
Communication-aware Sparse Patterns for the Factorized
Approximate Inverse Preconditioner

Sergi Laut
Barcelona Supercomputing Center 
Universitat Politècnica de Catalunya 

Barcelona, Spain
sergi.lautturon@bsc.es

Marc Casas

Barcelona Supercomputing Center

Universitat Politècnica de Catalunya

Barcelona, Spain

marc.casas@bsc.es

Ricard Borrell

Barcelona Supercomputing Center

Barcelona, Spain

ricard.borrell@bsc.es

ABSTRACT
The Conjugate Gradient (CG) method is an iterative solver target-

ing linear systems of equations 𝐴𝑥 = 𝑏 where 𝐴 is a symmetric and

positive definite matrix. CG convergence properties improve when

preconditioning is applied to reduce the condition number of ma-

trix 𝐴. While many different options can be found in the literature,

the Factorized Sparse Approximate Inverse (FSAI) preconditioner

constitutes a highly parallel option based on approximating 𝐴−1
.

This paper proposes the Communication-aware Factorized Sparse
Approximate Inverse preconditioner (FSAIE-Comm), a method to

generate extensions of the FSAI sparse pattern that are not only

cache friendly, but also avoid increasing communication costs in

distributed memory systems. We also propose a filtering strategy

to reduce inter-process imbalance. We evaluate FSAIE-Comm on

a heterogeneous set of 39 matrices achieving an average solution

time decrease of 17.98%, 26.44% and 16.74% on three different ar-

chitectures, respectively, Intel Skylake, Fujitsu A64FX and AMD

Zen 2 with respect to FSAI. In addition, we consider a set of 8 large

matrices running on up to 32,768 CPU cores, and we achieve an

average solution time decrease of 12.59%.

CCS CONCEPTS
•Mathematics of computing →Mathematical software per-
formance; Solvers; • Computing methodologies→ Distributed
algorithms; Linear algebra algorithms.

KEYWORDS
Conjugate Gradient; FSAI; SpMV

ACM Reference Format:
Sergi Laut, Marc Casas, and Ricard Borrell. 2022. Communication-aware

Sparse Patterns for the Factorized Approximate Inverse Preconditioner. In

Proceedings of the 31st International Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’22), June 27-July 1, 2022, Minneapolis, MN,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3502181.

3531472

1 INTRODUCTION
Many scientific simulation workloads involve linear systems of

equations. These systems usually appear on numerical methods to

solve Partial Differential Equations (PDE) such as finite elements

or finite differences. Iterative methods are commonly used to solve

such systems, often defined by large sparse matrices, since they

generally require much less memory and computation than direct

methods like LU. In particular, Krylov methods solve a linear system

𝐴𝑥 = 𝑏 by projecting the solution into a Krylov subspace that

is created following an iterative process that considers powers

of matrix 𝐴 multiplied by the right-hand side vector 𝑏, that is,

{𝑏,𝐴𝑏,𝐴2𝑏, ..., 𝐴𝑚𝑏}. When considering systems with symmetric

and positive definite matrices, the popular Conjugate Gradient (CG)

method [35], is typically applied.

The implementation of the CG algorithm involves three linear

algebra kernels: the Sparse Matrix-Vector (SpMV) product 𝑦 = 𝐴𝑥 ,

the dot-product, and the linear combination of two vectors. These

three kernels are memory bound and determine the performance of

the CG solver. However, while the two latter kernels show regular

memory access patterns, SpMV memory accesses on 𝑥 are irregular

as they depend on the sparsity pattern of 𝐴.

From the numerical point of view, preconditioning techniques

are used to improve the conditioning of the system matrix 𝐴, and

ultimately reduce the iterations required to converge to the solution.

Among many types of preconditioners, such as Block-Jacobi [35] or

Multi-Grid techniques [19], the Sparse Approximate Inverse (SAI)

preconditioners [10, 11] offer an easy-to-apply and parallelizable

method that only requires to add an extra SpMV product in the

solver stage of the Krylov method. SAI consists in evaluating an

approximation of the inverse 𝑀 ≈ 𝐴−1
constrained to a sparse

pattern. The preconditioned system is then𝑀𝐴𝑥 = 𝑀𝑏. When the

system matrix is symmetric and positive definite the factorized

version of the algorithm (FSAI) is used and 𝐴−1
is approximated by

a factorization 𝐺𝑇𝐺 instead of a single matrix, 𝑀 . The definition

of the sparse pattern is a very important aspect that determines

FSAI performance. State-of-the-art approaches define this pattern

by considering numerical aspects and cache-aware algorithms [31],

but they do not take into account any consideration regarding

the communication pattern that the sparse matrix defines in a

distributed memory scenario.

This paper proposes the Communication-aware Factorized Sparse
Approximate Inverse preconditioner (FSAIE-Comm), an approach

to extend FSAI sparse patterns in distributed memory scenarios.

This approach successfully increases the efficacy of the FSAI pre-

conditioner without introducing any significant communication

overhead between the different parallel processes of the distributed

The final publication is available at ACM via 
http://dx.doi.org/10.1145/3502181.3531472

https://doi.org/10.1145/3502181.3531472
https://doi.org/10.1145/3502181.3531472


• We propose FSAIE-Comm, a new method to extend the

sparse pattern of FSAI in distributed memory scenarios. Our

method does not increase communication overhead and in-

troduces minimal memory traffic.

• We propose a dynamic filtering-out strategy to mitigate the

inter-process load imbalance that FSAIE-Comm pattern ex-

tensions may introduce.

• We present an exhaustive evaluation campaign consider-

ing three high-end systems based on Intel Skylake, Fujitsu

A64FX and AMD Zen 2 nodes. The average gains obtained in

terms of time-to-solution are 17.98% and 26.35% and 16.74%,

respectively, and executions with up to 32768 CPU cores

have been considered.

2 BACKGROUND
2.1 Conjugate Gradient
The Conjugate Gradient (CG) method [35] is an iterative method

to solve linear systems 𝐴𝑥 = 𝑏, where 𝐴 is symmetric and positive

definite (SPD). In the 𝑖th iteration, the CG algorithm obtains the best

solution approximation,𝑥𝑖 , with respect to the𝐴-norm, that belongs

to the subspace 𝑥0 + 𝐷𝑖
; where 𝐷𝑖 = span{𝑟0, 𝐴𝑟0, ..., 𝐴𝑖−1𝑟0}, 𝑟0 is

the initial residual, and the 𝐴-norm is defined as ∥ 𝑣 ∥𝐴 =
√
𝑣𝑇𝐴𝑣 .

To find the approximation𝑥𝑖+1, an𝐴-orthogonal basis {𝑑0, 𝑑1, ..., 𝑑𝑖 }
of 𝐷𝑖+1

is built by using the conjugate Gram-Schmidt method. In

practice, this is done by adding a new element, 𝑑𝑖 , to the basis

𝑑0, ...𝑑𝑖−1 previously derived for 𝐷𝑖
:

𝛽𝑖 =
𝑟𝑇
𝑖
𝑟𝑖

𝑟𝑇
𝑖−1𝑟𝑖−1

, 𝑑𝑖 = 𝑟𝑖 + 𝛽𝑖𝑑𝑖−1,

where 𝑟𝑖 refers to the 𝑖th residual and 𝛽𝑖 is the Gram-Schmidt con-

jugation coefficient. In the new orthogonal basis, 𝑥𝑖+1 can be ex-

pressed as

𝑥𝑖+1 = 𝛼0 𝑑0 + . . . + 𝛼𝑖−1 𝑑𝑖−1 + 𝛼𝑖 𝑑𝑖 , (1)

where the coefficients 𝛼0, ..., 𝛼𝑖−1 are evaluated in previous itera-

tions. Hence, in the 𝑖 + 1th iteration it is only necessary to evaluate

the component 𝛼𝑖 associated to 𝑑𝑖 to obtain 𝑥𝑖+1:

𝛼𝑖 =
𝑟𝑇
𝑖
𝑟𝑖

𝑑𝑇
𝑖
𝐴𝑑𝑖

, 𝑥𝑖+1 = 𝑥𝑖 + 𝛼𝑖𝑑𝑖 (2)

Besides scalar operations, note that only three basic linear alge-

bra operations are used through the steps of the algorithm: Sparse

Matrix-Vector product (SpMV), linear combination of two vectors,

referred as AXPY in the BLAS terminology, and dot-product.

2.2 Sparse Approximate Inverse Preconditioner
Sparse Approximate Inverse (SAI) preconditioners are based on

the assumption that the inverse of the system matrix contains

many relatively small entries that can be ignored to build a sparse

approximation of the inverse to be used as preconditioner. In the

setup process of the SAI method, an approximation of the inverse

𝑀 ≈ 𝐴−1
constrained to a fixed sparse pattern S is found. Then,

the preconditioned system𝑀𝐴𝑥 = 𝑀𝑏 is considered.

The preconditioned version of the CG algorithm [35] requires

the inverse of the preconditioner at each time step. For SAI, since

the approximation of the inverse is computed explicitly, the precon-

ditioning process consists in an SpMV operation, which makes the

algorithm attractive from a computational point of view due to the

parallelizable nature of the SpMV kernel. The SAI preconditioner

has been extensively used for solving linear systems coming from

different application areas [1, 3, 12, 34]. The parallel nature of the

SpMV kernel has also fostered the application of SAI to high-end

architectures such as GPUs [8, 20, 33].

When dealing with symmetric and positive definite problems, to

preserve the symmetry required by the CG algorithm, the Factorized

Sparse Approximate Inverse (FSAI) preconditioner is applied and

𝐴−1
is approximated by a factorization 𝐺𝑇𝐺 instead of a single

matrix 𝑀 , what means that two SpMV products are performed

instead of one.𝐺 is a sparse lower triangular matrix approximating

the inverse of the Cholesky factor, 𝐿, of 𝐴 in terms of the equation

below:

𝑚𝑖𝑛𝐺 ∈S ∥𝐼 −𝐺𝐿∥2𝐹 , (3)

where ∥.∥𝐹 is the Frobenius norm and S is a given lower trian-

gular sparse pattern. This minimization problem can be solved

independently for each row 𝑖 of 𝐺 , by solving the local system:

𝐴S𝑖S𝑖
𝑔𝑖 = 𝑒𝑖 , (4)

where 𝐴S𝑖S𝑖
is the restriction of 𝐴 to the coefficients of the 𝑖th

row of the sparse pattern S and 𝑒𝑖 is the 𝑖th column of the identity

matrix restricted to the same space [10, 28].

We apply state-of-the-art techniques [10] to find 𝐺 without ex-

plicitly evaluating 𝐿, i. e., only using the initial matrix 𝐴. Moreover,

the sparse pattern S is defined a priori as the pattern of a power 𝑁

of 𝐴̃, where 𝐴̃ is obtained from 𝐴 by dropping small entries. The

power used to fix the sparse pattern is referred as the sparse level of

the preconditioner. In Algorithm 1, we show the method proposed

by Chow [10] to find 𝐺 .

Algorithm 1 FSAI, 𝐺𝑇𝐺 ≈ 𝐴−1

1: Threshold 𝐴 to produce 𝐴̃.

2: Compute the pattern 𝐴̃𝑁
, and let the pattern of𝐺 be the lower

triangular part of the pattern of 𝐴̃𝑁
.

3: Compute the nonzero entries in 𝐺 by solving the Frobenius

minimization problem.

4: Drop small entries in new G and rescale.

2.3 Factorized Sparse Approximate Inverse with
Pattern Extension

Previous work [31] takes into account computer architecture con-

siderations, complementary to numerical ones, to define the sparse

pattern where the FSAI inverse approximation is computed. Particu-

larly, cache-friendly pattern extensions are proposed to add new en-

tries to the inverse approximation without incurring any significant

memory execution. FSAIE-Comm achieves this low-overhead ex-
tension by just adding matrix entries that either correspond to the 
local data of each process, or involve communications between two 
processes for which the initial sparse pattern requires some degree 
of data exchange. Additionally, we propose a method to eliminate 
the load imbalance that our sparse pattern extension may introduce. 
This paper makes the following contributions:



Algorithm 2 FSAIE, 𝐺𝑇
𝑒𝑥𝑡𝐺𝑒𝑥𝑡 ≈ 𝐴−1

1: Threshold 𝐴 to produce 𝐴̃.

2: Compute the pattern 𝐴̃𝑁
and let the pattern S of 𝐺 be the

lower triangular part of the pattern of 𝐴̃𝑁
.

3: Compute cache-friendly extension of the pattern of 𝐺 ,
S𝑒𝑥𝑡 .

4: Precalculate an approximation𝐺𝑒𝑥𝑡 of the preconditioner
and filter out entries of S𝑒𝑥𝑡 according to its values.

5: Calculate𝐺𝑒𝑥𝑡 on the sparse pattern obtained from the previous

step.

The FSAIE approach exploits cache locality in the context of

multi-core shared-memory architectures [31], but it does not con-

sider the communication cost across several nodes of distributed-

memory executions. Obtaining communication-aware sparse pat-

tern extensions able to reduce the number of iterations required

for CG to converge requires considering communication costs and

keeping load balance when extending the S sparse pattern (Line 3

of Algorithm 2). Section 3 proposes a new communication-aware

sparse pattern extension method that avoids increasing communi-

cation costs. Section 4 considers a new filtering strategy to correct

inter-process imbalance. Finally, Section 5 evaluates the resulting

algorithm on three high-end systems. It considers executions on

up to 32,768 CPU cores.

3 FSAIE-COMM: EXTENDING SPARSE
PATTERNS WITHOUT INCREASING
COMMUNICATION OVERHEAD

This section describes FSAIE-Comm, a method to extend the sparse

patterns of FSAI preconditioners and make it possible to reduce

the iteration count of the CG method without increasing neither

internode communication nor intranode memory traffic.

We consider a distributed memory parallelization of CG based

on the standard Message Passing Interface (MPI) [16], where the

system matrix is distributed into subsets of rows. The distribution

is performed applying the METIS [26] partitioner to the adjacency

graph of the system matrix. The same distribution is applied to

the unknown (𝑥 ) and right-hand side (𝑏) vectors of the 𝐴𝑥 = 𝑏 sys-

tem. The unknowns assigned to each MPI process are considered

their local unknowns. The unknowns of other processes linked to

these local unknowns are referred as halo unknowns. The matrix

entries stored by each MPI process can be divided into the local
entries, representing couplings between local unknowns, and halo
entries, representing couplings between local unknowns and halo

unknowns. To compute the SpMV kernel in distributed memory

scenarios, communications are required between processes to ob-

tain the values of the halo unknowns. This operation is referred as

the halo update.

Algorithm 3 FSAIE-Comm: Cache-Friendly Fill-In with halo ex-

tension

1: S −→ Local sparse pattern to extend

2: 𝑥 −→ Local multiplying vector in the SpMV

3: procedure ExtendPattern
4: Loop over every row i of pattern S
5: Loop over every entry j in row i
6: If j is in an already considered column block

7: Go to Line 5 and move to next j
8: Endif

9: Identify the cache line of its corresponding 𝑥 𝑗 coeffi-

cient

10: Compute the initial and final columns of the block of

entries matching the cache line of 𝑥 𝑗
11: Loop over every entry k of the block

12: If k is local −→ Add to pattern S𝑒𝑥𝑡
13: Else −→ Add to pattern S𝑒𝑥𝑡 if i is sent to the process

where j is local
14: Endif

15: Endloop

16: Endloop

17: Endloop

18: Return S𝑒𝑥𝑡

Algorithm 3 displays the FSAIE-Comm extension, which is ap-

plied in the Step 3 of Algorithm 2. FSAIE-Comm avoids additional

cache misses by only considering new entries corresponding to

components of the multiplying vector contained in memory blocks

already fetched by the original sparse pattern S of the FSAI pre-

conditioner. Step 10 of Algorithm 3 computes all potential new

entries fulfilling this restriction. Local entries of 𝐺 belonging to a

specific process also share the same process in the context of 𝐺𝑇
,

which means that all additional entries that are local can be added

to the pattern extension since they do not incur any additional

inter-process communication (Step 12 of Algorithm 3). However,

halo entries of 𝐺 belonging to a specific process may not share the

same process in 𝐺𝑇
. Therefore, from all cache-friendly entries in

the halo we can only consider those that keep the communication

scheme unvaried (Step 13 of Algorithm 3). While added halo entries

do not produce any additional cache miss when computing the

SpMV product involving𝐺 , they may incur additional misses in the

context of 𝐺𝑇
. However, partitions typically minimize the amount

of communication and, therefore, reduce the number of halo en-

tries as much as possible. Consequently, FSAIE-Comm extensions

of the halo are much smaller than those of local part in terms of

the number of additional matrix coefficients.

Figure 1 provides an example of a sparse pattern extension in

a distributed memory scenario composed of 2 MPI processes. We

focus this example on describing the area where the halo pattern

extension can take place, since the halo extension is more complex

than the extension of the local part. Rows belonging to the top half

of the matrix are owned by one process, and bottom half rows by

performance penalty. This algorithm is referred as the Factorized 
Sparse Approximate Inverse with pattern Extension (FSAIE). Numeri-

cal experiments demonstrate how FSAIE consistently outperforms 
FSAI on several high-end architectures. Algorithm 2 represents the 
FSAIE preconditioner. It shows its modifications with respect to 
FSAI algorithm in bold letters. Step 3 carries out the pattern exten-
sion. Step 4 computes an inverse approximation 𝐺𝑒𝑥𝑡 . Finally, Step 
5 drops small entries of 𝐺𝑒𝑥𝑡 and recomputes its nonzero values.



Figure 1: FSAIE-Comm. Graphical explanation of halo re-
gion where entries can also be added in a cache-friendly
communication-aware extension in a sample 20x20 matrix.
Black squares correspond to initial entries.

the other one. The light grey area depicts the two local regions,

one per process. These regions represent couplings between local

unknowns. The dark grey area represents the halo regions contain-

ing couplings between local and halo unknowns. Initial non-zero

entries are represented by black squares. FSAIE-Comm exploits the

structure of the halo area by adding additional non-zero entries

corresponding to columns where there is already a non-zero halo

entry, which does not increase communication costs since the cor-

responding 𝑥𝑖 coefficient has to be exchanged when computing the

SpMV product𝐴𝑥 with the initial sparse patternS. For a symmetric

and positive-definite matrix 𝐴 = 𝐺𝐺𝑇
, the preconditioning step

involves two SpMV products with matrices 𝐺 and 𝐺𝑇
. Therefore,

the potential halo extensions of FSAIE-Comm for matrix𝐺 are halo

coefficients belonging to columns where there is already a non-zero

halo entry, to avoid increasing communications when computing

𝐺𝑥 , and halo coefficients belonging to rows where there is already

a non-zero halo entry, to avoid increasing communications when

computing 𝐺𝑇 𝑥 . Red rectangles of Figure 1 represent halo regions

where adding new entries does not increase communication costs.

4 DYNAMIC FILTERING-OUT
Extending the preconditioning system on each MPI process inde-

pendently might lead to workload imbalance in the SpMV products

by 𝐺 and 𝐺𝑇
. This is undesirable since work imbalance derives in

idle processes at synchronization points. A way to overcome this

problem could be to transfer some of the workload from the most

loaded processes to the least ones. However, this solution is costly,

as it requires additional data transfers and could interfere with the

cache-friendliness of the sparse pattern extensions.

We propose a dynamic filtering strategy to avoid extension im-

balance in distributed memory systems, opposed to the common

one, which we will call static. In static filtering, the same 𝐹𝑖𝑙𝑡𝑒𝑟

value is used for all processes and small entries are removed from

the inverse approximation according to it in a scale-independent

comparison with diagonal entries [10]. In FSAIE, the filtering-out is

applied when computing𝐺 in the extended pattern, as seen in Step

4 of Algorithm 2. After, the final𝐺𝑒𝑥𝑡 is obtained over the extended

and filtered sparse pattern.

In this novel approach the filtering-out of Step 4 of Algorithm 2 is

performed using a dynamic value. This value is adjusted to filter-out

additional entries on the highest loaded processes.

Algorithm 4 Dynamic filtering-out for FSAIE and FSAIE-Comm

1: New_filter = Filter

2: Prev_filter = New_filter

3: Obtain total S𝑒𝑥𝑡 entries using Filter.
4: Compute process imbalance, 𝑖𝑚𝑏.

5: If 𝑖𝑚𝑏 > 1.05

6: While 𝑖𝑚𝑏 > 1.05 AND 𝑖𝑚𝑏 < 0.95

7: If 𝑖𝑚𝑏 > 1

8: Prev_filter = New_filter; New_filter *= 2;

9: Else

10: New_filter = (New_filter + Prev_filter) / 2

11: Endif

12: Compute process entries using New_Filter

13: Compute new process imbalance, 𝑖𝑚𝑏.

14: Endwhile

15: Endif

16: Return New_Filter

Algorithm 4 shows how to compute the dynamic filter in each

process. The algorithm requires an input 𝐹𝑖𝑙𝑡𝑒𝑟 value, which serves

as a starting point for the computation of the 𝑁𝑒𝑤_𝐹𝑖𝑙𝑡𝑒𝑟 . It re-

quires each process to compute the amount of entries of its part of

S𝑒𝑥𝑡 using the initial 𝐹𝑖𝑙𝑡𝑒𝑟 and after, using MPI_Allreduce, to com-

municate and evaluate the total amount of entries. With these two

values we obtain the relative load, 𝑖𝑚𝑏, in each process by dividing

its number of entries by the average. If the value is larger than 1 it

means the processS𝑒𝑥𝑡 has more entries than the average and some

entries have to be filtered to avoid imbalance. The 𝑁𝑒𝑤_𝐹𝑖𝑙𝑡𝑒𝑟 is

obtained using a bisection method. Oftentimes the𝑁𝑒𝑤_𝐹𝑖𝑙𝑡𝑒𝑟 may

require several steps to achieve a desired tolerated imbalance. Set-

ting a maximum amount of iterations leads to 𝑁𝑒𝑤_𝐹𝑖𝑙𝑡𝑒𝑟 values

that overcome the imbalance on the SpMV operation.

5 EVALUATION
This section evaluates the performance of the communication-

aware extensions of FSAIE-Comm. It compares FSAIE-Comm with

the FSAI algorithm as well as sparsity pattern extensions obtained

via applying FSAIE.

5.1 Experimental Setup
We consider some of the largest symmetric and positive definite

(SPD) matrices from the SuiteSparse Matrix Collection [13]. We

include experiments for SPD matrices with the number of non-zero

entries ranging from 1M to 40M. Table 1 lists the complete matrix

test set and shows some key matrix properties. Table 2 shows a

larger test set used in Section 5.5.1.

We perform experiments on three high-end systems: theMareNos-

trum supercomputer from the Barcelona Supercomputer Center

(BSC), which is composed of nodes with two Skylake 24-core Intel



Table 1: Test matrices along with key properties and results for Skylake. Results are provided as the solving times (in seconds)
and iterations-to-convergence for the basic FSAI and for FSAIE and FSAIE-Comm with a 0.01 dynamic 𝐹𝑖𝑙𝑡𝑒𝑟 . For the cases
of FSAIE and FSAIE-Comm we also provide the percentage of lower triangular pattern entries increase with respect to FSAI
pattern after the extensions (% NNZ).

FSAI FSAIE FSAIE-Comm

ID Matrix #rows NNZ Type #CPU cores #Nodes Solver Iter Solver Iter % NNZ Solver Iter % NNZ
1 PFlow_742 742793 37138461 2D/3D Problem 1152(1152) 24(9) 1.43e+00 2775 7.67e-01 1458 17.44 7.06e-01 1340 19.3

2 nd24k 72000 28715634 2D/3D Problem 432(512) 9(4) 6.52e-01 553 5.51e-01 490 7.14 5.48e-01 435 14.26

3 Fault_639 638802 27245944 Structural Problem 864(896) 18(7) 1.16e+00 1923 5.71e-01 939 24.5 5.28e-01 856 27.69

4 msdoor 415863 19173163 Structural Problem 576(640) 12(5) 1.74e+00 3599 1.46e+00 2833 42.5 1.39e+00 2748 43.63

5 af_shell7 504855 17579155 Subsequent Structural Problem 1104(1152) 23(9) 5.36e-01 1800 4.87e-01 1541 47.86 4.79e-01 1528 50.2

6 af_shell8 504855 17579155 Subsequent Structural Problem 1104(1152) 23(9) 5.29e-01 1800 4.79e-01 1541 47.86 4.76e-01 1528 50.2

7 af_shell4 504855 17562051 Subsequent Structural Problem 1104(1152) 23(9) 5.18e-01 1800 4.81e-01 1542 47.89 4.68e-01 1530 50.26

8 af_shell3 504855 17562051 Subsequent Structural Problem 1104(1152) 23(9) 5.24e-01 1800 5.22e-01 1542 47.89 4.81e-01 1530 50.26

9 nd12k 36000 14220946 2D/3D Problem 240(256) 5(2) 4.91e-01 516 4.30e-01 452 7.19 3.87e-01 403 14.59

10 crankseg_2 63838 14148858 Structural Problem 240(256) 5(2) 1.77e-01 215 1.44e-01 171 17.65 1.35e-01 160 22.04

11 bmwcra_1 148770 10641602 Structural Problem 336(384) 7(3) 1.09e+00 2325 8.91e-01 1850 36.02 8.85e-01 1800 40.16

12 crankseg_1 52804 10614210 Structural Problem 336(384) 7(3) 1.19e-01 216 9.95e-02 177 14.65 9.11e-02 161 20.05

13 hood 220542 9895422 Structural Problem 624(640) 13(5) 1.11e-01 397 9.14e-02 312 43.07 9.27e-02 315 44.76

14 thermal2 1228045 8580313 Thermal Problem 528(512) 11(4) 1.07e+00 2799 9.41e-01 2117 165.76 9.60e-01 2113 166.53

15 G3_circuit 1585478 7660826 Circuit Simulation Problem 480(512) 10(4) 6.22e-01 1715 5.92e-01 1286 218.45 5.52e-01 1283 219.14

16 nd6k 18000 6897316 2D/3D Problem 96(128) 2(1) 4.79e-01 476 4.19e-01 413 9.84 3.74e-01 364 17.58

17 consph 83334 6010480 2D/3D Problem 192(128) 4(1) 3.13e-01 634 2.95e-01 575 37.99 2.94e-01 562 46.19

18 boneS01 127224 5516602 Model Reduction Problem 192(128) 4(1) 3.62e-01 847 3.51e-01 783 47.78 3.51e-01 779 51.92

19 tmt_sym 726713 5080961 Electromagnetics Problem 336(256) 7(2) 7.76e-01 2319 6.93e-01 1888 193.84 7.08e-01 1883 195.69

20 ecology2 999999 4995991 2D/3D Problem 336(256) 7(2) 9.89e-01 3428 8.44e-01 2510 276.44 8.53e-01 2502 278.05

21 shipsec5 179860 4598604 Structural Problem 288(256) 6(2) 4.73e-01 1618 4.26e-01 1427 25.86 4.29e-01 1424 29.05

22 offshore 259789 4242673 Electromagnetics Problem 144(128) 3(1) 3.96e-01 794 3.36e-01 641 54.06 3.34e-01 635 56.89

23 smt 25710 3749582 Structural Problem 240(256) 5(2) 3.09e-01 882 2.03e-01 551 24.19 1.82e-01 485 31.15

24 parabolic_fem 525825 3674625 Computational Fluid Dynamics Problem 240(256) 5(2) 4.04e-01 1481 3.49e-01 1077 116.57 3.50e-01 1076 116.87

25 Dubcova3 146689 3636643 2D/3D Problem 240(256) 5(2) 3.85e-02 152 3.35e-02 120 97.31 3.28e-02 117 99.67

26 shipsec1 140874 3568176 Structural Problem 240(256) 5(2) 5.92e-01 1987 5.68e-01 1874 27.56 5.70e-01 1878 30.99

27 nd3k 9000 3279690 2D/3D Problem 48(128) 1(1) 3.57e-01 406 3.06e-01 342 11.38 2.84e-01 316 17.55

28 cfd2 123440 3085406 Computational Fluid Dynamics Problem 192(256) 4(2) 6.59e-01 2590 5.22e-01 1847 106.42 5.30e-01 1853 115.1

29 nasasrb 54870 2677324 Structural Problem 144(128) 3(1) 7.15e-01 2765 7.03e-01 2653 15.96 6.98e-01 2629 17.6

30 oilpan 73752 2148558 Structural Problem 144(128) 3(1) 4.04e-01 1554 3.39e-01 1301 20.65 3.37e-01 1285 22.28

31 cfd1 70656 1825580 Computational Fluid Dynamics Problem 48(128) 1(1) 4.01e-01 933 3.81e-01 753 101.18 3.77e-01 750 104.75

32 qa8fm 66127 1660579 Acoustics Problem 48(128) 1(1) 5.35e-03 13 4.68e-03 11 27.33 4.76e-03 11 29.27

33 2cubes_sphere 101492 1647264 Electromagnetics Problem 48(128) 1(1) 6.01e-03 12 5.58e-03 11 12.84 5.59e-03 11 13.37

34 thermomech_dM 204316 1423116 Thermal Problem 96(128) 2(1) 2.92e-03 9 2.98e-03 9 6.09 2.98e-03 9 6.21

35 msc10848 10848 1229776 Structural Problem 48(128) 1(1) 2.51e-01 711 1.86e-01 489 27.11 1.84e-01 482 28.72

36 Dubcova2 65025 1030225 2D/3D Problem 48(128) 1(1) 4.26e-02 155 3.77e-02 113 158.66 3.76e-02 112 160.15

37 gyro_k 17361 1021159 Duplicate Model Reduction Problem 48(128) 1(1) 1.23e+00 4363 9.34e-01 3101 38.46 9.27e-01 3116 39.28

38 gyro 17361 1021159 Model Reduction Problem 48(128) 1(1) 1.25e+00 4382 9.30e-01 3106 38.46 9.26e-01 3071 39.28

39 olafu 16146 1015156 Structural Problem 48(128) 1(1) 4.76e-01 1768 3.65e-01 1330 20.57 3.64e-01 1324 21.45

Table 2: Large test matrices along with key properties and results for Zen 2. Results are provided as the solving times (in
seconds) and iterations-to-convergence for the basic FSAI, and for FSAIE and FSAIE-Comm with a 0.01 𝐹𝑖𝑙𝑡𝑒𝑟 . For the cases
of FSAIE and FSAIE-Comm we also provide the percentage of lower triangular pattern entries increase with respect to FSAI
pattern after the extensions (% NNZ).

FSAI FSAIE FSAIE-Comm

ID Matrix #rows NNZ Type #CPU cores #Nodes Solver Iter Solver Iter % NNZ Solver Iter % NNZ
1 Queen_4147 4147110 316548962 2D/3D Problem 32768 256 1.09e+00 5735 9.40e-01 4958 9.38 9.00e-01 4755 13.54

1* Queen_4147 4147110 316548962 2D/3D Problem 16384 128 1.23e+00 5734 1.07e+00 4997 10.2 1.06e+00 4909 13.85

2 Bump_2911 2911419 127729899 2D/3D Problem 7936 62 4.70e-01 2297 4.50e-01 2206 7.35 4.50e-01 2206 9.14

3 Flan_1565 1564794 114165372 Structural Problem 7168 56 8.70e-01 5299 7.90e-01 4751 14.9 7.70e-01 4578 17.9

4 audikw_1 943695 77651847 Structural Problem 4864 38 2.80e-01 1453 2.40e-01 1212 48.2 2.20e-01 1114 62.56

5 Geo_1438 1437960 60236322 Structural Problem 3712 29 1.30e-01 715 1.20e-01 656 21.26 1.20e-01 654 25.07

6 Hook_1498 1498023 59374451 Structural Problem 3712 29 4.00e-01 2186 4.30e-01 1907 51.41 3.60e-01 1877 58.64

7 bone010 986703 47851783 Model Reduction Problem 2944 23 1.39e+00 7980 1.22e+00 6792 37.93 1.21e+00 6688 46.9

8 ldoor 952203 42493817 Structural Problem 2688 21 1.50e-01 1064 1.40e-01 939 36.37 1.30e-01 860 37.9

Xeon
®
Platinum 8160 processors at 2.1GHz; the CTE-ARM clus-

ter at BSC composed of nodes with an ARM 48-core A64FX Fu-

jitsu processor at 2.2GHz; and the Hawk supercomputer from the

High-Performance Computing Center Stuttgart (HLRS) composed

of nodes with two Zen 2 64-core AMD EPYC
™
7742 processors at

2.25GHz. An important hardware parameter for the pattern exten-

sions generated by FSAIE and FSAIE-Comm is the size of the cache

line. This parameter is 64Bytes for the Intel and AMD CPUs and

256Bytes for the Fujitsu CPU.

Our code has been written in C language and compiled using

GCC 10.1.0 on Skylake, Fujitsu compiler 1.2.26b on A64FX and

GCC 9.2.0 on Zen 2. The code is fully hybrid and uses OpenMP

5.0 constructs. We have used the library METIS [26] to perform

matrix partitions and MKL library in Skylake and Zen 2 to solve

the linear systems to compute the final inverse approximation. For

A64FX we have used OPENBLAS 0.3.10. For all the experiments

the convergence criterion is the reduction of the initial residual by

eight orders of magnitude. The initial guess is always zero. For each

matrix a random right-hand side is generated normalized to the

matrix max norm. For the time measurements we always consider

the minimum time among 50 repetitions.

Our evaluation considers the following methods:



• FSAI - Factorized Sparse Approximate Inverse preconditioner [10].
The baseline FSAI preconditioner using the sparse pattern

of the lower triangular part of 𝐴, without thresholding and

filtering only null entries. It is described in Algorithm 1.

• FSAIE - Factorized Sparse Approximate Inverse preconditioner
with Pattern Extension [31]. A method to extend the sparse

pattern in shared-memory scenarios. We apply it to dis-

tributed memory systems by extending only the local entries

of the input matrix in each process. We consider previously

proposed static filtering approaches [31] and the dynamic

methods that Section 4 describes. We consider filtering val-

ues of 0.01, 0.05, 0.1 and 0.2.

• FSAIE-Comm - Communication-aware Factorized Sparse Ap-
proximate Inverse preconditioner. The method to extend spare

patterns including both the local and the halo entries of

the system matrix in distributed memory scenarios with-

out increasing communication cost that we describe in Sec-

tion 3. We consider previously proposed static filtering ap-

proaches [31] and the dynamic methods that Section 4 de-

scribes. We consider filtering values of 0.01, 0.05, 0.1 and

0.2.

5.2 Configuration of Parallel Executions
Our data set contains a wide range of matrices featuring different

characteristics. Depending on parameters like size, density, and

pattern, they will perform differently when increasing the amount

of MPI processes used to solve the associated linear system. For

this reason, we apply the same criteria to each matrix to select the

number of cores to use on its resolution. Considering 8 threads

per MPI process, we start with a workload of 256K entries per

thread (i.e. 2M per MPI process) and we keep doubling the core

count until the parallel efficiency at doubling is smaller than 75%.

Using this method, we determine the core and node counts we

show in columns 6 and 7 of Table 1, respectively. The numbers in

parentheses apply only to Zen 2.

5.3 Evaluation Intel Xeon® Platinum 8160
(Skylake)

This section describes our experimental campaign on the Skylake

cluster we describe in Section 5.1. We evaluate the performance

of FSAI, FSAIE, and FSAIE-Comm FSAIE-Comm. For each matrix

in the set we evaluate several 𝐹𝑖𝑙𝑡𝑒𝑟 values and filtering strategies.

Table 1 shows results for the three techniques using the dynamic

filtering strategy with an initial 𝐹𝑖𝑙𝑡𝑒𝑟 value of 0.01. Columns 6-7

report number of CPU cores and nodes used for the executions.

Columns 8-9 report solver time and iterations-to-convergence for

the basic FSAI. Columns 10-12 report solver time, iterations-to-

convergence and percentage of added entries to the pattern, respec-

tively, for FSAIE. Finally, columns 13-15 report the same metrics

for FSAIE-Comm.

The average results for all matrices in terms of iteration and time-

to-solution are shown in Table 3. We compare the FSAIE and FSAIE-

Commwith both static and dynamic filtering strategies with respect

to FSAI. Table 3 provides average results together with the highest

improvement and degradation over all the matrices. We show data

for the 𝐹𝑖𝑙𝑡𝑒𝑟 values 0.01, 0.05, 0.1 and 0.5, and for a case where the

Table 3: Average percentages of iterations-to-solution im-
provement, time-to-solution improvement, highest time-to-
solution improvement and lowest time-to-solution degrada-
tion when using FSAIE and FSAIE-Comm with static and
dynamic filters. Several 𝐹𝑖𝑙𝑡𝑒𝑟 values are used and best 𝐹𝑖𝑙𝑡𝑒𝑟
is considered for all matrices on a Skylake system.

FSAIE - Static Filter
Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.01 20.17 14.66 51.35 -1.96

0.05 16.46 14.93 51.09 -4.46

0.1 12.12 11.38 51.20 -5.56

0.2 7.72 7.69 49.75 -3.99

Best Filter 18.93 16.17 51.35 0.00
FSAIE - Dynamic Filter

Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.01 19.95 14.8 50.86 -2.33

0.05 15.36 13.92 50.07 -0.34

0.1 9.64 9.03 50.10 -6.85

0.2 5.26 5.25 44.44 -6.62

Best Filter 18.87 16.06 50.86 -0.24
FSAIE-Comm - Static Filter

Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.01 22.22 16.24 54.75 -1.48

0.05 18.22 16.6 54.97 -0.69

0.1 13.42 12.58 55.09 -0.65

0.2 8.69 8.53 53.23 -6.41

Best Filter 21.33 17.90 55.09 -0.34
FSAIE-Comm - Dynamic Filter

Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.01 22.04 16.64 54.58 -2.3

0.05 16.83 14.8 55.58 -4.35

0.1 10.68 9.59 53.23 -6.91

0.2 6.0 5.65 44.91 -6.24

Best Filter 20.98 17.98 55.58 -0.27

best 𝐹𝑖𝑙𝑡𝑒𝑟 is picked for each matrix. The best overall configuration

is using FSAIE-Comm with dynamic filtering. With respect to FSAI,

the average iterations decrease is 20.98%, and the time decrease

is 17.98%. In the best case the time-to-solution decrease achieves

55.58%, and in the worst case the time is augmented by only 0.27%.

This results shows that FSAIE-Comm can provide performance

boosts of up to 2× with a low risk of degrading the performance of

FSAI. FSAIE-Comm outperforms FSAIE in average by 2 percentile

points.

Note that the dynamic filtering strategy does not have a sub-

stantial effect on the average data values as it is a feature that may

only be applied to unbalanced matrices. Dynamic filter is further

analysed in Section 4.

Finally, in Figure 2 we illustrate the time-to-solution improve-

ments of FSAIE-Comm with dynamic 𝐹𝑖𝑙𝑡𝑒𝑟 with respect to FSAI.

In all the experiments the communication cost is unvaried as the

same communication scheme is used for all extension methods,

being the halo extensions in FSAIE-Comm communication-aware.

Most of the matrices show significant improvements and only for

one the performance is slightly degraded.



Figure 2: Time decrease of the FSAIE-Comm vs FSAI for the best 𝐹𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for the 0.01 𝐹𝑖𝑙𝑡𝑒𝑟 value (orange
columns) on the Skylake architecture.

(a) L1 DCM of accesses to multiplying vector 𝑥 in𝐺𝑇𝐺𝑥 normal-
ized to the number of𝐺 matrix non-zero entries.

(b) GFLOP/s per process in the preconditioning SpMV operations
𝐺𝑇𝐺𝑥 .

Figure 3: Histograms of the preconditioning operation 𝐺𝑇𝐺𝑥 in Skylake. Blue columns correspond to baseline FSAI and orange
columns to cache-friendly extended matrices using FSAIE-Comm without filtering.

5.3.1 Effects on Data Cache Misses and FLOP/s per process. Cache-
aware pattern extensions used in FSAIE and FSAIE-Comm aim

to generate new entries on the inverse approximation with a low

computational cost. In this section we demonstrate the performance

boost obtained in the SpMV product with the communication-aware

extensions generated by the FSAIE-comm algorithm when fully

extending a pattern. Particularly, we analyze the cache misses and

FLOPs metrics.

Figure 3a shows two histograms comparing FSAI (in blue) and

FSAIE-Comm (in orange) for the 39 matrices of Table 1 and using 8

OpenMP threads per MPI process. Average L1 data cache misses per

process on accesses to vector 𝑥 when computing the precondition-

ing operation 𝐺𝑇𝐺𝑥 are displayed. We normalize the metric to the

number of entries of the 𝐺 matrices. FSAIE-Comm clearly reduces

the cache misses per nonzero element when computing the SpMV

operations, which demonstrates that sparse pattern extensions gen-

erated by FSAIE-Comm do not incur significant memory overhead.

Figure 3b shows a histogram containing the average GFLOP/s per

process when performing the preconditioning operation 𝐺𝑇𝐺𝑥 for

the matrices of Table 1. FSAIE-Comm does not hurt the GFLOP/s

rate of FSAI, and slightly improves it for some matrices, which

demonstrates it incurs minimal communication and memory over-

head. FSAIE-Comm allows to increase FLOPs obtained in the SpMV

products by an average 6%.

Table 4: Percentages of average iteration-to-solution decrease,
time-to-solution decrease and FLOPs increase in precondi-
tioning SpMV operations when using FSAIE/FSAIE-Comm
for different hybrid configurations in Skylake.

CPU/Process Iter. dec. Time dec. FLOPs inc.
1 13.76/19.80 10.59/16.43 -1.55/-2.68

2 16.31/20.91 13.39/17.38 0.05/-0.29

4 17.44/20.88 15.02/18.21 2.23/0.45

8 17.87/20.65 14.56/17.86 8.55/7.30

48 19.54/20.93 17.83/19.29 32.90/33.08

5.3.2 Hybrid configuration. In this sectionwe analyse the influence
of the hybrid parallelization set up on the performance of the FSAIE

and FSAIE-Comm versus FSAI.

Table 4 shows average results of iterations-to-solution, time-to-

solution and SpMV FLOP/s improvement percentages of FSAIE and

FSAIE-Comm with respect to FSAI using the best 𝐹𝑖𝑙𝑡𝑒𝑟 with a

dynamic strategy. We have considered a workload of 16k non-zero

entries per CPU in all cases of the test set. SpMV FLOP/s measure-

ments are obtained without filtering. We perform executions with

1, 2, 4, 8 and 48 CPU threads/cores per MPI process. Increasing

the amount of cores per process also increases available L1 cache

storage for the process.



Figure 4: Time decrease of the FSAIE-Comm vs FSAI for the best 𝐹𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for the 0.05 𝐹𝑖𝑙𝑡𝑒𝑟 value (orange
columns) on the A64FX architecture.

(a) L1 DCM of accesses to multiplying vector 𝑥 in𝐺𝑇𝐺𝑥 normal-
ized to the number of𝐺 matrix non-zero entries.

(b) GFLOP/s per process in the preconditioning SpMV operations
𝐺𝑇𝐺𝑥 .

Figure 5: Histograms of the preconditioning operation 𝐺𝑇𝐺𝑥 in A64FX. Blue columns correspond to baseline FSAI and orange
columns to cache-friendly extended matrices using FSAIE-Comm without filtering.

Cache-aware extensions take advantage from larger L1 cache

size, for this reason the configuration of 48 threads per MPI pro-

cess is the one where FSAIE and FSAIE-Comm outperform more

FSAI, being the gain obtained with FSAIE-Comm 2 percentile points

higher. On the other extreme, using one thread per process maxi-

mizes the number of matrix halo entries and makes it possible for

FSAIE-Comm to deliver much larger average performance improve-

ments (16.43%) than FSAIE (10.59%) with respect to FSAI. Different

problems may require different hybrid parallelization configura-

tions to optimize their solving time. Our experiments indicate that

FSAIE-Comm outperforms FSAIE for all of them.

5.3.3 Impact of Dynamic Filtering-out in Load Balance. The dy-

namic filtering-out strategy eliminates unbalanced matrix exten-

sions , i. e., it avoids some processes being overloaded in terms of

nonzeromatrix entries assigned to them.Whether the FSAIE-Comm

matrix extensions incur load imbalance issues or not depends on

the sparse pattern of the input matrix. While load imbalance is not

an issue when extending a large portion of the matrices we display

in Table 1, it becomes a very important problem for several of them.

In this section we show in detail a case of a matrix in the set that

benefits from dynamic filtering.

We compute the imbalance index as the ratio between average

process entries and maximum amount of entries in a process. A

value equal to 1 means all processes are balanced, while a value

lower than 1 means that there is at least one process that displays

an amount of entries larger than the average. Focusing on matrix

17 of Table 1, we have a case where the partition of matrix 𝐴 is

not well balanced. The imbalance index for the partitions of 𝐺

and 𝐺𝑇
is 0.88, and applying the extension of FSAIE-Comm with

𝐹𝑖𝑙𝑡𝑒𝑟 = 0.01 drops the average imbalance index of their partitions

to 0.75. In this case, when comparing FSAIE-Comm with FSAI,

iterations-to-solution are reduced by 11.83%, and time-to-solution

only by 2%. Applying a dynamic 𝐹𝑖𝑙𝑡𝑒𝑟 improves the imbalance

index of the factors partition to 0.82, what makes the decrease in

time-to-solution rise to 6%. In summary, the dynamic filtering is an

auto-tuning capability added to the algorithm which increases its

robustness with respect to imbalance issues.

5.4 Evaluation on Fujitsu A64FX (A64FX)
We run experiments considering the CTE-ARM cluster composed

of nodes with an ARM 48-core Fujitsu A64FX CPU. In this case, the

CPUs have 256Bytes cache lines, which allows larger cache-aware

extensions.

The average results for all matrices in terms of iteration and time-

to-solution are shown in Table 5. We compare the FSAIE-Comm

with dynamic filtering with respect to FSAI. The table provides aver-

age results together with the highest improvement and degradation

over all the matrices. We show results considering the dynamic

filtering-out strategy with initial 𝐹𝑖𝑙𝑡𝑒𝑟 values 0.01, 0.05, 0.1 and

0.5, and a case where the best 𝐹𝑖𝑙𝑡𝑒𝑟 is picked for each matrix.



FSAIE-Comm - Dynamic Filter
Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.01 34.39 22.69 61.75 -20.81

0.05 27.72 24.16 62.63 0.49

0.1 18.98 17.26 59.51 -1.5

0.2 10.51 9.94 55.68 -7.32

Best Filter 31.32 26.44 62.63 0.49

The larger cache lines of the A64FX CPU allow to achieve large

time-to-solution improvements than the Skylake scenario due to

the larger iteration decrease brought by extra added entries. On

average, FSAIE-Comm reduces iterations-to-convergence by 31.32%

and time-to-solution by 26.44%.

Figure 4 displays the time-to-solution improvement for each

matrix of the data set when using the best 𝐹𝑖𝑙𝑡𝑒𝑟 and when using

a 𝐹𝑖𝑙𝑡𝑒𝑟 value of 0.05. In general the performance boost achieved

is notably higher for most matrices compared to Intel Skylake.

Figures 5a and 5b show the effects on the SpMV operations of

FSAIE-Comm for A64FX. Cache misses on accesses to 𝑥 are reduced

and FLOP/s, consequently, improved. In this case, FLOP/s increase

on average by 7.5%.

5.5 Evaluation on AMD EPYC™ 7742 (Zen 2)
We run numerical experiments considering the Hawk supercom-

puter, which is composed of nodes with two Zen 2 64-core AMD

EPYC 7742 processors. In this case, the CPUs have 64Bytes cache

lines. The core counts we consider in this architecture are specified

in Table 1 in parentheses. The average results for all matrices are

shown in Table 6. The results for the Zen 2 case lead to an aver-

age iteration-to-solution decrease of 20.64% and time-to-solution

decrease of 16.74%. These values are close to Skylake results since

both systems feature the same cache line size.

Figure 6 displays the time-to-solution improvement for each

matrix of the data set when using the best 𝐹𝑖𝑙𝑡𝑒𝑟 and when using

a 𝐹𝑖𝑙𝑡𝑒𝑟 value of 0.05. Figure 7 shows FLOP/s improvement in the

preconditioning SpMV operations. Note that in this architecture

the FLOP/s achieved with FSAI and FSAIE-Comm are much higher

than for Skylake and A64FX. On average, FSAIE-Comm achieves

FLOPs improvements of 19% on AMD.

5.5.1 Large-scale experiments. We run large-scale experiments on

the Zen 2 system. We consider the largest matrices in the SuiteS-

parse collection [13] for these experiments. These matrices along

with some of its key characteristics are shown in Table 2.

For all matrices we consider a workload of 16k non-zero entries

per CPU. For the case of matrix 1 we consider node counts of

128 and 256 due to the cluster topology requirements and provide

results for both cases. We perform executions up to 32768 CPUs.

Table 6: Average percentages of iterations-to-solution im-
provement, time-to-solution improvement, highest time-to-
solution improvement and lowest time-to-solution degrada-
tion when using FSAIE-Comm with dynamic filters. Several
𝐹𝑖𝑙𝑡𝑒𝑟 values are used and best 𝐹𝑖𝑙𝑡𝑒𝑟 is considered for all ma-
trices on the Zen 2 system.

FSAIE-Comm - Dynamic Filter
Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.01 22.18 14.36 56.75 -13.82

0.05 16.73 14.28 57.52 -1.13

0.1 10.07 8.73 52.09 -1.85

0.2 5.43 5.09 40.92 -7.27

Best Filter 20.64 16.74 57.52 -1.05

Table 7: Average iterations-to-solution improvement per-
centage, average time-to-solution improvement percentage,
highest time-to-solution improvement percentage and lowest
time-to-solution degradation when FSAIE-Comm dynamic
filter. Several 𝐹𝑖𝑙𝑡𝑒𝑟 values are used and best 𝐹𝑖𝑙𝑡𝑒𝑟 is consid-
ered for large matrices on a Zen 2 system.

FSAIE-Comm - Dynamic Filter
Filter Avg. Avg. Highest Highest
value iterations time imp. deg.
0.01 14.49 12.28 19.09 3.64

0.05 10.82 10.83 16.93 3.94

0.1 7.04 7.38 13.43 1.82

0.2 3.55 4.03 9.77 -3.63

Best Filter 13.89 12.59 19.09 3.94

Table 2 shows FSAIE-Comm always improves at least the result of

FSAIE, outperforming it on average by 3 percentile points.

Figure 8 displays the time-to-solution improvement for each

matrix when using the best 𝐹𝑖𝑙𝑡𝑒𝑟 and when using a 𝐹𝑖𝑙𝑡𝑒𝑟 value of

0.01. The average results for these cases can be seen in Table 7 and

lead to an average iteration-to-solution decrease of 13.89% and time-

to-solution decrease of 12.59% when using the best 𝐹𝑖𝑙𝑡𝑒𝑟 value

per matrix. Note for this case the 𝐵𝑒𝑠𝑡𝐹𝑖𝑙𝑡𝑒𝑟 results are close to the

𝐹𝑖𝑙𝑡𝑒𝑟 = 0.01 scenario and that no matrix degrades its performance

except the 𝐹𝑖𝑙𝑡𝑒𝑟 = 0.2 case. For the large data set FSAIE-Comm

achieves average FLOP/s improvements of 22% when running the

preconditioning operation 𝐺𝑇𝐺𝑥 .

6 RELATEDWORK
The Sparse Approximate Inverse (SAI) preconditioner is commonly

used due to its parallel nature and easy applicability. Research ef-

forts on SAI focus on optimizing the existing variants and finding

new alternatives to improve solvers. SAI methods require to evalu-

ate an approximation to the inverse of a matrix on a pattern. When

these patterns are defined a priori they are called static patterns.

When they are defined at the same time as the approximation to the

inverse is being computed they are called dynamic patterns [14].

Table 5: Average percentages of iterations-to-solution im-
provement, time-to-solution improvement, highest time-to-
solution improvement and lowest time-to-solution degrada-
tion when using FSAIE-Comm with dynamic filters. Several 
𝐹𝑖𝑙𝑡𝑒𝑟 values are used and best 𝐹𝑖𝑙𝑡𝑒𝑟 is considered for all ma-
trices on the A64FX system.



Figure 6: Time decrease of the FSAIE-Comm vs FSAI for the best 𝐹𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for the 0.05 𝐹𝑖𝑙𝑡𝑒𝑟 value (orange
columns) on the Zen 2 architecture.

Figure 7: Histogram of the GFLOP/s per process the precon-
ditioning operation 𝐺𝑇𝐺𝑥 normalized to the number of 𝐺
matrix non-zero entries. Blue columns correspond to base-
line FSAI and orange columns to cache-friendly extended
matrices using FSAIE-Comm without filtering on Zen 2.

Figure 8: Time decrease of the FSAIE-Comm vs FSAI for the
best 𝐹𝑖𝑙𝑡𝑒𝑟 value (blue columns) and for the 0.01 𝐹𝑖𝑙𝑡𝑒𝑟 value
(orange columns) on the Zen 2 architecture.

In this paper we consider static patterns. We chose as initial

pattern the lower triangular part of the system matrix𝐴 to compute

the factor 𝐺 for FSAI. Powers of 𝐴, usually 𝐴2
or 𝐴3

[9, 17, 21] are

commonly used to define static patterns. Dense patterns may be

sparsified using thresholding and filtering techniques [4, 5, 10, 15,

27, 29].

Dynamic patterns are created through adaptive procedures that

compute the approximation to the inverse with iterative methods.

Usually, they begin with an initial pattern that is grown following

some strategy until some criteria is fulfilled. At the same time the

inverse approximation is computed. Dynamic methods are usu-

ally more powerful than static ones, however, they are difficult to

parallelize and implement efficiently, and usually are computation-

ally costlier. SPAI [18] is the direct dynamic counterpart to SAI

and FSPAI [22] to FSAI. Other methods such as BSAI, PSAI and

RSAI [23–25] have been developed recently. SAI preconditioners for

GPUs have been proposed for both static [2, 6, 30, 36] and dynamic

strategies [7].

Preconditioners are usually designed based on numerical criteria.

Some methods propose preconditioner storage formats with re-

ordering to achieve better locality and improve cache hit ratios [32].

Previous work [31] paved the way to develop preconditioner exten-

sions with cache-awareness, taking into account architectural crite-

ria to extend any pattern and improve its efficiency. FSAIE-Comm

brings a communication-aware approach to distributedmemory sys-

tems that improves any method by extending it in a cache-friendly

manner that does not increase communication costs.

7 CONCLUSIONS
This paper demonstrates FSAIE-Comm is an efficient precondition-

ingmethod for distributedmemory systems that outperforms FSAIE

in most cases. Essentially, cache-friendly pattern extensions can be

applied to every process in an MPI implementation to achieve iter-

ation count reductions with low overhead that are translated into

time-to-solution improvements. Our new method for distributed

memory systems also takes advantage of halo entries and extends

patterns without increasing communication costs. We also pro-

pose a new dynamic filtering strategy that mitigates inter-process

imbalance when extending patterns. For our evaluation we have

considered three different high-end systems: a Skylake system with

64Byte cache lines, an A64FX system with 256Byte cache lines and

a Zen 2 system with 64Byte cache lines. Overall, on a 39 matrices

data set with a wide range of non-zero entries we achieve 17.98%,

26.44% and 16.74% average time-to-solution improvements on Sky-

lake, A64FX and Zen 2, respectively. For all the systems there are

matrices that achieve time-to-solution improvements above 50%.

We have also tested FSAIE-Comm on a smaller set of the largest

available matrices on Zen 2 with executions of up to 32768 CPUs

achieving an average time-to-solution improvement of 12.59%.



[1] Guillaume Alléon, Michele Benzi, and Luc Giraud. 1997. Sparse approximate

inverse preconditioning for dense linear systems arising in computational electro-

magnetics. Numerical Algorithms 16 (02 1997), 1–15. https://doi.org/10.1023/A:

1019170609950

[2] Hartwig Anzt, Edmond Chow, Thomas Huckle, and Jack Dongarra. 2016. Batched

Generation of Incomplete Sparse Approximate Inverses on GPUs. 49–56. https:

//doi.org/10.1109/ScalA.2016.011

[3] Michele Benzi, Carl D. Meyer, and Miroslav Tůma. 1996. A Sparse Approxi-

mate Inverse Preconditioner for the Conjugate Gradient Method. SIAM Jour-
nal on Scientific Computing 17, 5 (1996), 1135–1149. https://doi.org/10.1137/

S1064827594271421 arXiv:https://doi.org/10.1137/S1064827594271421

[4] Luca Bergamaschi, Giuseppe Gambolati, and Giorgio Pini. 2007. A numerical

experimental study of inverse preconditioning for the parallel iterative solution

to 3D finite element flow equations. J. Comput. Appl. Math. 210 (12 2007), 64–70.
https://doi.org/10.1016/j.cam.2006.10.056

[5] Luca Bergamaschi, Ángeles Martínez, and Giorgio Pini. 2006. Parallel precon-

ditioned conjugate gradient optimization of the Rayleigh quotient for the solu-

tion of sparse eigenproblems. Appl. Math. Comput. 175, 2 (2006), 1694 – 1715.

https://doi.org/10.1016/j.amc.2005.09.015

[6] Massimo Bernaschi, Mauro Bisson, Carlo Fantozzi, and Carlo Janna. 2016.

A Factored Sparse Approximate Inverse Preconditioned Conjugate Gradi-

ent Solver on Graphics Processing Units. SIAM Journal on Scientific
Computing 38, 1 (2016), C53–C72. https://doi.org/10.1137/15M1027826

arXiv:https://doi.org/10.1137/15M1027826

[7] Massimo Bernaschi, Mauro Carrozzo, Andrea Franceschini, and Carlo Janna.

2019. A Dynamic Pattern Factored Sparse Approximate Inverse Pre-

conditioner on Graphics Processing Units. SIAM Journal on Scientific
Computing 41, 3 (2019), C139–C160. https://doi.org/10.1137/18M1197461

arXiv:https://doi.org/10.1137/18M1197461

[8] Daniele Bertaccini and Salvatore Filippone. 2016. Sparse approximate inverse

preconditioners on high performance GPU platforms. Computers & Mathematics
with Applications 71, 3 (2016), 693 – 711. https://doi.org/10.1016/j.camwa.2015.

12.008

[9] Edmond Chow. 2000. A Priori Sparsity Patterns for Parallel Sparse Ap-

proximate Inverse Preconditioners. SIAM Journal on Scientific Comput-
ing 21, 5 (2000), 1804–1822. https://doi.org/10.1137/S106482759833913X

arXiv:https://doi.org/10.1137/S106482759833913X

[10] Edmond Chow. 2001. Parallel Implementation and Practical Use of Sparse

Approximate Inverse Preconditioners With a Priori Sparsity Patterns. In-
ternational Journal of High Performance Computing Applications 15 (05 2001).

https://doi.org/10.1177/109434200101500106

[11] Edmond Chow and Yousef Saad. 1998. Approximate Inverse Preconditioners

via Sparse-Sparse Iterations. SIAM Journal on Scientific Computing 19, 3 (1998),

995–1023.

[12] Mark D. Kremenetsky, John Richardson, and Horst D. Simon. 1995. - Parallel

preconditioning for CFD problems on the CM-5. In Parallel Computational Fluid
Dynamics 1993, A. Ecer, J. Hauser, P. Leca, and J. Periaux (Eds.). North-Holland,

Amsterdam, 401–410. https://doi.org/10.1016/B978-044481999-4/50173-0

[13] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages. https:

//doi.org/10.1145/2049662.2049663

[14] Massimiliano Ferronato. 2012. Preconditioning for Sparse Linear Systems at the

Dawn of the 21st Century: History, Current Developments, and Future Perspec-

tives. ISRN Applied Mathematics 2012 (12 2012). https://doi.org/10.5402/2012/

127647

[15] Massimiliano Ferronato, Carlo Janna, and Giorgio Pini. 2012. Shifted FSAI

preconditioners for the efficient parallel solution of non-linear groundwater

flow models. Internat. J. Numer. Methods Engrg. 89 (03 2012), 1707–1719.

https://doi.org/10.1002/nme.3309

[16] Message P Forum. 1994. MPI: A Message-Passing Interface Standard. Technical
Report. USA.

[17] John R. Gilbert. 1994. Predicting Structure in SparseMatrix Computations. SIAM J.
Matrix Anal. Appl. 15, 1 (1994), 62–79. https://doi.org/10.1137/S0895479887139455
arXiv:https://doi.org/10.1137/S0895479887139455

[18] Marcus J. Grote and Thomas Huckle. 1997. Parallel Preconditioning with Sparse

Approximate Inverses. SIAM Journal on Scientific Computing 18, 3 (1997), 838–853.
https://doi.org/10.1137/S1064827594276552

[19] Wolfgang Hackbusch. 1985. Multi-Grid Methods and Applications. Vol. 4. https:

//doi.org/10.1007/978-3-662-02427-0

[20] Guixia He, Renjie Yin, and Jiaquan Gao. 2019. An efficient sparse approximate in-

verse preconditioning algorithm on GPU. Concurrency and Computation: Practice
and Experience 32 (12 2019). https://doi.org/10.1002/cpe.5598

[21] Thomas Huckle. 1999. Approximate sparsity patterns for the inverse of a matrix

and preconditioning. Applied Numerical Mathematics 30, 2 (1999), 291 – 303.

https://doi.org/10.1016/S0168-9274(98)00117-2

[22] Thomas Huckle. 2003. Factorized Sparse Approximate Inverses for Precondition-

ing. Journal of Supercomputing 25, 2 (2003), 109–117.

[23] Carlo Janna and Massimiliano Ferronato. 2011. Adaptive Pattern Re-

search for Block FSAI Preconditioning. SIAM Journal on Scientific
Computing 33, 6 (2011), 3357–3380. https://doi.org/10.1137/100810368

arXiv:https://doi.org/10.1137/100810368

[24] Zhongxiao Jia and Wenjie Kang. 2017. A residual based sparse approximate

inverse preconditioning procedure for large sparse linear systems. Numerical
Linear Algebra with Applications 24, 2 (2017), e2080. https://doi.org/10.1002/

nla.2080 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2080 e2080

nla.2080.

[25] Zhongxiao Jia and Baochen Zhu. 2009. A Power Sparse Approximate Inverse

Preconditioning Procedure for Large Sparse Linear Systems. Numerical Linear
Algebra with Applications 16 (04 2009), 259 – 299. https://doi.org/10.1002/nla.614

[26] George Karypis and Vipin Kumar. 1995. METIS –Unstructured Graph Partitioning

and Sparse Matrix Ordering System, Version 2.0. (01 1995).

[27] Liliya Yu. Kolotilina, Andy A. Nikishin, and Alex Yu. Yeremin. 1999. Factorized

Sparse Approximate Inverse Preconditionings. IV: Simple Approaches to Rising

Efficiency. Numerical Linear AlgebraWith Applications - NUMER LINEARALGEBR
APPL 6 (10 1999), 515–531. https://doi.org/10.1002/(SICI)1099-1506(199910/11)6:

73.0.CO;2-0

[28] Liliya Yu. Kolotilina and Alex Yu. Yeremin. 1993. Factorized Sparse Approximate

Inverse Preconditionings I. Theory. SIAM J. Matrix Anal. Appl. 14, 1 (1993), 45–58.
https://doi.org/10.1137/0614004 arXiv:https://doi.org/10.1137/0614004

[29] Jiří Kopal, Miroslav Rozložník, and Miroslav Tůma. 2015. Approximate inverse

preconditioners with adaptive dropping. Advances in Engineering Software 84
(2015), 13 – 20. https://doi.org/10.1016/j.advengsoft.2015.01.006 CIVIL-COMP.

[30] I.B. Labutin and I.V. Surodina. 2013. Algorithm for sparse approximate inverse

preconditioners in the conjugate gradient method. 19 (01 2013), 120–126.

[31] Sergi Laut, Ricard Borrell, and Marc Casas. 2020. Cache-Aware Sparse Patterns

for the Factorized Sparse Approximate Inverse Preconditioner. In Proceedings of
the 30th International Symposium on High-Performance Parallel and Distributed
Computing (Virtual Event, Sweden) (HPDC ’21). Association for Computing

Machinery, New York, NY, USA, 81–93. https://doi.org/10.1145/3431379.3460642

[32] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2014. Cache-aware

sparse matrix formats for Kepler GPU. In 2014 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS). 281–288. https://doi.org/10.1109/

PADSW.2014.7097819

[33] G. Oyarzun, R. Borrell, A. Gorobets, and A. Oliva. 2014. MPI-CUDA sparse

matrix–vector multiplication for the conjugate gradient method with an ap-

proximate inverse preconditioner. Computers & Fluids 92 (2014), 244 – 252.

https://doi.org/10.1016/j.compfluid.2013.10.035

[34] Yousef Saad. 2002. Preconditioned Krylov Subspace Methods for CFD Appli-

cations. Proceedings of the international workshop on solution techniques for
large-scale CFD problems (02 2002).

[35] Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems (2nd ed.). Society

for Industrial and Applied Mathematics, USA.

[36] K. Xu, D.Z. Ding, Z.H. Fan, and R.S. Chen. 2011. FSAI preconditioned CG algo-

rithm combined with GPU technique for the finite element analysis of electro-

magnetic scattering problems. Finite Elements in Analysis and Design 47, 4 (2011),

387 – 393. https://doi.org/10.1016/j.finel.2010.11.005

ACKNOWLEDGMENTS
Marc Casas is supported by Grant RYC-2017-23269 funded by MCIN/AEI/ 
10.13039/501100011033 and by “ESF Investing in your future”. This 
work has received funding from the European Union’s Horizon 
2020 research and innovation programme under grant agreement 
No 955606. This work has been supported by the Computación 
de Altas Prestaciones VIII (BSC-HPC8) project. It has also been 
partially supported by the EXCELLERAT project funded by the Eu-
ropean Commission’s ICT activity of the H2020 Programme under 
grant agreement number: 823691 and by the Spanish Ministry of 
Science and Innovation (Nucleate, Project PID2020-117001GB-I00).

REFERENCES

https://doi.org/10.1023/A:1019170609950
https://doi.org/10.1023/A:1019170609950
https://doi.org/10.1109/ScalA.2016.011
https://doi.org/10.1109/ScalA.2016.011
https://doi.org/10.1137/S1064827594271421
https://doi.org/10.1137/S1064827594271421
https://arxiv.org/abs/https://doi.org/10.1137/S1064827594271421
https://doi.org/10.1016/j.cam.2006.10.056
https://doi.org/10.1016/j.amc.2005.09.015
https://doi.org/10.1137/15M1027826
https://arxiv.org/abs/https://doi.org/10.1137/15M1027826
https://doi.org/10.1137/18M1197461
https://arxiv.org/abs/https://doi.org/10.1137/18M1197461
https://doi.org/10.1016/j.camwa.2015.12.008
https://doi.org/10.1016/j.camwa.2015.12.008
https://doi.org/10.1137/S106482759833913X
https://arxiv.org/abs/https://doi.org/10.1137/S106482759833913X
https://doi.org/10.1177/109434200101500106
https://doi.org/10.1016/B978-044481999-4/50173-0
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.5402/2012/127647
https://doi.org/10.5402/2012/127647
https://doi.org/10.1002/nme.3309
https://doi.org/10.1137/S0895479887139455
https://arxiv.org/abs/https://doi.org/10.1137/S0895479887139455
https://doi.org/10.1137/S1064827594276552
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1002/cpe.5598
https://doi.org/10.1016/S0168-9274(98)00117-2
https://doi.org/10.1137/100810368
https://arxiv.org/abs/https://doi.org/10.1137/100810368
https://doi.org/10.1002/nla.2080
https://doi.org/10.1002/nla.2080
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2080
https://doi.org/10.1002/nla.614
https://doi.org/10.1002/(SICI)1099-1506(199910/11)6:73.0.CO;2-0
https://doi.org/10.1002/(SICI)1099-1506(199910/11)6:73.0.CO;2-0
https://doi.org/10.1137/0614004
https://arxiv.org/abs/https://doi.org/10.1137/0614004
https://doi.org/10.1016/j.advengsoft.2015.01.006
https://doi.org/10.1145/3431379.3460642
https://doi.org/10.1109/PADSW.2014.7097819
https://doi.org/10.1109/PADSW.2014.7097819
https://doi.org/10.1016/j.compfluid.2013.10.035
https://doi.org/10.1016/j.finel.2010.11.005

	Abstract
	1 Introduction
	2 Background
	2.1 Conjugate Gradient
	2.2 Sparse Approximate Inverse Preconditioner
	2.3 Factorized Sparse Approximate Inverse with Pattern Extension

	3 FSAIE-Comm: Extending sparse patterns without increasing communication overhead
	4 Dynamic filtering-out
	5 Evaluation
	5.1 Experimental Setup
	5.2 Configuration of Parallel Executions
	5.3 Evaluation Intel Xeon® Platinum 8160 (Skylake)
	5.4 Evaluation on Fujitsu A64FX (A64FX)
	5.5 Evaluation on AMD EPYC™ 7742 (Zen 2)

	6 Related Work
	7 Conclusions
	Acknowledgments
	References



