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Abstract

The Restricted 3-Body Problem models the motion of a body of negligible mass
under the gravitational influence of two massive bodies called the primaries. If one
assumes that the primaries perform circular motions and that all three bodies are
coplanar, one has the Restricted Planar Circular 3-Body Problem (RPC3BP). In
rotating coordinates, it can be modeled by a two degrees of freedom Hamiltonian,
which has five critical points called the Lagrange points L1, . . . , L5.

The Lagrange point L3 is a saddle-center critical point which is collinear with the
primaries and beyond the largest of the two. In this paper, we obtain an asymptotic
formula for the distance between the stable and unstable manifolds of L3 for small
values of the mass ratio 0 < µ� 1. In particular we show that L3 cannot have (one
round) homoclinic orbits.

If the ratio between the masses of the primaries µ is small, the hyperbolic
eigenvalues of L3 are weaker, by a factor of order

√
µ, than the elliptic ones. This

rapidly rotating dynamics makes the distance between manifolds exponentially small
with respect to

√
µ. Thus, classical perturbative methods (i.e the Melnikov-Poincaré

method) can not be applied.
The obtention of this asymptotic formula relies on the results obtained in the

prequel paper [BGG21] on the complex singularities of the homoclinic of a certain
averaged equation and on the associated inner equation.

In this second paper, we relate the solutions of the inner equation to the analytic
continuation of the parameterizations of the invariant manifolds of L3 via complex
matching techniques. We complete the proof of the asymptotic formula for their
distance showing that its dominant term is the one given by the analysis of the
inner equation.
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1 Introduction

The Restricted Circular 3-Body Problem models the motion of a body of negligible mass
under the gravitational influence of two massive bodies, called the primaries, which
perform a circular motion. If one also assumes that the massless body moves on the
same plane as the primaries one has the Restricted Planar Circular 3-Body Problem
(RPC3BP).

Let us name the two primaries S (star) and P (planet) and normalize their masses so
that mS = 1− µ and mP = µ, with µ ∈

(
0, 1

2

]
. Choosing a suitable rotating coordinate

system, the positions of the primaries can be fixed at qS = (µ, 0) and qP = (µ − 1, 0).
Then, the position and momenta of the third body, (q, p) ∈ R2 × R2, are governed by
the Hamiltonian system associated to the Hamiltonian

h(q, p;µ) =
||p||2

2
− qt
Å

0 1
−1 0

ã
p− (1− µ)

||q − (µ, 0)||
− µ

||q − (µ− 1, 0)||
. (1.1)

Note that this Hamiltonian is autonomous. The conservation of h corresponds to the
preservation of the classical Jacobi constant.

For µ > 0, it is a well known fact that (1.1) has five critical points, usually called
Lagrange points (see Figure 1). On an inertial (non-rotating) system of coordinates,
the Lagrange points correspond to periodic dynamics with the same period as the two
primaries, i.e on a 1:1 mean motion resonance. The three collinear Lagrange points, L1,
L2 and L3, are of center-saddle type whereas, for small µ, the triangular ones, L4 and
L5, are of center-center type (see, for instance, [Sze67]).

Due to its interest in astrodynamics, a lot of attention has been paid to the study
of the invariant manifolds associated to the points L1 and L2 (see [KLM+00, GLM+01,
CGM+04]). The dynamics around the points L4 and L5 has also been heavily studied
since, due to its stability, it is common to find objects orbiting around these points
(for instance the Trojan and Greek Asteroids associated to the pair Sun-Jupiter, see
[GDF+89, CG90, RG06]). Since the point L3 is located “at the other side” of the massive
primary, it has received somewhat less attention. However, the associated invariant
manifolds (more precisely its center-stable and center-unstable invariant manifolds) play
an important role in the dynamics of the RPC3BP since they act as boundaries of
effective stability of the stability domains around L4 and L5 (see [GJM+01, SST13]). The
invariant manifolds of L3 play also a fundamental role in creating transfer orbits from
the small primary to L3 in the RPC3BP (see [HTL07, TFR+10]) or between primaries
in the Bicircular 4-Body Problem (see [JN20, JN21]).

Moreover, being far from collision, the dynamics close to the Lagrange point L3

and its invariant manifolds for small µ are rather similar to that of other mean motion
resonances which play an important role in creating instabilities in the Solar system, see
[FGK+16]. On the contrary, since the points L1 and L2 are close to collision for small
µ, the analysis of the associated dynamics is quite different.

Over the past years, one of the main focus of study of the dynamics “close” to
L3 and its invariant manifolds has been the so called “horseshoe-shaped orbits”, first

3
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Figure 1: Projection onto the q-plane of the Lagrange points (red) and the unstable (blue) and
stable (green) manifolds of L3, for µ = 0.0028.

considered in [Bro11], which are quasi-periodic orbits that encompass the critical points
L4, L3 and L5. The interest on these types of orbits arise when modeling the motion
of co-orbital satellites, the most famous being Saturn’s satellites Janus and Epimetheus,
and near Earth asteroids. Recently, in [NPR20], the authors have proved the existence of
2-dimensional elliptic invariant tori on which the trajectories mimic the motions followed
by Janus and Epimetheus (see also [DM81a, DM81b, LO01, CH03, BM05, BO06, BFP13,
CPY19]).

Rather than looking at stable motions “close to” L3 as [NPR20], the goal of this paper
(and its prequel [BGG21]) is rather different: its objective is to prove the breakdown
of homoclinic connections to L3. Indeed, since L3 is a center-saddle critical point, it
possesses 1-dimensional unstable and stable manifolds, which we denote by W u(µ) and
W s(µ), respectively, and a 2-dimensional center manifold. Theorem 1.1 below gives an
asymptotic formula for the distance between the stable and unstable invariant manifolds
(at a suitable transverse section) for mass ratio µ > 0 small enough.

1.1 The distance between the invariant manifolds of L3

The one dimensional unstable and stable invariant manifolds of L3 have two branches
each (see Figure 1). One pair circumvents L5, which we denote by W u,+(µ) and W s,+(µ),
and the other, W u,−(µ) and W s,−(µ), circumvents L4. Since the Hamiltonian system
associated to the Hamiltonian h is reversible with respect to the involution

Φ(q, p; t) = (q1,−q2,−p1, p2;−t),

4



the + branches of the invariant manifolds are symmetric with respect to the − branches.
Thus, we restrict our analysis to the positive branches.

To measure the distance between W u/s,+(µ), we consider the symplectic polar change
of coordinates

q = r

Å
cos θ
sin θ

ã
, p = R

Å
cos θ
sin θ

ã
− G

r

Å
sin θ
− cos θ

ã
, (1.2)

where R is the radial linear momentum and G is the angular momentum.
We consider the 3-dimensional section

Σ =
{

(r, θ,R,G) ∈ R× T× R2 : r > 1, θ =
π

2

}
and denote by (ru

∗ ,
π
2 , R

u
∗ , G

u
∗) and (rs

∗,
π
2 , R

s
∗, G

s
∗) the first crossing of the invariant manifolds

with this section.
The next theorem measures the distance between these points for 0 < µ� 1.

Theorem 1.1. There exists µ0 > 0 such that, for µ ∈ (0, µ0),

‖(ru
∗ , R

u
∗ , G

u
∗)− (rs

∗, R
s
∗, G

s
∗)‖ =

3
√

4µ
1
3 e
− A√

µ

ï
|Θ|+O

Å
1

|logµ|

ãò
,

where:

• The constant A > 0 is the real-valued integral

A =

∫ √
2−1
2

0

2

1− x

…
x

3(x+ 1)(1− 4x− 4x2)
dx ≈ 0.177744. (1.3)

• The constant Θ ∈ C is the Stokes constant associated to the inner equation analyzed
in [BGG21] and in Theorem 3.13 below.

Remark 1.2. We can prove the same result for any section

Σ(θ∗) =
{

(r, θ,R,G) ∈ R× T× R2 : r > 1, θ = θ∗
}
,

with θ∗ ∈ (0, θ0) and θ0 = arccos
Ä

1
2 −
√

2
ä

(the value of µ0 depends on how close to the

endpoints of the interval θ∗ is). The section θ = θ0 is close to the “turning point” of the
invariant manifolds (see Figure 1).

The constant A in (1.3) is derived from the values of the complex singularities of the
separatrix of certain integrable averaged system, which is studied in the prequel paper
[BGG21]. The results obtained in [BGG21] about this separatrix are summarized in
Theorem 3.1 below.

The origin of the constant Θ appearing in Theorem 1.1 is explained in Theorem 3.13,
which analyzes the so-called inner equation. This theorem is also proven in [BGG21].
Moreover, in that paper it is seen, by a numerical computation, that |Θ| ≈ 1.63. We

5



expect that one should be able to prove that |Θ| 6= 0 by means of rigorous computer
computations (see [BCG+21]). Note that |Θ| 6= 0 implies that there are not primary
(i.e. one round) homoclinic orbits to L3.

A fundamental problem in dynamical systems is to prove whether a given model
has chaotic dynamics (for instance a Smale horseshoe). For many physically relevant
models this is usually remarkably difficult. This is the case of many Celestial Mechanics
models, where most of the known chaotic motions have been found in nearly integrable
regimes where there is an unperturbed problem which already presents some form of
“hyperbolicity”. This is the case in the vicinity of collision orbits (see for example
[Moe89, BM06, Bol06, Moe07]) or close to parabolic orbits (which allows to construct
chaotic/oscillatory motions), see [Sit60, Ale76, Lli80, Mos01, GMS16, GSM+17, GPS+21].
There are also several results in regimes far from integrable which rely on computer
assisted proofs [Ari02, WZ03, Cap12, GZ19]. The problem tackled in this paper and
[BGG21] is radically different. Indeed, if one takes the limit µ→ 0 in (1.1) one obtains
the classical integrable Kepler problem in the elliptic regime, where no hyperbolicity is
present. Instead, the (weak) hyperbolicity is created by the O(µ) perturbation, which
can be captured considering an integrable averaged Hamiltonian along the 1 : 1 mean
motion resonance1.

One of the classical methods to construct chaotic dynamics is the Smale-Birkhoff
homoclinic theorem by proving the existence of transverse homoclinic orbits to invariant
objects, most commonly, periodic orbits. Certainly the breakdown of homoclinic orbits
to the critical point L3 given by Theorem 1.1 does not lead to the existence of chaotic
orbits. However, one should expect that Theorem 1.1 implies that there exist Lyapunov
periodic orbits exponentially close to L3 whose stable and unstable invariant manifolds
intersect transversally. This would create chaotic motions “exponentially close” to L3

and its invariant manifolds (see [BGG22]).
As already mentioned, Theorem 1.1 rules out the existence of primary homoclinic

connections to L3 in the RPC3BP for 0 < µ � 1. However, it does not prevent the
existence of multiround homoclinic orbits, that is homoclinic orbits which pass close to
L3 multiple times. It has been conjectured (see for instance [BMO09], where the authors
analyze this problem numerically) that multi-round homoclinic connections to L3 should
exist for a sequence of values {µk}k∈N satisfying µk → 0 as k →∞.

A first step towards proving Arnold diffusion along the 1 : 1 mean motion
resonance in the 3-Body Problem? Consider the 3-Body Problem in the planetary
regime, that is one massive body (the Sun) and two small bodies (the planets) performing
approximate ellipses (including the “Restricted limit” when one of planets has mass
zero). A fundamental problem is to assert whether such configuration is stable (i.e.
is the Solar system stable?). Thanks to Arnold-Herman-Féjoz KAM Theorem, many
of such configurations are stable, see [Arn63, Féj04]. However, it is widely expected
that there should be strong instabilities created by Arnold diffusion mechanisms (as

1The 1 : 1 averaged Hamiltonian has been also studied to obtain “good” approximations for the global
dynamics in the 1 : 1 resonant zone, see for example [RNP16, PA21] and the references therein.
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conjectured by Arnold in [Arn64]). In particular, it is widely believed that one of the
main sources of such instabilities dynamics are the mean motion resonances, where the
period of the two planets is resonant (i.e. rationally dependent) [FGK+16].

The RPC3BP has too low dimension (2 degrees of freedom) to possess Arnold
diffusion. However, since it can be seen as a first order for higher dimensional models, the
analysis performed in this paper can be seen as a humble first step towards constructing
Arnold diffusion in the 1 : 1 mean motion resonance. In this resonance, the RPC3BP has
a normally hyperbolic invariant manifold given by the center manifold of the Lagrange
point L3. This normally hyperbolic invariant manifold is foliated by the classical Lyapunov
periodic orbits. One should expect that the techniques developed in the present paper
would allow to prove that the invariant manifolds of these periodic orbits intersect
transversally within the corresponding energy level of (1.1). Still, this is a much harder
problem than the one considered in this paper and the technicalities involved would be
considerable.

This transversality would not lead to Arnold diffusion due to the low dimension of
the RPC3BP. However, if one considers either the Restricted Spatial Circular 3-Body
Problem with small µ > 0 which has three degrees of freedom, the Restricted Planar
Elliptic 3-Body Problem with small µ > 0 and eccentricity of the primaries e0 > 0,
which has two and a half degrees of freedom, or the “full” planar 3-Body Problem
(i.e. all three masses positive, two small) which has three degrees of freedom (after
the symplectic reduction by the classical first integrals) one should be able to construct
orbits with a drastic change in angular momentum (or inclination in the spatial setting).

In the Restricted Planar Elliptic 3-Body Problem the change of angular momentum
would imply the transition of the zero mass body orbit from a close to circular ellipse
to a more eccentric one. In the full 3BP, due to total angular momentum conservation,
the angular momentum would be transferred from one body to the other changing both
osculating ellipses. This behavior would be analogous to that of [FGK+16] for the 3 : 1
and 1 : 7 resonances. In that paper, the transversality between the invariant manifolds
of the normally hyperbolic invariant manifold was checked numerically for the realistic
Sun-Jupiter mass ratio µ = 10−3. Arnold diffusion instabilities have been analyzed
numerically for the Restricted Spatial Circular 3-Body Problem in [TSS14].

1.2 The strategy to prove Theorem 1.1

The main difficulty in proving Theorem 1.1 is that the distance between the stable and
unstable manifolds of L3 is exponentially small with respect to

√
µ (this is also usually

known as a beyond all orders phenomenon). This implies that the classical Melnikov
Method [GH83] to detect the breakdown of homoclinics cannot be applied.

To prove Theorem 1.1, we follow the strategy of exponentially small splitting of
separatrices (already outlined in [BGG21]) which goes back to the seminal work by
Lazutkin [Laz84, Laz05]. See [BGG21] for a list of references on the recent developments
in the field of exponentially small splitting of separatrices. In particular, we follow similar
strategies of those in [BFG+12, BCS13].

In the present work the first order of the difference between manifolds is not given

7



by the Melnikov function. Instead, we must derive and analyze an inner equation which
provides the dominant term of this distance. As a consequence, we need to “match”
(i.e. compare) certain solutions of the inner equation with the parameterizations of the
perturbed invariant manifolds.

The first part of the proof, that was completed in the prequel [BGG21], dealt with
the following steps:

A. We perform a change of coordinates to capture the slow-fast dynamics of the
system. The first order of the new Hamiltonian has a saddle point with an
homoclinic connection (also known as separatrix) and a fast harmonic oscillator.

B. We study the analytical continuation of the time-parametrization of the separatrix
of this first order. In particular, we obtain its maximal strip of analyticity and the
singularities at the boundary of this strip.

C. We derive the inner equation.

D. We study two special solutions which will be “good approximation” of the perturbed
invariant manifolds near the singularities of the unperturbed separatrix (see Step
F below).

The remaining steps necessary to complete the proof of Theorem 1.1 are the following:

E We prove the existence of the analytic continuation of the parametrizations of the
invariant manifolds of L3, W u,+(δ) and W s,+(δ), in an appropriate complex domain
called boomerang domain. This domain contains a segment of the real line and
intersects a sufficiently small neighborhood of the singularities of the unperturbed
separatrix.

F. By using complex matching techniques, we show that, close to the singularities of
the unperturbed separatrix, the solutions of the inner equation obtained in Step
D are “good approximations” of the parameterizations of the perturbed invariant
manifolds obtained in Step E.

G. We obtain an asymptotic formula for the difference between the perturbed invariant
manifolds by proving that the dominant term comes from the difference between
the solutions of the inner equation.

The structure of this paper goes as follows. In Section 2 we perform the change
of coordinates introduced in Step A and state Theorem 2.2, which is a reformulation
of Theorem 1.1 in this new set of variables. Then, in Section 3, we state the results
concerning Steps B, C and D above (which are proven in [BGG21]) and we carry out
Steps E, F and G. These steps lead to the proof of Theorem 2.2. Sections 4 and 5 are
devoted to proving the results in Section 3 which concern Steps E and F.
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2 A singular formulation of the problem

The Lagrange point L3 is a centre-saddle equilibrium point of the Hamiltonian h in (1.1)
whose eigenvalues, as µ→ 0, satisfy

Spec = {±√µρ(µ),±i ω(µ)} , with

{
ρ(µ) =

»
21
8 +O(µ),

ω(µ) = 1 + 7
8µ+O(µ2).

The center and saddle eigenvalues are found at different time-scales. Moreover, when
µ = 0, the unstable and stable manifolds of L3 “collapse” to a circle of critical points.
Applying a suitable singular change of coordinates, the Hamiltonian h can be written as a
perturbation of a pendulum-like Hamiltonian weakly coupled with a fast oscillator. The
construction of this change of variables is presented in detail in Section 2.1 in [BGG21].
In this section, we summarize the most important properties of this set of coordinates.

The Hamiltonian h expressed in the classical (rotating) Poincaré coordinates, φPoi :
(λ, L, η, ξ) → (q, p), defines a Hamiltonian system with respect to the symplectic form
dλ ∧ dL+ i dη ∧ dξ and the Hamiltonian

HPoi = HPoi
0 + µHPoi

1 , (2.1)

with

HPoi
0 (L, η, ξ) = − 1

2L2
− L+ ηξ and HPoi

1 = h1 ◦ φPoi. (2.2)

Moreover, the critical point L3 satisfies

λ = 0, (L, η, ξ) = (1, 0, 0) +O(µ)

and the linearization of the vector field at this point has, at first order, an uncoupled
nilpotent and center blocks, Ü

0 −3 0 0
0 0 0 0
0 0 i 0
0 0 0 −i

ê
+O(µ).

Since φPoi is an implicit change of coordinates, there is no explicit expression for HPoi
1 .

However, it is possible to obtain series expansion in powers of (L− 1, η, ξ), (see Lemma
4.1 in [BGG21] and also Appendix A).

To capture the slow-fast dynamics of the system, renaming

δ = µ
1
4 ,

we perform the singular symplectic scaling

φsc : (λ,Λ, x, y) 7→ (λ, L, η, ξ), L = 1 + δ2Λ, η = δx, ξ = δy (2.3)

9



and the time reparametrization t = δ−2τ . Defining the potential

V (λ) = HPoi
1 (λ, 1, 0, 0; 0) = 1− cosλ− 1√

2 + 2 cosλ
, (2.4)

the Hamiltonian system associated to HPoi, expressed in scaled coordinates, defines a
Hamiltonian system with respect to the symplectic form dλ ∧ dΛ + idx ∧ dy and the
Hamiltonian

H = Hp +Hosc +H1, (2.5)

where

Hp(λ,Λ) = −3

2
Λ2 + V (λ), Hosc(x, y; δ) =

xy

δ2
, (2.6)

H1(λ,Λ, x, y; δ) = HPoi
1 (λ, 1 + δ2Λ, δx, δy; δ4)− V (λ) +

1

δ4
Fp(δ2Λ) (2.7)

and

Fp(z) =

Å
− 1

2(1 + z)2
− (1 + z)

ã
+

3

2
+

3

2
z2 = O(z3). (2.8)

Therefore, we can define the “new” first order

H0 = Hp +Hosc. (2.9)

From now on, we refer to H0 as the unperturbed Hamiltonian and we identify H1 as the
perturbation.

The next proposition, proven in [BGG21, Theorem 2.1], gives some properties of the
Hamiltonian H.

Proposition 2.1. The Hamiltonian H, away from collision with the primaries, is
real-analytic in the sense of H(λ,Λ, x, y; δ) = H(λ,Λ, y, x; δ).

Moreover, for δ > 0 small enough,

• The critical point L3 expressed in coordinates (λ,Λ, x, y) is given by

L(δ) =
(
0, δ2LΛ(δ), δ3Lx(δ), δ3Ly(δ)

)
, (2.10)

with |LΛ(δ)|, |Lx(δ)|, |Ly(δ)| ≤ C, for some constant C > 0 independent of δ.

• The point L(δ) is a saddle-center equilibrium point and its linearization isÜ
0 −3 0 0
−7

8 0 0 0
0 0 i

δ2 0
0 0 0 − i

δ2

ê
+O(δ).

Therefore, it possesses a one-dimensional unstable and stable manifolds, Wu(δ)
and Ws(δ).

10
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3π
−π λ

Λ

Figure 2: Phase portrait of the system given by Hamiltonian Hp(λ,Λ) on (2.6). On blue the
two separatrices.

The unperturbed system given by H0 in (2.9) has two homoclinic connections in
the (λ,Λ)-plane associated to the saddle point (0, 0) and described by the energy level
Hp(λ,Λ) = −1

2 (see Figure 2). We define

λ0 = arccos

Å
1

2
−
√

2

ã
, (2.11)

which satisfies Hp(λ0, 0) = −1
2 so that, for the unperturbed system, λ0 is the “turning

point” in the (λ,Λ) variables. We will see that, in our regime, θ ≈ λ and thus the value
of θ0 introduced in Remark 1.2 is indeed close to the “turning point” of the invariant
manifolds (see Figure 1).

We rewrite Theorem 1.1, in fact the more general result in Remark 1.2, in the set of
coordinates (λ,Λ, x, y). For λ∗ ∈ (0, λ0), we consider the 3-dimensional section

S(λ∗) =
{

(λ,Λ, x, y) ∈ R2 × C2 : λ = λ∗, Λ > 0, x = y
}
,

which is transverse to the flow of H, and we define the first crossings of the invariant
manifolds Wu,s(δ) with this section as (λ∗,Λ

u
∗ , x

u
∗ , y

u
∗ ) and (λ∗,Λ

s
∗, x

s
∗, y

s
∗).

Theorem 2.2. Fix an interval [λ1, λ2] ⊂ (0, λ0) with λ0 as given in (2.11). Then, there
exists δ0 > 0 and b0 > 0 such that, for δ ∈ (0, δ0) and λ∗ ∈ [λ1, λ2], the first crossings
are analytic with respect to λ∗ and

|Λ�∗| ≤ b0, |x�∗|, |y�∗| ≤ b0δ3, � = u, s. (2.12)

Moreover,

|xu
∗ − xs

∗| = |yu
∗ − ys

∗| =
6
√

2 δ
1
3 e−

A
δ2

ï
|Θ|+O

Å
1

|log δ|

ãò
,

|Λu
∗ − Λs

∗| = O(δ
4
3 e−

A
δ2 ),

where A and Θ are the constants introduced in Theorem 1.1.
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2.1 Proof of Theorem 1.1

To prove Theorem 1.1 (and Remark 1.2) from Theorem 2.2 we need to “undo” the
changes of coordinates φPoi and φsc and adjust the section from λ = constant to θ =
constant.

First, we consider the change φsc given by (λ, L, η, ξ) = (λ, 1 + δ2Λ, δx, δy), (see
(2.3)). For λ∗ ∈ [λ1, λ2] we define

L�(λ∗; δ) = 1 + δ2Λ�∗, η�(λ∗; δ) = δx�∗, ξ�(λ∗; δ) = δy�∗, for � = u, s. (2.13)

Then, by Theorem 2.2, one has

|∆L(λ∗; δ)| = |Lu(λ∗; δ)− Ls(λ∗; δ)| = O
(
δ

10
3 e−

A
δ2

)
,

|∆η(λ∗; δ)| = |ηu(λ∗; δ)− ηs(λ∗; δ)| = 6
√

2 δ
4
3 e−

A
δ2

ï
|Θ|+O

Å
1

|log δ|

ãò
,

∆ξ(λ∗; δ) = ∆η(λ∗; δ).

(2.14)

Next, we study the change φPoi. In the following result, we give a series expression
of the polar coordinates with respect to the Poincaré elements. Its proof is a direct
consequence of the definition of the Poincaré variables (see, for instance, Section 4.1 in
[BGG21]).

Lemma 2.3. Fix % > 0. Then, for |(L− 1, η, ξ)| � 1 and |Imλ| ≤ %, the polar
coordinates (r, θ,R,G) introduced in (1.2) satisfy

r = 1 + 2(L− 1)− e−iλ√
2
η − eiλ√

2
ξ +O(L− 1, η, ξ)2,

θ = λ+ i
√

2e−iλη − i
√

2eiλξ +O(L− 1, η, ξ)2,

R =
ie−iλ√

2
η − ieiλ√

2
ξ +O(L− 1, η, ξ)2, G = L− ηξ.

Since in Theorem 2.2 the distance is measured in the section λ = λ∗ whereas the
Theorem 1.1, and more generally Remark 1.2, measures it in the section θ = θ∗, we
must “translate” the estimates in (2.14) to the new section. By Lemma 2.3, let gθ be
the function such that θ = λ+ gθ(λ, L, η, ξ). Then, for � = u, s, we consider

F �(λ, θ, δ) = θ − λ+ gθ (λ, L�(λ; δ), η�(λ; δ), ξ�(λ; δ)) .

Applying the Implicit Function Theorem, Lemma 2.3 and that, by (2.13), L�(λ; 0) = 1
and η�(λ; 0) = ξ�(λ; 0) = 0, then there exist function λ̂�(θ; δ) such that F �(λ̂�(θ; δ), θ, δ) =
0 and

λ̂�(θ; δ) = θ − i
√

2e−iθη̂�(θ; δ) + i
√

2eiθ ξ̂�(θ; δ)

+O
Ä
L̂�(θ; δ)− 1, η̂�(θ; δ), ξ̂�(θ; δ)

ä2
,

(2.15)
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with η̂�(θ; δ) = η�(λ̂�(θ; δ); δ), ξ̂�(θ; δ) = ξ�(λ̂�(θ; δ); δ) and L̂�(θ; δ) = L�(λ̂�(θ; δ); δ).
Notice that, by (2.12) (plus Cauchy estimates for their derivatives) and (2.13),

λ̂�(θ; δ) = θ +O(δ4).

Thus, for any [θ1, θ2] ⊂ (0, λ0) and δ small enough, there exists [λ1, λ2] ⊂ (0, λ0) such
that, for θ ∈ [θ1, θ2] one has λ̂u,s(θ; δ) ∈ [λ1, λ2]. In addition,

L̂�(θ; δ) = L�(θ; δ) +O(δ6) = 1 +O(δ2),

η̂�(θ; δ) = η�(θ; δ) +O(δ8) = O(δ4),

ξ̂�(θ; δ) = ξ�(θ; δ) +O(δ8) = O(δ4).

(2.16)

Then, since Λu,s
∗ > 0, by (2.13) one has that L̂u,s(θ; δ) > 1 for θ ∈ [θ1, θ2]. Moreover, by

Lemma 2.3 and taking δ small enough, one has ru,s(θ)− 1 > 0.
The difference between the invariant manifolds in a section of fixed θ ∈ [θ1, θ2] is

given by

∆λ̂(θ; δ) = λ̂u(θ; δ)− λ̂s(θ; δ), ∆L̂(θ; δ) = L̂u(θ; δ)− L̂s(θ; δ),

∆η̂(θ; δ) = η̂u(θ; δ)− η̂s(θ; δ), ∆ξ̂(θ; δ) = ξ̂u(θ; δ)− ξ̂s(θ; δ).

Then, by (2.15) and (2.16), one has that

∆λ̂(θ; δ) = −i
√

2e−iθ∆η̂(θ; δ) + i
√

2eiθ∆ξ̂(θ; δ) +O
Ä
δ2∆L̂(θ; δ), δ4∆η̂(θ; δ), δ4∆ξ̂(θ; δ)

ä
.

Moreover, by the mean value theorem, (2.14) and (2.16),

∆L̂(θ; δ) = ∆L(λ̂u(θ; δ); δ) + L̂s(λ̂u(θ; δ); δ)− L̂s(λ̂s(θ; δ); δ)

=O(δ
10
3 e−

A
δ2 ) + δ2O

Ä
∆λ̂(θ; δ)

ä
.

Analogously,

∆η̂(θ; δ) = ∆η(λ̂u(θ; δ); δ) + δ4O
Ä
∆λ̂(θ; δ)

ä
,

∆ξ̂(θ; δ) = ∆η(λu(θ; δ); δ) + δ4O
Ä
∆λ̂(θ; δ)

ä
.

Therefore, using (2.14), one can conclude that

|∆λ̂(θ; δ)| = O
(
δ

4
3 e−

A
δ2

)
, |∆η̂(θ; δ)| = 6

√
2 δ

4
3 e−

A
δ2

ï
|Θ|+O

Å
1

|log δ|

ãò
,

|∆L̂(θ; δ)| = O
(
δ

10
3 e−

A
δ2

)
, ∆ξ̂(θ; δ) = ∆η̂(θ; δ).

Once we have adjusted the transverse section, it only remains to apply Lemma 2.3 to
translate these differences to polar coordinates. That is,

ru − rs = −
√

2 cos θRe ∆η̂(θ; δ)−
√

2 sin θ Im ∆η̂(θ; δ) +O(δ
10
3 e−

A
δ2 ),

Ru −Rs = −
√

2 cos θ Im ∆η̂(θ; δ) +
√

2 sin θRe ∆η̂(θ; δ) +O(δ
16
3 e−

A
δ2 ),

Gu −Gs = O(δ
10
3 e−

A
δ2 ),
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which implies

‖(ru, Ru, Gu)− (rs, Rs, Gs)‖ =
√

2 |∆η̂(θ; δ)|+O(δ
10
3 e−

A
δ2 )

=
3
√

4 δ
4
3 e−

A
δ2

ï
|Θ|+O

Å
1

|log δ|

ãò
.

To conclude the proof of Theorem 1.1, it is enough to recall that δ = µ
1
4 .

3 Proof of Theorem 2.2

In this section, we present the main steps necessary to prove Theorem 2.2 (see the
list in Section 1) and complete its proof. In Section 3.1 we summarize the results
concerning the analysis of the separatrix of the unperturbed Hamiltonian Hp (see (2.6))
done in [BGG21] (Step B). In Section 3.2, we prove the existence of parametrizations
of the perturbed invariant manifolds in suitable complexs domains (Step E). In Section
3.3, we study the difference between the perturbed manifolds near the singularities of
the perturbed separatrix. In particular, in Section 3.3.1, we summarize the results
concerning the derivation (Step C) and analysis (Step D) of the inner equation obtained
in [BGG21] and, in Section 3.3.2, we compare certain solutions of the inner equation
with the parametrizations of the perturbed manifolds by means of complex matching
techniques (Step F). Finally, in Section 3.4, we combine all the previous results to obtain
the dominant term of the difference between the invariant manifolds and prove Theorem
2.2 (Step G).

3.1 Analytical continuation of the unperturbed separatrix

The unperturbed Hamiltonian

H0(λ,Λ, x, y) = Hp(λ,Λ) +Hosc(x, y)

(see (2.9)) possesses a saddle with two separatrices in the (λ,Λ)-plane (see Figure 2).
Let us consider the real-analytic time parametrization of the separatrix with λ ∈ (0, π),

σ : R→ T× R
t 7→ σ(t) = (λh(t),Λh(t)),

(3.1)

with initial condition σ(0) = (λ0, 0) where λ0 = arccos
Ä

1
2 −
√

2
ä
∈
(

2
3π, π

)
.

The following result (which encompass Theorem 2.2, Proposition 2.3 and Corollary 2.4
in [BGG21]) gives the properties of the analytic extension of σ(t) to the domain

Πext
A,β = {t ∈ C : |Im t| < tanβRe t+A}∪

{t ∈ C : |Im t| < − tanβRe t+A} ,
(3.2)

with A as given in (1.3) (see Figure 3).
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Re t

Im t

β

iA

Πext
A,β

Figure 3: Representation of the domain Πext
A,β in (3.2).

Theorem 3.1. The real-analytic time parametrization σ defined in (3.1) satisfies:

• There exists 0 < β0 <
π
2 such that σ(t) extends analytically to ΠA,β0.

• σ(t) has only two singularities on ∂Πext
A,β0

at t = ±iA.

• There exists υ > 0 such that, for t ∈ C with |t− iA| < υ and arg (t − iA) ∈
(−3π

2 ,
π
2 ),

λh(t) = π + 3α+(t− iA)
2
3 +O(t− iA)

4
3 ,

Λh(t) = −2α+

3

1

(t− iA)
1
3

+O(t− iA)
1
3 ,

with α+ ∈ C such that α3
+ = 1

2 .

An analogous result holds for |t+ iA| < υ, arg (t+ iA) ∈ (−π
2 ,

3π
2 ) and α− = α+.

• Λh(t) has only one zero in Πext
A,β0

at t = 0.

3.2 The perturbed invariant manifolds

In this section, following the approach described in [BFG+12, BCS13, GMS16], we study
the analytic continuation of the parametrizations of the perturbed one-dimensional stable
and unstable manifolds, Wu(δ) and Ws(δ).

Since we measure the distance between the invariant manifolds in the section λ = λ∗
(see Theorem 2.2), we parameterize them as graphs with respect to λ (whenever is
possible) or, more conveniently, with respect to the independent variable u defined by
λ = λh(u).

To define these suitable parameterizations we first translate the equilibrium point
L(δ) to 0 by the change of coordinates

φeq : (λ,Λ, x, y) 7→ (λ,Λ, x, y) + L(δ). (3.3)
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Second, we consider the symplectic change of coordinates

φsep : (u,w, x, y)→ (λ,Λ, x, y), λ = λh(u), Λ = Λh(u)− w

3Λh(u)
. (3.4)

We refer to (u,w, x, y) as the separatrix coordinates.
Let us remark that φsep is not defined for u = 0 since Λh(0) = 0 (see Theorem 3.1).

We deal with this fact later when considering the domain of definition for u.
After these changes of variables, we look for the perturbed invariant manifolds as a

graph with respect to u. In other words, we look for functions

z�(u) = (w�(u), x�(u), y�(u))T , for � = u, s,

such that the invariant manifolds given in Proposition 2.1 can be expressed as

W�(δ) =

ßÅ
λh(u),Λh(u)− w�(u)

3Λh(u)
, x�(u), y�(u)

ã
+ L(δ)

™
, for � = u, s, (3.5)

with u belonging to an appropriate domain contained in Πext
A,β0

(see (3.2)). The graphs
zu and zs must satisfy the asymptotic conditions

lim
Reu→−∞

Å
wu(u)

Λh(u)
, xu(u), yu(u)

ã
= lim

Reu→+∞

Å
ws(u)

Λh(u)
, xs(u), ys(u)

ã
= 0. (3.6)

Remark 3.2. Since the Hamiltonian H is real-analytic in the sense of H(λ,Λ, x, y; δ) =
H(λ,Λ, y, x; δ) (see Proposition 2.1), then we say that z(u) = (w(u), x(u), y(u))T is
real-analytic if it satisfies

w(u) = w(u), x(u) = y(u), y(u) = x(u).

The classical way to study exponentially small splitting of separatrices, in this setting,
is to look for solutions zu and zs in a certain complex common domain containing
a segment of the real line and intersecting a O(δ2) neighborhood of the singularities
u = ±iA of the separatrix.

Recall that the invariant manifolds can not be expressed as a graph in a neighborhood
of u = 0. To overcome this technical problem, we find solutions zu and zs defined in
a complex domain, which we call boomerang domain due to its shape (see Figure 4).
Namely,

Dκ,d = {u ∈ C : |Imu| < A− κδ2 + tanβ0Reu, |Imu| < A− κδ2 − tanβ0Reu,

|Imu| > dA− tanβ1Reu} ,
(3.7)

where κ > 0 is such that A − κδ2 > 0, β0 is the constant given in Theorem 3.1 and
β1 ∈ [β0,

π
2 ) and d ∈ (1

4 ,
1
2) are independent of δ.
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Dκ,dβ0 β1

iA

i(A− κδ2)

−iA

dA

Reu

Imu

Figure 4: The boomerang domain Dκ,d defined in (3.7).

Theorem 3.3. Fix a constant d ∈ (1
4 ,

1
2). Then, there exists δ0, κ0 > 0 such that, for

δ ∈ (0, δ0), κ ≥ κ0, the graph parameterizations zu and zs introduced in (3.5) can be
extended real-analytically to the domain Dκ,d.

Moreover, there exists a real constant b1 > 0 independent of δ and κ such that, for
u ∈ Dκ,d we have that

|w�(u)| ≤ b1δ
2

|u2 +A2|
+

b1δ
4

|u2 +A2|
8
3

, |x�(u)| ≤ b1δ
3

|u2 +A2|
4
3

, |y�(u)| ≤ b1δ
3

|u2 +A2|
4
3

.

Notice that the asymptotic conditions (3.6) do not have any meaning in the domain
Dκ,d since it is bounded. Therefore, to prove the existence of zu and zs in Dκ,d one has
to start with different domains where these asymptotic conditions make sense and then
find a way to extend them real-analytically to Dκ,d. We describe the details of these
process in the following Sections 3.2.1 and 3.2.2.

3.2.1 Analytic extension of the stable and unstable manifolds

The Hamiltonian H written in separatrix coordinates (see (3.3) and (3.4)) becomes

Hsep = Hsep
0 +Hsep

1 , (3.8)

with

Hsep
0 = w +

xy

δ2
, Hsep

1 = H ◦ (φeq ◦ φsep)−Hsep
0 . (3.9)

Introducing the notation z = (w, x, y)T and defining

Asep =
i

δ2

Ñ
0 0 0
0 1 0
0 0 −1

é
, (3.10)
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the equations associated to the Hamiltonian Hsep can be written asß
u̇ = 1 + gsep(u, z),
ż = Asepz + f sep(u, z),

(3.11)

where gsep = ∂wH
sep
1 and f sep = (−∂uHsep

1 , i∂yH
sep
1 ,−i∂xHsep

1 )
T

. Consequently, the
parameterizations zu(u) and zs(u) given in (3.5) satisfy the invariance equation

∂uz
� = Asepz� +Rsep[z�], for � = u, s, (3.12)

with

Rsep[ϕ](u) =
f sep(u, ϕ)− gsep(u, ϕ)Asepϕ

1 + gsep(u, ϕ)
. (3.13)

Remark 3.4. Note that one can use this invariance equation whenever

1 + gsep(u, ϕ) = 1 + ∂wH
sep
1 (u, ϕ) 6= 0

This condition is satisfied in the different domains that are considered in this section
and in the forthcoming ones and it is checked in Appendix A (see (A.16) and (A.32)).
This fact is also used later in Section 3.3.

The first step is to look for solutions of this equation in the domains

Du,∞
ρ1

= {u ∈ C : Reu < −ρ1} , Ds,∞
ρ1

= {u ∈ C : Reu > ρ1} , (3.14)

for some ρ1 > 0, which allows us to take into account the asymptotic conditions (3.6).

Proposition 3.5. Fix ρ1 > 0. Then, there exists δ0 > 0 such that, for δ ∈ (0, δ0),
the equation (3.12) has a unique real-analytic solution z� = (w�, x�, y�)T in D�,∞ρ1 (for
� = u, s) satisfying the corresponding asymptotic condition (3.6).

Moreover, there exists b2 > 0 independent of δ such that, for u ∈ D�,∞ρ1 ,

|w�(u)e−2νu| ≤ b2δ2, |x�(u)e−νu| ≤ b2δ3, |y�(u)e−νu| ≤ b2δ3.

with ν =
»

21
8 for � = u and ν = −

»
21
8 for � = s.

This proposition is proved in Section 4.1.
To extend analytically the invariant manifolds to reach the boomerang domain Dκ,d

we have to face the problem that these parameterizations become undefined at u = 0.
To overcome it, first we extend the solutions zu and zs of Proposition 3.5 to the outer
domains (see Figure 5)

Du,out
κ,d1,ρ2

= {u ∈ C : |Imu| < A− κδ2 − tanβ0Reu,

|Imu| > d1A+ tanβ1Reu, Reu > −ρ2} ,
Ds,out
κ,d1,ρ2

=
{
u ∈ C : − u ∈ Du,out

κ,d1,ρ2

}
,

(3.15)

where d1 ∈ (1
4 ,

1
2) and ρ2 > ρ1 are fixed independent of δ, and κ > 0 is such that

A− κδ2 > 0.
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Du,out
κ,d1,ρ2

Ds,out
κ,d1,ρ2

Du,∞
ρ1 Ds,∞

ρ1

ρ1 ρ2

β0 β1

iA
iA− κδ2

d1A

−iA

u1

u1

Reu

Imu Imu

Figure 5: The outer domains Du,out
κ,d1,ρ2

and Ds,out
κ,d1,ρ2

defined in (3.15)

Proposition 3.6. Consider the functions zu, zs and the constant ρ1 > 0 obtained in
Proposition 3.5. Fix constants ρ2 > ρ1 and d1 ∈ (1

4 ,
1
2). Then, there exist δ0, κ1 > 0 such

that, for δ ∈ (0, δ0), κ ≥ κ1, the functions z� = (w�, x�, y�)T , � = u, s, can be extended
analytically to the domain D�,out

κ,d1,ρ2

Moreover, there exists b3 > 0 independent of δ and κ such that, for u ∈ D�,out
κ,d1,ρ2

,

|w�(u)| ≤ b3δ
2

|u2 +A2|
+

b3δ
4

|u2 +A2|
8
3

, |x�(u)| ≤ b3δ
3

|u2 +A2|
4
3

, |y�(u)| ≤ b3δ
3

|u2 +A2|
4
3

.

This proposition is proved in Section 4.2.
Notice that taking ρ2 big enough, d1 ≤ d and κ1 ≤ κ0 we have Dκ0,d ⊂ Ds,out

κ1,d1,ρ2
.

Therefore, for the stable manifold zs, Proposition 3.6 implies Theorem 3.3. However, we
still need to extend further zu in order to reach Dκ0,d.

3.2.2 Further analytic extension of the unstable manifold

Since by Proposition 3.6 the unstable solution zu is defined in Du,out
κ1,d1,ρ2

, To prove
Theorem 3.3 it only remains to extend it to the points in the boomerang domain Dκ0,d

which do not belong to the outer unstable domain. Namely, we extend zu to‹Dκ,d = {u ∈ C : |Imu| < A− κδ2 − tanβ0Reu,

|Imu| < dA+ tanβ1Reu, |Imu| > dA− tanβ1Reu} ,
(3.16)

for suitable κ and d (see Figure 6). Notice that ‹Dκ,d ⊂ Dκ,d and that ‹Dκ,d only contains
points at distance of u = ±iA of order 1 with respect to δ.

As we have mentioned, to measure the difference between the invariant manifolds
Wu(δ) and Ws(δ) it is convenient to parameterize them as graphs (see (3.5)). However,
these graph parametrizations are not defined at u = 0. Moreover, since all the fixed point
arguments that we apply to obtain the graph parameterizations rely on complex path
integration, we are not able to extend them to domains which are not simply connected.
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‹Dκ,d

Dκ,d

iA

−iA

dA

Reu

Imu

Figure 6: The domain ‹Dκ,d defined in (3.16).

Therefore, to reach ‹Dκ,d from Du,out
κ,d1,ρ2

, we need to switch to a different parametrization
that is well defined at u = 0.

The auxiliary parametrization we consider is the classical time-parametrization which
is associated to the Hamiltonian H in (2.5). (Recall that the graph parametrization zu

was associated to the Hamiltonian Hsep = H ◦ φeq ◦ φsep).
This analytic extension procedure has three steps:

1. We consider the outer transition domain (see Figure 7)‹Du,out
κ2,d2,d3

= {v ∈ C : |Im v| < A− κ2δ
2 − tanβ0Re v,

|Im v| > d2A+ tanβ1Re v,

|Im v| < d3A+ tanβ1Re v} ,
(3.17)

where d1 < d2 < d3 <
1
2 are independent of δ and κ2 > κ1 is such that A−κ2δ

2 > 0.

Notice that ‹Du,out
κ2,d2,d3

⊂ Du,out
κ1,d1,ρ2

.

Since u̇ = 1 + o(1) (see (3.11)), we look for a real-analytic and close to the

identity change of coordinates u = v + U(v) defined in ‹Du,out
κ2,d2,d3

such that the
time-parametrization

Γu(v) = φeq ◦ φsep(v + U(v), zu(v + U(v))) (3.18)

is a solution of the Hamiltonian H in (2.5). That is, v̇ = 1 and Γu(v) ∈ Wu(δ) for

v ∈ ‹Du,out
κ2,d2,d3

. See the details in Proposition 3.7 and Corollary 3.8 below.

2. We extend analytically the time-parametrization Γu(v) to reach the domain ‹Dκ,d.
In particular, we extend Γu to the flow domain

Dfl
κ3,d4

= {v ∈ C : |Im v| < A− κδ2 − tanβ0Re v,

|Im v| < d4A+ tanβ1Re v} ,
(3.19)
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‹Du,out
κ2,d2,d3

Du,out
κ,d1,ρ2

Dfl
κ3,d4

‹Du,out
κ2,d2,d3

d2A

d3A

iA− κ2δ
2

ρ3

d4A

iA− κ3δ
2 v1

v1

v0
Reu Re v

Imu
Im v

Figure 7: The domain ‹Du,out
κ2,d2,d3

given in (3.17) (left) and Dfl
κ3,d4

in (3.19) (right).

where d4 ∈ (d2, d3) is independent of δ and κ3 > κ2 is such that A − κ3δ
2 > 0.

Notice that, ‹Du,out
κ2,d2,d3

∩Dfl
κ3,d4

6= ∅, and ‹Dκ4,d5 ⊂ Dfl
κ3,d4

,

for d5 ∈ (d1, d4) and κ4 > κ3. See the details in Proposition 3.9.

3. We prove that there exists a real-analytic close to the identity change of variables
of the form v = u+ V(u), u ∈ ‹Dκ4,d5 , such that the function zu(u) defined by

(u, zu(u)) = (φeq ◦ φsep)−1
(

Γu(u+ V(u))
)

(3.20)

gives an invariant graph of Hsep in (3.8). See the details in Proposition 3.10 and
Corollary 3.11 below.

As a consequence, we have extended analytically zu to ‹Dκ4,d5 .
For the first step, we look for a function U such that (v + U(v), zu(v + U(v))) is a

solution of the differential equations given by the Hamiltonian Hsep in (3.8). Therefore,
U satisfies

∂v U(v) = ∂wH
sep
1 (v + U(v), zu(v + U(v))) . (3.21)

The next proposition ensures that U exists and it is well defined for v ∈ ‹Du,out
κ2,d2,d3

.

Proposition 3.7. Let the function zu and the constants ρ2, d1 and κ1 be as obtained in
Proposition 3.6 and consider constants d2, d3 ∈ (d1,

1
2) such that d2 < d3 and κ2 > κ1.

Then, there exists δ0 such that, for δ ∈ (0, δ0), the equation (3.21) has a real-analytic

solution U : ‹Du,out
κ2,d2,d3

→ C.

Moreover, for some constant b4 > 0 independent of δ and for v ∈ ‹Du,out
κ2,d2,d3

, U satisfies

|U(v)| ≤ b4δ2 and v + U(v) ∈ Du,out
κ1,d1,ρ2

.

This proposition is proved in Section 4.3. Together with Proposition 3.7 implies the
following corollary.
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Corollary 3.8. Under the hypothesis of Proposition 3.7, there exists δ0 > 0 such that,
for δ ∈ (0, δ0), the function Γu in (3.18) is well defined and real-analytic in ‹Du,out

κ2,d2,d3
.

On the following, we use without mention that Γu(v) can be split as

Γu(v) = Γh(v) + Γ̂(v), with

{
Γh = (λh,Λh, 0, 0)T ,

Γ̂ = (λ̂, Λ̂, x̂, ŷ)T .
(3.22)

The next proposition extends the parametrization Γu to the domain Dfl
κ3,d4

(see (3.19)).

Proposition 3.9. Let the function Γu and the constants d2, d3 and κ2 be as obtained in
Corollary 3.8 and Proposition 3.7 and fix d4 ∈ (d2, d3) and κ3 > κ2. Then, there exists
δ0 > 0 such that, for δ ∈ (0, δ0), Γu can be real-analytically extended to Dfl

κ3,d4
.

Moreover, there exists a constant b5 > 0 independent of δ such that, for v ∈ Dfl
κ3,d4

,

|λ̂(v)| ≤ b5δ2, |Λ̂(v)| ≤ b5δ2, |x̂(v)| ≤ b5δ3, |ŷ(v)| ≤ b5δ3.

This proposition is proved in Section 4.4.
For the third step, we “go back” to the graph parametrization zu(u) by looking for

a change v = u+ V(u) for u ∈ ‹Dκ,d. Notice that, in order to satisfy equation (3.20) and
recalling (2.10), V must be a solution of

λ̂(u+ V(u)) = λh(u)− λh(u+ V(u)). (3.23)

Then, one can easily recover the graph parametrization (wu(u), xu(u), yu(u)) using the
equations

Λh(u)− Λh(u+ V(u))− wu(u)

3Λh(u)
+ δ2LΛ(δ) = Λ̂(u+ V(u)),

xu(u) + δ3Lx(δ) = x̂(u+ V(u)),

yu(u) + δ3Ly(δ) = ŷ(u+ V(u)).

(3.24)

The next proposition ensures that V exists and it is well defined in ‹Dκ,d (see (3.16)).

Proposition 3.10. Let the function Γu and the constants d4 and κ3 be as obtained
in Proposition 3.9 and the constant d1 as obtained in Proposition 3.6. Let us consider
constants d5 ∈ (d1, d4) and κ4 > κ3. Then, there exists δ0 > 0 such that, for δ ∈ (0, δ0),

equation (3.23) has a real-analytic solution V : ‹Dκ4,d5 → C satisfying

|V(u)| ≤ b6δ2 and u+ V(u) ∈ Dfl
κ3,d4

.

for some constant b6 > 0 independent of δ and u ∈ ‹Dκ4,d5.

Proposition 3.10 is proved in Section 4.5. Summarizing all the previous results we
obtain the following result.
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Corollary 3.11. Let the function V and the constants d5 and κ4 be as obtained in
Proposition 3.10. Then, there exists δ0 > 0 such that, for δ ∈ (0, δ0), equation (3.24)

has a unique solution zu = (wu, xu, yu)T : ‹Dκ4,d5 → C3.

Moreover, there exists a constant b7 > 0 independent of δ such that, for u ∈ ‹Dκ4,d5,

|wu(u)| ≤ b7δ2, |xu(u)| ≤ b7δ3, |yu(u)| ≤ b7δ3.

To finish this section, notice that, taking ρ2 big enough, d ≥ d5 and κ0 ≥ κ4 we have
that

Dκ0,d ⊂ D
u,out
κ1,d1,ρ2

∪ ‹Dκ4,d5 , with Du,out
κ1,d1,ρ2

∩ ‹Dκ4,d5 6= ∅,

and then, Corollary 3.11 and Proposition 3.6 imply the statements of Theorem 3.3
referring to the unstable manifold zu.

3.3 A first order of the invariant manifolds near the singularities

Let us consider the difference

∆z = (∆w,∆x,∆y)T = zu − zs,

where zu and zs are the perturbed invariant graphs given in Theorem 3.3. Since zu and
zs satisfy the invariance equation (3.12), the difference ∆z satisfies the linear equation

∂u∆z(u) = Asep∆z(u) + B̃spl(u)∆z(u), (3.25)

where Asep is as given in (3.10) and

B̃spl(u) =

∫ 1

0
DzRsep[σzu + (1− σ)zs](u)dσ. (3.26)

Since zu and zs are already defined in Dκ,d, B̃spl(u) can be considered as a “known”
function.

In addition, since the graphs of zu and zs belong to the same energy level of Hsep

(see (3.8)), we have that

Hsep(u, zu(u); δ)−Hsep(u, zs(u); δ) = 0, for u ∈ Dκ,d.

Therefore, we can reduce (3.25) to a two dimensional equation. Indeed, defining Υ =
(Υ1,Υ2,Υ3) such that

Υ(u) =

∫ 1

0
DzH

sep (u, σzu(u) + (1− σ)zs(u)) dσ, (3.27)

and applying the mean value theorem we have that

Υ1(u)∆w(u) + Υ2(u)∆x(u) + Υ3(u)∆y(u) = 0.
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Notice that Υ1(u) = 1+
∫ 1

0 ∂wH
sep
1 (u, σzu(u) + (1− σ)zs(u)) dσ and therefore Υ1(u) 6= 0

for u ∈ Dκ,d (see Remark 3.4). Therefore, writing

∆w(u) = −Υ2(u)

Υ1(u)
∆x(u)− Υ3(u)

Υ1(u)
∆y(u) (3.28)

and defining ∆Φ = (∆x,∆y)T , the last two components of (3.25) are equivalent to

∂u∆Φ(u) = Aspl(u)∆Φ(u) + Bspl(u)∆Φ(u), (3.29)

where

Aspl =

Ç
i
δ2 + B̃spl

2,2 0

0 − i
δ2 + B̃spl

3,3

å
, Bspl =

Ñ
−Υ2

Υ1
B̃spl

2,1 B̃spl
2,3 −

Υ3
Υ1
B̃spl

2,1

B̃spl
3,2 −

Υ2
Υ1
B̃spl

3,1 −Υ3
Υ1
B̃spl

3,1

é
. (3.30)

Next, we give an heuristic idea of how to obtain an exponentially small bound for
∆y(u) for u ∈ Dκ,d. The case for ∆x is analogous. If we omit the influence of B̃spl, then
there exists cy ∈ C such that ∆y is of the form

∆y(u) = cy e
− i
δ2
u.

Evaluating this function at the points

u+ = i(A− κδ2), u− = −i(A− κδ2),

one has ∆y(u+) ∼ cye
A
δ2
−κ. Then, since ∆y(u+) ∼ 1, it implies that cy ∼ e−

A
δ2

+κ and,
as a consequence, ∆y is exponentially small for u ∈ R. However, we are not interested in
an upper bound of ∆y but in an asymptotic formula. Thus we have to find the constant
cy, or more precisely a good approximation of it.

To this end, we need to give the main terms of ∆y at u = u+. Likewise we need to

analyze ∆x(u) ∼ cx e
i
δ2
u at u = u−. To perform this analysis we proceed as follows:

1. We provide suitable solutions Zu,s
0 (U) of the so-called inner equation. The inner

equation, see [Bal06, BS08], describes the dominant behavior of the functions zu

and zs close to (one of) the singularities u = ±iA. In particular, it involves the
first order of the Hamiltonian Hsep close to a singularity and it is independent of
the small parameter δ. See Section 3.3.1.

2. We check how well zu,s(u) are approximated by Zu,s
0 (U) around the singularities

u = ±iA by means of a complex matching procedure. See Section 3.3.2.

3.3.1 The inner equation

In this section we summarize the results on the derivation and study of the inner equation
obtained in [BGG21]. We focus on the inner equation around the singularity u = iA,
but analogous results hold near u = −iA.
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To derive the inner equation, we look for a new Hamiltonian which is a good
approximation of Hsep, given in (3.8), in a suitable neighborhood of u = iA. First,
we scale the variables (u,w, x, y) so that the graphs zu,s(u) become O(1)-functions when
u− iA = O(δ2). Since, by Theorem 3.3, we have that

w�(u) = O(δ−
4
3 ), x�(u) = O(δ

1
3 ), y�(u) = O(δ

1
3 ), for � = u, s,

we consider the symplectic scaling φin : (U,W,X, Y )→ (u,w, x, y), given by

U =
u− iA
δ2

, W = δ
4
3
w

2α2
+

, X =
x

δ
1
3

√
2α+

, Y =
y

δ
1
3

√
2α+

, (3.31)

where α+ ∈ C is the constant given by in Theorem 3.1, which is added to avoid the
dependence of the inner equation on it. Moreover, we also perform the time scaling
τ = δ2T . We refer to (U,W,X, Y ) as the inner coordinates.

Proposition 3.12. The Hamiltonian system associated to (3.8) expressed in the inner
coordinates is Hamiltonian with respect to the symplectic form dU ∧dW + idX ∧dY and

H in = H+H in
1 , (3.32)

where

H(U,W,X, Y ) = H in(U,W,X, Y ; δ)|δ=0 = W +XY +K(U,W,X, Y ),

with

K(U,W,X, Y ) = − 3

4
U

2
3W 2 − 1

3U
2
3

Ç
1√

1 + J (U,W,X, Y )
− 1

å
,

J (U,W,X, Y ) =
4W 2

9U
2
3

− 16W

27U
4
3

+
16

81U2
+

4(X + Y )

9U

Å
W − 2

3U
2
3

ã
− 4i(X − Y )

3U
2
3

− X2 + Y 2

3U
4
3

+
10XY

9U
4
3

.

Moreover, if c−1
1 ≤ |U | ≤ c1 and |(W,X, Y )| ≤ c2 for some c1 > 1 and 0 < c2 < 1, there

exist b8, γ1, γ2 > 0 independent of δ, c1, c2 such that

|H in
1 (U,W,X, Y ; δ)| ≤ b8cγ1

1 c
γ2
2 δ

4
3 . (3.33)

This result is proven in [BGG21] in Proposition 2.5.
Now, we present the study of the inner Hamiltonian H. Denoting Z = (W,X, Y )T ,

the equations associated to the Hamiltonian H, can be written as®
U̇ = 1 + gin(U,Z),

Ż = Ain
Z + f in(U,Z),
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Du,in
κ

β0

κ

ReU

ImU

Figure 8: The inner domain Du,in
κ for the unstable case.

where

Ain =

Ñ
0 0 0
0 i 0
0 0 −i

é
, (3.34)

and f
in

= (−∂UK, i∂YK,−i∂XK)T and gin = ∂WK. We look for invariant graphs Z =
Zu

0 (U) and Z = Zs
0(U) of this equation, that satisfy the invariance equation also called

inner equation,

∂UZ
�
0 (U) = AinZ�0 +Rin[Z�0 ](U), for � = u, s, (3.35)

with

Rin
[ϕ](U) =

f in(U,ϕ)− gin(U,ϕ)Ainϕ

1 + gin(U,ϕ)
. (3.36)

These functions Zu
0 and Zs

0 will be defined in the domains

Du,in
κ = {U ∈ C : |ImU | ≥ tanβ0ReU + κ} , Ds,in

κ = −Du,in
κ ,

respectively, for some κ > 0 and with β0 as given in Theorem 3.3 (see Figure 8).
Moreover, we analyze the difference ∆Z0 = Zu

0 − Zs
0 in the overlapping domain

E in
κ = Du,in

κ ∩ Ds,in
κ ∩ {U ∈ C : ImU < 0} .

Theorem 3.13. There exist κ5, b9 > 0 such that for κ ≥ κ5, the equation (3.35) has
analytic solutions Z�0 (U) = (W �0 (U), X�0 (U), Y �0 (U))T , for U ∈ D�,inκ , � = u, s, satisfying

|U
8
3W �0 (U)| ≤ b9, |U

4
3X�0 (U)| ≤ b9, |U

4
3Y �0 (U)| ≤ b9.
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In addition, there exist Θ ∈ C, b10 > 0 independent of κ, and an analytic function
χ = (χ1, χ2, χ3)T such that, for U ∈ E in

κ ,

∆Z0(U) = Zu
0 (U)− Zs

0(U) = Θe−iU
(

(0, 0, 1)T + χ(U)
)
,

with |(U
7
3χ1(U), U2χ2(U), Uχ3(U))| ≤ b10.

This result is Theorem 2.7 of [BGG21].

Remark 3.14. To obtain the analogous result to Theorem 3.13 near the singularity
u = −iA, one must perform the change of coordinates

V =
u+ iA

δ2
, Ŵ = δ

4
3
w

2α2
−
, “X =

x

δ
1
3

√
2α−

, “Y =
y

δ
1
3

√
2α−

,

where α− ∈ C is α− = α+ (see Theorem 3.1). Then, for V ∈ D�,inκ , one can prove the
existence of the corresponding solutions

Ẑ�0 (V ) = (Ŵ �0 (V ), “X�0 (V ),“Y �0 (V ))T , where � = u, s.

Due to the real-analyticity of the problem (see Remark 3.2) we have that “X�(V ) = Y �(U).
Therefore, the difference ∆Ẑ0 = Ẑu

0 − Ẑs
0, is given asymptotically for U ∈ E in

κ by

∆Ẑ0(V ) = ΘeiV
(

(0, 1, 0)T + ζ(V )
)
,

where ζ = (ζ1, ζ2, ζ3)T satisfies |(V
7
3 ζ1(V ), V ζ2(V ), V 2ζ3(V )| ≤ C, for a constant C

independent of κ.

3.3.2 Complex matching estimates

We now study how well the solutions of the inner equation approximate the solutions
of the original system given by by Proposition 3.6 in an appropriate domain. As in the
previous section, we focus on the singularity u = iA, but analogous results can be proven
for u = −iA (see Remark 3.14). Let us recall that the functions zu,s are expressed in
the separatrix coordinates (see (3.4)) while the functions Zu,s

0 are expressed in inner
coordinates (see (3.31)).

We first define the matching domains in separatrix coordinates and, later, we translate
them to the inner coordinates. Let us consider β2, β3, and γ independent of δ and κ,
such that

0 < β2 < β0 < β3 <
π

2
, and γ ∈

ï
3

5
, 1

ã
,

with β0 as given in Theorem 3.1. Then, we define uj ∈ C j = 2, 3 (see Figure 9), as the
points satisfying:

• Imuj = − tanβjReuj +A− κδ2.
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Dmch,u
κ Dmch,s

κ

β3 β0 β2

iA iA
κδ2

δ2γ

u2

u3

u+

Imu Imu

Reu Reu

−u2

−u3

u+

Figure 9: The matching domains Dmch,u
κ and Dmch,s

κ in the outer variables.

• |uj − u+| = δ2γ , where u+ = i(A− κδ2).

• Reu2 < 0 and Reu3 > 0.

We define the matching domains in the separatrix coordinates as the triangular domains

Dmch,u
κ = u+ u2 u3

.

, Dmch,s
κ = u+ (−u2) (−u3)

.
.

Let d1, ρ2 and κ1 be as given in Proposition 3.6. Then, for κ ≥ κ1 and δ > 0 small
enough, the matching domains satisfy

Dmch,u
κ ⊂ Du,out

κ,d1,ρ2
and Dmch,s

κ ⊂ Ds,out
κ,d1,ρ2

, (3.37)

and, as a result, zu and zs are well defined in Dmch,u
κ and Dmch,s

κ , respectively.
The matching domains in inner variables are defined by

Dmch,�
κ =

¶
U ∈ C : δ2U + iA ∈ Dmch,�

κ

©
, for � = u, s, (3.38)

with

Uj =
uj − iA
δ2

, for j = 2, 3. (3.39)

Therefore, for U ∈ Dmch,�
κ ,

κ cosβ2 ≤ |U | ≤
C

δ2(1−γ)
.

By definition,
Dmch,u
κ ⊂ Du,in

κ and Dmch,s
κ ⊂ Ds,in

κ ,

for κ ≥ κ5 (see Theorem 3.13). Thus, Zu,s
0 is well defined in Dmch,u,s

κ .
In order to compare zu,s(u) and Zu,s

0 (U), we translate zu,s to inner coordinates

Z�(U) =
(
W �, X�, Y �

)T
(U) =

Ç
δ

4
3
w�

2α2
+

,
x�

δ
1
3

√
2α+

,
y�

δ
1
3

√
2α+

åT
(δ2U + iA), (3.40)
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with � = u, s and z� = (w�, x�, y�)T are given in Proposition 3.6. Therefore, by (3.37),

Z� is well defined in the matching domain Dmch,�
κ (which is expressed in inner variables).

Next theorem gives estimates for Zu,s − Zu,s
0 .

Theorem 3.15. Consider κ1 and κ5 as obtained in Proposition 3.6 and Theorem 3.13,
respectively. Then, there exist γ∗ ∈ [3

5 , 1), κ6 ≥ max {κ1, κ5} and δ0 > 0 such that, for

γ ∈ (γ∗, 1), there exists b11 > 0 satisfying that, for U ∈ Dmch,�
κ , κ ≥ κ6 and δ ∈ (0, δ0),

|U
4
3W �1 (U)| ≤ b11δ

2
3

(1−γ), |U X�1 (U)| ≤ b11δ
2
3

(1−γ), |U Y �1 (U)| ≤ b11δ
2
3

(1−γ),

with (W �1 , X
�
1 , Y

�
1 )T = Z�1 = Z� − Z�0 and � = u, s.

This theorem is proven in Section 5.

3.4 The asymptotic formula for the difference

We look for an asymptotic expression for the difference

∆Φ = (∆x,∆y)T = (xu − xs, yu − ys)T ,

where (xu, yu) and (xs, ys) are components of the perturbed invariant graphs given in
Theorem 3.3. Recall that, by (3.29), ∆Φ satisfies

∂u∆Φ(u) = Aspl(u)∆Φ(u) + Bspl(u)∆Φ(u), (3.41)

with Aspl and Bspl as given in (3.30). The equation is split as a dominant part, given
by the matrix Aspl and a small perturbation corresponding to the the matrix Bspl.
Therefore, it makes sense to look for ∆Φ as ∆Φ = ∆Φ0 + h.o.t with a suitable dominant
term ∆Φ0 = (∆x0,∆y0)T satisfying

∂u∆Φ0(u) = Aspl(u)∆Φ0(u). (3.42)

A fundamental matrix of (3.42), for u ∈ Dκ,d, is given by

M(u) =

Å
mx(u) 0

0 my(u)

ã
, (3.43)

with

mx(u) = e
i
δ2
uBx(u), Bx(u) = exp

Å∫ u

u∗

B̃spl
2,2(s)ds

ã
,

my(u) = e−
i
δ2
uBy(u), By(u) = exp

Å∫ u

u∗

B̃spl
3,3(s)ds

ã
,

(3.44)

and a fixed u∗ ∈ Dκ,d ∩ R. Then, ∆Φ0 must be of form

∆Φ0(u) =

Ç
∆x0(u)

∆y0(u)

å
=

(
c0
xmx(u)

c0
ymy(u)

)
, (3.45)
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for suitable constants c0
x, c

0
y ∈ C which we now determine.

By Theorems 3.13 and 3.15 and using the inner change of coordinates in (3.31), we
have a good approximation of ∆y(u) near the singularity u = iA given by

∆y(u) ≈
√

2α+δ
1
3 ∆Y0

Å
u− iA
δ2

ã
.

Then, taking u = u+ = i(A− κδ2), we have that

∆y(u+) ≈ ∆y0(u+) ≈
√

2α+δ
1
3 ∆Y0

Å
u+ − iA

δ2

ã
=
√

2α+δ
1
3 e−κΘ(1 + χ3(−iκ)).

Then, using that ∆y(u+) ≈ ∆y0(u+) = c0
ymy(u+), and proceeding analogously for the

component ∆x at the point u− = −i(A− κδ2) (see Remark 3.14), we take

c0
x = δ

1
3 e−

A
δ2 Θ
√

2α−B
−1
x (u−) and c0

y = δ
1
3 e−

A
δ2 Θ
√

2α+B
−1
y (u+). (3.46)

To prove Theorem 2.2, we check that ∆Φ0(u) is the leading term of ∆Φ(u), for u ∈
R ∩Dκ,d, by estimating the remainder ∆Φ1 = ∆Φ−∆Φ0.

In order to simplify the notation, throughout the rest of the document, we denote
by C any positive constant independent of δ and κ to state estimates.

3.4.1 End of the proof of Theorem 2.2

We look for ∆Φ1 as the unique solution of an integral equation. Since ∆Φ satisfies (3.41),
by the variations of constants formula

∆Φ(u) =

Å
cxmx(u)
cymy(u)

ã
+

Ü
mx(u)

∫ u

u−

m−1
x (s)π1

Ä
Bspl(s)∆Φ(s)

ä
ds

my(u)

∫ u

u+

m−1
y (s)π2

Ä
Bspl(s)∆Φ(s)

ä
ds

ê
, (3.47)

where M(u) is the fundamental matrix (3.43), s belongs to some integration path in
Dκ,d and cx and cy are defined as

cx = ∆x(u−)m−1
x (u−), cy = ∆y(u+)m−1

y (u+). (3.48)

For k1, k2 ∈ C, we define

I[k1, k2](u) =
(
k1mx(u), k2my(u)

)T
, (3.49)

and the operator

E [ϕ](u) =

Ü
mx(u)

∫ u

u−

m−1
x (s)π1

Ä
Bspl(s)ϕ(s)

ä
ds

my(u)

∫ u

u+

m−1
y (s)π2

Ä
Bspl(s)ϕ(s)

ä
ds

ê
. (3.50)
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Then, with this notation, ∆Φ0 = I[c0
x, c

0
y] (see (3.46)) and equation (3.47) is equivalent

to ∆Φ = I[cx, cy] + E [∆Φ]. Since E is a linear operator, ∆Φ1 = ∆Φ−∆Φ0 satisfies

∆Φ1(u) = I[cx − c0
x, cy − c0

y](u) + E [∆Φ0](u) + E [∆Φ1](u). (3.51)

To obtain estimates for ∆Φ1, we first prove that Id − E is invertible in the Banach
space X spl

× = X spl ×X spl, with

X spl =

®
ϕ : Dκ,d → C : ‖ϕ‖spl = sup

u∈Dκ,d

∣∣∣∣eA−|Imu|
δ2 ϕ(u)

∣∣∣∣ < +∞
´
,

endowed with the norm

‖ϕ‖spl
× = ‖ϕ1‖spl + ‖ϕ2‖spl , (3.52)

for ϕ = (ϕ1, ϕ2). Therefore, to prove Theorem 2.2 it is enough to see that ∆Φ1 satisfies

that ‖∆Φ1‖spl
× ≤ Cδ

1
3 |log δ|−1.

First, we state a lemma whose proof is postponed to Appendix B.1.

Lemma 3.16. Let κ0, δ0 be the constants given in Theorem 3.3. Then, there exists a
constant C > 0 such that, for κ ≥ κ0, δ ∈ (0, δ0) and u ∈ Dκ,d, the function Υ in
(3.27), the matrix Bspl in (3.30) and the functions Bx, By in (3.44) satisfy for κ ≥ κ0,
δ ∈ (0, δ0) and u ∈ Dκ,d,

|Υ1(u)− 1| ≤ C

κ2
, |Υ2(u)| ≤ Cδ

|u2 +A2|
4
3

, |Υ3(u)| ≤ Cδ

|u2 +A2|
4
3

, (3.53)

C−1 ≤ |B∗(u)| ≤ C, ∗ = x, y, and |Bspl
i,j (u)| ≤ C δ2

|u2 +A2|2
, i, j ∈ {1, 2} .

In the next lemma we obtain estimates for the linear operator E (see (3.50)).

Lemma 3.17. Let κ0, δ0 be the constants as given in Theorem 3.3. There exists b12 > 0
such that for δ ∈ (0, δ0) and κ ≥ κ0, the operator E : X spl

× → X spl
× in (3.50) is well

defined and satisfies that, for ϕ ∈ X spl
× ,

‖E [ϕ]‖spl
× ≤

b12

κ
‖ϕ‖spl

× .

In particular, Id− E is invertible and∥∥(Id− E)−1[ϕ]
∥∥spl

× ≤ 2 ‖ϕ‖spl
× .

Proof. Let us consider E = (E1, E2)T , ϕ ∈ X spl
× and u ∈ Dκ,d. We only prove the estimate

for E2[ϕ](u). The corresponding one for E1[ϕ](u) follows analogously.
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By the definition of my in (3.44) and Lemma 3.16, we have that

|E2[ϕ](u)| ≤ Cδ2e
Imu
δ2

∣∣∣∣∣
∫ u

u+

e−
Im s
δ2
|ϕ1(s)|+ |ϕ2(s)|
|s2 +A2|2

ds

∣∣∣∣∣
≤ Cδ2e

Imu−A
δ2 ‖ϕ‖spl

×

∣∣∣∣∣
∫ u

u+

e
|Im s|−Im s

δ2
ds

|s2 +A2|2

∣∣∣∣∣ .
Let us consider the case Imu < 0. Then, for a fixed u0 ∈ R ∩ Dκ,d, we define the
integration path ρt ⊂ Dκ,d as

ρt =

®
u+ + 2t(u0 − u+) for t ∈ (0, 1

2),

u0 + (2t− 1)(u− u0) for t ∈ [1
2 , 1).

Then,

|E2[ϕ](u)| ≤ Cδ2e−
|Imu|+A

δ2 ‖ϕ‖spl
×

∣∣∣∣∣∣
∫ 1

2

0

dt

|ρt − iA|2
+

∫ 1

1
2

e
2|Im ρt|
δ2

|ρt + iA|2
dt

∣∣∣∣∣∣ ≤ C

κ
e
|Imu|−A

δ2 ‖ϕ‖spl
× .

If Imu ≥ 0, we consider the integration path ρt = u+ + t(u − u+) for t ∈ [0, 1] and we
obtain

|E2[ϕ](u)| ≤ Cδ2e
|Imu|−A

δ2 ‖ϕ‖spl
×

∣∣∣∣∣
∫ 1

0

|u− u+|
|ρt − iA|2

dt

∣∣∣∣∣ ≤ C

κ
e
|Imu|−A

δ2 ‖ϕ‖spl
× .

Therefore, ‖E2[ϕ]‖spl ≤ C
κ ‖ϕ‖

spl
× .

Notice that, by (3.51), ∆Φ1 satisfies

(Id− E)∆Φ1(u) = I[cx − c0
x, cy − c0

y](u) + E [∆Φ0](u). (3.54)

Since, by Lemma 3.17, Id− E is invertible in X spl
× we have an explicit formula for ∆Φ1.

Nevertheless, we still need good estimates for the right hand side with respect to the
norm (3.52).

Lemma 3.18. There exist κ∗, δ0, b13 > 0 such that, for κ = κ∗ |log δ| and δ ∈ (0, δ0),

∥∥I[cx − c0
x, cy − c0

y]
∥∥spl

× ≤
b13 δ

1
3

|log δ|
and ‖E [∆Φ0](u)‖spl

× ≤
b13 δ

1
3

|log δ|
,

with I, (c0
x, c

0
y), (cx, cy), E and ∆Φ0 defined in (3.49), (3.46), (3.48), (3.50) and (3.45),

respectively.

Proof. By the definition of the function I,∥∥I[cx − c0
x, cy − c0

y]
∥∥spl

× =
∣∣cx − c0

x

∣∣ ‖mx‖spl +
∣∣cy − c0

y

∣∣ ‖my‖spl ,
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where mx and my are given in (3.44). Then, by Lemma 3.16,

‖mx‖spl = e
A
δ2 sup

u∈Dκ,d

ï
e−

Imu+|Imu|
δ2 |Bx(u)|

ò
≤ Ce

A
δ2 , ‖my‖spl ≤ Ce

A
δ2 ,

and, as a result, ∥∥I[cx − c0
x, cy − c0

y]
∥∥spl

× ≤ Ce
A
δ2
(
|cx − c0

x|+ |cy − c0
y|
)
. (3.55)

We now obtain an estimate for |cy − c0
y|. The estimate for |cx − c0

x| follows analogously.
By the definition of my (see (3.44)), one has∣∣cy − c0

y

∣∣ = e−
A
δ2

+κ ∣∣B−1
y (u+)

∣∣ |∆y(u+)−∆y0(u+)| . (3.56)

Let us denote ∆Y = Y u − Y s where Y u,s are given on (3.40). Recall that Y u,s =
Y u,s

0 +Y u,s
1 where Y u,s

0 is the third component of Zu,s
0 , the solutions of the inner equation

(see Theorems 3.13 and 3.15). We write,

∆y(u+) =
√

2α+δ
1
3 ∆Y

Å
u+ − iA

δ2

ã
=
√

2α+δ
1
3 [∆Y0 (−iκ) + Y u

1 (−iκ)− Y s
1 (−iκ)] .

By the definition of ∆y0 in (3.45) (see also (3.46)), we have ∆y0(u+) =
√

2α+δ
1
3 Θe−κ.

Then, by (3.56) and Lemma 3.16,∣∣cy − c0
y

∣∣ ≤ Cδ 1
3 e−

A
δ2

+κ
[ ∣∣∆Y0 (−iκ)−Θe−κ

∣∣+ |Y u
1 (−iκ)|+ |Y s

1 (−iκ)|
]
,

and, applying Theorems 3.13 and 3.15, we obtain∣∣cy − c0
y

∣∣ ≤ Cδ 1
3 e−

A
δ2

+κ
ï∣∣χ3(−iκ)e−κ

∣∣+
C

κ
δ

2
3

(1−γ)

ò
≤ C

κ
δ

1
3 e−

A
δ2

Ä
1 + δ

2
3

(1−γ)eκ
ä
,

where γ ∈ (γ∗, 1) with γ∗ ∈ [3
5 , 1) given in Theorem 3.15. Taking κ = κ∗ |log δ| with

0 < κ∗ <
2
3(1− γ), we obtain

∣∣cy − c0
y

∣∣ ≤ Cδ
1
3

|log δ|
e−

A
δ2

Ä
1 + δ

2
3

(1−γ)−κ∗
ä
≤ Cδ

1
3

|log δ|
e−

A
δ2 .

This bound and (3.55) prove the first estimate of the lemma.
For the second estimate, it only remains to bound ∆Φ0 and apply Lemma 3.17.

Indeed, by the definition of ∆Φ0 in (3.46), Lemma 3.16 and (3.55), we have that

‖∆Φ0‖spl
× =

∥∥I[c0
x, c

0
y]
∥∥spl

× ≤ Ce
A
δ2
(∣∣c0

x

∣∣+
∣∣c0
y

∣∣) ≤ Cδ 1
3 .

Since κ = κ∗ |log δ| with 0 < κ∗ <
2
3(1−γ), Lemma 3.17 implies ‖E [∆Φ0]‖spl

× ≤
Cδ

1
3

|log δ| .
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With this lemma, we can give sharp estimates for ∆Φ1 by using equation (3.54).

Indeed, since the right hand side of this equation belongs to X spl
× , by Lemma 3.17,

∆Φ1(u) = (Id− E)−1
(
I[cx − c0

x, cy − c0
y](u) + E [∆Φ0](u)

)
.

Then, Lemmas 3.17 and 3.18 imply

‖∆Φ1‖spl
× ≤

Cδ
1
3

|log δ|
. (3.57)

To prove Theorem 2.2, it only remains to analyze Bx(u−) and By(u+).

Lemma 3.19. Let κ∗ be as given in Lemma 3.18. Then, there exists δ0 > 0 such that,
for δ ∈ (0, δ0) and κ = κ∗ |log δ|, the functions Bx, By defined in (3.44) satisfy

B−1
x (u−) = e−

4i
9

(π−λh(u∗))

Å
1 +O

Å
1

|log δ|

ãã
,

B−1
y (u+) = e

4i
9

(π−λh(u∗))

Å
1 +O

Å
1

|log δ|

ãã
,

where u± = ±i(A− κδ2).

This lemma is proven in Appendix B.2.
Let u∗ ∈ Dκ,d ∩ R. We compute the first order of ∆Φ0(u∗) = (∆x0(u∗),∆y0(u∗))

T .
Since, by Theorem 3.1, (α+)3 = (α−)3 = 1

2 , and applying Lemma 3.19 and (3.46), we
obtain

|∆x0(u∗)| = |∆y0(u∗)| = 6
√

2 |Θ| δ
1
3 e−

A
δ2

Å
1 +O

Å
1

|log δ|

ãã
.

Moreover, by (3.57),

|∆x(u∗)−∆x0(u∗)| , |∆y(u∗)−∆y0(u∗)| ≤
Cδ

1
3 e−

A
δ2

|log δ|
.

Finally, notice that the section u = u∗ ∈ Dκ,d ∩ R translates to λ = λ∗ := λh(u∗) (see
(3.4)). Moreover, since λ̇h = −3Λh (see (3.1)), one deduces that Λh(u) > 0 for u > 0.
Therefore, by the change of coordinates (3.4), Theorem 3.3 and taking δ small enough,

Λ�∗ = Λh(u∗)−
w�(u∗)

3Λh(u∗)
= Λh(u∗) +O(δ2) > 0, with � = u, s,

and, therefore using formula (3.28) for ∆w and Lemma 3.16, we obtain that

|Λu
∗ − Λs

∗| ≤ C |∆w(u∗)| ≤ Cδ |∆x(u∗)|+ Cδ |∆y(u∗)| ≤ Cδ
4
3 e−

A
δ2 .
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4 The perturbed invariant manifolds

In this section, we prove Theorem 3.3 by following the scheme detailed in Sections 3.2.1
and 3.2.2.

Throughout this section and the following ones, we denote the components of all
the functions and operators by a numerical sub-index f = (f1, f2, f3)T , unless stated
otherwise.

4.1 The invariant manifolds in the infinity domain

The first step is to prove Proposition 3.5, which deals with the proof of the existence of
parameterizations zu and zs satisfying the invariance equation (3.12) and the asymptotic
conditions (3.6). We only consider the −u− case, being the −s− case analogous.

Consider the invariance equation (3.12), ∂uz
u = Asepzu + Rsep[zu], with Asep and

Rsep defined in (3.10) and (3.13), respectively. This equation can be written as

Lzu = Rsep[zu], with Lϕ = (∂u −Asep)ϕ. (4.1)

In order to obtain a fixed point equation from (4.1), we look for a left inverse of L in a
suitable Banach space. To this end, for a fixed ρ1 > 0 and a given α ∈ R, we introduce

X∞α =

ß
ϕ : Du,∞

ρ1
→ C : ϕ real-analytic, ‖ϕ‖∞α := sup

u∈Du,∞
ρ1

|e−αuϕ(u)| <∞
™
,

and the product space X∞× = X∞2ν ×X∞ν ×X∞ν , with ν =
»

21
8 endowed with the weighted

product norm
‖ϕ‖∞× = δ ‖ϕ1‖∞2ν + ‖ϕ2‖∞ν + ‖ϕ3‖∞ν .

Next lemmas, proven in [BFG+12], give some properties of these Banach spaces and
provide a left inverse operator of L.

Lemma 4.1. Let α, β ∈ R. Then, the following statements hold:

1. If α > β ≥ 0, then X∞α ⊂ X∞β . Moreover ‖ϕ‖∞β ≤ ‖ϕ‖
∞
α .

2. If ϕ ∈ X∞α and ζ ∈ X∞β , then ϕζ ∈ X∞α+β and ‖ϕζ‖∞α+β ≤ ‖ϕ‖
∞
α ‖ζ‖

∞
β .

Lemma 4.2. The linear operator G : X∞× → X∞× given by

G[ϕ](u) =

Å∫ u

−∞
ϕ1(s)ds,

∫ u

−∞
e−

i
δ2

(s−u)ϕ2(s)ds,

∫ u

−∞
e
i
δ2

(s−u)ϕ3(s)ds

ãT
is continuous, injective and is a left inverse of the operator L.

Moreover, there exists a constant C independent of δ and ρ1 such that, for ϕ ∈ X∞× ,

‖G[ϕ]‖∞× ≤ C
(
‖ϕ1‖∞2ν + δ2 ‖ϕ2‖∞ν + δ2 ‖ϕ3‖∞ν

)
.
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Notice that the eigenvalues of the saddle point (0, 0) of Hp(λ,Λ) (see (2.6)) are

±
»

21
8 . Then, the parametrization of the separatrix σ = (λh,Λh) (see (3.1)) satisfies

λh ∈ X∞ν and Λh ∈ X∞ν . (4.2)

Therefore, zu is a solution of (4.1) satisfying the asymptotic conditions (3.6) if and only
if zu ∈ X∞× and satisfies the fixed point equation

ϕ = F [ϕ] = G ◦ Rsep[ϕ].

Thus, Proposition 3.5 is a straightforward consequence of the following proposition.

Proposition 4.3. There exists δ0 > 0 such that, for δ ∈ (0, δ0), equation ϕ = F [ϕ] has
a solution zu ∈ X∞× . Moreover, there exists a real constant b14 > 0 independent of δ
such that ‖zu‖∞× ≤ b14δ

3.

To see that F is a contractive operator, we have to pay attention to the nonlinear
terms Rsep.

Lemma 4.4. Fix % > 0 and let Rsep be the operator defined in (3.13). Then, for δ > 0
small enough2 and ‖ϕ‖∞× ≤ %δ3, there exists a constant C > 0 such that

‖Rsep
1 [ϕ]‖∞2ν ≤ Cδ

2, ‖Rsep
j [ϕ]‖∞ν ≤ Cδ, j = 2, 3,

and

‖∂wRsep
1 [ϕ]‖∞0 ≤ Cδ

2, ‖∂xRsep
1 [ϕ]‖∞ν ≤ Cδ, ‖∂yRsep

1 [ϕ]‖∞ν ≤ Cδ,
‖∂wRsep

j [ϕ]‖∞−ν ≤ Cδ, ‖∂xRsep
j [ϕ]‖∞0 ≤ C, ‖∂yRsep

j [ϕ]‖∞0 ≤ C, j = 2, 3.

The proof of this lemma is postponed to Appendix A.1.

Proof of Proposition 4.3. Consider the closed ball

B(%) =
{
ϕ ∈ X∞× : ‖ϕ‖∞× ≤ %

}
.

First, we obtain an estimate for F [0]. By Lemmas 4.2 and 4.4, if δ is small enough,

‖F [0]‖∞× ≤ Cδ ‖R
sep
1 [0]‖∞2ν + Cδ2 ‖Rsep

2 [0]‖∞ν + Cδ2 ‖Rsep
3 [0]‖∞ν ≤

1

2
b14δ

3, (4.3)

for some b14 > 0.
Then, it only remains to check that the operator F is contractive in B(b14δ

3). Let
ϕ, ϕ̃ ∈ B(b14δ

3). Then, by the mean value theorem,

Rsep
j [ϕ]−Rsep

j [ϕ̃] =

ñ∫ 1

0
DRsep

j [sϕ+ (1− s)ϕ̃]ds

ô
(ϕ− ϕ̃), j = 1, 2, 3.

2To simplify the exposition, in this lemma and in the technical lemmas from now on, we avoid referring
to the existence of δ0 and just mention that δ must be small enough. We follow the same convention for
κ whenever is needed.
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Applying Lemmas 4.1 and 4.4 and the above equality, we obtain

‖Rsep
1 [ϕ]−Rsep

1 [ϕ̃]‖∞2ν ≤ sup
ζ∈B(b14δ3)

[
‖ϕ1 − ϕ̃1‖∞2ν ‖∂wR

sep
1 [ζ]‖∞0

+ ‖ϕ2 − ϕ̃2‖∞ν ‖∂xR
sep
1 [ζ]‖∞ν + ‖ϕ3 − ϕ̃3‖∞ν ‖∂yR

sep
1 [ζ]‖∞ν

]
≤ Cδ ‖ϕ− ϕ̃‖∞× ,

‖Rsep
j [ϕ]−Rsep

j [ϕ̃]‖∞ν ≤ sup
ζ∈B(b14δ3)

[
‖ϕ1 − ϕ̃1‖∞2ν ‖∂wR

sep
j [ζ]‖∞−ν

+ ‖ϕ2 − ϕ̃2‖∞ν ‖∂xR
sep
j [ζ]‖∞0 + ‖ϕ3 − ϕ̃3‖∞ν ‖∂yR

sep
j [ζ]‖∞0

]
≤ C ‖ϕ− ϕ̃‖∞× .

for j = 2, 3. Then, by Lemma 4.2 and taking δ small enough,

‖F [ϕ]−F [ϕ̃]‖∞× ≤Cδ ‖R
sep
1 [ϕ]−Rsep

1 [ϕ̃]‖∞2ν + Cδ2
3∑
j=2

‖Rsep
j [ϕ]−Rsep

j [ϕ̃]‖∞ν

≤Cδ2 ‖ϕ− ϕ̃‖∞× ≤
1

2
‖ϕ− ϕ̃‖∞× .

(4.4)

Then, by the definition of % in (4.3) and (4.4), F : B(b14δ
3) → B(b14δ

3) is well defined
and contractive. Therefore, F has a fixed point zu ∈ B(b14δ

3).

4.2 The invariant manifolds in the outer domain

To prove Proposition 3.6, we must extend analytically the parameterizations zu and zs

given in Proposition 3.5 to the outer domains, Du,out
κ,d1,ρ2

and Ds,out
κ,d1,ρ2

, respectively. Again,
we only deal with the unstable -u- case, being the -s- case analogous. We prove the
existence of zu by means of a fixed point argument in a suitable Banach space.

Given α, β ∈ R, we consider the norm

‖ϕ‖out
α,β = sup

u∈Du,out
κ,d1,ρ2

∣∣∣g−αδ (u)
(
u2 +A2

)β
ϕ(u)

∣∣∣ , gδ(u) =
1

|u2 +A2|
+

δ2

|u2 +A2|
8
3

,

and the associated Banach space

X out
α,β =

¶
ϕ : Du,out

κ,d1,ρ2
→ C : ϕ real-analytic, ‖ϕ‖out

α,β <∞
©
. (4.5)

These Banach spaces have the following properties, which we use without mentioning
along the section. Their proof follows the same lines as the proof of Lemma 7.1 in
[BFG+12].

Lemma 4.5. The following statements hold:

1. If ϕ ∈ X out
α,β1

, then ϕ ∈ X out
α,β2

for any β2 ∈ R and®
‖ϕ‖out

α,β2
≤ C ‖ϕ‖out

α,β1
, for β2 − β1 > 0,

‖ϕ‖out
α,β2
≤ C(κδ2)β2−β1 ‖ϕ‖out

α,β1
, for β2 − β1 ≤ 0.
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2. If ϕ ∈ X out
α,β1

, then ϕ ∈ X out
α−1,β2

for any β2 ∈ R and‖ϕ‖
out
α−1,β2

≤ C ‖ϕ‖out
α,β1

, for β2 − β1 >
5
3 ,

‖ϕ‖out
α−1,β2

≤ Cδ2(κδ2)(β2−β1)− 8
3 ‖ϕ‖out

α,β1
, for β2 − β1 ≤ 5

3 .

3. If ϕ ∈ X out
α1,β1

and ζ ∈ X out
α2,β2

, then ϕζ ∈ X out
α1+α2,β1+β2

and

‖ϕζ‖out
α1+α2,β1+β2

≤ ‖ϕ‖out
α1,β1

‖ζ‖out
α2,β2

.

4. If ϕ ∈ X out
0,β+1 and ζ ∈ X out

0,β+ 8
3

, then ϕ+ δ2ζ ∈ X out
1,β and

‖ϕ+ δ2ζ‖out
1,β ≤ ‖ϕ‖

out
0,β+1 + ‖ζ‖out

0,β+ 8
3
.

Let us recall that, by Proposition 3.5, the invariance equation (3.12) has a unique
solution zu in the domain Du,∞

ρ1 satisfying the asymptotic condition (3.6). Our objective
is to extend analytically zu to the outer domain Du,out

κ,d1,ρ2
. Notice that, since ρ1 < ρ2,

Du,∞
ρ1 ∩Du,out

κ,d1,ρ2
6= ∅ (see definitions (3.14) and (3.15) of Du,∞

ρ1 and Du,out
κ,d1,ρ2

).
As explained in Section 4.1, equation (3.12) is equivalent to Lzu = Rsep[zu] with

Lϕ = (∂u − Asep)ϕ and Rsep given in (3.13). In the following lemma we introduce a
right-inverse operator of L defined on X out

α,β .

Lemma 4.6. Let us consider the operator G[ϕ] = (G1[ϕ1],G2[ϕ2],G3[ϕ3])T , such that

G[ϕ](u) =

Ç∫ u

−ρ2

ϕ1(s)ds,

∫ u

u1

e−
i
δ2

(s−u)ϕ2(s)ds,

∫ u

u1

e
i
δ2

(s−u)ϕ3(s)ds

åT
,

where u1 and u1 are the vertices of the domain Du,out
κ,d1,ρ2

(see Figure 5). Fix β > 0. There
exists a constant C such that:

1. If ϕ ∈ X out
1,β , then G1[ϕ] ∈ X out

1,β−1 and ‖G1[ϕ]‖out
1,β−1 ≤ C ‖ϕ‖

out
1,β .

2. If ϕ ∈ X out
0,β , then Gj [ϕ] ∈ X out

0,β , j = 2, 3, and ‖Gj [ϕ]‖out
0,β ≤ Cδ

2 ‖ϕ‖out
0,β .

The proof of this lemma follows the same lines as the proof of Lemma 7.3 in
[BFG+12].

Consider u1 and u1 as in Figure 5 and the function

F 0(u) =
(
wu(−ρ2), xu(u1)e−

i
δ2

(u1−u), yu(u1)e
i
δ2

(u1−u)
)T

.

Notice that, since 0 < ρ1 < ρ2, we have {−ρ2, u1, u1} ∈ Du,∞
ρ1 . Therefore, by Proposition 3.5,

zu is already defined at these points. We define the fixed point operator

F [ϕ] = F 0 + G ◦ Rsep[ϕ], (4.6)
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where the operator Rsep is given in (3.13). Since L(F 0) = 0, by Lemma 4.6, a solution
zu = F [zu] satisfies Lzu = Rsep[zu] and by construction is the real-analytic continuation
of the function zu obtained in Proposition 3.5.

We rewrite Proposition 3.6 in terms of the operator F defined in the Banach space

X out
× = X out

1,0 ×X out
0, 4

3

×X out
0, 4

3

,

endowed with the norm

‖ϕ‖out
× = δ ‖ϕ1‖out

1,0 + ‖ϕ2‖out
0, 4

3
+ ‖ϕ3‖out

0, 4
3
.

Proposition 4.7. There exist δ0, κ1 > 0 such that, for δ ∈ (0, δ0) and κ ≥ κ1, the fixed
point equation zu = F [zu] has a unique solution zu ∈ X out

× . Moreover, there exists a real
constant b15 > 0 independent of δ and κ such that ‖zu‖out

× ≤ b15δ
3.

We prove this proposition through a fixed point argument. First, we state a technical
lemma, whose proof is postponed until Appendix A.2. Fix % > 0 and define

B(%) =
¶
ϕ ∈ X out

× : ‖ϕ‖out
× ≤ %

©
.

Lemma 4.8. Fix % > 0 and let Rsep be the operator defined in (3.13). For δ > 0 small
enough and κ > 0 big enough, there exists a constant C > 0 such that, for ϕ ∈ B(%δ3),

‖Rsep
1 [ϕ]‖out

1,1 ≤ Cδ
2, ‖Rsep

j [ϕ]‖out
0, 4

3

≤ Cδ, j = 2, 3,

and,

‖∂wRsep
1 [ϕ]‖out

1, 1
3
≤ Cδ2, ‖∂xRsep

1 [ϕ]‖out
0, 7

3
≤ Cδ, ‖∂yRsep

1 [ϕ]‖out
0, 7

3
≤ Cδ,

‖∂wRsep
2 [ϕ]‖out

0, 2
3

≤ Cδ, ‖∂xRsep
2 [ϕ]‖out

1,− 2
3

≤ C, ‖∂yRsep
2 [ϕ]‖out

0,2 ≤ Cδ2,

‖∂wRsep
3 [ϕ]‖out

0, 2
3

≤ Cδ, ‖∂xRsep
3 [ϕ]‖out

0,2 ≤ Cδ2, ‖∂yRsep
3 [ϕ]‖out

1,− 2
3

≤ C.

The next lemma gives properties of the operator F .

Lemma 4.9. Fix % > 0 and let F be the operator defined in (4.6). Then, for δ > 0
small enough and κ > 0 big enough, there exist constants b16, b17 > 0 independent of δ
and κ such that

‖F [0]‖out
× ≤ b16δ

3.

Moreover, for ϕ, ϕ̃ ∈ B(%δ3),

δ ‖F1[ϕ]−F1[ϕ̃]‖out
1,0 ≤ b17

Å
δ

κ2
‖ϕ1 − ϕ̃1‖out

1,0 + ‖ϕ2 − ϕ̃2‖out
0, 4

3
+ ‖ϕ3 − ϕ̃3‖out

0, 4
3

ã
,

‖Fj [ϕ]−Fj [ϕ̃]‖out
0, 4

3
≤ b17

κ2
‖ϕ− ϕ̃‖out

× , for j = 2, 3.
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Proof. First, we obtain the estimates for F [0]. By Proposition 3.5, we have that

|wu(−ρ2)| ≤ Cδ2, |xu(u1)| ≤ Cδ3, |yu(u1)| ≤ Cδ3,

and, as a result, ‖F 0‖out
× ≤ Cδ3. Then, applying Lemmas 4.6 and 4.8, we obtain

‖F [0]‖out
× ≤

∥∥F 0
∥∥out

× + Cδ ‖Rsep
1 [0]‖out

1,1 + Cδ2∑3
j=2‖R

sep
j [0]‖out

0, 4
3

≤ Cδ3.

For the second statement, since F = F 0+G◦Rsep and G is linear, we need to compute
estimates for Rsep[ϕ]−Rsep[ϕ̃]. Then, by the mean value theorem,

Rsep
j [ϕ]−Rsep

j [ϕ̃] =

ñ∫ 1

0
DRsep

j [sϕ+ (1− s)ϕ̃]ds

ô
(ϕ− ϕ̃), j = 1, 2, 3.

In addition, by Lemmas 4.5 and 4.8, for j = 2, 3, we have the estimates

‖∂wRsep
1 [ϕ]‖out

0,1 ≤
C

κ2
, ‖∂xRsep

1 [ϕ]‖out
1,− 1

3
≤ C

δ
, ‖∂yRsep

1 [ϕ]‖out
1,− 1

3
≤ C

δ
,

‖∂wRsep
j [ϕ]‖out

−1, 4
3

≤ C

κ2δ
, ‖∂xRsep

j [ϕ]‖out
0,0 ≤

C

κ2δ2
, ‖∂yRsep

j [ϕ]‖out
0,0 ≤

C

κ2δ2
.

We estimate each component separately. For j = 1, we have that

δ‖Rsep
1 [ϕ]−Rsep

1 [ϕ̃]‖out
1,1 ≤ sup

ζ∈B(%δ3)

δ
[
‖ϕ1 − ϕ̃1‖out

1,0 ‖∂wR
sep
1 [ζ]‖out

0,1

+ ‖ϕ2 − ϕ̃2‖out
0, 4

3
‖∂xRsep

1 [ζ]‖out
1,− 1

3
+ ‖ϕ3 − ϕ̃3‖out

0, 4
3
‖∂yRsep

1 [ζ]‖out
1,− 1

3

]
≤ Cδ
κ2
‖ϕ1 − ϕ̃1‖out

1,0 + C ‖ϕ2 − ϕ̃2‖out
0, 4

3
+ C ‖ϕ3 − ϕ̃3‖out

0, 4
3
.

Analogously, for j = 2, 3, we obtain

‖Rsep
j [ϕ]−Rsep

j [ϕ̃]‖out
0, 4

3

≤ sup
ζ∈B(%δ3)

[
‖ϕ1 − ϕ̃1‖out

1,0 ‖∂wR
sep
j [ζ]‖out

−1, 4
3

+ ‖ϕ2 − ϕ̃2‖out
0, 4

3
‖∂xRsep

j [ζ]‖out
0,0 + ‖ϕ3 − ϕ̃3‖out

0, 4
3
‖∂yRsep

j [ζ]‖out
0,0

]
≤ C

κ2δ2
‖ϕ− ϕ̃‖out

× ,

and, using Lemma 4.6, we obtain the estimates for the second statement.

Lemma 4.9 shows that, by assuming κ big enough, operators F2 and F3 have Lipschitz
constant less than 1 with the norm in X out

× . However, we are not able to control the
Lipschitz constant of F1. To overcome this problem, we apply a Gauss-Seidel argument
to define a new operator‹F [z] = ‹F [(w, x, y)] =

Ñ
F1[w,F2[z],F3[z]]

F2[z]
F3[z]

é
,

which turns out to be contractive in a suitable ball and has the same fixed points as F .
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End of the proof of Proposition 4.7. We look for a fixed point of ‹F . First, we obtain an
estimate for ‖‹F [0]‖out

× . We rewrite it as‹F [0] = F [0] +
(
F1[0,F2[0],F3[0]]−F1[0], 0, 0

)T
,

and we notice that, by Lemma 4.9, ‖(0,F2[0],F3[0])‖out
× ≤ ‖F [0]‖out

× ≤ Cδ3. Then,
applying Lemma 4.9, there exists constant b15 > 0 such that

‖‹F [0]‖out
× ≤ ‖F [0]‖out

× + ‖F1[0,F2[0],F3[0]]−F1[0]‖out
1,0

≤ ‖F [0]‖out
× + C ‖F2[0]‖out

0, 4
3

+ C ‖F3[0]‖out
0, 4

3
≤ 1

2
b15δ

3.
(4.7)

Now, we prove that the operator ‹F is contractive in B(b15δ
3). Indeed, by Lemma 4.9,

we have that, for ϕ, ϕ̃ ∈ B(b15δ
3),

δ‖‹F1[ϕ]− ‹F1[ϕ̃]‖out
1,0 ≤ C

Å
δ

κ2
‖ϕ1 − ϕ̃1‖out

1,0 + ‖F2[ϕ]−F2[ϕ̃]‖out
0, 4

3
+ ‖F3[ϕ]−F3[ϕ̃]‖out

0, 4
3

ã
≤ Cδ

κ2
‖ϕ1 − ϕ̃1‖out

1,0 +
2C

κ2
‖ϕ− ϕ̃‖out

× ≤ C

κ2
‖ϕ− ϕ̃‖out

× ,

‖‹Fj [ϕ]− ‹Fj [ϕ̃]‖out
0, 4

3

= ‖Fj [ϕ]−Fj [ϕ̃]‖out
0, 4

3
≤ C

κ2
‖ϕ− ϕ̃‖out

× , for j = 2, 3.

Then, for κ > 0 big enough, we have that ‖‹F [ϕ] − ‹F [ϕ̃]‖out
× ≤ 1

2 ‖ϕ− ϕ̃‖
out
× . Together

with (4.7), this implies that ‹F : B(b15δ
3) → B(b15δ

3) is well defined and contractive.

Therefore, ‹F has a fixed point zu ∈ B(b15δ
3).

4.3 Switching to the time-parametrization

In this section, by means of a fixed point argument, we prove Proposition 3.7. That is,
we obtain a change of variables U satisfying (3.21), that is

∂vU = R[U ] where R[U ] = ∂wH
sep
1 (v + U(v), zu(v + U(v))) . (4.8)

To this end, we consider the Banach space

Yout =

ß
ϕ : ‹Du,out

κ2,d2,d3
→ C : ϕ real-analytic, ‖ϕ‖sup := sup

v∈‹Du,out
κ2,d2,d3

|U(v)| <∞
™
. (4.9)

First, we state a technical lemma. Its proof is a direct consequence of the proof of
Lemma 4.8 (see also Remark A.7 in Appendix A.2).

Lemma 4.10. Fix % > 0. For δ > 0 small enough and ϕ ∈ Yout such that ‖ϕ‖sup ≤ %δ2,
there exists a constant C > 0 such that ‖R[ϕ]‖sup ≤ Cδ2 and ‖DR[ϕ]‖sup ≤ Cδ2.
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Let us define the operators

G[ϕ](v) =

∫ v

ρ3

ϕ(s)ds, and F = G ◦R, (4.10)

where ρ3 ∈ R is the rightmost vertex of the domain ‹Du,out
κ2,d2,d3

(see Figure 7). Then, a
solution U = F [U ] satisfies equation (4.8) and the initial condition U(ρ3) = 0.

Proof of Proposition 3.7. The operator G in (4.10) satisfies that, for ϕ ∈ Yout,

‖G[ϕ]‖sup ≤ C‖ϕ‖sup. (4.11)

Then, by Lemma 4.10, there exists b4 > 0 independent of δ such that

‖F [0]‖sup ≤ C‖R[0]‖sup ≤
1

2
b4δ

2. (4.12)

Moreover, for ϕ, ϕ̃ ∈ B(b4δ
2) =

{
ϕ ∈ Yout : ‖ϕ‖sup ≤ b4δ2

}
, by the mean value theorem

and Lemma 4.10,

‖R[ϕ]−R[ϕ̃]‖sup =

∥∥∥∥∫ 1

0
DR[sϕ+ (1− s)ϕ̃]ds

∥∥∥∥
sup

‖ϕ− ϕ̃‖sup ≤ Cδ2‖ϕ− ϕ̃‖sup.

Then, by Lemma 4.10, (4.11), (4.12) and taking δ small enough, F is well defined and
contractive in B(b4δ

2) and, as a result, has a fixed point U ∈ B(b4δ
2).

It only remains to check that v + U(v) ∈ Du,out
κ1,d1,ρ2

for v ∈ ‹Du,out
κ2,d2,d3

. Indeed, since

‖U‖sup ≤ b4δ2 and ‹Du,out
κ2,d2,d3

⊂ Du,out
κ,d1,ρ2

, taking δ small enough the statement is proved.

4.4 Extending the time-parametrization

In this section, we extend analytically the parametrization Γu given in Corollary 3.8
from the transition domain Du,out

κ,d1,ρ2
to the flow domain Dfl

κ3,d4
(see (3.19)).

Since Γu satisfies the equations given by H in (2.5), Γ̂ = Γu−Γh (see (3.22)) satisfies

∂vλ̂ = −3Λ̂ + ∂ΛH1(Γh + Γ̂; δ),

∂vΛ̂ = −V ′(λh + λ̂) + V ′(λh)− ∂λH1(Γh + Γ̂; δ),

∂vx̂ = i
x̂

δ2
+ i∂yH1(Γh + Γ̂; δ),

∂vŷ = −i ŷ
δ2
− i∂xH1(Γh + Γ̂; δ),

which can be rewritten as Lfl Γ̂ = Rfl[Γ̂], where

Lflϕ =
Ä
∂v −Afl(v)

ä
ϕ, Afl(v) =

Ü
0 −3 0 0

−V ′′(λh(v)) 0 0 0
0 0 i

δ2 0
0 0 0 − i

δ2

ê
, (4.13)
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and

Rfl[ϕ](v) =

Ü
∂ΛH1(Γh(v) + ϕ(v); δ)

T [ϕ1](v)− ∂λH1(Γh(v) + ϕ(v); δ)
i∂yH1(Γh(v) + ϕ(v); δ)
−i∂xH1(Γh(v) + ϕ(v); δ)

ê
, (4.14)

with T [ϕ1] = −V ′(λh + ϕ1) + V ′(λh) + V ′′(λh)ϕ1.

We look for Γ̂ through fixed point argument in the Banach space X fl
× =

(
X fl
)4

, where

X fl =

ß
ϕ : Dfl

κ3,d4
→ C : ϕ real-analytic, ‖ϕ‖fl := sup

v∈Dfl
κ3,d4

|ϕ(v)| <∞
™
,

endowed with the norm

‖ϕ‖fl× = δ‖ϕ1‖fl + δ‖ϕ2‖fl + ‖ϕ3‖fl + ‖ϕ4‖fl.

A fundamental matrix of the linear equation ξ̇ = Afl(v)ξ is

Φ(v) =

á
3Λh(v) 3fh(v) 0 0

−Λ̇h(v) −ḟh(v) 0 0

0 0 e
i
δ2
v 0

0 0 0 e−
i
δ2
v

ë
with fh(v) = Λh(v)

∫ v

v0

1

Λ2
h(s)

ds.

Note that fh(v) is analytic at v = 0.
To look for a right inverse of operator Lfl in (4.13), let us consider the linear operator

Gfl[ϕ](v) =

Å∫ v

v0

ϕ1(s)ds,

∫ v

v0

ϕ2(s)ds,

∫ v

v1

ϕ3(s)ds,

∫ v

v1

ϕ4(s)ds

ãT
,

where v0, v1 and v1 are the vertexs of the domain Dfl
κ3,d4

(see Figure 7). Then, the

linear operator Ĝ[ϕ] = ΦG[Φ−1ϕ] is a right inverse of the operator Lfl, and, for ϕ ∈ X fl
×,

satisfies

‖Ĝ1[ϕ]‖fl + ‖Ĝ2[ϕ]‖fl ≤ C
Ä
‖ϕ1‖fl + ‖ϕ2‖fl

ä
, ‖Ĝj [ϕ]‖fl ≤ Cδ2‖ϕj‖fl for j = 3, 4. (4.15)

Next, we state a technical lemma providing estimates for Rfl. Its proof is a direct
consequence of the definition of the operator in (4.14) and Corollary A.2, which gives
estimates for HPoi

1 in (2.1) (see also the change of coordinates (2.3) which relates HPoi
1

and H1).

Lemma 4.11. Fix % > 0 and consider ϕ ∈ X fl
× with ‖ϕ‖fl× ≤ %δ3. Then, for δ > 0 small

enough , there exists a constant C > 0 such that the operator Rfl in (4.14) satisfies

‖Rfl
1 [ϕ]‖fl, ‖Rfl

2 [ϕ]‖fl ≤ Cδ2, ‖Rfl
3 [ϕ]‖fl, ‖Rfl

4 [ϕ]‖fl ≤ Cδ,
‖DjRfl

l [ϕ]‖fl ≤ Cδ, j, l ∈ {1, 2, 3, 4} .
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Denote by ej , j = 1, 2, 3, 4, the canonical basis in R4. Noticing that, by Corollary 3.8,

the function Γ̂ = (λ̂, Λ̂, x̂, ŷ) is already defined at {v0, v1, v1} ∈ ‹Du,out
κ2,d2,d3

, we can consider
the function

F 0(v) = Φ(v)
î
Φ−1(v0)

Ä
λ̂(v0)e1 + Λ̂(v0)e2

ä
+ x̂(v1)Φ−1(v1)e3 + ŷ(v1)Φ−1(v1)e4

ó
.

Then, since Ĝ(F 0) = 0, it only remains to check that F = F 0 + Ĝ ◦ Rfl is contractive in
a suitable ball of X fl

×.

End of proof of Proposition 3.9. First, we obtain a suitable estimate for F [0]. Applying

Propositions 3.6 and 3.7 and using (3.18) we obtain that, for v ∈ ‹Du,out
κ2,d2,d3

,

|λ̂(v)| ≤ Cδ2, |Λ̂(v)| ≤ Cδ2, |x̂(v)| ≤ Cδ3, |ŷ(v)| ≤ Cδ3.

Therefore, since {v0, v1, v1} ∈ ‹Du,out
κ2,d2,d3

,

‖F 0‖fl× ≤ Cδ|λ̂(v0)|+ Cδ|Λ̂(v0)|+ C |x̂(v1)|+ C |ŷ(v1)| ≤ Cδ3,

and, applying (4.15) and Lemma 4.11, there exists b5 > 0 independent of δ such that

‖F [0]‖fl× ≤ ‖F 0‖fl× + ‖G ◦ Rfl[0]‖fl× ≤
1

2
b5δ

3. (4.16)

Let us define B(b5δ
3) =

{
ϕ ∈ X fl

× : ‖ϕ‖fl× ≤ b5δ3
}

. By the mean value theorem and
Lemma 4.11, for ϕ, ϕ̃ ∈ B(b5δ

3) and j = 1, .., 4, we obtain

‖Rfl
j [ϕ]−Rfl

j [ϕ̃]‖fl ≤
4∑
l=1

ñ
sup

ζ∈B(b5δ3)

¶
‖DlRfl

j [ζ]‖fl
©
‖ϕl − ϕ̃l‖fl

ô
≤ C‖ϕ− ϕ̃‖fl×.

Then, by (4.15) and taking δ small enough,

‖F [ϕ]−F [ϕ̃]‖fl× ≤Cδ

 2∑
j=1

‖Rfl
j [ϕ]−Rfl

j [ϕ̃]‖fl
+ Cδ2

[
4∑
l=3

‖Rfl
l [ϕ]−Rfl

l [ϕ̃]‖fl
]

≤Cδ‖ϕ− ϕ̃‖fl× ≤
1

2
‖ϕ− ϕ̃‖fl×.

(4.17)

Therefore, by (4.16) and (4.17), F is well defined and contractive in B(b5δ
3) and, as

a result, has a fixed point Γ̂ ∈ B(b5δ
3).

4.5 Back to a graph parametrization

Now we prove Proposition 3.10 by obtaining the change of variables V : ‹Dκ4,d5 → C as
a solution of equation (3.23). This equation is equivalent to V = N [V] with

N [ϕ](u) =
1

3Λh(u)

î
λ̂(u+ ϕ(u)) + λh(u+ ϕ(u))− λh(u) + 3Λh(u)ϕ(u)

ó
.
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We obtain V by means of a fixed point argument in the Banach space

Ỹ =

ß
ϕ : ‹Dκ4,d5 → C : ϕ real-analytic, ‖ϕ‖sup := sup

u∈‹Dκ4,d5

|ϕ(u)| <∞
™
.

Proof of Proposition 3.10. Let us first notice that, by Theorem 3.1,

C−1 ≤ ‖Λh‖sup ≤ C. (4.18)

Since d5 < d4 and κ4 > κ3, we have that ‹Dκ4,d5 ⊂ Dfl
κ3,d4

, (see (3.16) and (3.19)).
Then, applying Proposition 3.9, there exists b6 > 0 independent of δ such that

‖N [0]‖sup ≤
1

3
‖(Λh)−1‖sup‖λ̂‖sup ≤

1

2
b6δ

2.

Next, we compute the Lipschitz constant of N in B(b6δ
2) = {ϕ ∈ Ỹ : ‖ϕ‖sup ≤ b6δ

2
}

.
By the mean value theorem, for ϕ, ϕ̃ ∈ B(b6δ

2) and ϕs = (1− s)ϕ+ sϕ̃, we have that

‖N [ϕ]−N [ϕ̃]‖sup ≤ sup
u∈‹Dκ4,d5

∣∣∣∣∣
∫ 1

0
DN [ϕs](u)ds

∣∣∣∣∣ ‖ϕ− ϕ̃‖sup.

For u ∈ ‹Dκ4,d5 and δ small enough, we have that u + ϕs(u) ∈ Dfl
κ3,d4

. Therefore, by

Proposition 3.9, (4.18) and recalling that λ̇h = −3Λh,

|DN [ϕs](u)| ≤ 1

3 |Λh(u)|
¶
|∂vλ̂(u+ ϕs(u))|+ |Λh(u+ ϕs(u))− Λh(u)|

©
≤ Cδ2,

and, taking δ small enough, ‖N [ϕ]−N [ϕ̃]‖sup ≤ 1
2‖ϕ−ϕ̃‖sup. Therefore, the operator N

is well defined and contractive in B(b6δ
2) and, as a result, has a fixed point V ∈ B(b6δ

2).

Besides, since ‹Dκ4,d5 ⊂ Dfl
κ3,d4

, we obtain that u+ V(u) ∈ Dfl
κ3,d4

for u ∈ ‹Dκ4,d5 and
δ small enough.

5 Complex matching estimates

This section is devoted to prove Theorem 3.15 which provides estimates for Zu,s
1 =

Zu,s − Zu,s
0 in the matching domains Dmch,u

κ and Dmch,s
κ , given in (3.38). We only prove

the theorem for Zu
1 , being the proof for Zs

1 analogous.

5.1 Preliminaries and set up

Proposition (3.12) shows that the Hamiltonian Hsep expressed in inner coordinates, that
is H in as given in (3.32), is of the form H in = W +XY +K +H in

1 . Then, the equation
associated to H in can be written as®

U̇ = 1 + gin(U,Z) + gmch(U,Z),

Ż = Ain
Z + f in(U,Z) + fmch(U,Z),

(5.1)
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where Ain is given in (3.34) and

f
in

= (−∂UK, i∂YK,−i∂XK)T , gin = ∂WK,

fmch =
Ä
−∂UH in

1 , i∂YH
in
1 ,−i∂XH in

1

äT
, gmch = ∂WH

in
1 .

(5.2)

Notice that, since (u, zu(u)) = φin(U,Zu(U)) (see (3.40)), (U,Zu(U)) is an invariant
graph of equation (5.1). Therefore, Zu satisfies the invariance equation

∂UZ
u = AinZu +Rin[Zu] +Rmch[Zu],

with Rin as defined in (3.36) and

Rmch[ϕ] =
Ainϕ+ f

in
(U,ϕ) + fmch(U,ϕ)

1 + gin(U,ϕ) + gmch(U,ϕ)
−Ainϕ−Rin[ϕ]. (5.3)

Similarly Zu
0 satisfies the invariance equation ∂UZ

u
0 = AinZu

0 + Rin[Zu
0 ] (see Theorem

3.13) and, therefore, the difference Zu
1 = Zu − Zu

0 must be a solution of

∂UZ
u
1 = AinZu

1 + B(U)Zu
1 +Rmch[Zu], (5.4)

with

B(U) =

∫ 1

0
DZR

in
[(1− s)Zu

0 + sZu](U)ds. (5.5)

The key point is that, since the existence of both Zu
0 and Zu is already been proven, we

can think of B(U) andRmch[Zu](U) as known functions. Therefore, equation (5.4) can be
understood as a non homogeneous linear equation with independent term Rmch[Zu](U).
Moreover, defining the linear operator Linϕ = (∂U −Ain)ϕ, equation (5.4) is equivalent
to

LinZu
1 (U) = B(U)Zu

1 (U) +Rmch[Zu](U). (5.6)

We prove Theorem 3.15 by solving this equation (with suitable initial conditions). To
this end, we define the Banach space Xmch

× = Xmch
4
3

×Xmch
1 ×Xmch

1 with

Xmch
α =

{
ϕ : Dmch,u

κ → C : ϕ real-analytic, ‖ϕ‖mch
α = sup

U∈Dmch,u
κ

|Uαϕ(U)| <∞

}
,

endowed with the product norm ‖ϕ‖mch
× = ‖ϕ1‖mch

4
3

+ ‖ϕ2‖mch
1 + ‖ϕ3‖mch

1 .

Next lemma gives some properties of these Banach spaces.

Lemma 5.1. Let γ ∈ [3
5 , 1) and α, β ∈ R. The following statements hold:

1. If ϕ ∈ Xmch
α , then ϕ ∈ Xmch

β for any β ∈ R. Moreover,®
‖ϕ‖mch

β ≤ Cκβ−α ‖ϕ‖mch
α , for α > β,

‖ϕ‖mch
β ≤ Cδ2(α−β)(1−γ) ‖ϕ‖mch

α , for α < β.
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2. If ϕ ∈ Xmch
α and ζ ∈ Xmch

β , then ϕζ ∈ Xmch
α+β and ‖ϕζ‖mch

α+β ≤ ‖ϕ‖
mch
α ‖ζ‖mch

β .

This lemma is a direct consequence of the fact that, as explained in Section 3.3.2, U
satisfies

κ cosβ2 ≤ |U | ≤
C

δ2(1−γ)
. (5.7)

Now, we present the main result of this section, which implies Theorem 3.15.

Proposition 5.2. There exist γ∗ ∈ [3
5 , 1), κ6 ≥ max {κ1, κ5}, δ0 > 0 and b18 > 0 such

that, for γ ∈ (γ∗, 1), κ ≥ κ6 and δ ∈ (0, δ0), Zu
1 satisfies ‖Zu

1 ‖
mch
× ≤ b18 δ

2
3

(1−γ).

5.2 An integral equation formulation

To prove Proposition 5.2, we first introduce a right-inverse of Lin = ∂U −Ain.

Lemma 5.3. The operator Gin[ϕ] =
(
Gin

1 [ϕ1],Gin
2 [ϕ2],Gin

3 [ϕ3]
)T

defined as

Gin[ϕ](U) =

Ç∫ U

U3

ϕ1(S)dS,

∫ U

U3

e−i(S−U)ϕ2(S)dS,

∫ U

U2

ei(S−U)ϕ3(S)dS

åT
, (5.8)

where U2 and U3 are introduced in (3.39), is a right inverse of Lin.
Moreover, there exists a constant C > 0 such that:

1. Let α > 1. If ϕ ∈ Xmch
α , then Gin

1 [ϕ] ∈ Xmch
α−1 and

∥∥Gin
1 [ϕ]

∥∥mch

α−1
≤ C ‖ϕ‖mch

α .

2. Let α > 0, j = 2, 3. If ϕ ∈ Xmch
α , then Gin

j [ϕ] ∈ Xmch
α and ‖Gin

j [ϕ]‖mch
α ≤ C ‖ϕ‖mch

α .

The proof of this lemma follows the same lines as the proof of Lemma 20 in [BCS13].
Using the operator Gin, equation (5.6) is equivalent to

Z1(U) = CmcheA
inU + Gin [B · Z1] (U) +

Ä
Gin ◦ Rmch[Z]

ä
(U),

where Cmch = (Cmch
W , Cmch

X , Cmch
Y )T is defined as

Cmch
W = W1(U3), Cmch

X = e−iU3X1(U3), Cmch
Y = eiU2Y1(U2).

Then, defining the operator T [ϕ](U) = Gin [B · ϕ] (U), this equation is equivalent to

(Id− T )Zu
1 = CmcheA

inU +
Ä
Gin ◦ Rmch[Zu]

ä
(5.9)

and therefore, to estimate Zu
1 , we need to prove that Id− T is invertible in Xmch,u

× .

Lemma 5.4. Let us consider operators B and Gin as given in (5.5) and (5.8). Then,
for γ ∈ [3

5 , 1), κ > 0 big enough and δ > 0 small enough, for ϕ ∈ Xmch
× ,

‖T [ϕ]‖mch
× =

∥∥Gin[B · ϕ]
∥∥mch

× ≤ 1

2
‖ϕ‖mch

×

and therefore ∥∥(Id− T )−1[ϕ]
∥∥mch

× ≤ 2 ‖ϕ‖mch
× .
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To prove this lemma, we use the following estimates, whose proof is a direct result
of Lemma 5.5 in [BGG21].

Lemma 5.5. Fix % > 0 and take κ > 0 big enough. Then, there exists a constant C
(depending on % but independent of κ) such that, for ϕ ∈ Xmch

× with ‖ϕ‖mch
× ≤ %, the

functions gin and f in in (3.36) and the operator Rin in (5.2) satisfy∥∥gin(·, ϕ)
∥∥mch

2
≤ C,

∥∥f in
1 (·, ϕ)

∥∥mch
11
3
≤ C,

∥∥f in
j (·, ϕ)

∥∥mch
4
3

≤ C, j = 2, 3

and∥∥∂WRin
1 [ϕ]

∥∥mch

3
≤ C,

∥∥∂XRin
1 [ϕ]

∥∥mch
7
3
≤ C,

∥∥∂YRin
1 [ϕ]

∥∥mch
7
3
≤ C,∥∥∂WRin

j [ϕ]
∥∥mch

2
3

≤ C,
∥∥∂XRin

j [ϕ]
∥∥mch

2
≤ C,

∥∥∂YRin
j [ϕ]

∥∥mch

2
≤ C, j = 2, 3.

Proof of Lemma 5.4. Let Zu be as given in (3.40). Then, by Proposition 3.6, estimates

(5.7) and taking γ ∈ [3
5 , 1), we have that, for U ∈ Dmch,u

κ ,

|W u(U)| ≤ C

|U |
8
3

+
Cδ

4
3

|U |
≤ C

|U |
8
3

, ‖Xu‖mch
4
3
≤ C, ‖Y u‖mch

4
3
≤ C. (5.10)

Then, using also Theorem 3.13, we obtain that (1 − s)Zu
0 + sZu ∈ Xmch

× for s ∈ [0, 1]

and γ ∈ [3
5 , 1) and ‖(1− s)Zu

0 + sZu‖mch
× ≤ C. As a result, using the definition of B in

(5.5) and Lemma 5.5,

‖B1,1‖mch
3 ≤ C, ‖B1,2‖mch

7
3
≤ C, ‖B1,3‖mch

7
3
≤ C,

‖Bj,1‖mch
2
3
≤ C, ‖Bj,2‖mch

2 ≤ C, ‖Bj,3‖mch
2 ≤ C, for j = 2, 3.

(5.11)

Therefore, by Lemmas 5.3 and 5.1 and (5.11), we obtain

‖T1[ϕ]‖mch
4
3
≤ C ‖π1 (Bϕ)‖mch

7
3

≤ C
[
‖B1,1‖mch

1 ‖ϕ1‖mch
4
3

+ ‖B1,2‖mch
4
3
‖ϕ2‖mch

1 + ‖B1,3‖mch
4
3
‖ϕ3‖mch

1

]
≤ C

κ2
‖ϕ1‖mch

4
3

+
C

κ
‖ϕ2‖mch

1 +
C

κ
‖ϕ3‖mch

1 ≤ C

κ
‖ϕ‖mch

× .

Proceeding analogously, for j = 2, 3, we have

‖Tj [ϕ]‖mch
1 ≤ C

[
‖Bj,1‖mch

− 1
3
‖ϕ1‖mch

4
3

+

3∑
l=2

‖Bj,l‖mch
0 ‖ϕl‖mch

1

]
≤ C

κ
‖ϕ‖mch

× .

Taking κ > 0 big enough, we obtain the statement of the lemma.
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5.3 End of the proof of Proposition 5.2

To complete the proof of Proposition 5.2, we study the right-hand side of equation (5.9).
First, we deal with the term CmcheA

inU . Recall that U2 and U3 in (3.39) satisfy

C−1

δ2(1−γ)
≤ |Uj | ≤

C

δ2(1−γ)
, for j = 2, 3.

Then, taking into account that W u
1 = W u −W u

0 , (5.10) and Theorem 3.13 imply

|Cmch
W | = |W u

1 (U3)| ≤ |W u(U3)|+ |W u
0 (U3)| ≤ C

|U3|
8
3

≤ Cδ
16
3

(1−γ)

and, as a result, by Lemma 5.1, ‖Cmch
W ‖mch

4
3

≤ Cδ
8
3

(1−γ). Analogously, for U ∈ Dmch,u
κ ,

|Cmch
X eiU | = |ei(U−U3)Xu

1 (U3)| ≤ Ce−Im (U−U3)

|U3|
4
3

≤ Cδ
8
3

(1−γ)

and then ‖Cmch
X eiU‖mch

1 ≤ Cδ
2
3

(1−γ). An analogous result holds for Cmch
Y e−iU . Therefore,

‖CmcheA
inU‖mch

× ≤ Cδ
2
3

(1−γ). (5.12)

Now, we estimate the norm of Gin ◦ Rmch[Zu]. The operator Rmch in (5.3) can be
rewritten as

Rmch[Zu] =
fmch(1 + g

in
)− gmch(Ain

Zu + f
in

)

(1 + gin)(1 + gin + gmch)
.

Then by (5.10), Lemmas 5.1 and 5.5 and taking κ big enough, we obtain∥∥gin(·, Zu)
∥∥mch

0
≤ C

κ2
≤ 1

2
,

∥∥iXu + f in
2 (·, Zu)

∥∥mch

0
≤ C,∥∥f in

1 (·, Zu)
∥∥mch

0
≤ C,

∥∥−iY u + f in
3 (·, Zu)

∥∥mch

0
≤ C.

(5.13)

To analyze fmch and gmch (see (5.2)) we rely on the estimates for H in
1 in (3.33) and

its derivatives, which can be easily obtained by Cauchy estimates. Indeed, they can be
applied since U ∈ Dmch,u

κ and, by (5.10),

|W u(U)| , |Xu(U)| , |Y u(U)| ≤ C.

Then, there exists m > 0 such that

|gmch(U,Zu)| ≤ Cδ
4
3
−2m(1−γ), |fmch

j (U,Zu)| ≤ Cδ
4
3
−2m(1−γ), for j = 1, 2, 3. (5.14)

We note that, for γ ∈ (γ∗0 , 1) with γ∗0 = max{3
5 ,

3m−2
3m }, we have that 4

3 − 2m(1− γ) > 0.
Then, for γ ∈ (γ∗0 , 1), δ small enough and κ big enough, using (5.13) and (5.14) we obtain

|Rmch
j [Zu](U)| ≤ Cδ

4
3
−2m(1−γ), for j = 1, 2, 3.
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Then, by Lemmas 5.1 and 5.3,

‖Gin ◦ Rmch[Zu]‖mch
× = ‖Gin

1 ◦ Rmch
1 [Zu]‖mch

4
3

+
∑3

j=2‖Gin
j ◦ Rmch

j [Zu]‖mch
1

≤ C‖Rmch
1 [Zu]‖mch

7
3

+
∑3

j=2C‖Rmch
j [Zu]‖mch

1 ≤ Cδ
4
3
−2(m+ 7

3)(1−γ).

If we take γ∗ = max
{

3
5 , γ
∗
0 , γ
∗
1

}
with γ∗1 = 3m+5

3m+7 , and γ ∈ (γ∗, 1),

‖Gin ◦ Rmch[Zu]‖mch
× ≤ Cδ

2
3

(1−γ). (5.15)

To complete the proof of Proposition 5.2, we consider equation (5.9). By Lemma 5.4,
(Id− T ) is invertible in Xmch

× and moreover

‖Zu
1 ‖

mch
× =

∥∥∥(Id− T )−1
Ä
CmcheA

inU + Gin ◦ Rmch[Zu]
ä∥∥∥mch

×

≤ 2
∥∥∥CmcheA

inU + Gin ◦ Rmch[Zu]
∥∥∥mch

×
.

Then, it is enough to apply (5.12) and (5.15).

A Estimates for the invariant manifolds

In this appendix we prove the technical Lemmas 4.4 and 4.8. All these results involve,
in some sense, estimates for the first and second derivatives of the Hamiltonian Hsep

1 in
(3.9). However, to obtain estimates for Hsep

1 , we first obtain some properties of HPoi
1

(see (2.2)), which can be written as

HPoi
1 =

1

µ
P[0]− 1− µ

µ
P[µ]− P[µ− 1], (A.1)

where
P[ζ](λ, L, η, ξ) =

Ä
‖q − (ζ, 0)‖−1

ä
◦ φPoi. (A.2)

In [BGG21], we computed the series expansion of P[ζ] in powers of (η, ξ). In particular,
P[ζ] can be written as

P[ζ](λ, L, η, ξ) =
1√

A[ζ](λ) +B[ζ](λ, L, η, ξ)
(A.3)

where A and B are of the form

A[ζ](λ) = 1− 2ζ cosλ+ ζ2, (A.4)

B[ζ](λ, L, η, ξ) = 4(L− 1)(1− ζ cosλ) +
η√
2

Ä
3ζ − 2e−iλ − ζe−2iλ

ä
+

ξ√
2

Ä
3ζ − 2eiλ − ζe2iλ

ä
+R[ζ](λ, L, η, ξ),

(A.5)
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and, for fixed % > 0, R is analytic and satisfies that

|R[ζ](λ, L, η, ξ)| ≤ K(%) |(L− 1, η, ξ)|2 , (A.6)

for |Imλ| ≤ %, |(L− 1, η, ξ)| � 1 and ζ ∈ [−1, 1].
Then, wherever |A[ζ](λ)| > |B[ζ](λ, L, η, ξ)|, P[ζ](λ, L, η, ξ) can be written as

P[ζ](λ, L, η, ξ) =
1√
A[ζ]

+

+∞∑
n=1

Ç
−1

2

n

å
(B[ζ])n

(A[ζ])n+ 1
2

. (A.7)

Remark A.1. The Hamiltonian HPoi = HPoi
0 +µHPoi

1 (see (2.1) and (A.1)) is analytic
away from the collisions with the primaries, that is zeroes of the denominators of P[µ]
and P[µ− 1]. For 0 < µ� 1, one has

A[µ] = 1 +O(µ), A[µ− 1] = 2 + 2 cosλ+O(µ).

Therefore, in the regime that we consider, collisions with the primary S are not possible
but collisions with P may take place at λ ∼ π.

We now obtain estimates for HPoi
1 in domains “far” from λ = π.

Lemma A.2. Fix λ0 ∈ (0, π) and µ0 ∈ (0, 1
2) and consider the Hamiltonian HPoi

1 and
the potential V introduced in (A.1) and (2.4), respectively. Then, for for |λ| < λ0,
|(L− 1, η, ξ)| � 1 and µ ∈ (0, µ0), the Hamiltonian HPoi

1 can be written as

HPoi
1 (λ, L, η, ξ;µ)− V (λ) =D0(µ, λ) +D1(µ, λ)

(
(L− 1), η, ξ

)
+D2(λ, L, η, ξ;µ),

such that, for j = 1, 2, 3,

|D0(µ, λ)| ≤ Kµ, |(D1(µ, λ))j | ≤ K, |D2(λ, L, η, ξ;µ)| ≤ K |(L− 1, η, ξ)|2 ,

with K a positive constant independent of λ and µ.

A.1 Estimates in the infinity domain

To prove Lemma 4.4, we need to obtain estimates for Rsep and its derivatives. Let us
recall that, by its definition in (3.13), for z = (w, x, y) we have

Rsep[z] =

Ç
f sep

1 (·, z)
1 + gsep(·, z)

,
f2

sep(·, z)− ix
δ2 g

sep(·, z)
1 + gsep(·, z)

,
f3

sep(·, z) + iy
δ2 g

sep(·, z)
1 + gsep(·, z)

åT
, (A.8)

where gsep = ∂wH
sep
1 and f sep = (−∂uHsep

1 , i∂yH
sep
1 ,−i∂xHsep

1 )
T

.
Therefore, we need to obtain first estimates for the first and second derivatives of

Hsep
1 , introduced in (3.9), that is

Hsep
1 = H ◦ (φeq ◦ φsep)−

(
w +

xy

δ2

)
, (A.9)
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where H = H0 +H1 with H0 = Hp +Hosc (see (2.5), (2.9)).
Since (λh,Λh) is a solution of the Hamiltonian Hp and belongs to the energy level

Hp = −1
2 ,

H0 ◦ φsep = Hp

Å
λh(u),Λh(u)− w

3Λh(u)

ã
+Hosc(x, y; δ) = −1

2
+ w − w2

6Λ2
h(u)

+
xy

δ2
.

Therefore, by (A.9), the Hamiltonian Hsep
1 can be expressed (up to a constant) as

Hsep
1 = M ◦ φsep −

w2

6Λ2
h(u)

, (A.10)

where

M(λ,Λ, x, y; δ) = (H ◦ φeq)(λ,Λ, x, y; δ)−H0(λ,Λ, x, y).

In the following lemma we give properties of M .

Lemma A.3. Fix constants % > 0 and λ0 ∈ (0, π). Then, there exists δ0 > 0 such that,
for δ ∈ (0, δ0), |λ| < λ0, |Λ| < % and |(x, y)| < %δ , the function M satisfies

|∂λM | ≤ Cδ2 |(λ,Λ)|+ Cδ |(x, y)| , |∂xM | ≤ Cδ |(λ,Λ, x, y)| ,
|∂ΛM | ≤ Cδ2 |(λ,Λ)|+ Cδ |(x, y)| , |∂yM | ≤ Cδ |(λ,Λ, x, y)| ,

and ∣∣∂2
λM
∣∣ , |∂λΛM | ,

∣∣∂2
ΛM

∣∣ ≤ Cδ2, |∂ijM | ≤ Cδ, for i, j ∈ {λ,Λ, x, y} .

Proof. Applying φeq (see (3.3)) to the Hamiltonian H = H0 +H1, we have that

M = (H0 ◦ φeq −H0) +H1 ◦ φeq

= δ(xLy + yLx) + 3δ2ΛLΛ + δ4

Å
−3

2
L2

Λ + LxLy

ã
+H1 ◦ φeq.

(A.11)

Then,

|∂ijM | ≤
∣∣∂ijH1(λ,Λ + δ2LΛ, x+ δLx, y + δLy; δ)

∣∣ , for i, j ∈ {λ,Λ, x, y} . (A.12)

Since |Λ| < % and |(x, y)| < %δ, then
∣∣Λ + δ2LΛ

∣∣ < 2% and
∣∣(x+ δ3Lx, y + δ3Ly)

∣∣ < 2%δ,
for δ small. By the definition of H1 in (2.7) we have that,

H1(λ,Λ, x, y; δ) = HPoi
1

(
λ, 1 + δ2Λ, δx, δy; δ4

)
− V (λ) +

1

δ4
Fp(δ2Λ),

where HPoi
1 is given in (2.2) (see also (2.3)), V is given (2.4) and Fp is given (2.8) and

satisfies Fp(s) = O(s3). Since
∣∣(δ2Λ, δx, δy)

∣∣ < 2%δ2 � 1, we apply Lemma A.2 (recall

that δ = µ
1
4 ) and Cauchy estimates to obtain∣∣∂2

λH1

∣∣ |∂λΛH1| ,
∣∣∂2

ΛH1

∣∣ ≤ Cδ2, |∂ijH1| ≤ Cδ, for i, j ∈ {λ,Λ, x, y} . (A.13)
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Then, (A.12) and (A.13) give the estimates for the second derivatives of M .
For the first derivatives of M , let us take into account that, by Theorem 3.1, 0 is

a critical point of both Hamiltonians (H ◦ φeq) and H0 and, therefore, also of M =
(H ◦ φeq)−H0. This fact and the estimates of the second derivatives, together with the
mean value theorem, gives the estimates for the first derivatives of M .

End of the proof of Lemma 4.4. Let us consider ϕ = (ϕw, ϕx, ϕy)
T ∈ X∞× such that

‖ϕ‖∞× ≤ %δ3. We estimate the first and second derivatives of Hsep
1 evaluated at (u, ϕ(u))

(recall (A.8)), given by

Hsep
1 (u, ϕ(u); δ) = M

Å
λh(u),Λh(u)− ϕw(u)

3Λh(u)
, ϕx(u), ϕy(u); δ

ã
− ϕ2

w(u)

6Λ2
h(u)

. (A.14)

First, let us define

ϕλ(u) = λh(u), ϕΛ(u) = Λh(u)− ϕw(u)

3Λh(u)
and Φ = (ϕλ, ϕΛ, ϕx, ϕy).

Since ‖ϕ‖∞× ≤ %δ3 and λh,Λh ∈ X∞ν (see (4.2)),

‖ϕw‖∞2ν ≤ Cδ
2, ‖ϕx‖∞ν , ‖ϕy‖∞ν ≤ Cδ

3, ‖ϕλ‖∞ν , ‖ϕΛ‖∞ν ≤ C. (A.15)

Moreover since, by Theorem 3.1, λh(u) 6= π for u ∈ Du,∞
ρ1 , we have that

|ϕλ(u)| = |λh(u)| < π, |ϕΛ(u)| ≤ Ce−νρ1 ≤ C, |(ϕx(u), ϕy(u))| ≤ Cδ3e−νρ1 ≤ Cδ3

and, therefore, we can apply Lemma A.3 to (A.14). In the following computations, we
use generously Lemma 4.1 without mentioning it.

1. First, we consider gsep = ∂wH
sep
1 . By (A.14), we have that

gsep(u, ϕ(u)) = −∂ΛM ◦ Φ(u)

3Λh(u)
− ϕw(u)

3Λ2
h(u)

.

Notice that, by Theorem 3.1, |Λh(u)| ≥ C for u ∈ Du,∞
ρ1 . Then, ‖Λ−1

h ‖
∞
−ν ≤ C.

Therefore, by Lemma A.3 and estimates (A.15), we have that

‖gsep(·, ϕ)‖∞0 ≤ Cδ
[
δ ‖ϕλ‖∞ν + δ ‖ϕΛ‖∞ν + ‖ϕx‖∞ν + ‖ϕy‖∞ν

]
+ C ‖ϕw‖∞2ν

≤ Cδ2.
(A.16)

To compute its derivative with respect to w, by (A.14), we have that

∂wg
sep(u, ϕ(u)) =

∂2
ΛM ◦ Φ(u)

9Λ2
h(u)

− 1

3Λ2
h(u)

,

and, by Lemma A.3 and estimates (A.15), ‖∂wgsep(·, ϕ)‖∞−2ν ≤ C. Following a
similar procedure, we obtain ‖∂xgsep(·, ϕ)‖∞−ν ≤ Cδ and ‖∂ygsep(·, ϕ)‖∞−ν ≤ Cδ.

53



2. Now, we obtain estimates for f sep
1 = −∂uHsep

1 . By (A.14), we have that

f sep
1 (u, ϕ(u)) =− λ̇h(u)∂λM ◦ Φ(u)− Λ̇h(u)

3Λ3
h(u)

ϕ2
w(u)

−
Ç

Λ̇h(u) +
Λ̇h(u)

3Λ2
h(u)

ϕw(u)

å
∂ΛM ◦ Φ(u).

Then, since λ̇h, Λ̇h ∈ X∞ν , by Lemma A.3 and estimates (A.15), we have that
‖f sep

1 (·, ϕ)‖∞2ν ≤ Cδ
2. To compute its derivative with respect to x, by (A.14),

∂xf
sep
1 (u, ϕ(u)) =− λ̇h(u)∂xλM ◦ Φ(u)−

Ç
Λ̇h(u) +

Λ̇h(u)

3Λ2
h(u)

ϕw(u)

å
∂xΛM ◦ Φ(u)

and, therefore, ‖∂xf sep
1 (·, ϕ)‖∞ν ≤ Cδ. Similarly one can obtain ‖∂wf sep

1 (·, ϕ)‖∞0 ≤
Cδ2 and ‖∂yf sep

1 (·, ϕ)‖∞ν ≤ Cδ.

3. Analogously to the previous estimates, we can obtain bounds for f sep
2 = i∂yH

sep
1

and f sep
3 = −i∂xHsep

1 . Then, for j = 2, 3, it can be seen that ‖f sep
j (·, ϕ)‖∞ν ≤ Cδ,

and differentiating we obtain ‖∂wf sep
j (·, ϕ)‖∞−ν ≤ Cδ, ‖∂xf sep

j (·, ϕ)‖∞0 ≤ Cδ and
‖∂yf sep

j (·, ϕ)‖∞0 ≤ Cδ.

Then, by the definition of Rsep in (A.8) and the just obtained estimates, we complete
the proof of the lemma.

A.2 Estimates in the outer domain

To obtain estimates of Rsep, we write Hsep
1 in (3.9) (up to a constant) as

Hsep
1 = H1 ◦ φeq ◦ φsep −

w2

6Λ2
h(u)

+ δ(xLy + yLx) + 3δ2LΛ

Å
Λh(u)− w

3Λh(u)

ã
,

(see (A.10) and (A.11)). Then, by the definition of H1 in (2.7), we obtain

Hsep
1 = (HPoi

1 − V ) ◦ φsc ◦ φeq ◦ φsep +
1

δ4
Fp

Å
δ2Λh(u)− δ2w

3Λh(u)
+ δ4LΛ

ã
− w2

6Λ2
h(u)

+ δ(xLy + yLx) + 3δ2LΛ

Å
Λh(u)− w

3Λh(u)

ã
,

where HPoi
1 is given in (A.1), the potential V in (2.4) and Fp in (2.8). The changes of

coordinates φsc, φeq and φsep are given in (2.3), (3.3) and (3.4), respectively.
Considering z = (w, x, y), we denote the composition of change of coordinates as

(λ, L, η, ξ) = Θ(u, z) = (φsc ◦ φeq ◦ φsep)(u, z). (A.17)

Then, since µ = δ4, the Hamiltonian Hsep
1 can be split (up to a constant) as

Hsep
1 = MP +MS +MR, (A.18)
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where

MP (u, z; δ) =−
Å
P[δ4 − 1]− 1√

2 + 2 cosλ

ã
◦Θ(u, z), (A.19)

MS(u, z; δ) =

Å
1

δ4
P[0]− 1− δ4

δ4
P[δ4]− 1 + cosλ

ã
◦Θ(u, z), (A.20)

MR(u, z; δ) =− w2

6Λ2
h(u)

+ δ2LΛ

Å
3Λh(u)− w

Λh(u)

ã
+ δ(xLy + yLx),

+
1

δ4
Fp

Å
δ2Λh(u)− δ2w

3Λh(u)
+ δ4LΛ

ã
,

(A.21)

and P is the function given in (A.2).
To obtain estimates for the derivatives of MP , MS and MR, we first analyze the

change of coordinates Θ in (A.17). It can be expressed as

Θ(u, z) =
(
π + Θλ(u), 1 + ΘL(u,w),Θη(x),Θξ(y)

)
, (A.22)

where

Θλ(u) = λh(u)− π, Θη(x) = δx+ δ4Lx(δ),

ΘL(u,w) = δ2Λh(u)− δ2w

3Λh(u)
+ δ4LΛ(δ), Θξ(x) = δy + δ4Ly(δ).

Next lemma, which is a direct consequence of Theorem 3.1, gives estimates for this
change of coordinates.

Lemma A.4. Fix % > 0 and δ > 0 small enough. Then, for ϕ ∈ B(%δ3) ⊂ X out
× ,

‖Θλ‖out
0,− 2

3
≤ C, ‖ΘL(·, ϕ)‖out

0, 1
3
≤ Cδ2, ‖Θη(·, ϕ)‖out

0, 4
3
≤ Cδ4,∥∥Θ−1

λ

∥∥out

0, 2
3
≤ C, ‖1 + ΘL(·, ϕ)‖out

0,0 ≤ C, ‖Θξ(·, ϕ)‖out
0, 4

3
≤ Cδ4.

Moreover, its derivatives satisfy

‖∂uΘλ‖out
0, 1

3
≤ C, ‖∂uΘL(·, ϕ)‖out

0, 4
3
≤ Cδ2, ‖∂wΘL(·, ϕ)‖out

0,− 1
3
≤ Cδ2,

‖∂uwΘL(·, ϕ)‖out
0, 2

3
≤ Cδ2, ∂xΘη, ∂yΘξ ≡ δ, ∂2

wΘL, ∂
2
xΘη, ∂

2
yΘξ ≡ 0.

In the next lemma we obtain estimates for the derivatives of MP .

Lemma A.5. Fix % > 0, δ > 0 small enough and κ > 0 big enough. Then, for
ϕ ∈ B(%δ3) and ∗ = x, y,

‖∂uMP (·, ϕ)‖out
1,1 ≤ Cδ

2, ‖∂wMP (·, ϕ)‖out
1,− 2

3
≤ Cδ2, ‖∂∗MP (·, ϕ)‖out

0, 4
3
≤ Cδ,

‖∂uwMP (·, ϕ)‖out
1, 1

3
≤ Cδ2, ‖∂u∗MP (·, ϕ)‖out

0, 7
3
≤ Cδ,

∥∥∂2
wMP (·, ϕ)

∥∥out

0, 4
3
≤ Cδ4,

‖∂w∗MP (·, ϕ)‖out
0, 5

3
≤ Cδ3,

∥∥∂2
∗MP (·, ϕ)

∥∥out

0,2
≤ Cδ2, ‖∂xyMP (·, ϕ)‖out

0,2 ≤ Cδ
2.
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Proof. We consider ϕ ∈ B(%δ3) ⊂ X out
× and we estimate the derivatives of P[δ4 − 1] ◦

Θ(u, ϕ(u)). We first we obtain bounds for A[δ4− 1] and B[δ4− 1] (see (A.4) and (A.5)).
To simplify the notation, we define

Ã(u) = A[δ4 − 1](π + Θλ(u)), ‹B(u, z) = B[δ4 − 1] ◦Θ(u, z). (A.23)

In the following computations we use extensively the results in Lemma 4.5 without
mentioning them.

1. Estimates of Ã(u): Defining λ̂ = λ− π, by (A.4),

A[δ4 − 1](λ̂+ π) = 2(1− cos λ̂)− 2δ4(1− cos λ̂) + δ8.

Then, applying Lemma A.4,

‖sin Θλ‖out
0,− 2

3
≤ C ‖Θλ‖out

0,− 2
3
≤ C,

∥∥(1− cos Θλ)−1
∥∥out

0, 4
3
≤ C

∥∥Θ−2
λ

∥∥out

0, 4
3
≤ C

and, as a result,

‖Ã−1‖out
0, 4

3

≤ C
∥∥(1− cos Θλ)−1

∥∥out

0, 4
3
≤ C,

‖∂uÃ‖out
0,− 1

3

≤ C ‖sin Θλ‖out
0,− 2

3
‖∂uΘλ‖out

0, 1
3
≤ C.

(A.24)

2. Estimates of ‹B(u, ϕ(u)): Considering the auxiliary variables (λ̂, L̂) = (λ−π, L−1),
we have that

B[δ4 − 1](π + λ̂, 1 + L̂, η, ξ) = 4L̂(1− cos λ̂+ δ4 cos λ̂)

+
η√
2

(−3 + 2e−iλ̂ + e−2iλ̂ + δ4(3 + e−2iλ̂))

+
ξ√
2

(−3 + 2eiλ̂ + e2iλ̂ + δ4(3 + e2iλ̂))

+R[δ4 − 1](π + λ̂, 1 + L̂, η, ξ).

(A.25)

Then, by the estimates in (A.6) and Lemma A.4,

‖‹B(·, ϕ)‖out
1,−2 ≤C

∥∥ΘL(·, ϕ)Θ2
λ

∥∥out

0,−1
+
C

δ2
‖Θη(·, ϕ)Θλ‖out

0, 2
3

+
C

δ2
‖Θξ(·, ϕ)Θλ‖out

0, 2
3

+
C

δ2

∥∥(ΘL,Θη,Θξ)
2
∥∥out

0, 2
3
≤ Cδ2.

(A.26)

Now, we look for estimates of the first derivatives of ‹B(u, ϕ(u)). By its definition
in (A.23) and the expression of Θ in (A.22), we have that

∂u‹B =
[
∂λB[δ4 − 1] ◦Θ

]
∂uΘλ +

[
∂LB[δ4 − 1] ◦Θ

]
∂uΘL,

∂w‹B =
[
∂LB[δ4 − 1] ◦Θ

]
∂wΘL,

∂x‹B =
[
∂ηB[δ4 − 1] ◦Θ

]
∂xΘη, ∂y‹B =

[
∂ξB[δ4 − 1] ◦Θ

]
∂yΘξ.

(A.27)
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Differentiating (A.25) and applying Lemma A.4,∥∥∂λB[δ4 − 1] ◦Θ(·, ϕ)
∥∥out

1,− 4
3
≤C ‖ΘL(·, ϕ)Θλ‖out

− 1
3

+
C

δ2
‖Θη(·, ϕ)‖out

0, 4
3

+
C

δ2
‖Θξ(·, ϕ)‖out

0, 4
3

+ Cδ2 ≤ Cδ2,∥∥∂LB[δ4 − 1] ◦Θ(·, ϕ)
∥∥out

1,− 7
3
≤C

∥∥Θ2
λ

∥∥out

0,− 4
3

+
C

δ2
‖ΘL(·, ϕ)‖out

0, 1
3

+
C

κ
≤ C,∥∥∂∗B[δ4 − 1] ◦Θ(·, ϕ)

∥∥out

0,− 2
3
≤C ‖Θλ‖out

0,− 2
3

+
C

κ
≤ C, for ∗ = η, ξ.

Then, using also (A.27) and taking ∗ = x, y,

‖∂u‹B(·, ϕ)‖out
1,−1 ≤ Cδ2, ‖∂w‹B(·, ϕ)‖out

1,− 8
3

≤ Cδ2, ‖∂∗‹B(·, ϕ)‖out
0,− 2

3

≤ Cδ. (A.28)

Analogously, for the second derivatives, one can obtain the estimates

‖∂uw‹B(·, ϕ)‖out
1,− 5

3

≤ Cδ2, ‖∂2
w
‹B(·, ϕ)‖out

0, 2
3

≤ Cδ4, ‖∂u∗‹B(·, ϕ)‖out
0, 1

3

≤ Cδ,

‖∂w∗‹B(·, ϕ)‖out
0,− 1

3

≤ Cδ3, ‖∂2
∗
‹B(·, ϕ)‖out

0,0 ≤ Cδ2, ‖∂xy‹B(·, ϕ)‖out
0,0 ≤ Cδ2.

(A.29)

Now, we are ready to obtain estimates for MP (u, ϕ(u)) by using the series expansion
(A.7). First, we check that it is convergent. Indeed, by (A.24) and (A.26), for u ∈
Du,out
κ,d1,ρ2

and taking κ big enough we have that∣∣∣∣∣‹B(u, ϕ(u))

Ã(u)

∣∣∣∣∣ ≤ ‖‹B(·, ϕ)‖out
0,− 4

3

‖Ã−1‖out
0, 4

3

≤ C

κ2δ2
‖‹B(·, ϕ)‖out

1,−2 ≤
C

κ2
� 1.

Therefore, by (A.3) and (A.19),

|MP (u, ϕ(u))| ≤
∣∣∣∣∣ 1√

A[δ4 − 1](λh(u))
− 1√

2 + 2 cosλh(u)

∣∣∣∣∣+ C
|‹B(u, ϕ(u))|
|Ã(u)|

3
2

. (A.30)

Then, to estimate MP and its derivatives, it only remains to analyze the u-derivative of
its first term. Indeed, by the definition of A[δ4 − 1] in (A.4).∥∥∥∥∥∂u

Ç
1√

A[δ4 − 1](λh(u))
− 1√

2 + 2 cosλh(u)

å∥∥∥∥∥out

0, 4
3

≤ Cδ4. (A.31)

Therefore, applying estimates (A.24), (A.26), (A.28), (A.29) and (A.31), to the derivatives
of MP and using (A.30), we obtain the statement of the lemma.

Analogously to Lemma A.5, we obtain estimates for the first and second derivatives
of MS and MR (see (A.20) and (A.21)).
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Lemma A.6. Fix % > 0, δ > 0 small enough and κ > 0 big enough. Then, for
ϕ ∈ B(%δ3) and ∗ = x, y, we have

‖∂uMS(·, ϕ)‖out
0, 4

3
≤ Cδ2, ‖∂wMS(·, ϕ)‖out

0,− 1
3
≤ Cδ2, ‖∂∗MS(·, ϕ)‖out

0,0 ≤ Cδ,

‖∂uwMS(·, ϕ)‖out
0, 2

3
≤ Cδ2, ‖∂u∗MS(·, ϕ)‖out

0, 1
3
≤ Cδ,

∥∥∂2
wMS(·, ϕ)

∥∥out

0,− 2
3
≤ Cδ4,

‖∂w∗MS(·, ϕ)‖out
0,− 1

3
≤ Cδ3,

∥∥∂2
∗MS(·, ϕ)

∥∥out

0,0
≤ Cδ2, ‖∂xyMS(·, ϕ)‖out

0,0 ≤ Cδ
2.

and

‖∂uMR(·, ϕ)‖out
1,1 ≤ Cδ

2, ‖∂wMR(·, ϕ)‖out
1,− 2

3
≤ Cδ2, ‖∂∗MR(·, ϕ)‖out

0,0 ≤ Cδ,

‖∂uwMR(·, ϕ)‖out
1, 1

3
≤ Cδ2, ∂u∗MR(·, ϕ) ≡ 0,

∥∥∂2
wMR(·, ϕ)

∥∥out

0,− 2
3
≤ C,

∂w∗MR(·, ϕ) ≡ 0, ∂2
∗MR(·, ϕ) ≡ 0, ∂xyMR(·, ϕ) ≡ 0.

End of the proof of Lemma 4.8. We start by estimating the first and second derivatives
of Hsep

1 (u, ϕ(u); δ) in suitable norms. Recall that by (A.18), Hsep
1 = MP + MS + MR.

Therefore, taking ϕ ∈ B(%δ3) ⊂ X out
× and applying Lemmas A.5 and A.6:

1. For gsep = ∂wH
sep
1 one has

‖gsep(·, ϕ)‖out
1,− 2

3
≤‖∂wMP (·, ϕ)‖out

1,− 2
3

+ C ‖∂wMS(·, ϕ)‖out
0,− 1

3
+ ‖∂wMR(·, ϕ)‖out

1,− 2
3

≤Cδ2

and, in particular, for κ big enough

‖gsep(·, ϕ)‖out
0,0 ≤ Cκ

−2 � 1. (A.32)

Analogously, ‖∂wgsep(·, ϕ)‖out
0,− 2

3
≤ C and ‖∂∗gsep(·, ϕ)‖out

0, 5
3
≤ Cδ3, for ∗ = x, y.

2. For f sep
1 = −∂uHsep

1 , one has that

‖f sep
1 (·, ϕ)‖out

1,1 ≤ ‖∂uMP (·, ϕ)‖out
1,1 + C ‖∂uMS(·, ϕ)‖out

0, 4
3

+ ‖∂uMR(·, ϕ)‖out
1,1 ≤ Cδ

2,

‖∂wf sep
1 (·, ϕ)‖out

1, 1
3
≤ Cδ2 and ‖∂∗f sep

1 (·, ϕ)‖out
0, 7

3
≤ Cδ, for ∗ = x, y.

3. For f sep
2 = i∂yH

sep
1 and f sep

3 = −i∂xHsep
1 , we can obtain the estimates

‖f2(·, ϕ)‖out
0, 4

3
≤‖∂yMP (·, ϕ)‖out

0, 4
3

+ C ‖∂yMS(·, ϕ) + ∂yMR(·, ϕ)‖out
0,0 ≤ Cδ,

‖f3(·, ϕ)‖out
0, 4

3
≤‖∂xMP (·, ϕ)‖out

0, 4
3

+ C ‖∂xMS(·, ϕ) + ∂xMR(·, ϕ)‖out
0,0 ≤ Cδ.

(A.33)

Analogously, we have that ‖∂wf sep
j (·, ϕ)‖out

0, 5
3

≤ Cδ3 and ‖∂∗f sep
j (·, ϕ)‖out

0,2 ≤ Cδ2,

for j = 2, 3 and ∗ = x, y.
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Joining these estimates and taking κ big enough, we complete the proof of the lemma.

Remark A.7. Note that that ‹Du,out
κ2,d2,d3

⊂ Du,out
κ,d1,ρ2

and Yout ⊂ X out
0,0 (see (4.9) and (4.5)).

Then, the proof of Lemma 4.10 is a direct consequence of the estimates for gsep and its
derivatives in Item 1 above and the fact that, by (3.11) and (4.8),

R[U ](v) = ∂wH
sep
1 (v + U(v), zu(v + U(v))) = gsep (v + U(v), zu(v + U(v))) .

B Estimates for the difference

In this section we prove Lemmas 3.16 and 3.19.

B.1 Proof of Lemma 3.16

First, we prove the estimates for the operator Υ given in (3.27). For σ ∈ [0, 1], we define
zσ = σzu + (1 − σ)zs with zσ = (wσ, xσ, yσ)T . Then, by Theorem 3.3, for u ∈ Dκ,d, we
have that

|wσ(u)| ≤ Cδ2

|u2 +A2|
+

Cδ4

|u2 +A2|
8
3

, |xσ(u)| , |yσ(u)| ≤ Cδ3

|u2 +A2|
4
3

. (B.1)

Recalling that Hsep = w + xy
δ2 +Hsep

1 (see (3.8)), one has

|Υ1(u)− 1| ≤ sup
σ∈[0,1]

|∂wHsep
1 (u, zσ(u))| ,

|Υ2(u)| ≤ |yσ(u)|
δ2

+ sup
σ∈[0,1]

|∂xHsep
1 (u, zσ(u))| ,

|Υ3(u)| ≤ |xσ(u)|
δ2

+ sup
σ∈[0,1]

|∂yHsep
1 (u, zσ(u))| .

Then, by (B.1) and applying (A.32) and (A.33) in the proof of Lemma 4.8 we obtain
the estimates for Υ1,Υ2 and Υ3.

We also need estimates for the matrix B̃spl given in (3.26), which satisfies

|B̃spl
i,j (u)| ≤ sup

σ∈[0,1]

∣∣∣(DzRsep[zσ](u))i,j

∣∣∣ ,
for zσ = σzu + (1− σ)zs. Then, by (B.1) and applying Lemma 4.8, for u ∈ Dκ,d,∣∣∣B̃spl

2,1(u)
∣∣∣ ≤ Cδ

|u2 +A2|
2
3

,
∣∣∣B̃spl

3,1(u)
∣∣∣ ≤ Cδ

|u2 +A2|
2
3

,

∣∣∣B̃spl
2,2(u)

∣∣∣ ≤ C

|u2 +A2|
1
3

+
Cδ2

|u2 +A2|2
,
∣∣∣B̃spl

3,2(u)
∣∣∣ ≤ Cδ2

|u2 +A2|2
,

∣∣∣B̃spl
2,3(u)

∣∣∣ ≤ Cδ2

|u2 +A2|2
,

∣∣∣B̃spl
3,3(u)

∣∣∣ ≤ C

|u2 +A2|
1
3

+
Cδ2

|u2 +A2|2
.

(B.2)
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Then, by (3.53) and taking κ big enough,∣∣∣Bspl
1,1(u)

∣∣∣ ≤ |Υ2(u)|
|Υ1(u)|

∣∣∣B̃spl
2,1(u)

∣∣∣ ≤ Cδ2

|u2 +A2|2
,∣∣∣Bspl

1,2(u)
∣∣∣ ≤ ∣∣∣B̃spl

2,3(u)
∣∣∣+
|Υ3(u)|
|Υ1(u)|

∣∣∣B̃spl
2,1(u)

∣∣∣ ≤ Cδ2

|u2 +A2|2
,

and analogous estimates hold for Bspl
2,1 and Bspl

2,2.
Finally, we compute estimates for By(u) (see (3.44)) and u ∈ Dκ,d. The estimates

for Bx(u) can be computed analogously. Let us consider the integration path ρt =
u∗ + (u− u∗)t, for t ∈ [0, 1]. Then

By(u) = exp

Ç∫ 1

0
B̃spl

2,2 (ρt) (u− u∗)dt
å
.

Using the bounds in (B.2), we have that

|logBy(u)| ≤ C |u− u∗|

∣∣∣∣∣∣
∫ 1

0

1∣∣ρ2
t +A2

∣∣ 1
3

+
δ2∣∣ρ2

t +A2
∣∣2dt

∣∣∣∣∣∣ ≤ C,
which implies C−1 ≤ |By(u)| ≤ C.

B.2 Proof of Lemma 3.19

We only give an expression for By(u+). The result for Bx(u−) is analogous. First, we

analyze B̃spl
3,3.

Lemma B.1. For δ > 0 small enough, κ > 0 large enough and u ∈ Dκ,d, the function

B̃spl
3,3 defined in (3.26) is of the form

B̃spl
3,3(u) = −4i

3
Λh(u) + δ2m(u; δ),

for some function m satisfying

|m(u; δ)| ≤ C

|u2 +A2|2
.

Proof. Let us define zτ = τzu + (1− τ)zs and recall that, for u ∈ Dκ,d,

B̃3,3(u) =

∫ 1

0
∂yRsep

3 [zτ ](u)dτ. (B.3)

Then, by the expression of Rsep
3 in (A.8), the estimates in the proof of Lemma 4.8 (see

Appendix A.2) and Theorem 3.3, we have that

∂yRsep
3 [zτ ](u) =

i

δ2
gsep(u, zτ (u)) + δ2‹m(u; δ),
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where |‹m(u; δ)| ≤ C
|u2+A2|2 . In the following, to simplify notation, we denote by ‹m(u; δ)

any function satisfying the previous estimate. Since gsep = ∂wH
sep
1 , by (A.18) one has

gsep(u, zτ (u)) = ∂wMP (u, zτ (u); δ) + ∂wMS(u, zτ (u); δ) + ∂wMR(u, zτ (u); δ),

with MP , MS and MR as given in (A.19), (A.20) and (A.21), respectively. Then, taking
into account that Fp(s) = 2z3 + O(z4) (see (2.8)) and following the proofs of Lemmas
A.5 and A.6, it is a tedious but an easy computation to see that,

gsep(u, zτ (u)) = ∂wMP (u, 0, 0, 0; δ) + ∂wMS(u, 0, 0, 0; δ)

− wτ (u)

3Λ2
h(u)

− δ2LΛ(δ)

Λh(u)
− 2δ2Λh(u) + δ4‹m(u; δ),

and, by (B.3),

B̃3,3(u) =
i

δ2
[∂wMP (u, 0, 0, 0; δ) + ∂wMS(u, 0, 0, 0; δ)]

− iw
u(u) + ws(u)

6δ2Λ2
h(u)

− iLΛ(δ)

Λh(u)
− 2iΛh(u) + δ2‹m(u; δ).

(B.4)

Next, we study the terms wu,s(u). Since Hsep = w+ xy
δ2 +MP +MS +MR (see (3.8)

and (A.18)), one can see that

Hsep(u, zu(u); δ) = Hsep(u, zs(u); δ) = lim
Reu→±∞

Hsep(u, 0, 0, 0; δ) = δ4K(δ),

with |K(δ)| ≤ C, for δ small enough. Then, by Theorem 3.3, for � = u, s,

|w�(u) +MP (u, z�(u); δ) +MS(u, z�(u); δ) +MR(u, z�(u); δ)| ≤ Cδ4

|u2 +A2|
8
3

.

Again, following the proofs of Lemmas A.5 and A.6, one obtains∣∣w�(u) +MP (u, 0, 0, 0; δ) +MS(u, 0, 0, 0; δ) + δ2Λh(u)(3LΛ + 2Λ2
h(u))

∣∣ ≤ Cδ4

|u2 +A2|
8
3

,

and, by (B.4),

B̃3,3(u) = − 4i

3
Λh(u) +

i

δ2

ñ
∂wMP (u, 0, 0, 0; δ) +

MP (u, 0, 0, 0; δ)

3Λ2
h(u)

ô
+

i

δ2

ñ
∂wMS(u, 0, 0, 0; δ) +

MS(u, 0, 0, 0; δ)

3Λ2
h(u)

ô
+ δ2‹m(u; δ).

Therefore, it only remains to check that∣∣∣∣∂wMP,S(u, 0, 0, 0; δ) +
MP,S(u, 0, 0, 0; δ)

3Λ2
h(u)

∣∣∣∣ ≤ Cδ4

|u2 +A2|2
.
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Indeed, by (A.7) and the definition (A.19) of MP , one has

MP (u,w, 0, 0; δ) =MP

Å
u, δ2Λh(u)− δ2w

3Λh(u)
+ δ4LΛ(δ)

ã
,

where MP (u,Λ) is an analytic function for u ∈ Dκ,d and |Λ| � 1. Moreover, following
the proof of Lemma A.5, there exist a0 and a1 such that

|MP (u,Λ)− a0(u; δ)− a1(u; δ)Λ| ≤ CΛ2

|u2 +A2|2
,

with

|a0(u; δ)| ≤ Cδ4

|u2 +A2|
2
3

, |a1(u; δ)| ≤ C

|u2 +A2|
2
3

.

Therefore,∣∣∣∣∂wMP (u, 0, 0, 0; δ) +
MP (u, 0, 0, 0; δ)

3Λ2
h(u)

∣∣∣∣ ≤ |a0(u)|
3Λ2

h(u)
+
δ4LΛ(δ) |a1(u)|

3Λ2
h(u)

+
Cδ4

|u2 +A2|2

≤ Cδ4

|u2 +A2|2
.

An analogous estimate holds for MS .

End of the proof of Lemma 3.19. By Lemma B.1 and recalling that u+ = iA− κδ2,

logBy(u+) =

∫ u+

u∗

B̃spl
3,3(u)du = −4i

3

∫ iA

u∗
Λh(u)du

+
4i

3

∫ iA

u+

Λh(u)du+ δ2

∫ u+

u∗
m(u; δ).

(B.5)

Then, by Theorem 3.1 and taking into account that κ = κ∗ |log δ| (see Lemma 3.18), we
obtain ∣∣∣∣∣logBy(u+) +

4i

3

∫ iA

u∗
Λh(u)du

∣∣∣∣∣ ≤ C

κ
+ Cκ

2
3 δ

4
3 +

Cδ2

|u∗ − iA|
≤ C

|log δ|
.

Finally, recalling that λ̇h = −3Λh, applying the change of coordinates λ = λh(u) and
using that λh(iA) = π, we have that

4i

3

∫ iA

u∗
Λh(u)du = −4i

9

∫ π

λh(u∗)
dλ = −4i

9
(π − λh(u∗)) .

Joining the last statements with (B.5), we obtain the statement of the lemma.
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