree T rooted at v, and by T, [w]
the subtree of T, rooted at w. Recall that the depth of a rooted tree T is the maximum distance
from its Toot to the leaves. We denote by By, the complete binary tree of depth k, and by Dy the
tree obtained by connecting the three roots of three copies of By, to a unique new vertex. Finally,
we denote by Ty < Ty the relation “T} is a minor of Tp”.

We now prove a sequence of preliminary lemmas.
Lemma 4.1 Any tree T such that Dy AT is a (k — 1)-caterpillar.

Proof. We start by a preliminary statement. Let 77 and T be two trees, rooted at z; and
respectively. We denote by Ty =<, T, the relation “T} is a z2-rooted minor of T,”, that is node z;
is either 2 or the result of contracting a series of edges, some of them containing z; as end-point.
Now, let T be a tree and v be a vertex of T such that By A, T, k > 1. We claim that T is
a (k — 1)-caterpillar and v is an extremity of its spine. The proof of that claim is by induction
on k. If By £, T then clearly T is a path with extremity v. If & > 1 and there is a vertex v
such that By £, T, then there are two cases. If By_y A, T, then by induction hypothesis, T is a
(k — 2)-caterpillar with v as the first vertex of the spine. If Bx_1 =, T, then let S be the set of
vertices w such that Bg_; <y To[w]. S is a path starting at v, and all the connected components
of T — S are (k — 2)-caterpillars, in which the corresponding spine starts at the vertex adjacent to
one of the vertices of S in 7. Indeed, if z ¢ S and 2 is adjacent to w € S, then T,[?] is one of the
connected components of T' — S and Bg_1 A Ty[2].

To complete the proof of the lemma, it hence just remains to show that there is a vertex v such
that By A, T'. By contradiction, assume that Dy Z T and for every v vertex of T, B X, T. There
is a vertex z with two neighbors, z; and zy, such that Bx_y =<, T:[z1] and Br_y <, Ti[z2]. This
implies that, either By =, T.[2;] or By <, T[2]. In both cases, we get Dy < T', a contradiction. B

Lemma 4.2 For any k > 1, c¢s(Dg) > k+ 1.

Proof. We prove that, for any contiguous search strategy in D, there is a step in which at least
k + 1 searchers are required to avoid recontamination. Let Ty, Ty, and T3 be the three sub-trees
attached to the root of Dy and isomorphic to Bi_,. Consider the first step ¢; during which the
root of Dy, is reached by a searcher. Assume, w.l.o.g., that 7} is still completely contaminated at
step ;. Let 45 > i; be the first step during which a leaf of T} is reached by a searcher. The path P
from the root r to this leaf, say f, has length k. Moreover, at step i, P is cleared but, for every
vertex & # f of P, there is a path from 2 to a contaminated leaf, and thus at least one searcher
is needed for every z to avoid recontamination. Moreover, there is one additional searcher used to
clear f. Hence, at least k + 1 searchers are required at step #s. [ |

Lemma 4.3 If T is a k-caterpillar then cs(T) < k+ 1.

Proof. We show that, if T is a k-caterpillar with spine P, then there is a contiguous search
strategy using k 4 1 searchers starting at one extremity of P. The proof is by induction. For
k = 0, a O-caterpillar is a path and hence the result holds trivially. Assume now that every (k —1)-
caterpillar with spine P’ = {wy, ..., w¢} can be cleared with k searchers, starting at wo. Let T be
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a k-caterpillar with spine P = {vg, ..., v }. Let us denote by w;g...w;4; the set of neighbors of v;
not in P. Then, T, ; [vi] is a (k — 1)-caterpillar with path P;; starting at w; ;. The search strategy
for T is the following. Start at vy with & + 1 searchers. Every time you reach a new vertex v; of P,
let one searcher at v; and, for j =0, ..., d;, clear every tree Ty, ; [v;] with the k remaining searchers,
using the strategy that starts at w; (there is one, by induction hypothesis). Then, follow the path
to the next contaminated vertex v;;1, with the k + 1 searchers. [ |

Now we are ready to prove the following Theorem.

Theorem 4.1 For any tree T, the following three properties are equivalent:

(1) T is not a (k — 1)-caterpillar;
(2) Dy = T:'
(3) ¢s(T)> k+1.

Proof. The theorem is a direct consequence of the previous lemmas: Lemma 4.1 proves (1)=(2),
Lemma 4.2 proves (2)=>(3), and Lemma 4.3 proves(3) =>(1) . [ |

Rephrasing Theorem 4.1, we get:

Corollary 4.1 For a tree T, c¢s(T) < k if and only if T is a (k — 1)-caterpillar. Moreover, the set
of obstructions of the class of trees T' with ¢s(T) < k contains Dy, as unique element.

Another consequence of Theorem 4.1 is that the bound of Theorem 3.1 is essentially tight.

Corollary 4.2 For any tree T, if s(T') > 2, then s(T') < ¢s(T') < 2s(T) — 2. Moreover, for k > 1,
cs(Dag—1) = 28(Dyg-1) — 2.

Proof. Let T be a tree, and assume that s(T') = j. Let My be any tree obtained from a complete
ternary tree of depth %k after removing one leaf from every set of three sibling leaves (i.e., nodes at
distance k from the root). Parsons [28] has proved that M}, is an obstruction of the class of graphs
G with search number < k. Therefore M; A T.

Now, My is a subgraph of the graph obtained from Dy;_o by contracting every edge connecting
a vertex of level 25 — 1 to a vertex of level 2j, for 0 < j < k — 1. Therefore, for any k > 1,
My <X Dyg_y. Thus Dyj_o9 A T, which implies, by Theorem 4.1, that ¢s(T") < 25 — 2 =2s(T) — 2.

To prove that the bound is tight, let us consider Dyg_1. We have s(Dgx—1) < ¢s(Dak—1) = 2k and
My < Dyg_1, which implies that s(Dgx-1) > &k + 1. On the other hand, we give a search strategy
for Dyy_; that uses k + 1 searchers. The strategy starts by placing a searcher in the root r. Next,
it proceeds to clear the edges of the three branches which are isomorphic to Bax_3. It is easy to
see that this can be done with k searchers, and the edges connecting r to the three branches need
no additional searcher. Therefore cs(Dyx—1) = 2s(Dgk—1) — 2, which completes the proof. [ |

5 Concluding Remarks and Open Problems

The main open problem is whether for any graph with ¢s(G) < k there exists a monotone contiguous
search strategy for G using < k searchers.
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A consequence of our results is that graphs with bounded contiguous search number have also
bounded pathwidth (node-search number). This implies the existence, for any k, of a linear time
algorithm that checks whether cs(G) < k and, in case of a positive answer, outputs the correspond-
ing search strategy.

(This follows from the graph minor theory and the result of bodlaender on a linear time algorithm
for treewidth [7].)

As we already mentioned, this algorithm is based on the knowledge of the obstruction set that
is unknown for the general (non-acyclic) case. it is an interesting open problem to identify this
obstruction for small values of k or to construct the corresponding linear-time algorithm. In this
direction, techniques like those used in [5, 6, 39] can be useful.

Our result indicates that contiguous search is a 2-approximation of any of the versions of the classic
search and, therefore, also of pathwidth. However, it seems that cs is simpler from a structural
point of view; thus, it might be possible to compute cs in polynomial time for special classes of
graphs, eventhough the pathwidth problem could be NP-hard for those same classes.
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