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ABSTRACT

Network modeling is an essential tool for network planning and
management. It allows network administrators to explore the per-
formance of new protocols, mechanisms, or optimal configurations
without the need for testing them in real production networks. Re-
cently, Graph Neural Networks (GNNs) have emerged as a practical
solution to produce network models that can learn and extract com-
plex patterns from real data without making any assumptions. How-
ever, state-of-the-art GNN-based network models only work with
traffic matrices, this is a very coarse and simplified representation of
network traffic. Although this assumption has shown to work well
in certain use-cases, it is a limiting factor because, in practice, net-
works operate with flows. In this paper, we present FlowDT a new
DL-based solution designed to model computer networks at the fine-
grained flow level. In our evaluation, we show how FlowDT can ac-
curately predict relevant per-flow performance metrics with an error
of 3.5%, FlowDT’s performance is also benchmarked against vanilla
DL models as well as with Queuing Theory.

Index Terms— Network Modeling, Machine Learning, Graph
Neural Networks

1. INTRODUCTION

Network modeling is a core component of network control and man-
agement. Particularly, models allow network researchers and admin-
istrators to explore new protocols, mechanisms, or configurations
without the need for testing them in real production networks, which
could lead to major service disruptions.

Traditionally, the networking community has relied on Queuing
Theory (QT) for building network models. However, QT fails to
produce accurate estimates in scenarios with realistic traffic models
since it imposes strong assumptions on packet arrivals, which typi-
cally do not hold in real networks [1]. On the other hand, compu-
tational models (e.g., packet-level network simulators) are arguably
among the most accurate alternatives to traditional network mod-
els. However, such tools are based on simulating individual packet
events making them suffer from a high computational cost. This of-
ten makes them impractical in scenarios with large traffic volumes
and topologies as they can not operate at short time scales [2].

Recently, Machine Learning (ML) has emerged as a new way
to model complex systems. In particular, Deep Learning (DL) has
proven its capacity of extracting higher-level features from raw data
and producing highly accurate models. In the context of computer
networks, the main advantage of DL models over other techniques is
that they are data-driven. Indeed, DL models are trained with real-
world data without making any presumption about the system they
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aim to model. As such, they are able to model complex and non-
linear behavior found in networks. Given its ambition, these DL-
based models are commonly referred to as Digital Twins as they are
meant to be physical representations of real physical objects [3, 4].

In the field of network modeling, several DL-based network
models works have been already proposed [5, 6, 7, 8]. Existing mod-
els take advantage of Graph Neural Networks (GNN) and show out-
standing accuracy when modeling network performance metrics, in
addition, they are able to generalize to unseen network topologies,
configurations, and traffic loads.

However, the main limitation of state-of-the-art models is that
they consider the traffic as Traffic Matrices. This means that they
only consider the aggregated bandwidth (over a certain period of
time) between a source and a destination pair. This simplifying as-
sumption works well for certain use-cases, but it is clearly a limiting
factor because the most relevant description of network traffic are
Sflows.

Networks operate with flows, a flow is an aggregation of pack-
ets that share some common characteristics. A common aggregation
used in real networks are 5-tuple flows, that is packets that have the
same protocol (TCP or UDP), source and destination IP addresses
as well as same source and destination ports. Flows are important
in networking because applications work with flows, and typically
network optimization aims to offer different levels of quality of ser-
vice to the different flows. Some previous works such as [9] propose
working at a flow level to optimize user quality of experience (QoE)
for video streaming. Other works like [10, 11] optimizes flow rout-
ing in carrier-grade networks. Finally, other works [12] propose a
solution to optimize the flow completion in data centers. Several
spatio-temporal GNNs have been proposed in the past [13, 14], but
they do not target the networking scenario and uniqueness.

Operating at the flow level is challenging, flows are dynamic
and have a finite duration that ranges from a few packets (typically
ms) to tens of thousands of packets (e.g., backup session) and spans
days. In networks, flows are concurrent and at a given instant of time,
millions of flows can be active at the same time. As a consequence,
modeling flows requires understanding the time dimension and thus,
modeling how the state of the network changes over time and as
flows are created and destroyed.

In this paper, we present Flow-aware Digital Twin (FlowDT), a
new GNN-based model that it is able to understand and model flows.
This DT works in the time domain and supports the creation and de-
struction of flows, as well as flows that dynamically change their
characteristics. With this, it is able to provide per-flow metrics (de-
lay and jitter) based on the input flow dynamics as well as network
configuration (routing, topology, etc.). We validate the accuracy of
the model using a packet-accurate simulator and benchmark its per-
formance against a GRU and a Queuing Theory analytical model.
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Fig. 1: Representation of the temporal dimension. A change on the
network state (e.g, new flow) a new time-bin is considered.

2. NETWORK SCENARIO

We define a flow as an aggregation of packets that have some -loose-
common characteristics. Our model supports arbitrary aggregation
of packets into flows, for instance, 5-tuple flows. In practice, the
main limitation of the aggregation level used with our model depends
on the capabilities of the monitoring infrastructure deployed at the
network. Operating with fine-grained flows can be computationally
expensive [15].

Each flow is defined as a starting time and duration, a source and
destination node, and a traffic model. Optionally, it can also include
additional information such as ports, protocol, etc. The traffic model
describes the inter-arrival time distribution of the packets as well
as their packet size. Our model supports arbitrary traffic models,
including non-Poisson arrivals with long-tails and auto-correlation.

With respect to the temporal dimension consider figure 1. We
define a time-bin as a stationary period for the entire network, this
includes all the flows as well as network configuration and topology.
Changes in the network state are considered in a new time-bin. Ex-
amples of changes in the network state are the creation or destruction
of a flow, a flow changing its traffic model or traffic model param-
eters (increase rate), link failures, or a change in the routing policy.
Informally, the DT produces an inference per time-bin, computing
per-flow, and per-bin delay and jitter. To produce an estimate, it
uses the current state of the network for that time-bin (traffic mod-
els, topology, routing, etc.) as well as the previously time-bin state
of the network. Also, the DT is suited to work with dynamically
changing topologies. This not only means that the model is capable
of handling different topologies but also capable of handling topol-
ogy changes like link failures or network upgrades.

2.1. Use-cases

Digital Twins (DT) are -at the time of this writing- being considered
as a key technology for 5G and beyond networks. They offer a fast
and accurate representation of the performance of the network and
are crucial for optimization, *what-if” scenarios, and service impact

DT play a role in many different use-cases, in what follows we
provide a set of relevant examples. In optimization, optimized con-
figurations need to be tested before being applied, DT can be used to
safely test such configurations without disrupting the network. New
features, functionalities, and protocols can be tested using a DT, do-
ing this in a production network is very risky. And finally, DTs can
play an important role in the training and education of networking
experts. The interested reader can find more information about Dig-
ital Twins and its use-cases in the following works [4, 3].

3. FLOW-AWARE DIGITAL TWIN

This section describes how FlowDT works, a novel GNN-based so-
lution tailored to accurately model the behavior of real network in-
frastructures at a flow-granularity level. Particularly, FlowDT de-

Algorithm 1 Internal architecture of FlowDT

Input: F, L, zy, 2, th(b_l)

Output: h7, h?, yr
1: foreach! € Ldo h{ < [x,0...0]
2: for each f € F do h} + [th“"”,xf,o...o]

3: fort=0to T-1 do > Message Passing Phase

4: for each f € F do > Message Passing on Flows
5: for each ! € f do
6: h} — FRNN(h}, hi) > Flow: Aggr. and Update
7 ﬁl’;fll — hi, > Flow: Message Generation
. t+1 t
8: he™ <« hj
9: for each! € L do > Message Passing on Links
10: MlH'1 — ZfeLf(l) 7’713‘51 > Link: Aggregation
11: hy Tl <« Uy (hE, MY > Link: Update
12: 77z§+1 — thrl > Link: Message Generation

13: oy Rf(h?) > Readout phase

scribes a new network modeling architecture where the different
key elements for network modeling (e.g., forwarding devices, links,
flows) exchange messages of their state to the ones they are related
with (e.g., via routing).

Specifically, FlowDT (Fig. 2) takes as input () a given network
configuration (topology, link capacities, and routing) (i7) the per-
flow level parameters (i4¢) the previous bin network state, and pro-
duces as output () the current network state that will be later used
as input for the next time-bin (z) the performance per-flow metrics
according to the network state (per-flow mean delay and jitter).

One of the central ideas of FlowDT is that it encodes the state
of the network resulting from the previous time-bin, and this state
is used to accurately infer the per-flow performance statistics of the
current bin. Since a computer network can be understood as a queu-
ing system, we expect this state to be the state of the link/queues.

3.1. Model description

A computer network can be represented by a set of links L =
{li - i € (1,...,m)}, a set of of source-destination flows F =
{fi + i € (1,...,nf)}, and the routing configuration defined
as a set of source-destination path that flows follow. Hence,
we define flows as a sequence of the links they traverse f; =
{lFl,(fi,O)7 lFl(fiJ)? . lFl(foi‘))}, where the function Fl(fl, j)
return the index of the j-th link along the path of flow f;.

Using this notation, FlowDT considers three main inputs: (7)
the physical links L defined by the network topology, (i?) the active
flows I in the network in a specific time-bin, including the source-
destination path and the traffic model, and (¢3¢) the network state of
the previous time-bin.

The main assumption behind FlowDT is that information at the
flow level (e.g., delay) and the link level (e.g., link delay, loss rate,
link utilization) can be encoded as vectors of numbers of a given
size. Based on this, the main intuition behind this architecture is:

1. The state of flows is affected by the state of the links they
traverse.

2. The state of links depends on the states of the flows that go
through them.

3. The initial state of the network depends on the previous time-
bin network state.

Formally, we define the state of a flow as a hidden vector hs of
a given size. In a similar way, the state of a link is also defined by a
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Fig. 2: FlowDT diagram. FlowDT takes as inputs the network conﬁguratlon (e.g., topology, link capacities, routing), the target per-flow
parameters, and the previous network state. FlowDT outputs the per-bin and per-flow performance metrics (delay and jitter) and the current
network state.

hidden vector h;. Knowing this, the principles described above can
be formally formulated as follows:

hi :gf(hlfk(owhlk(lw""hlfkufk\)) S
hlj :gl(hf17...7hfm), lj Gfk7/€:17...7’i 2)

Where g5 and g; are some unknown functions that the model
needs to learn. Note that a direct approximation of functions g and
g1 is not possible due to the circular dependencies found between the
two components (L and F').

We expect that h ¢ and h; encode important information like the
per-flow throughput/losses or the per link utilization. However, we
do not make any assumptions and let the model learn it directly from
the data that is fed into the model.

The architecture of FlowDT (see Algorithm 1) is specifically de-
signed to deal with those circular dependencies via an exchange of
messages between links and flows. FlowDT receives as input the ini-
tial link and flow features (z; and x s respectively), and the network

. . . . b-1 .
state computed in the previous time-bin (th( )). In our particular

case x; is defined as: (¢) the link capacity and (i%) the buffer size.
On the other side, the initial flow features x; are the features that
describe the behavior of the flow (See section 4.1).

First, in Algorithm 1, the hidden states h; and h are initialized
(line 1 - 2) using the initial features described before. In the h; case,
note that the feature vector (x;) is concatenated with the previous
network state (th(b_U). If we are in the first time-bin, the th(b_l)
vector is encoded as an array of 0.

Once the initial states are initialized a message-passing phase
starts. This message passing phase is executed iteratively during 7’
times (line 3). This process is done to ensure that the state of all
the elements has converged. Each message passing iteration can be
divided into two stages where the different elements receive infor-
mation of the elements they are related with, then, this information
is aggregated and used to update their state (FRN N and U;)' and
finally, create the new message that will be sent. Particularly, the
flow aggregation, update and message creation are described in lines
4 - 8, and the link ones in lines 9 - 12.

Finally, the readout phase is executed (line 13). In it, the func-
tion Ry is responsible for producing the per-flow level metrics.

4. EXPERIMENTAL EVALUATION

To train, validate and test FlowDT we use as ground truth a packet-
level network simulator (OMNeT++ v5.5.1 [17]), where network

!FRN Nand U; are implemented as Gated Recurrent Units (GRU) [16],
additional details can be found in section 4.4

samples are labeled with performance metrics, including the flows
mean delay and jitter over time. In order to generate the dataset,
for each sample, we randomly select a combination of input features
(flow duration, traffic model, topology, and routing) according to the
descriptions below.

4.1. Traffic models

In our experiments, traffic is generated using five different models
that range from a Poisson generation process to more realistic (non-
Poisson) traffic generation [18]. The different implementation de-
tails of these models are defined below (the well-known Poisson and
Constant Bitrate are not described since their only configurable pa-
rameter is the traffic intensity).

The creation of each flow is based on a Poisson process. The
flow duration is based on the distributions described in [19]. All
flows have a maximum duration of 1000s which represents 99.5% of
all the flows measured in [19]. Note that the flow-creation time and
the average traffic per flow have been manually configured to pro-
duce low to high congestion levels (to a maximum = 3% of packet
loss) similarly to what has been experimentally measured [20].

On-Off: This model is defined by two periods of states (On or
Off). The lengths of both periods are randomly selected [5, 15] sec-
onds. During the On period (where packets are transmitted), packets
are generated using an exponential distribution.

Autocorrelated exponentials: This model generates autocorre-
lated exponentially distributed traffic staring from the following
auto-regressive (AR) process: ziy1=azi+¢, e~N(0,0?) where
a€(—1, 1) controls the level of autocorrelation. The marginal distri-
bution of z is N(0, s> = 0% /(1 —a?)), so z can be negative. In order
to construct positive inter-arrival times, z is mapped by a nonlinear
transformation: §; = Fgl (/\, Fn (0, 52, zt)), where Fyv (0, s2, )
and Fg(A, -) are respectively a CDF of the normal distribution with
= 0 and variance s*=[3, 12], and an exponential distribution with
parameter A=[40, 2000].

Modulated exponentials: This model is inspired by [21]. It repre-
sents an alternative to autocorrelation with higher complexity. Par-
ticularly, the inter-arrival times are set by a hierarchical model. In
this case, inter-arrivals follow an exponential distribution whose rate
is controlled by the value of a hidden AR model similar to the one
described before.

4.2. Topologies

To train and test FlowDT, we used three different real-world topolo-
gies that have already been used in previous works [7, 22]. Specifi-



cally, to train we used NSFNET [23], and GEANT [24] topologies.
Then, we validate the accuracy of the model in GBN [25].

4.3. Baselines

To analyze the accuracy of FlowDT, we benchmark it against a state-
less Queueing Theory model (s-QT) based on the work described
in [7] where the system is modeled as a concatenation of a finite
M/M/1/b queues. Note that the s-QT model does not use the state
of the network in the previous time-bin. The second benchmark is
a Gated Recurrent Unit (GRU) built using an RN N [26]. In this
case, the different flows are modeled following a similar strategy of
FlowDT where flows are represented as a sequence of links defined
by the routing configuration. The main difference between the GRU
baseline and FlowDT is that GRU treats each path as a sequence of
links not working always with the same states while FlowDT iterates
over all the elements of the states of the network updating their states
in each one.

4.4. Training and evaluation

We implemented FlowDT as well as the baselines using Tensorflow.
In total, FlowDT was trained using 120,000 samples (NSFNET and
GEANT) for training and evaluated using 60,000 (GBN) more sam-
ples. More information about the topologies used can be found in
section 4.2.

In our experiments we use a hidden vector size of 32 for both h;
and hy. In our particular case x; is defined as: (7) the link capacity
and (z7) the buffer size. On the other side, the initial flow features
xy are defined by the parameters of each distribution described in
section 4.1s (on and off times, «, ), the total number of packets,
and the generated traffic. Note that, since we are working with syn-
thetic data the flow features are initialized with the parameters used
to create those distributions. However, in a real-world scenario, these
features could be learned directly from the data using a specialized
module. The total number of iterations (1) is 8.

The functions found in Algorithm 1 are implemented as fol-
lows: FRN N (line 6) and U; (line 11) as Gated Recurrent Units
(GRU) [16], and the function Ry (line 13) as a 2-layer fully-
connected neural network with ReLU activation functions. It is
important to note that the architecture of FlowDT (Algorithm 1) has
been specifically designed to be differentiable in order to train the
model end to end. Hence, all the different functions that shape its
internal architecture are jointly optimized during training based on
FlowDT’s inputs (network samples) and outputs (per-flow perfor-
mance metrics).

During the training, we selected as loss function the Mean
Squared Error (MSE). This loss function is minimized using an
Adam optimizer with an initial learning rate of 103,

Delay Jitter
MAPE MSE MAE R?* MAPE MSE MAE R’

s-QT 0.35 0.72 0.43 0.56 0.69 0.29 0.29 0.02
GRU 0.50 1.15 0.54 0.29 1.37 0.16 0.22 0.45
FlowDT  0.035 0.006 0.035 0.995 0.112 0.004 0.032 0.983

Table 1: Performance comparison for NSFNET and GEANT
networks seen during training.

Table 1 shows a summary of the delay and jitter experiments
for the GBN topology (never seen during training). We provide 4
metrics: the Mean Absolute Percentage Error (MAPE), the Mean
Squared Error (MSE), the Mean Absolute Error (MAE), and the Co-
efficient of Determination (R?).
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Fig. 3: Delay prediction of one randomly selected flow of the GBN
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Fig. 4: PDF of the Relative Error reported for the delay prediction.

As can be seen in Table 1, the DT clearly outperforms all the
benchmarks. This high accuracy shows how the described DT is
able to generalize to unseen topologies, routings, and per-flow char-
acteristics.

Figure 3 shows an example of the time-series for a randomly se-
lected flow. As can be seen, the DT is able to react to the dynamic
behavior of the flows, providing accurate estimates of the delay ex-
perienced by each flow. In contrast, both baselines seem to provide
pretty good estimates when the delay of a time-bin is close to 0.1.
However, in peak delays where the network is more saturated, they
clearly fail with s-QT underestimating and GRU overestimating the
delay. Note that in this experiment only flow-related features are
changed over time (e.g., packet rate, distribution, flow parameters).
However, the model also accepts changes in the topology (e.g., link
capacities, link failures, routing).

In order to analyze how the residuals are distributed we plot
them in Figure 4. The figure shows the Probability Density Func-
tion (PDF) of the Relative Error of the three models. As the figure
shows, the DT produces estimates with the error centered around 0.
It looks like, while GRU shows poor performance, the s-QT model
undershoots the true values. This is in line with previous experi-
mental results [7], the key insight is that queuing theory assumes
markovian arrivals while in practice, flows have highly autocorre-
lated traffic models which result in bursts of packets that increases
the queue weighting time.

We experimentally evaluated the performance of our model with
larger topologies than those seen in training, not shown in this paper.
Although the error increased significantly with the original training,
we observed that only by adding larger link capacities to the training
set, the relative error can be reduced to 5%.

5. CONCLUDING REMARKS

In this paper, we have presented FlowDT, a novel Graph Neural Net-
work architecture for network modeling that supports a time-series
of flows. FlowDT shows remarkable performance, outperforming
state-of-the-art baselines, even in the presence of non-Poissonian
flow traffic models.
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