Measuring in PSPACE
Elvira Mayordomo

Report LSI-92-10-R

BIBLIOTECA
| R. 9490 44 MARL. f09

S
FACULTAT DiuFciztinica

Measuring in PSPACE *

Elvira Mayordomo

Dept. Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo 5
08071 Barcelona, Spain
E-mail: mayordomo@Isi.upc.es

Abstract

Results of the kind “Almost every oracle in exponential space separates P
from NP” or “Almost every set in exponential time is P-bi-immune” can be
precisely formulated via a new approach in Structural Complexity recently intro-
duced by Lutz. He defines a resource bounded measure in exponential time and
space classes that generalizes Lebesgue measure, 2 powerful mathematical tool.

This resource bounded measure is mainly used to distinguish between “big”
and “small” classes, and to investigate the properties that hold for “typical”
languages in a class. We investigate here the possibility of extending this resource
bounded measure to other classes, mainly PSPACE. We prove here that the
natural candidate of resource bound for measuring in PSPACE is not valid unless
some unlikely consequences are true. We also obtain a way of measuring in
PSPACE that does not have as many properties as resource bounded measure in

bigger classes.

* This work was supported by a Spanish Government grant FPI PN90.

1

1. Introduction

Resource-bounded measure was introduced by Lutz in (L90, L91]. It deals with
complexity classes within exponential time or space, distinguishing between “large” and
“small” classes.

This method generalizes a powerful mathematical tool, Lebesgue classical measure,
which is useless when dealing with recursive classes since it gives measure zero to all of
them. Resource-bounded measure limits the time or space that can be used to compute

the measure of a class, so that it is possible to have “large” (measure 1) recursive classes.

Many of the results that have been obtained up to now in this field ([L91], [LM92],
[LS90], [M91]) are based on an existence result. For instance, the fact that there exist a
P-bi-immune language in exponential time ([HB77]) can be extended to prove that almost
every language in exponential time is P-bi-immune ([M91]). Such extensions give a more
general idea about what the typical behavior of the languages in the class of exponential
time is. We want to extend some results concerning existence in PSPACE to “almost
every”, for instance, the fact that there exists language in PSPACE that is not DLOG-

self-reducible.

To introduce his resource-bounded-measure, Lutz takes a constructive way of defining
Lebesgue measure (by covers in [L90] and with density functions in [L91]) and bounds the
resources used in the construction to obtain meaningful measures in exponential classes,
that is to say, measures that allow existence of both small and big subclasses. For expo-
nential time the correct bound is polynomial time and for exponential space the correct
bound is polynomial space.

In this line, it would be a natural solution for our problem of PSPACE to pose a
restriction of poly-logarithmic space to obtain a meaningful measure within PSPACE, but
the sublinearity of this bound poses some technical difficulties, which are not easily solvable
since this would imply some unlikely results. We then impose more restrictions and obtain

a meaningful “measure” in PSPACE. The properties of this measure are not as good as in

bigger classes.

2. Preliminaries

We will use the alphabet & = {0,1}. A string is a finite sequence z € £*. We write
|z| for the length of z. The unique string of length 0 is A, the empty string. A sequence is

an infinite sequence ¢ € £,

If zis astringand yisa string or sequence, then zy is the concatenation of z and y.

2

If z is a string and k € N U {00}, then z* is the k-fold concatenation of = with itself.

Let s0,51,32,... be the standard enumeration of the strings in £* in lexicographical
order.

From now on we will use the bitstring a of a language L to denote it, where « is

defined as follows:

a € T and afi] =1 iff s; belongs to L.
So we identify the class P(E*) of all languages over ¥ with the set £ of all sequences.
The complement of a set of languages X is X¢ = £%° — X = P(5*) — X. 218z 218z If =
is a string and y is a string or sequence, then z C y iff there exists a string or sequence 2
such that y =zz,and e L yifc C gy and z # y.
Definition 1: Let w € £*. C,, denotes the class of languages {z € £ | w C z}.

Let all be the class of all functions f : &* — ¥*, and rec be the class of recursive
functions in all. We fix once and for all a one-to-one pairing function (,) from ¥* x &*
onto X* such that the pairing function and its associated projections, (z,y) ~ z and
(z,y) — y are computable in linear time and logarithmic working space.

We let D= {m2~" | m,n €N} be the set of nonnegative dyadic rationals.

With the exception of functions mapping into [0, o) all our functions are of the form
f:X =Y, where each of the sets X, Y is N, ¥*, D, or some cartesian product of these sets.
For purposes of computational complexity we regard such functions as mapping ¥* into £*.
For example, a function f: N2 x £* - N x D is interpreted as a function f : £* — ¥~.
Under this interpretation, f(i,7,w) = (k,q) means that f((Oi,(Oj,w))) = (0%, (u,v)),
where u and v are the binary representations of the integer and fractional parts of ¢,
respectively.

For a function f : N x X — Y and k € N, we define the function fe: X =Y by
fe(z) = f(k,z). For a function f: N® x X — Y, we write fi 1 = (fi)i, etc. For a function
f:X* > I* we write f* for the n-fold composition of f with itself.

Let RE be the class of recursively enumerable languages, and REC be the class of
recursive languages.

Let E be the class |, DTIME(2°"), p is the class of polynomial time computable
functions, and pspace is the class of polynomial space computable functions.

We will use A in the rest of the paper to refer to a class of functions.

Next, we can associate with each class of functions A a class of languages R(A) as

follows:

Definition 2: f € A is a constructor iff Yw € *,w & f(w).
Definition 3: Let k be a constructor in A, then R(R) is the unique element in £ such
that Vi hi(X) C R(A).
Definition 4: R(A) is the class of languages {R(k) | k a constructor in A}.
From the classes of functions we mentioned, we obtain well-known classes [L90]:
R(p) =E,
R(pspace) =ESPACE,
R(rec) =REC,
R(all) = P(%*).

3. Resource-bounded measure

In this section we introduce resource-bounded measure by Lutz [L91] for a general

resource bound A. We will use A for both a resource bound and the class of recursive

functions defined by it.

We will remark that one of the properties of this resource bounded measure, namely
A-additivity (Lemma 1, from [L91]) does not necessarily hold for certain resource bounds.
For it to hold we will assume the resource bound to be closed under linear sum, as defined
next.

Definition 5: A class of functions A is closed under linear sum iff for every function f € A,
— [w] isin A

g(w) = Sl fi(w) is in A.
First we introduce the concept of density function, basic in this theory.

Definition 6: A density function is a function d : £* — [0,) satisfying

d(w0) + d(w1)
2

d(w) 2

for all w € E*. The global value of a density function d is d(A). The set covered by a
density function d is
a Sd= |J Cu
d(e) 21

Definition 7: A density function d covers a set X C B if X C S[d].

Consider the random experiment in which a sequence z € X is chosen by using

an independent toss of a fair coin to decide each bit of z. Definition 6 implies that

Pr[z € S[d]] < d()). Intuitively, we will regard a density function d as a verification that
Pr(z € X]| < d(}) for all sets X C S[d].

More generally, we will be using “uniform systems” of density functions that are A-
computable.
Definition 8: An n-dimensional density system (n-DS) is a function
d:N"x X" - [0,00)
such that dg is a density function for every k € N™.
Definition 9: An n-DS d is A-computable iff there is a function d € A, such that
d:N"t! x 5* 5 D, |dz (z) — dg(z)| < 277
forall k€ N*,r € N, and z € I*.

We now come to the key idea of resource bounded measure theory.

Definition 10: A set X C £ has A-measure 0 iff there exists a A-computable 1-DS d
such that, for all k € N, di covers X with global value de(A) < 27k,

Thus a set X has A-measure 0 if A provides sufficient computational resources to
compute uniformly good approximations to a system of density functions that cover X
with rapidly vanishing global value.

Definition 11: A set X C £° has A-measure 1 iff X has A-measure 0.

The “typical” languages in this formulation are called A-random.

Definition 12: A language L € £ is A-random iff it belongs to every A-measure 1 class.

We are interested in measuring inside R(A).

Definition 13: A set X C £° has measure 0 in R(A) iff X N R(A) has A-measure 0.
Definition 14: A set X C £° has measure 1 in R(A) iff X¢ has measure 0 in R(A).

The first thing to prove is that we have defined a measure with some meaning in R(A),
that is to say, there exist X C % such that X does not have measure 0 in R(A). This is
proved by Theorem 3.13 in [L91] (Measure Conservation Theorem), stated as
Theorem 1: If w € £* and d is a A-computabile density function that covers Cy, N R(A),
then d()) > 2-II,

It is clear then that Cy, does not have measure 0 in R(A).

Next we will examine two basic properties of resource bounded measure. The following

lemma from [L9]] states that a special kind of countable union of A-measure 0 sets has

measure 0.
Definition 15: A set X is a A-union of the A-measure 0 sets Xg, X7, Xa,...if X = Uj2o X;
and there exists a A-computable 2-DS d such that each d; witnesses that X; has A-

measure 0.

Lemma 1: If A is a class of functions closed under linear sum and X is a2 A-union of
A-measure 0 sets, then X has A-measure 0.
Lemma 2 is another straightforward property.
Lemma 2: Let X, Y C Z®°. If Y C X and X has A-measure 0, then Y has A-measure 0.
Lemmas 1 and 2 are basic properties that any complete measure, as defined in Math-
ematics, must have. For us these two properties will be very helpful when proving that a
certain set has measure 0 ([L91], [LM92], [M91]).

4. Measure in PSPACE.

In this section we will examine two different possible measures for PSPACE. In order
to have a meaningful measure in PSPACE, the candidates are classes of functions A such
that R(A) =PSPACE, because Theorem 1 tells us that with this resource bound, PSPACE
does not have measure 0.

By analogy to the resource bounds we have posed for E and ESPACE, respectively
polynomial time and polynomial space, the corresponding resourcee bound for PSPACE
would be poly-logarithmic space and we would like to prove that, if polylogspace is the set
of functions computable with working space poly-logarithmic in the size of the input, then

R(polylogspace)=PSPACE
The following Lemma proves the first part of this equality.

Lemma 3: PSPACECR(polylogspace)

Proof: Given L a language in PSPACE, we have to define a constructor A such that
R(h) = L. We do it as follows h(w) = wL(s)y|), where L(y) is 1 if y € L, 0 otherwise. It
is straightforward to check that A is in polylogspace. O

The other part is more complicated, since to recognise an input z = s; in a language
R(h) we have to simulate the sucessive computations }, R(A), h(h(A)), R(h(R()))), etc. until
|[R7(A)| > i. But the output of many of these sucessive computations will be too big to be
kept in space |z|*, for z big enough.

Another approach would be to simulate the computations as before but without writ-
ing the full output, that is, recalculating the bits in h™()) needed in the computation of
h™*1(X). But even in this case the stack of the recursion can be too big for PSPACE (e.g.
in the cases where [h(w)| = |w| + 1 for every input).

We see in the next Theorem what is really R(polylogspace). It corresponds to a class

of self-reducible languages that is expected to be different from PSPACE.
Definition 16: A language 4 on T is PSPACE-wdg-self-reducible (wdq stands for word

6

decreasing queries) if A = L(M, A), where M is 2 PSPACE machine that makes only
queries strictly smaller than the input (in lexicographical order).

Theorem 2: R(polylogspace) is exactly the class of PSPACE-wdq-self-reducible languages.

Proof: If h is a constructor in polylogspace, then it is easy to see if z = s; is in R(h)
by simulating the succesive computations h()), A(k(})), h(R(R(A)))-.. until [RE(X)] > i,
and every time we want to read a bit of the input we make a question to R(h) instead.
This takes polynomial space and the questions are always lexicographically smaller than
z, so R(h) is clearly PSPACE-wdg-self-reducible.

In the other direction, given L a PSPACE-wdq-self-reducible language via a Turing
Machine M, we can define A as in Lemma 128203no:

h(w) = wL(s|y|), where L(y) is 1 if y € L, 0 otherwise.

To decide if 5, is in L, we can use that L is PSPACE-wdg-self-reducible, and simulate
the computation of M on s, answering to a query s;, (¢ < |w|) by checking the ith bit of
w. This simulation can be done in space polynomial in the length of s, that is logarithmic
in the length of w, so h is in polylogspace. O

The definition of PSPACE-wdg-self-reducible is similar to P-wdgq-self-reducible sets
in [B90]. The only difference is that in [B90] the machines considered were in P. In this
article, Balcazar proved that E has <2 -complete languages that are P-wdg-self-reducible.
Since every P-wdq-self-reducible language is clearly PSPACE-wdgq-self-reducible, we have
the following result.

Theorem 3: If PSPACE=R(polylogspace) then E C PSPACE, and then EXP=PSPACE,
where EXP=(J, DTIME(2™*).

Proof: [B] proved that E has a P-wdg-self-reducible language (see the comment be-
fore). Since PSPACE is closed under <f,-reduction, if PSPACE contains an E-complete,
it contains the full E. .

By an easy padding argument, every E-complete problem is EXP-complete, and
PSPACE C EXP, so.n this case EXP= =PSPACE. O

There are other restrictions we can pose on polylogspace functions still being able
to construct the full PSPACE. For instance we can consider only functions that can be
computed with or.1-line polylogspace machines, that is to say, machines that read the input
only once and from right to left.

Definition 17: Let plogon be the class of functions that are computable by on-line machines

with working space polylogarithmic in the size of the input.

Sy RN S R T R

Theorem 4: R(plogon)=PSPACE.

Proof: For left to right, we can use the constructor in Lemma 3, which can be clearly
computed with an on-line machine.

In the other direction, given A in plogon we can see if z = s; is in R(h) by simulating
the succesive computations A(A), h(A(})), A(A(R(]))),... by couples. Since we are using
an on-line machine, the computation of A!()) is identical to the one of A*1(\), until R'(X)

finds the end of its input. We take advantage of this to simulate two computations in

parallel.
Begin

l:=1,7:=0

C :=initial configuration in the computation of h(})

While j <ido
simulate A!(A) until getting the jth bit of the output.
b := the mentioned jth bit.
If b is not blank then

simulate A'+1()) starting in C until reading the jth bit of the input, that is ¢

C :=last configuration reached in the simulation. .

Ji=3+1
elsel:=1+1
endif

endwhile
z €R(h)iff b= 1.

End

In this way we do not need to keep long outputs, and these simulations can take place
in polynomial space in the length of z. O

The problem of the class plogon is that it does not seem easy to prove that it is closed
under linear sum, so we cannot be sure that the measure defined by this bound has the

property of A-additivity (Lemma 1) that makes it a measure in the classical sense, and

gives us a useful tool for new results.

5. Conclusion
L]
We have a way of measuring in PSPACE, different from the intuitive approach that

provably does not hold.
The open problem is to find now some nice properties of this measure, that allow us

to prove results in the line of the existing ones for E and ESPACE.

8

J. L. Balcazar proposed still another approach for a measure in PSPACE that provably
deserves further attention. It is based in considering only those constructors whose output
has at least twice the length of the input. This kind of “honest” constructors give us
exactly PSPACE, and Lemma 1 (A-additivity) holds, but the problem is to prove that
this is non-trivial, that is, that PSPACE does not have measure 0.

6. Acknowledgements

I would like to thank José Luis Balcdzar, who proposed this problem and gave a lot of
ideas and suggestions and Jack Lutz, who explained to me the intuition behind his theory.

7. References

[B90] J.L. Balcazar, Self-Reducibility, J. of Computer and System Sciences V41, N3, pp.367-
388, 1990.
(L90] J.H. Lutz, Category and Measure in Complezity Classes, STAM J. Comp. V19, N6,
pp.1100-1131, 1990.
(L91] J.H. Lutz, Almost Everywhere High Nonuniform Complezity, J. of Computer and
System Sciences, to appear.
(LM92] J.H. Lutz, E. Mayordomo Measure, Stochasticity and the Density of Hard Languages,
submitted.
(LS90] J.H. Lutz, W.J. Schmidt Circuit Size Relative to Pseudorandom Oracles, 5th Structure
conference, pp.268-286, 1990.
[M91] E. Mayordomo Almost every set in ezponential time i3 P-bi-immune, internal report

LSI-91-46, submitted.

