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Abstract
This work introduces a particular Stochastic Mathematical Program

with Equilibrium Constraints that explicitly incorporates uncertainties in
problem data de�nition through a bilevel formulation. The upper level
assumes some network index performance is to be optimized whereas the
lower level problem is modelled by an stochastic equilibrium assignment
problem with known link cost variance which can be reduced at a set
of candidate points where possibly the information to travellers can be
send. The algorithmic framework proposed is an heuristic method based
on the iterative optimization-assignment method.
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1. Introduction
The information of tra�c conditions at a number of points of a tra�c

network usually has as purpose the enhancement of the quality of service to
the users of a tra�c network. A key question is to decide which points of the
network are critical in order to inform the drivers of their conditions so they
can have a chance to avoid congestion. The type and quality of information
given is also relevant. In this contribution, the type of information given to the
drivers is assumed to be an estimate of link travel times.

Hierarchical decision-making problems are applied in a wide variety of
domains in the engineering, regional planning and management. These prob-
lems are all de�ned by the presence of two or more objectives with a prescribed
order of priority or information ([14]). We consider in this work a sub-class
of these problems having two levels or objectives. We refer to the upper level
as the objective having the highest priority and it is de�ned in terms of an
optimization with respect to one set of variables. The lower-level problem, it
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2 Design of information points for monitoring tra�c conditions

is an equilibrium problem, which in the most general case is described by a
variational inequality, and is then a supplementary problem parameterized by
the upper-level variables. These models are known as generalized bilevel pro-
gramming problems or mathematical programs with equilibrium constraints.

In applications relating to transportation planning and management, a
number of the problem inputs will often be subject to uncertainty, in particular
with respect of system capacities, demand (in terms of OD matrices) or network
costs (impedances). We deal with this last source of uncertainty: the travel
time perception on network links. The bilevel formulation we are working
with assumes that some network index performance is to be optimized whereas
the lower level problem is modelled by an stochastic assignment problem with
known link cost variance (which can be related to a set of candidate points
where possibly the information to travellers can be send).

In hierarchical models of engineering design external conditions and mea-
surement or manufacturing errors introduce uncertainty into the problems. In
both of these cases, the uncertainty can be included explicitly by generalizing
some of the problem parameters to random variables. However, this generaliza-
tion complexi�es the model signi�cantly and resolution strategies will require
some aproximation methods to solve the resulting stochastic programs. In the
simplest case, the expected values of the random variables could be substituted
for their distributions and a deterministic model then solved, but in a nonlinear
problem subject to constraints, this simpli�cation can be quite costly and in-
deed, the optimal cost of the expected value solution, not necessarily represent
the average of the possible optimal costs, and the solution may not even be
feasible with respect to the realized values of the random variables. A robust
model should then take into account explicitly the range of possible variable
values. Some authors, in order to take into account explicitly the variability
of the random inputs, as well as the possible infeasibility, consider stochas-
tic programming extensions of the mathematical programming problem with
equilibrium constraints (see [3] for theoretical extensions).

Our approach considers an upper level function that is the classical sys-
tem equilibrium performance function (Wardrop conditions, see [12]) and the
lower level is the solution of an stochastic equilibrium where the random source
is the travel time perception (their variance depends on the upper level vari-
ables).

In a decission process for allocating detectors for monitoring tra�c con-
ditions, each network section is modelled as a directional link and network
sections might have or might not have detectors, links without detectors will
have higher uncertainty on travel time perceived by drivers, than link with de-
tectors (of any type, missfunctioning is not considered in the present approach).
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Let us assume that:

1. according to tra�c manager criteria, a certain subset of network links
has been selected for allocating tra�c detectors.

2. tra�c detectors can measure link travel time with a certain error. A
higher error measurement applies in a higher variance on the link travel
time perceived by drivers.

3. there are several physical devices that are used as tra�c detectors with
di�erent characteristics and capabilities, let us assume, for simplicity that
the expensive ones have lower measurement error than the cheaper ones.

4. Uncertainty on perceived travel time is always greater in network links
without detectors than on links with any detection device.

The process of the allocation of detectors might be formulated as de-
cission problem, but we skip the integer formulation and we present an ap-
proximation where the optimal values of the upper level variables points to the
in�uence of quality detection on the system equilibrium function (a classical
measure of global network performance), i.e. if at the optimal solution xa < xb

for network links a and b, this means that acccuracy on travel time information
submitted to drivers is more critical on link a than on link b, pointing out, in
general, to increase the quality on detection to network links where the optimal
solution shows the lower values.

Although, the quality of detection does not range on continuous values,
since there is a few collection of devices where the tra�c manager has to formu-
lated his/her decission, the solutions to the problem that we compute can be
a guideline on the required sensibility to the information delivered to drivers,
identifying the most critical (and the reciprocal, most uncritical) links for opti-
mal global network performance. Authors have found promising results in the
reduction of the average total system cost.

2. Problem Formulation
The tra�c assignment problem attempts to �nd the distribution of the

tra�c �ow throughout a network of routes. It is possible to formulate the
problem by means of a network model that represents the physical infrastruc-
ture and aims to compute the �ows of one or more commodities on the links
of the network, each commodity being related to the �ows for a particular
origin-destination node pair.

In practical applications such an assumption may be too restrictive, e.g.
when studying congested junctions. The asymmetric model cannot be reformu-
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lated as a convex program by the use of the same arguments as in the separable
case.

The tra�c assignment problem has received a lot of attention; partly
because of its practical importance, partly because the size of real life problems
makes it a challenge for algorithmic development. Many specialized strategies
have been developed, see Patriksson [9] for an excellent survey on algorithms
for urban tra�c network equilibria.

The notation used in the mathematical formulation is shown above:
G = (N ,A) A graph G, de�ned by a �nite set of nodes, N ,

and a �nite set of directed links, A
C the set of origin destination pairs (i, j), OD pairs
Ci the set of OD pairs with origin node i

each one de�nes a commodity
Rij the set of routes between OD pair i and j
dij the demand between OD pair (i, j)
D the set of demand values for OD pairs (i, j) ∈ C
va total �ow on link a ∈ A (addition of link �ow

due to the commodities)
v link �ow vector (bold is used to denote vectors)

ca(v) measured travel cost on link a ∈ A (cost due to total �ow
on link)

Ca(v) perceived travel cost on link a ∈ A (cost due to total �ow
on link)

Pij the path choice fraction vector for the (i, j) OD-pair paths
(Pij = 0 and 1T Pij = 0 )

Pijr fraction of users in (i, j) OD-pair on route r ∈ Rij

h the set of route �ows
hij the path �ow vector for the (i, j) OD-pair paths
hijr �ow on route r ∈ Rij

cijr measured total travel cost on route r ∈ Rij

Cijr perceived total travel cost on route r ∈ Rij

it is a random variable
uij the cost of the lowest measured cost route between

OD pair (i, j) at equilibrium
If we consider a population of drivers who are about to take a trip be-

tween a given origin and a given destination, possibly connected by many alter-
native paths and each associated with some travel cost, then due to variations
in perception and exogenous factors (such as weather, lighting, etc.), the path
costs are perceived di�erently by each driver, and thus, it is natural to model
the perceived cost of each path or each link (as the proposal currently selected
by the authors). Each driver, however, will perceive path time di�erently and
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therefore each driver may choose a di�erent path and the perceived travel cost
can be modelled as a random variable; its probability density function gives the
probability that a driver randomly drawn from the population will associate a
given perceived travel cost and thus how many drivers will use each path. In
order to make clear the scope of the application for the problem we will for-
mulate, let us �x that Cijr usually refers to the perceived path travel time on
route r between OD pair (i, j) and it is assumed to be related to the measured
path travel time cijr by

Cijr = cijr + ξijr ∀ r ∈ Rij (1)

A much more practical formulation for the algorithmic point of view can
be derived from the assumption that link travel costs are inherently random:

Ca(v) = ca(v) + εa(v) ∀ a ∈ A (2)

In other words, the average perceived cost is the measured or determin-
istic travel cost at path level E[ξijr] = 0 and E[Cijr] = cijr. Or at link level,
E[εa] = 0 and E[Ca] = ca for any v link �ow.

The modelling assumption considered in the deterministic tra�c assign-
ment problem was stated by Wardrop [12]. It postulates that the measured
journey times on all the routes actually used are equal or less than those which
would be experienced by a single vehicle on any unused route. The implica-
tion of this principle is that the routes are shortest with respect to the current
�ow-dependent delays. The tra�c �ows that satisfy this principle are usually
referred to as �deterministic user optimized �ows�, since each user chooses the
route that he considers the best. In contrast �deterministic system optimized
�ows� are characterized by Wardrop's second principle which states that the
total measured travel time is minimum [4]. User and system optimal conditions
are equivalent when travel times are independent of tra�c �ow, which it is not
realistic in practice.

Assume a transportation network G with a single mode of transit and a
�x demand D. Consider a speci�c origin destination pair (i, j) and Rij the set
of available paths joining OD pair (i, j). The route �ow vector h induces �ows
va on each link a∈A given by the expression

va =
∑

(i, j)∈C

∑

r∈Rij

δar hijr (3)

where δar = 1 if link a belongs to path r; and δar = 0 otherwise. In words,
va is the sum of �ows hijr on all paths r, over all OD pairs (i, j).
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Let v denote the vector of arc �ows and let ∆ denote the link path
incident matrix. Then in vector form, link �ows and path �ows are related by
the following expression

v = ∆ h

Let each unit of �ow on link a incur a measured travel cost ca (v) which
depends upon the vector v of link �ows in the network. In the separable tra�c
assignment problem, the cost on a link depends solely upon the �ow va on that
link, in which case it usually increases with increased levels of the link �ow.
If we now assume that the measured cost on any path of the network, as a
function of path �ows, is the sum of measured travel costs on the links of that
path, then

cijr =
∑

a∈A
δar ca(va)

We refer to this form of route costs as an additive model . Stating this
relationship more compactly in vector form, we obtain

c(h) = ∆T c(v),

where T denotes transposition.
In this expression, c(h) = ( cijr(h) ) is a vector-valued function speci-

fying the measured travel costs on each path r and c(v) = (ca(va)) is a vector
valued function whose components specify the measured link travel costs.

An extension generally considered to non-additive models, the vector-
valued function c(h) splits into an additive plus a non-additive component,

c(h) = cADD(h) + cNADD(h) = ∆T c(v) + cNADD(h)

The measured route travel costs cijr(h) on each route r joining an OD
pair (i, j) de�nes the least travel cost uij over all paths joining that OD pair.
This is

uij ≡ min
r∈Rij

cijr (h)

These least measured travel costs certainly provide a reference point
against which to measure any route's ability to attract trips. If di�erent routes
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are used for a given OD pair (i, j), the travel cost of the routes used is uij , and
Wardrop's �rst principle may be rewritten as

hijr > 0 ⇒ cijr = uij

hijr = 0 ⇒ cijr ≥ uij

or equivalently as

hijr · (cijr − uij) = 0 ∀ r∈Rij ; ∀ (i, j)∈C (4)
cijr − uij ≥ 0 ∀ r∈Rij ; ∀ (i, j)∈C (5)∑

r ∈Rij

hijr = dij ∀ (i, j)∈C (6)

hijr ≥ 0 ∀ r∈Rij ; ∀ (i, j)∈C (7)
uij ≥ 0 ∀ (i, j)∈C (8)

Equation 6 re�ects that route �ow vector h must be demand feasible, or
in other words, the total �ow between any OD pair (i, j) satis�es the demand
dij between this OD pair. Negative route �ows and route travel costs are not
allowed, thus equations (7) and (8).

Consistency between demand and path �ows can be alternatively ex-
pressed as,

hij = dijPij ∀ (i, j)∈C

Note that this deterministic equilibrium condition must be satis�ed by
all origin destination pairs in C. Moreover, any shift in user �ows from route r
to route s would a�ect the measured travel cost on any route that shares links
with these paths. Therefore, the Wardrop's �rst principle or deterministic equi-
librium condition requires a route �ow vector h that simultaneously achieves
equilibrium for all users.

The additivity property is used in our formulations and is assumed to
hold when developing algorithmic approaches. There are two main reasons for
this:

1. Under the non additive assumption there does not exist a transformation
of the above arc route formulations to arc �ow formulations.

2. On working with large networks, as our case, the arc route formulations
of tra�c assignment models involves very large scale problems, and as far
as, it is unknown if an e�cient algorithm could be designed for solving
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large general problems, it has been preferred to remove the extra size due
to arc the route model and concentrate e�orts on solving the aggregated
arc �ow model.

The equivalent optimization problem for the separable tra�c assignment
problem can be considered as one application of a physical principle, known
as the variational or minimal principle. This principle states that equilibrium
problems can be stated in one of two equivalent forms:

A set of equilibrium conditions.

A related mathematical programming problem.

Beckmann [1] was the �rst to consider an optimization formulation (con-
vex mathematical programming problem) of the separable tra�c equilibrium
problem and to present the necessary conditions for the existence and unique-
ness of the deterministic user equilibria, where no interactions between the
links in the network are present. The equivalent mathematical programming
program is

min
∑

a∈A

∫ va

0

ca(s)ds

s.t.
∑

r∈Rij

hijr = dij ∀ (i, j)∈C

hijr ≥ 0 ∀ r∈Rij ∀ (i, j)∈C

and the de�nitional constraint
∑

(i, j)∈C

∑

r∈Rij

δar hijr = va ∀ a∈A

The above de�ned problem is a minimization program with nonlinear
objective function and linear constraints. The objective function consists of a
sum over the link set of the integral of measured link cost functions evaluated
in the actual point. The de�nitional constraint gives the key to convert path
�ows into link �ows, let us observe that the constraints are de�ned in terms of
the path �ow variables h and the objective function is de�ned in terms of the
link �ow variables v.

The constraints are the equations 6 and 7 used when de�ning the demand
satisfaction requirements on the mathematical formulation of Wardrop's �rst
principle. The Kuhn-Tucker conditions for the minimum of the Lagrangian
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function of the former program de�nes the �rst order optimality conditions,
that can be seen to be the cost of routes with minimum cost condition (5) and
thus the equivalence to Wardrop's �rst principle.

Let H be the set of all demand feasible path �ow vectors

H def= { h |
∑

r∈Rij

hijr = dij , hijr ≥ 0, ∀ r∈Rij , ∀ (i, j)∈C} (9)

H is �nite since the number of OD pairs is �nite and the number of
routes between each OD pair on G is also a �nite number, if routes are de�ned
as simple without cycles.

However, travel cost functions often become nonseparable and asymmet-
ric and a solution to the deterministic Wardrop conditions for user equilibrium
can then not be formulated as an optimization problem; instead, they are stated
as variational inequality or complementarity models.

The arc �ow variational inequality formulation for the tra�c assignment
problem when travel costs on a route satisfy the additivity property is detailed
below (see Patriksson [9] for a deep discussion of alternative formulations):

Find v∗ ∈ V s. t. c(v∗)T · (v − v∗) ≥ 0 ∀v∈V (10)

and

V def= { v | va =
∑

(i, j)∈C

∑

r∈Rij

δar hijr ∀ a∈A, h∈H } (11)

According to She� [11], the stochastic network equilibrium conditions
are extensions of the deterministic user equilibrium conditions, given a �xed
OD demand matrix, the stochastic equilibrium conditions in the routes space
can be characterized by the following equations:

hijr = dijPijr ∀ (i, j)∈C (12)
Pijr = Pr(Cijr ≤ Cijk, ∀ k ∈ Rij | v) ∀ (i, j)∈C (13)
Cijr =

∑
a∈A δar Ca(va) ∀ r∈Rij ; ∀ (i, j)∈C(14)

∑

r ∈Rij

hijr = dij ∀ (i, j)∈C (15)

hijr ≥ 0 ∀ r∈Rij ; ∀ (i, j)∈C(16)
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Now Cijr(v) is the random variable representing the perceived travel
cost on route r between OD pair (i, j), and the probability that a given route
is chosen is the probability that its travel cost is perceived to be the lowest of
all the alternative routes. Equation 13 speci�es a route-choice probability that
can be interpreted in the framework of discrete choice model in transportation
analysis (for a comprehensive survey see Ortúzar and Willumsen [8]). For very
low variances, the travellers perceive the di�erences between path travel costs
accurately and act accordingly; in fact, if the variance is zero, the behavior
is the associated with the deterministic user equilibrium assignment in which
all users will be assigned to the shortest travel cost paths from their origin to
their destination. If the variance is large, the change in the choice probability
is more moderate since the the perception of travel cost is less accurate. At the
limit, when the variance is extremely large, the actual travel costs do not a�ect
the perception, which is completely random; anyway, this hypothesis is not
realistic in practice, since variances tend to be relatively small, and under high
congestion conditions, deterministic equilibrium provides a good approximation
to the stochastic one (see [11]).

Note that the choice probability is conditional on the values of the mean
link travel cost at equilibrium, but these times are not known and are assumed
to be �ow dependent: at stochastic user equilibrium, no driver can improve
his/her perceived travel cost by unilaterally changing routes and the measures
travel cost on all used paths is not going to be equal (as in the deterministic
case), instead the travel time will be such that equation (12) is satis�ed for
the equilibrium path �ows, that in turn, will be associated with link �ows that
satisfy equations (14) and (15) for the equilibrium travel costs.

One of the practical reasons for using stochastic equilibrium models is
the sensitivity of the �ows in deterministic equilibrium models to small changes
in the network, which it is avoided for stochastic equilibrium models.

The various models for stochastic equilibrium di�er from each other in
the assumed distribution of the perceived travel cost. Classical models devel-
oped in literature and used in practice, relay on multinomial logit and probit
formulations. The logit formulation is based on the assumption that the er-
ror terms (random component) of the perceived path cost for all alternative
path joining a given OD pair are identically and independently distributed
Gumbel variates. This model may exhibit some unreasonable properties, as
discussed largely in literature, resulting from the independence assumption un-
derlying the logit utility choice probability function derived from route overlap-
ping, which is a very common situation in urban networks. Route overlapping
means route correlation and means driver perception lower than it really is in
overlapped routes. Logit stochastic assignment might seem reasonable if the
amount of overlapping between OD paths is relatively small, which might occur
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in regional planning networks, but it is unacceptable in urban networks (see
[11] for a detailed discussion). Also, another possible anomaly is due to the fact
that the path choice probabilities are determined solely on the basis of travel
cost di�erences, for example, in practical situations travel cost is travel time,
and a 5 minute di�erence is not the same (by common sense) in route travel
times (measured) around 120 minutes, that around 10 minutes. Probit formu-
lation models the choice of alternative routes between an OD pair assuming
perceived travel cost on paths normally distributed. Probit formulations alle-
viate model faults associated with logit-based stochastic equilibrium, however
computational costs of path based probit formulations are seriously increased.

Once perceived path travel cost distribution is speci�ed, then, in the-
ory, the probability of selecting each alternative route can be calculated and
the �ow assigned accordingly 12 and the link �ows can then be calculated by
3. We will see above that it is not so simple. Also, one should not forget the
implications of the assumptions of stochastic network loading, path �ows are
random variables and thus, link �ows also become random variables. Stochastic
equilibrium models give the mean �ow on each path and the mean �ow on
each link of the network. Distribution of path �ow variables and joint den-
sity function of the �ow on all links could be approximated by a multivariate
normal distribution, as discussed for some authors ([11]).

For logit-based formulations equation 13 becomes ([8]):

Pijr =
exp (−θcijr)∑

∀ k ∈Rij
exp (−θcijk)

(17)

where the parameter θ is a constant that scales the perceived path travel
cost, in such a way that the random term error becomes a standard random
Gumbel variate, this is with null expectation and variance π2

6 , which implies
that the variance of the (Gumbel) perceived path travel cost is var(Cijr) = π2

6θ2 .
Thus, the parameter θ is inversely proportional to the standard error of Cijr.
Most of the commercial procedures that tra�c engineers �nd available to model
logit-based choice in transportation planning models require to �x global pa-
rameter θ and thus, the variance of Cijr will never depend on currently assigned
link �ow, nor path �ow, nor OD pair characteristics and this is a very serious
limitation against realism of many commercial stochastic equilibrium results
and in general against logit-based discrete choice models results appearing in
transportation planning (due to commercial implementation of procedures):
variance of random variables is �xed globally and a priori. For example, per-
ception variance of travel time is the same for routes connecting OD pairs at
100 km or 1 km aerial distance!!!.
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12 Design of information points for monitoring tra�c conditions

As mentioned above, the probit model assumes that the perceived travel
cost on paths is normally distributed with a mean equal equal to the measured
path travel cost and this distribution can be derived from the normal distribu-
tion of the perceived link travel costs. Let Ca denote the perceived travel cost
on link a, it is a random variable normally distributed with mean equal the
measured link travel cost and variance σ2

a, and non-overlapping road links are
assumed to be independent, that is,

Ca ∼ N(ca, σa) ∀ a ∈ A (18)

Several possibilities have been developed by the authors:

1. Standard deviation proporcional to link travel cost: σa = βca(v) ∀a ∈ A.
2. Standard deviation proporcional to link travel cost under free-�ow con-

ditions: σa = βca(0) ∀ a ∈ A.
3. Standard deviation proporcional to link travel cost at link capacity-�ow

conditions: σa = βca(sa) ∀ a ∈ A.
4. Standard deviation proporcional to link length σa = βca(la) ∀ a ∈ A.

where β is a proportionality constant that can be interpreted as the
variance of the perceived link travel cost over a link of unit travel cost.

The normality assumption may be argued not to be suitable in general
since travel costs (travel times, usually) can not be negative; and, from a formal
point of view, a nonnegative distribution positive skewness (gamma distribu-
tion), could be more appropiated; but, in practice, it is reasonable to believe
that the magnitude of the perception error is small with respect to the expected
value and thus, it is realistic.

The random vector of perceived path travel cost is a multivariate nor-
mal vector with non-diagonal terms in the covariance matrix (in general). Once
the perceived path travel cost distribution is speci�ed, neither the probability
of selecting each alternative route can be analytically calculated or even ap-
proximated since path enumeration is required and thus, nor the �ow assigned
accordingly 12 and nor the link �ows can then be calculated by 3. This is
also true if the random perception is de�ned directly at path level, being less
realistic.

From a computational point of view, the number of alternative paths
connecting a typical OD pair in real networks is extremely large, consequently
it is not possible to enumerate all these paths, calculate probabilities for each
one to be chosen under a given distribution, compute the �ow assigned to
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each route, and then, considering all OD pairs, compute the assigned link �ow.
Thus, algorithms for stochastic equilibrium on large networks, have to be link-
based procedures, based on the random perception at link cost level (not path
level), which avoid path enumeration and perform the assignment of demand
(OD matrix) using only link variables. Feasible methods for large networks are
Monte Carlo simulation-based.

If measured link costs are congestion independent, then determining the
probabilities Pijr and total expected link �ows v is known as the Stochastic
Network Loading (SNL) Problem. If the distribution of the path �ow random
variables does not depend on link congestion, then the expected total link
�ows are a monotone non-increasing function of the link costs. For the case
of logit based model the SNL problem can be solved rather e�ciently, for
instance by the classical STOCH method of Dial ([11]). Bell proposes two
alternatives to Dial's method for the stochastic loading problem under logit
path �ow distribution. For the case of a probit based model, Maher developed
the SAM stochastic loading method using Clark's approximation for the path-
choice probabilities Pijr outperforming the Burrell's method.

For the congestion dependent case and additive models, the formulation
of SUE models as a �xed point problem, was done by Daganzo in [2] and by
Cantarella:

v =
∑

(i,j) ∈ C
{ dij

∑

r∈Rij

Pijr

(∑
a

δar ca(v)

)
δar } (19)

For the congestion dependent case and non-additive models, the formu-
lation of SUE models as a �xed point problem becomes,

v =
∑

(i,j) ∈ C
{ dij

∑

r∈Rij

Pijr

((∑
a

δar ca(v)

)
+ cNADD

ijr

)
δar } (20)

Su�cient conditions for the existence of solutions can be derived through
Brouwer's theorem requiring continuity of cost functions and path choice func-
tions. Furthermore, assuming that the SNL process is monotone non-increasing
with link costs, or equivalently, the link cost functional is monotone strictly in-
creasing, then existence and uniqueness of path �ows and costs holds.

Fisk extended the optimization problem of Beckmann for the determinis-
tic and separable user equilibrium to a logit path choice model with dispersion
parameter θ for the stochastic, but separable user equilibrium. Fisk's problem
is:
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Min v∈V, h∈H
∑

a∈A
∫ va

0
ca(x)dx +

1
θ

∑
(i,j)∈C

∑
r∈Rij

hr(`n(hr)− 1)

(21)
It can be shown that the solutions of Fisk's model reproduce the distri-

bution of trips for the logit-based SUE model over the network paths (equation
(17)).

The logit model drawback of concentrating too much �ow over over-
lapping paths has been treated by Cascetta, who proposed the C-logit model
but explicit path enumeration is required making the proposal not realistic in
practice for large networks.

Chen and Alfa proposed two algorithms to solve Fisk's problem in that
do not require path enumeration, that was further modi�ed by Bell to avoid
inconsistency in �ows. These two algorithms are modi�cations of the �ow
averaging algorithm or method of successive averages (MSA)used in this work
and discussed below. Another algorithm that uses explicit path enumeration
is that of Damberg based on the partial linearization algorithm scheme due to
Patriksson combined with a column generation phase.

A more general optimization model for any probabilistic distribution
of path choice was proposed by Daganzo and She�y ([11])for the separable
situation:

Min v∈V Z(v) = −∑
(i,j)∈C dijC̃ij(v) +

∑
a∈A vaca(va)−∑

a∈A
∫ va

0
ca(x)dx
(22)

where C̃ij(v) = E[ Minr∈Rij{Cijr} |v ] is the expected perceived travel
time function for trip makers of OD pair (i, j) ∈ C. In general the objective
function of this model is non-convex with a unique stationary point where it is
locally strictly convex in the link �ow variables (see, for instance [11], chapter
12), that, additionally is the unique global solution in terms of the link �ow
variables although the solutions in the path �ows may be non-unique. It can
be shown that the gradient of Z(v) has the expression:

(∇vZ(v))a = (ya − va)
dca

dva
(va), where ya =

∑

(i,j)∈C
{ dij

∑

r∈Rij

Pijr(v)δar }

(23)
Thus, at a point va, ya are the link �ows resulting from a stochastic

network loading when the measured link travel costs are given by ca(va). It
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must be noticed that ∇vZ vanishes at a point verifying va = ya, ∀ a ∈ A, and
this implies that the problem (22) can be solved as an unconstrained problem.
There are two basic di�culties in applying a descent method to the problem of
minimizing Z(v). The �rst one is that in order to evaluate ∇vZ a stochastic
network loading problem must be solved at each iteration. The second di�culty
is to evaluate the objective function if a line search is to be used. Maher essays
descent algorithms to minimize Z(v) under a logit path choice model, using his
SAM loading method, he undertakes heuristically these di�culties and develops
a descent algorithm with cubic interpolation for the line searches with better
convergence characteristics than the MSA algorithm for a probit based model.

In theory, models incorporating stochastic and equilibrium properties
look particularly attractive; there are, however, operational and practical di�-
culties for applying them as the convergence properties of algorithms and the
extension to the nonseparable user equilibrium. A practical algorithm to per-
form SUE assignment is the iterative loading method known as MSA algorithm
or Method of Successive Averages algorithm, that can be described as follows:

STEP 1. Set current measured costs to free-�ow travel costs, i.e., va = 0 and
ca = ca(0) ∀ a ∈ A. Make outer iterator counter n = 1 and compute a
stochastic network loading based on the set of initial travel times. This
generates a set of links �ows v(n).

STEP 2. Update measured link travel costs according to c(n) = c(v(n)).

STEP 3. Compute a stochastic network loading based on the current set
of link travel times c(n). This yields and auxiliary link �ow pattern y(n).
Accuracy controlled by maximum inner iteration parameter.

STEP 4. Find the new �ow pattern by setting v(n+1) = v(n) + 1
n (y(n)−v(n))

STEP 5. If convergence is attained, stop. If not, increase the outer iteration
counter, n = n + 1, and go to Step 2.

This algorithm will always tend to produce small changes in �ows and
costs as n becomes large, but it converges to the right Stochastic User Equilib-
rium solution in the long run as has been shown by She� [11], the convergence
is not monotonic because the search direction is only a descent direction on the
average. The speed of convergence depends on the level of network congestion
and the variance of perceived link travel costs. Althought SUE assignment
sounds an attractive model alternative, it would only be advantageous in low
to medium congested networks, in heavily congested networks, a deterministic
user equilibrium gives a fairly good approximation at a faster convergence rate,
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since very e�cient algorithm were developed for UE in the last decades of the
twentieth century.

For the deterministic user equilibrium the authors have already imple-
mented under the variational inequality formulation in a restricted simplicial
decomposition framework, a very e�cient software program written in C++
that uses a variable metric projection scheme to solve the master problem and
a LDQUE algorithm for computing trees of shortest paths for the generation of
a new feasible �ows in the link �ow space. This C++ software is an extension
of a previous Fortran version developed by Montero ([7]) in her doctoral thesis.

For SUE, a MSA algorithm has been implemented. MSA convergence is
not monotonic, fact that supposes a serious problem in the context of practical
detection of convergence. In the current implementation, the stopping criteria
has been �xed to a maximum number of outer iterations or to satisfaction of
�ow similarity over the last m parameter iterations, usually being m a �xed
parameter between 3 to 5. Let v̄(n) denote the average �ow over the last m
iterations,

v̄(n) =
1
m

∑

l=0...(m−1)

v(n−l) (24)

Thus the convergence criteria used is based on moving averages,

∑
a∈A |v̄(n+1)

a − v̄
(n)
a |

∑
a∈A v̄

(n)
a

< κ (25)

Observe that Step 3 in MSA Algorithm implies a SNL Subproblem were
any algorithm can be applied, but if the choice probabilities are generated
according to a Monte Carlo simulation , then SNL generates unbiased estimates
of the search direction y(n) regardless of how many simulation iterations are
performed, in particular 1 inner iteration seems to be the most e�cient choice
(see She� [11] for a deep discussion).

MSA algorithm may be applied to random link perceived travel costs
being: normal, uniform (as Burrell original proposal), Gumbel, gamma, etc. It
is a very general and �exible scheme were any random cost can be modelled.

Several possibilities have been developed by the authors, up to now inter-
actions between network links are not allowed, and thus, only separable model
can be considered:

Perceived link travel cost Gumbel with standard deviation proporcional
to link travel cost: σa = βca(v) ∀ a ∈ A.
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Perceived link travel cost normal Ca ∼ N(ca, σa) ∀ a ∈ A and,

1. Standard deviation proporcional to link travel cost: σa = βca(v) ∀a ∈
A.

2. Standard deviation proporcional to link travel cost under free-�ow
conditions: σa = βca(0) ∀ a ∈ A.

3. Standard deviation proporcional to link travel cost at link capacity-
�ow conditions (vector s): σa = βca(s) ∀ a ∈ A.

4. Standard deviation proporcional to link length σa = βca(la) ∀a ∈ A.

where β is a proportionality constant that can be interpreted as the
variance of the perceived link travel cost over a link of unit travel cost.

The extension of the MSA algorithm to compute SUE under nonsepa-
rable assumptions is straightforward under a diagonalization scheme, accord-
ing She� [11], but there are not references of applications and computational
results in the asymmetric instances of the Tra�c Assignment Problem in the
literature. This extension will be discussed in a future work of the authors. The
description of the algorithm given above copes with the general (non-separable)
TAP link cost functional de�nition.

3. Bilevel Problem Formulation
In order to assess the decision process of allocating di�erent levels of

quality of information at a set of predetermined links a ∈ Â in the network,
the following hierarchical program can be formulated:

min x ψ(x) = E[φ(V) |x]

subject to: x ∈ X (26)

In this program the function φ that can be considered in a natural way
is the expected value of the system performance function, as the expected total
travel time spent by the users of the tra�c network, i.e., for the determinis-
tic TAP, the system performance function becomes: φ(v) =

∑
a∈A ca(v)va.

(ca(v) = ca(va) in a diagonal model), where v would be the volumes on deter-
ministic user equilibria.

The lower level in the hierarchical scheme is a stochastic user equilib-
rium tra�c assignment model as the one described in section 2 and the link
�ows V are random variables distributed accordingly to a probability law with
parameters that, in general, are functions of x. Thus, the expected value
v(x) = E[V|x] of the link �ows is in fact a function of the current values x
that the parameters may adopt. Thus, the upper-level objective function ψ
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is the expected system equilibrium performance function for �xed upper-level
variables x. This value will be estimated by Monte Carlo simulation.

The upper level variables x must be associated to a measure of uncer-
tainty on link travel time perception (in our approach they are related to the
variance of the perceived link travel time). The set S(x) is the solution set of
the stochastic assignment equilibrium parametrized by the upper level variables
x. The upper level variables lie in an admissible set X which we will assume
to be of the type:

X def= {
∑

a∈Â

xa ≥ δ; γ ≤ xa ≤ γ} (27)

Other functional forms in the upper level could be used such as for
example: ψ(x) = E[φ(V) |x] + k · (Var[φ(V) |x])

1
2 for �xed k > 0, and thus

Prob(φ(V) ≥ ψ(x)) < 1/k2 by Chebishev's inequality.

3.1. Monte-Carlo simulation of the lower level model
Once the stochastic equilibrium is attained with enough accuracy, i.e.

the mean link �ows v have been computed, the evaluation of the objective ψ
can be done only by Monte Carlo simulation in order to obtain an estimate for
ψ, say ψ̂.

The procedure to obtain a random instance for the function φ could be
accomplished as follows:
- Take N a su�ciently large integer and set the random link �ows to zero:
V = 0.
- For ` = 1, 2, ..., N do:

a) Generate random numbers εa for the perceived link travel costs.
b) Calculate shortest paths for each O-D pair (i, j) accordingly to
the link costs ca(v) + εa and load the incremental demand dij/N
on them obtaining a set of incremental link �ows u`

a ∀ a ∈ A for
the `-th step.
c) Accumulate the incremental link �ow onto the random link �ow:

va = va + u`
a ∀ a ∈ A (28)

- Calculate φ(v).
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This procedure should be repeated several times, say m, in order to
obtain a sample φ1, φ2, ...φm to compute the mean value φ̄ = 1

m

∑m
`=1 φ` The

following variance reduction technique can be used in order to improve the
e�ciency of this method.

3.2. A variance reduction method
In order to evaluate the objective function in (26) a variance reduction

technique must be used. The one that has been chosen is the control variable
technique (see, for instance [10], chapter 4).

Let us note for a sake of simplicity φ(v) =
∑

a∈A ca(v)va which is the
variable for which an estimation of its mean value is required at each evaluation
of the objective function in (26). As the link �ows V are random variables, let
them write down as V = v + δ, with v = E[V] and E[δ] = 0. Let us de�ne an
auxiliary random variable ϕ as,

ϕ =
∑

a∈A

(
ca(v) + c′Ta δ

)
Va (29)

where c′a = ∇ca(v) and c(v) + ε is the random vector of perceived
travel costs on links.

Clearly the expectation ϕ0 = E[ϕ] can be easily computed once the mean
value v of the stochastic link �ows V are given by the solution of the stochastic
equilibrium lower level problem for x �xed,

ϕ0 = E[ϕ] =
∑

a∈A

ca(v)Va (30)

The control variable would then be f1 = φ − η1(ϕ − ϕ0), where η is a
suitable coe�cient. Then E[f1] = E[φ].

On the other hand it is veri�ed that the link �ows Va, a ∈ A are random
variables with an approximate normal distribution, i.e, Va = va + δa, δa ∼
N(0, ζa), ζa = V ar1/2[δa].

Both variables ϕ and φ are clearly correlated since,

φa(v) = ca(v + δ)(va + δa) = ϕa + vaoa(δ) + δaca(V) (31)

The method consists of generating a sample for the φ′s and the ϕ′s,
(φ1, φ2, ..., φν), (ϕ1, ϕ2, ..., ϕν) and compute the slope b̂ of the linear regression
φ ↔ ϕ:
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b̂ =
∑n

i=1(φi − φ̄)(ϕi − ϕ̄)∑n
i=1(ϕi − ϕ̄)2

(32)

Then, an estimate for E[φ(V)] with lower variance is given by,

f̄1 = φ̄− b̂(ϕ̄− ϕ0) and V ar[f1]
V ar[φ]

= 1− r2
φ,ϕ (33)

Another auxiliary variable that can be chosen is:

ξ =
∑

a∈A

ca(v)Va (34)

for which the same computations can be performed along the Monte-
Carlo simulation of the lower level problem. Its expectation is also known:
E[ξ] = ξ0 = ϕ0. The new control variable would then be f2 = φ − η1(ξ − ξ0).
Also, E[f2] = E[φ]. And the reduction in the variance would be:

V ar[f2]
V ar[φ]

= 1− r2
φ,ξ (35)

As an estimate for ψ = φ̄ take f̄1 or f̄2 accordingly to the one with
greater r2 factor.

4. Algorithmic Scheme
In order to �nd values for the decision variables x in (26) that provide a

lower level objective function, a method based on the proximal point algorithm
has been developed. This method requires a local model of the response surface
of the upper level objective function in (26).

The method can be described as follows:
Fix two thresholds δ and δ̂ that bound the proximity of the current xk

iterate to the points in the set Wk available at iteration k-th in order to obtain
an estimation of the function ψ(x) locally:

δ ≤ ‖w` − xk‖2 ≤ δ̂, ∀w` ∈ Wk

Let us denote by ψ̂k the estimate for ψ(xk).
Let x0 be a feasible point, i.e. x0 ∈ X , and let W0 = {x0}. Set k = 0.
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Then at iteration k-th:
(I) Generate a random direction dk with ‖dk‖2 = δ̂.

Then, If xk + dk is also feasible take zk = xk + dk.
If xk + dk is not feasible solve:

Miny ‖dk − y‖2
2

A(xk + y) ≥ b
(36)

- If y = 0 then take zk = xk − α∗dk, where

α∗ = Max{ 0 ≤ α ≤ 1 | A(xk − αdk) ≥ 0 } (37)

- If y 6= 0, then take zk = xk + α∗dk, where

α∗ = Max{ 0 ≤ α ≤ 1 | A(xk + αy) ≥ 0 } (38)

- If ‖zk − xk‖2 < δ then repeat (I).

As an output of step (I) a new point zk will be obtained so that
δ ≤ ‖zk − xk‖2 ≤ δ̂

(II) Wk+1 = Wk

⋃{zk}.
(III) Obtain an estimate ψ̂k of ψ(zk).
(IV) Let now Wk = {w1,w2, ...,wmk

} with mk = |Wk|.
Let W ′

k = Wk \ {xk} and π` = w` − xk, for w` ∈ Wk

Two cases must be considered:
Case a) mk ≤ n + 1 or case b) mk > n + 1.

If case a), then the restriction of the function ψ to the linear sub-
space FWk

∆= [π1, π2, · · · , πmk−1] is optimized on that subspace:

ψk(λ) = ψ

(
mk−1∑

`=1

λ`π` + xk

)

this function is modelled simply as:
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ψk(λ) ' ψ̂0 +
mk−1∑

`=1

λ`(ψ̂` − ψ̂0) = ψ̂0 +
mk−1∑

`=1

u`λ`

and

xk+1 =
mk−1∑

`=1

π`λ
∗
` + xk

Min λ

mk−1∑

`=1

u`λ` +
ρ

2
‖x− xk‖2

2

s.t. Ax ≥ b
(

x =
mk−1∑

`=1

π`λ` + xk

) → λ∗ (39)

If case b), then using the set of points in Wk a linear regression in
order to model the function ψ is carried out. Then ψ(x) ' a0+aT x:

Min a0, a

mk∑

`=1

(ψ̂i − (a0 + aT wi))2 → â0, â

The next iterate xk+1 would be directly provided by the solution
of the proximal step (40) as:

Min x a0 + aT x +
ρ

2
‖x− xk‖2

2

Ax ≥ b
→ xk+1 (40)

(V) Drop from Wk any point w` so that ‖w` − xk+1‖2 > δ̂, excluding xk.
Set k ← k + 1 and return to step (I)

5. Software Architecture
The application has been coded in the Microsoft Visual C++ Environ-

ment.
RODOS Workspace is mainly governed by AMPL, who calls EM2AMPL

Project and RSDCA Project (version 5.0), containing an additional MSA al-
gorithm for SUE computation as the main di�erence from older versions and a
modi�ed input/output interaction pattern to allow calls from AMPL.
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Directory de�nitions by means of precompilation directive in the header
�le RSDCA/GENERIC.H.

Directory tree from RODOS:

RSDCA: Project to compute general TAP Equilibrium Assignment. Based
on the variational inequality formulation.

EM2AMPL: Converter Program that translates network and demand de-
scription from EMME/2 standard batchout/batchin format to AMPL
model format.

AMPL: Upper level AMPL program coding.

CONTROL: Execution de�nition, de�nes network, demand and cost func-
tional and parametrizes the execution of RSDCA and RODOS AMPL
(constraints and stopping criteria). Extension �les: *.ctl. Default �le
d111.dat.

INPUTOUTPUT: Network, demand, turning movements in standard
ASCII EMME/2 format. Cost functional is not EMME/2 compatible.

VINCLES: Transfer �les between AMPL and EM2AMPL program to ini-
tialize network and demand AMPL model characteristics and interaction
�les at each major iteration between the upper-level AMPL model and
the lower-level RSDCA program for computing SUE.

RESULTATS: Iteration and �nal results from upper-level AMPL program
that implements a speci�c bilevel program with equilibrium constraints.

RSDCA VERSION 5.0: C++ Project that uses the following input-output
directories: tranfer �les between AMPL (high level) and RSDCA (Stoch TAP -
lower level) are read/written at RODOS/VINCLES, the description of Stochas-
tic TAP is read from RODOS/CONTROL, compatible with General TAP (non
stochastic) and RODOS/INPUTOUTPUT is the directory containing network,
demand and functional cost de�nitions according to control �le for a given ex-
ecution.

EM2AMPL: C + + Project that reads a control �le from
RODOS/CONTROL and according to that �le reads network and demand
description from
RODOS/INPUTOUTPUT and converts to AMPL model format, at directory
RODOS/VINCLES with output �le '�lename'.DAT_AMPL_STRUC.

AMPL Results are writen to RODOS/RESULTATS and transfer �les
between RSDCA and AMPL are read-written at RODOS/VINCLES.
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RODOS AMPL Program initially executes EM2AMPL Project that by
default searches RODOS/CONTROL/d111.dat control �le, where the names
of the �les containing the network, the demand matrix are read and the output
�le name for AMPL model (extension .DAT_AMPL_STRUC). EM2AMPL
converts network and demand description in the AMPL model format that it is
written to RODOS/VINCLES. Once the AMPL model �le is loaded into RO-
DOS AMPL Program. AMPL model consists on network, demand and global
parameters to de�ne upper-level constraint description and stopping criteria
(delta, gamma_ci, gamma_cs and ratio_SUE parameters). The current im-
plementation is consistent with control �les where Equilibrium Type is 3-SUE
AMPL Call and SUE model type is 4 implies internal RSDCA link function
type 6 - Probit with stdev �xed to link travel cost at capacity �ow (meaning
cost functional de�ned thru BPR type functions with standard deviation of
perceived link travel cost parametrized by coe_var control parameter and ul1
link �eld in transfer �le).

class ED_PARAM_SUE_MSA { public:
int model;

// 1 - Probit (def) en sigma = coe_var x t(va)
// 2 - Probit en sigma = coe_var x t0
// 3 - Logit en sigma=coe_var x t(va)
// 4 - Probit en sigma=coe_var x gamma_a x t(capacitat)

int nparam;
double coe_var;

// coef. de variació en model 1 i escalat en model 2
double delta;

// Només té sentit si param_TAP.model =3 (SUE és 4 i vdf =6 )
//defineix cota inferior a suma variances

double ratio_SUE;
// Només té sentit si param_TAP.model =3 (SUE és 4 i vdf =6 ) i
// defineix el tant per u d'arcs amb C(v) aleatori

double gamma_ci, gamma_cs; // Cotes inf i sup a gamma_a

ED_PARAM_SUE_MSA();
ED_PARAM_SUE_MSA( const ED_PARAM_SUE_MSA & p );
ED_PARAM_SUE_MSA& operator=( const ED_PARAM_SUE_MSA & p );
~ED_PARAM_SUE_MSA();

};

The �rst time that RSDCA program is called from AMPL (situation
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identi�ed by TAP.model equals 3 and transfer �le not existing), it generates ran-
domly the links where a sensor is to be allocated, in such a way that ratio_SUE
(read from control �le) fraction is satis�ed, while given to ul1 link �eld a fea-
sible escale factor consistent with ED_PARAM_SUE_MSA.model equal 4
(the average from upper and lower scale constraints is given in the current
implementation). This limits gamma_ci and gamma_cs are read from the
control �le. IMPORTANT: Original ul1 link network �elds are lost and t0 link
�eld is set to 0. It performs STEP 1 in MSA algorithm description. Results are
written to transfer �le RODOS/VINCLES/∗_611.DAT (.P IF ASCII format
�le). Random generator seed should be modi�ed each RSDCA execution.

ASCII Transfer File Detailed Format (.pif format)

First line: Title and brief description of execution object.
Second line: Mean and Variance of System Equilibrium Objective Func-
tion, (qua_TAP.fobj and qua_TAP.gapfun), MSA iterations (qua_TAP.niter),
convergence criteria based on moving averages, κ parameter (qua_TAP.gappcent
).
Third line: param_SUE_MSA.delta, param_SUE_MSA.ratio_SUE,
param_SUE_MSA.gamma_ci, param_SUE_MSA.gamma_cs. Pa-
rameters that de�ne upper-level objective function.
Forward lines: As many lines as network links, each one containing: origin
node, destination node, mean SUE link volume, upper-level variable and
indicator of sensor allocation state.
USE: RSDCA reads from fourth to the end of �le lines. RODOS AMPL:
reads all the lines. On the �rst call to RSDCA, transfer �le should not
exist.

ASCII Transfer File Detailed Format: For example for test problem t1.

38220.65 38220.65 240 0.10
1.00 1.00 0.05 2.00

1 105 1343.10 1.02 1
1 106 1656.90 1.02 1

105 3 1343.10 1.02 1
106 3 1656.90 1.02 1

ASCII Control File Detailed Format: For example for test problem
t1.
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c RSDVI Module: User: E032/IOE_FIB...lmm \\
c Project: Test Network 1 \\
t control init \\
t1_211.dat\\
t1_231.dat \\
t1_311.dat \\
t1_411.dat \\
t1_511.dat \\
t1_611.dat \\
SORTIDA.DAT \\
0.1 500 0 1 0.00 3
1 -0.1 2 3 1.0 0.0001
500.0 0.95 0.75
0
4 1 1.0
1.0 1.0 0.05 2.0

// File format: 3 initial lines with comments
// arxius.entrada_xarxa (default D211.DAT)
// arxius.entrada_girs (default D231.DAT)
// arxius.entrada_matriu (default D311.DAT)
// arxius.entrada_vdf (default D411.DAT)
// arxius.entrada_interaccions (default D511.DAT)
// arxius.entrada_pif (default <none>)
// arxius.sortida_rsdvi (default SORTIDA.DAT)
// 1 Blank line and 6 forward lines containing:
// 1st Line: param_TAP.errorTAP param_TAP.max_iter

param_TAP.ninf param_TAP.flag
param_TAP.coef_assim param_TAP.model

// 2on Line: param_RSDVI.flaggap >> param_RSDVI.delta >>
param_RSDVI.nverini >> param_RSDVI.maxvxtact >>
param_RSDVI.error_VIS >> param_RSDVI.min_coo

// 3rd Line: param_PPM.ini_corr >> param_PPM.factor_corr
// 4th Line: param_RSDCA.flag_aprox
// if param_tap.model is 2 or 3(SUE) then
// 5th Line: param_SUE_MSA.model param_SUE_MSA.nparam

param_SUE_MSA.coe_var
// if param_tap.model is 3(SUE) then
// 6tha Line: param_SUE_MSA.delta param_SUE_MSA.ratio_SUE

param_SUE_MSA.gamma_ci,param_SUE_MSA.gamma_cs
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6. Conclusions
Software architecture for solving the bilevel programming approach pro-

posed for the authors to support the design of information points for monitoring
the tra�c conditions is fully designed and the Lower Level problem is actually
solved with a method in the RSDCA environment. RSDCA environment con-
tains a set of methods for solving separable and non-separable instances of the
deterministic TAP, assuming a variational inequality formulation, and a MSA
method for solving the separable and stochastic TAP version.

The interface between EMME/2 network description �les and AMPL is
implemented (E2AMPL C++ program) and the protocol for transferring infor-
mation between the Upper Level (AMPL) and the Lower Level (RSDCA) has
been coded and validated. The interface between EMME/2 network descrip-
tion �les and RSDCA has been incorporated as input methods in the RSDCA
environment and has been also validated.

Perceived link travel costs are assumed to be normal and unbiased vari-
ables, centered on the measured link travel costs with standard deviations
proportional to the expected link travel costs at saturation �ows, i.e., σa =
βxaca(sa). At this point, only separable instances of the stochastic tra�c as-
signment problem can be considered, but the framework will be extended in a
near future.

The AMPL upper level implementation is still pending. In preliminary
tests on small networks a reduction on the System Performance function has
been observed when the perceived link cost variance has been forced to decrease.
Results currently available are very promising and show the consistency of the
approach proposed by the authors.
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