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Abstract
Multivariate cryptography (MVQC) is currently one of the most promising families of seem-
ingly quantum-safe cryptographical schemes. However, it often suffers from extremely
large key sizes or ad-hoc security assumptions. In this thesis we deal with a MVQC
scheme, Unbalanced Oil and Vinegar (UOV), leveraging a reformulation of it recently given
by Beullens ([6]) with the aim of exploring how much one can reduce the size of secret
keys while retaining practicality. Moreover, we focus on two simplifications commonly
applied to UOV — these are justified simply by seeing that one can apply the same hard-
ness assumptions that buttress standard UOV. We show that (with some concessions), it
can be proven that they retain security just from the assumption that standard UOV is
secure.

Resumen
La criptografía multivariante (MVQC) es, actualmente, una de las familias de esquemas crip-
tográficos más prometedoras en el ámbito post-cuántico. Aun así, con frecuencia sufre de
llaves de tamaño excesivamente grande o suposiciones de seguridad hechas a medida.
En esta tesis, tratamos un esquema de MVQC, Unbalanced Oil and Vinegar (UOV), uti-
lizando una reformulación de éste dada recientemente por Beullens ([6]), con el objetivo
de explorar cuánto es posible reducir el tamaño de las llaves privadas sin comprometer
la practicalidad. También nos centramos en dos simplificaciones comúnmente aplicadas a
UOV — habitualmente estas se justifican viendo que uno puede aplicarles las suposiciones
de seguridad que forman la base de UOV. Demostramos que (con algunas concesiones),
se puede demostrar directamente que su seguridad sigue de la seguridad de UOV tradi-
cional.

Resum
La criptografia multivariant (MVQC) és, actualment, una de les famílies d’esquemes crip-
togràfics més prometedores en l’àmbit postquàntic. Tanmateix, amb freqüència pateix
de claus d’una mida excessiva o suposicions de seguretat fetes a mida. En aquesta tesi,
tractarem un esquema de MVQC, el Unbalanced Oil and Vinegar (UOV), emprant una re-
formulació d’aquest donada recentment per Beullens ([6]), amb l’objectiu d’explorar fins
a quin punt és possible reduir la mida de les claus privades sense afectar a la practicalitat.
També ens centrem en dues simplificacions freqüentment aplicades a UOV — habitual-
ment aquestes es justifiquen veient que un pot aplicar-hi les suposicions de seguretat que
formen la base de UOV. Demostrem que (amb algunes concessions), es pot demostrar
directament que la seva seguretat segueix de la seguretat de UOV tradicional.



Chapter 1

Introduction

This text deals with the Unbalanced Oil and Vinegar (UOV) scheme from Multivariate cryp-
tography (MVQC), a presumed quantum-safe cryptographical family based primarily on
the assumed hardness of solving multivariate quadratic systems, and the assumed possi-
bility to effectively hide trapdoors within these systems. As is common in MVQC, UOV
suffers from exceedingly large public key sizes, as these have to hold a description of a
multivariate quadratic map with sufficiently large numbers of variables and components.
Numerous schemes derived from UOV have been proposed to mitigate this issue, from
the newly broken NIST finalist Rainbow ([8]), to the recently proposed MAYO ([7]). In this
text, we focus instead on the secret key of UOV, leveraging a reformulation of it given by
Beullens in [6] to remove a significant amount of redundant information from these keys
— allowing us to shave off up to a third of the key’s size for safe parameters.

Being more specific, UOV is composed of two maps F and T — F being a multivariate
quadratic of a form that makes it readily invertible, and T being a linear masking map
such that F ◦ T looks like any random multivariate quadratic. Two simplifications are
usually applied to UOV — namely, that F and T can be assumed to be (quadratically and
linearly, respectively) homogenous. These simplifications are commonly justified by the
fact that the security assumptions that buttress UOV also support the simplified versions
— however, we verify that in most settings these assumptions are not necessary, and it
can be proven directly that the security of these simplified versions follows from that of
standard UOV.

The text is structured as follows:

Chapter 2 deals with preliminary theory. It contains a very minimal introduction to cod-
ing theory; as well as a more fleshed section about cryptography, meant to both serve as
a brief introduction to the field and lay out the concepts that will be used during the text.

Chapter 3 deals with multivariate cryptography. In particular, §3.1 is about the (assumed-
hard) problems underlying multivariate cryptography, giving a number of definitions and
basic results necessary to deal with them for their application in MVQC. §3.2, on the other
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2 Introduction

hand, gives the two main definitions of UOV, and consists primarily of results regarding
the security of simplified versions of UOV with respect to the security of standard UOV.

Chapter 4 attempts to find an optimal encoding for subspaces of finite fields, giving both
theoretical bounds for the size of these encodings and then showing that these bounds can
be met by efficiently computable codes. Moreover, it discusses how this can be applied to
UOV.

1.1 Notation & convention

Linear algebra. All vectors are column vectors unless otherwise specified. The transpose
of a matrix M is denoted M⊤. The orthogonal complement of a subspace V is denoted
V⊥. All vectors and matrices are 1-indexed unless otherwise specified. If v is a vector,
diag(v) denotes the matrix with v along the diagonal and zeros elsewhere. Conversely,
if M is a matrix, diag(M) denotes the vector that has as its elements the diagonal of M.
M(K, n, m) denotes the set of n×m matrices over a field K, and GL(K, n) the set of in-
vertible n× n matrices over this same field. Id denotes the identity matrix and

#»

0 denotes
the zero vector, both with dimension depending on the context. Gr(k, V) denotes the k-th
grassmannian of V, the set of k-dimensional subspaces of V. Unless otherwise specified,
“subspace” refers to linear subspaces, although we will also talk about affine and projec-
tive subspaces at times.

Arithmetic. The degree of the zero polynomial is −∞. Fq denotes the finite field of cardi-
nality q. F∗q denotes the set of invertible (i.e. nonzero) elements of Fq.

Other. The smallest number in N is 1. [a, b] denotes the set of positive integers between
a and b, inclusive. [n] is defined to be [1, n]. If u and v are vectors, u∥v denotes their
concatenation. We occasionally use “w.r.t.” and “s.t.” to abbreviate “with respect to” and
“such that,” respectively.



Chapter 2

Preliminary Theory

2.1 Noiseless coding

Coding deals with representation of objects from a finite set S through a finite alphabet
Σ, often with the intent of finding representations that are resistant to noise (i.e. probably
still decipherable if some bounded amount of symbols are corrupted), or that minimize
expected word length w.r.t. some probability distribution on S. This will not be the case
for us, so we limit ourselves to the necessary elementary notions.

We start by defining T∗ = ∪i∈NTi. T∗ can be endowed with the operation of concatenation
(such that T∗ becomes the free semigroup over T), which we will denote by juxtaposition.
With this, a code (or representation) of S with alphabet T is an injective map ϕ : S → T∗.
Often we will denote ϕ(s) by ⟨s⟩ — we will call this the encoding (or representation) of s.

Because S∗ is free over S, ϕ extends uniquely to a morphism ϕ : S∗ → T∗. We say that
the coding ϕ is uniquely decodable if ϕ is a monomorphism. We will be using a more
combinatoric condition for unique decodability: a code ϕ : S→ T∗ is a prefix code if there
are no two s1, s2 from S such that ϕ(s1) is a prefix of ϕ(s2), that is, ϕ(s2) = ϕ(s1)ω, for
some ω ∈ T∗. Any prefix code is uniquely decodable. We state two more useful results:

Theorem 2.1. (Kraft’s inequality) Let ϕ be a code of S with alphabet T. Denote q = #T, and for
any s ∈ S, let ℓs denote the length of ϕ(s). Then, if ϕ is a prefix code, it must hold that

∑
s∈S

q−ℓs ≤ 1.

The two claims we have made so far are rather intuitive — nonetheless, proofs can be
found in [21]1. This short paper also provides a less obvious generalization:

Theorem 2.2. (McMillan’s inequality) Let ϕ be a code of S with alphabet T. Denote q = #T, and
for any s ∈ S, let ℓs denote the length of ϕ(s). If ϕ is a uniquely decodable code, it must hold that

∑
s∈S

q−ℓs ≤ 1.

1McMillan attributes Theorem 2.1 to an oral remark by a colleague — but in fact, this result had been pub-
lished by Kraft in [19], their MSc thesis.
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4 Preliminary Theory

2.2 Introduction to Cryptography

Cryptography is, at least in a vague sense, the study of the secure transferral of knowledge
in presence of adversarial agents. The practice of cryptography often consists of the design
of protocols to be followed by cooperating parties, such that this secure transferral of
knowledge can be achieved. The mathematical specifications of these protocols distill
exactly what one means by "secure" and "transferral of knowledge"— we give an example:

Definition 2.3. A Shannon Cipher with message spaceM, ciphertext space C, and key space K,
is a tuple E = (E, D), with E : M×K → C and D : C × K → M, satisfying the correctness
property, i.e. that D(E(m, k), k) = m holds for any k ∈ K, m ∈ M.

We will say that E is defined over (M, C,K), and we will call E, D the encryption and
decryption functions, respectively. The correctness property ensures that E can be used
to transfer information: two parties, say Alice and Bob, share knowledge of a key k ∈ K,
and Alice wants to send some m ∈ M to Bob — “in presence of adversarial agents”,
meaning that whatever she sends may be eavesdropped on. The approach would be to
send c := E(m, k), such that Bob can recover m = D(c, k). In this context, the “trans-
ferral of knowledge” is the choice of m ∈ M, and that this transferral is “secure” should
mean, informally, that an eavesdropper without knowledge of k should not be able to gain
knowledge about m just from hearing c.

There are a number of ways to interpret this definition of “secure”. The gold standard (for
single-use keys) is aptly known as perfect security:

Definition 2.4. A Shannon cipher (E, D) is perfectly secure iff, letting k be a random element
with uniform2 distribution over K and m ∈ M, then E(m, k) is independent of the choice of m.

The reason that this is the strongest notion of security in this context is somewhat akin to
the reason that rock-paper-scissors has no winning strategy — indeed, as long as your op-
ponent truly picks their move randomly, then the symmetry of the game ensures that you
can have no knowledge of the outcome. Similarly, as long as Alice and Bob picked k ∈ K
at random, then an eavesdropper cannot gain any information about m from hearing c, as
c comes from the distribution E(m, k), which is independent of m.

Remark. For the past three paragraphs we have assumed that not only Alice and Bob,
but also any adversarial agents, have complete knowledge of the definition of E . This is
common practice, and often known as Kerckhoff’s principle (or Shannon’s maxim): the
choice of k should be the only thing that one needs to keep secret when using E .

Both of these definitions (that of Shannon Cipher and Perfect Security) come from Claude
Shannon’s seminal paper [25], Communication Theory of Secrecy Systems3. This paper also
contains a very important result about perfect security:

2the usage of "uniform", and treating E(m, K) as random elements (i.e. E(m, ·) as measurable) rest on the
unspoken assumption that K is finite. In practice, this is always the case.

3notably, much of the same material appears in an earlier report, classified at time of publication: A Mathe-
matical Theory of Cryptography — this report also predates Shannon’s other seminal paper, A Mathematical Theory
of Communication.
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Theorem 2.5. (Shannon’s theorem of perfect secrecy). Let E be a Shannon cipher with perfect
security defined over (M, C,K). Then, #K ≥ #M.

This is rather bad news. If #K ≥ #M, then log2 #K ≥ log2 #M, meaning the encryption
of any file will incur the creation of a separate item, a key, which will take up at least as
much space as the file itself. This isn’t extremely outlandish for sensitive communication,
but if one wishes to have, say, an encrypted video-conference, doubling the amount of
data that the computer has to process doesn’t seem like good practice.

So we look for ways to relax our definition of perfect security — by looking for ways in
which the definition of perfect security is a bit too paranoid. A possibility is this: perfect
security asks that E(m, k) be independent of m, i.e. that E(m1, k) = E(m2, k) for any m1, m2
from M. However, since our adversaries do not often have the capacity of evaluating
arbitrary mathematical functions, we might simply ask that E(m1, k) is indistinguishable
from E(m2, k) in practice, i.e. that no efficient algorithm can tell the two distributions apart.

Until now, we have dealt with Shannon Ciphers, which are purely functional objects. The
prior paragraph introduces a new computational flavor to the concept of ciphers, and we
call the result a computational cipher — essentially, a Shannon Cipher that comes with
efficient algorithms for computing E and D, as well as sampling keys from K.

2.2.1 Relevant elements of cryptography

In this section, we aim to introduce the less elementary concepts of cryptography that will
be necessary during this text — though, evidently, the field of Cryptography is richer than
what can be condensed in a two-page summary4. As seen before with the introduction
of computational ciphers, we will need to deal with some concepts rooted in elementary
complexity theory. For the sake of brevity, we will assume the reader is familiar with the
concepts of Turing Machines (TMs), efficiency, computational problems, and hardness.
We refer to [2] for a formal treatment of these, and [9, §2.3] for their role in cryptography
— here we simply outline the conventions we will be following.

Conventions regarding computational notions

Algorithms. We will often refer to TMs as simply algorithms and deal with them through
a layer of abstraction. This is primarily in the sense that we will write their input/output
as mathematical objects — without taking the time to specify an encoding into the TM’s
alphabet, or how this encoding is used to deal with the aforementioned objects (e.g. a TM
may be defined as taking a “polynomial” as an input and then computing its “derivative”
— it is not hard to imagine how one might actually formalize these two computational
operations, but doing so is orthogonal to the topics of interest in this text).

Input/output. We may assume that a TM outputs/requests input at different times during
execution (e.g. a stateful random number generator), as decided by execution itself. In

4the interested reader is encouraged to read [9], particularly the first chapter.



6 Preliminary Theory

theory, this can be modeled by the TM entering a pseudo-halting state when it is waiting
for additional input. At times we will have a TM A that takes a single input and return a
single output (either of these may be a tuple of several objects) — in this case, we use A(x)
to denote the output of A on input x — if A is probabilistic, then this is a random variable.

Nondeterminism. Unless otherwise stated, we will always be talking about probabilistic
algorithms. At times, probabilistic or non-deterministic algorithms may be made deter-
ministic by feeding the randomness through an additional tape, known as a random tape.

Signature schemes

The primary cryptographical construction we will be dealing with in the following chap-
ters is the so-called Unbalanced Oil and Vinegar scheme. In essence, the main object of
interest underlying this scheme is a kind of map that is hard to invert unless one knows
certain secret information. In this sense, this puts it rather close to what are usually known
as one-way trapdoor function schemes — however, in practice it is almost always used as a
signature scheme, and so this is the lens through which we will be looking at it:

Definition 2.6. A signature scheme with message spaceM, key spacesKp andKs, and signature
space S , consists of three efficient algorithms:

• keyGen, taking a unary input 1λ (λ being the security parameter), and returning a tuple
(pk, sk) ∈ Kp ×Ks of a public key and a private key.

• sign, with input a secret key sk ∈ Ks and message m ∈ S, and returning a signature σ ∈ S .
For convenience, sign may also take a public key pk as input.

• verify, taking as input a public key pk ∈ Kp, a message m ∈ M, and a signature σ ∈ S ,
and outputting either 1 or 0.

satisfying the correctness property, i.e. that for any pk, sk returned by keyGen and any m ∈ M,
we have that verify(pk, m, sign(sk, m)) = 1.

The correctness property essentially states that verify believes any legitimate signature
(i.e. one produced by sign with the adequate secret key). For signature schemes, security
will essentially be the converse of correctness, i.e. that verify should not believe any
signature that has not been legitimately generated with knowledge of sk — i.e. that no
efficient algorithm A can, given only 1λ and pk, have a chance of finding m and σ such that
verify(pk, m, σ) = 1. To be precise, since this allows A to pick which m it wants to forge a
signature σ for, no such A existing would mean that the scheme is existentially unforgeable
(EUF). This concept is more often defined in the language of cryptographical games:
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A

λ

pk, sk R← keyGen(1λ)

Output verify(pk, m, σ)

EUF challenger

λ

pk

m, σ

The diagram above may be interpreted as an algorithm, taking λ ∈ N as an input, inter-
nally running the challenger, A, and the message passing between them, and outputting
whatever the challenger outputs. Let E be the signature scheme defined by keyGen,
verify, and sign — then, we will call this algorithm EUFchallengeE [A], and the EUF
advantage of A over E will be

EUFadvE (A) : λ 7→ Pr(EUFchallengeE [A](λ) = 1),

wherein the Pr refers to the probability space induced by the random choices of A and
the challenger. Intuitively, the security parameter λ represents a choice of how difficult
we want the game above to be for A — in practice, this always incurs a tradeoff, where a
higher security parameter also means larger keys and longer running times5.

We say that A breaks the EUF security of E if EUFadvE (A)(λ) is a non-negligible function
of λ, i.e. it is asymptotically greater than the inverse of some polynomial. We say that E
has EUF security if no efficient algorithm A can break its EUF security6.

Proving EUFadvE (A)(λ) to be negligible for any algorithm A seems rather daunting. In
practice, this is nearly always achieved through reductions: showing that, if such an A ex-
isted, then another algorithm B (typically built as a wrapper around A) must also exist
and efficiently solve some problem known or thought to be hard. This is analogous to the
notion of computational reduction, but, crucially, here we do not need A or B to always
achieve their goal — they need only work a non-negligible portion of the time.

It should be noted that there are other definitions of security for signature schemes. For
instance, there exist other notions of forgeability — such as universal unforgeability (UUF),
which means that no algorithm A should be able to succeed in a game where the challenger
picks the message m that they have to forge a signature for. More importantly for us, a
scheme can be shown to be secure against certain types of “attacks” — for instance, E is
EUF-CMA if, informally, it retains EUF even when A is allowed to query for signatures
of any message it chooses (so long as it outputs a forgery that is not among the queries).

5Note that keyGen must be efficient, i.e. with runtime bounded by a polynomial in |1λ| = λ. By extension
this also bounds the size of its output, and thus sign and verify also have runtime bounded by a polynomial
in λ — so indeed, the security parameter controls how costly it is to run our scheme.

6Note that the negligibility here is a somewhat arbitrary requirement — in fact, all we are interested in is that
for some practical value of λ, the advantage of any A is sufficiently low that E is secure in practice.
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This can be succintly expressed by modifying the previous game (note that from this point
onward, λ being an input will be implicit):

A

pk, sk R← keyGen(1λ)

σi
R← sign(sk, mi)

Output 0 if (m, σ) = (mi, σi) for any i

Otherwise, output verify(pk, m, σ)

EUF-CMA challenger

pk

mi

σi

m, σ

Analogously to before, we would define EUF-CMAchallengeE [A], and EUF-CMAadvE (A),
and from this define EUF-CMA security.

Cryptohashes and the Random Oracle Model

As we mentioned earlier, the signature schemes that we will be dealing with are derived
from constructions that are closer to one-way functions. This is done with an approach
strongly analogous to what is known as the Full Domain Hash — to properly explain this,
we have to introduce the notion of cryptopgraphic hash functions, or cryptohashes.

Giving a proper definition of these is not particularly enlightening, and, for reasons that
will become clear shortly, we in fact do not need to properly define them at all — for this,
we refer to [9, §8.1]. Informally, a cryptohash is a function for which it is (very) difficult to
find collisions, i.e. different points that map to the same image. Cryptohashes are usually
thought of, or at least used as, functions that seemingly have no internal structure, and
thus are used as stand-inds for random functions7. This explains the frequent usage of the
Random Oracle Model (ROM) — essentially, showing that some scheme that uses a hash H
is secure if H is replaced by a bona-fide random function. We will be using the ROM in
some reductions later on.

Informally, then, a FDH approach to constructing a signature scheme from a one-way
function f (picked by keyGen) would sign a message m by computing H(m) and finding
σ such that f (σ) = H(m) (note the signing requires knowing how to invert f ), and the
verification would simply involve checking that, indeed f (σ) = H(m). It is rather easy to
convince oneself that, in the ROM (i.e. assuming that H behaves like a random function),
then the one-wayness of f usually begets existential unforgeability in the resulting scheme.

7The function itself is deterministic — “random function” here means “a random pick from the set of all
relevant functions”
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2.2.2 Post-quantum cryptography

Earlier in §2.2¶12, we shifted our focus from adversaries capable of computing any well-
defined function, to adversaries capable of computing any efficiently computable function.
Though we did not define this, what is usually meant by a function being computable is
that it can be computed by a Probabilistic Turing Machine — this appears tantamount to
assuming that adversaries have no technology better than Probabilistic Turing Machines.
This might seem dangerous at first — what if a real-life adversary has the capability of
running some other computational model?

In principle, we are protected by the Church-Turing Hypothesis — that all models of
computation are equivalent (i.e. they can compute the same things). More precisely,
since we are interested in what is efficiently computable, we are protected by the Strong
Church-Turing Hypothesis — that all models of computation can simulate each other
with polynomial overhead (therefore, they can efficiently compute the same things).

The advent of (the computational model of) quantum computation has put this latter
version of the hypothesis in a dubious position. We cannot say for sure that the strong
hypothesis is false — however, it is a definite fact that problems which are believed to be
computationally hard (e.g. prime factoring), hard enough that they buttress widely-used
cryptosystems (e.g. RSA), have been found to be not that hard for quantum computers.

This poses a more urgent threat than one might assume at first. Indeed, quantum comput-
ers powerful enough to attack RSA are nowhere close to existing — however, nobody is
stopping adversarial agents from eavesdropping on RSA-encrypted conversations, waiting
until the advent of reasonably powerful quantum computers (however many years from
now), and using those computers to succesfully break the encryption of those conversa-
tions. A non-insignificant portion of the sensitive information being exchanged nowadays
will certainly still be sensitive in 50 years — so, if one believes that reasonably powerful
quantum computing is less than 50 years away, they should be worried about whether the
cryptosystems that they’re using right now are vulnerable to quantum adversaries.

So, like before, this forces a redefinition of safety for cryptographical protocols — we now
have to find schemes that cannot be attacked by efficient quantum adversaries, meaning
that they are based on problems which are hard for quantum computers. Several ap-
proaches exist to this — for a detailed rundown, we refer to [5]. In this text, we will be
dealing with one of these approaches — that of multivariate cryptography.



Chapter 3

Multivariate Cryptography

Multivariate cryptography is a family of asymmetric cryptographic schemes based on
trapdoor functions taking the form of multivariate quadratic maps. These maps are gen-
erally difficult to invert, but have some kind of structure baked into them which makes
efficient inversion possible if one knows some secret information describing this structure.
Usually, this structure is readily visible in some easy to invert “central map”, and it is hid-
den by changes of variable in the input and/or output spaces of the maps — in general,
this change of variable makes the resulting map “enough” like a random multivariate
quadratic to ensure security.

The fundamental distinctions between different schemes from MVQC lie in the construc-
tion of the central map. Big-field multivariate cryptography, for instance, considers easy-
to-invert maps with components of Fpr [x], which are then interpreted as maps in Fr

p[x] —
typical examples of this would be Patarin’s Hidden Field Equations (HFE, [22]), or Mat-
sumoto and Imai’s C∗ ([20]). In this text (in §3.2), however, we will be dealing with the
Unbalanced Oil and Vinegar scheme (UOV) — this is the fundamental scheme in small-field
multivariate cryptography.

The interest in UOV can be justified by the fact that Rainbow ([13]), a scheme derived
from UOV, made it to Round 3 of the NIST competition for Quantum-secure signatures.
However, very recently Beullens constructed a practical break against Rainbow in [8].
Nonetheless, this does not compromise the security of UOV — its main weakness was
and remains unreasonably large public keys, and other viable approaches to remedy this
exist, such as Beullens’ MAYO ([7]). Nonetheless, in this text (in §3.2), we will be focusing
on UOV, in particular to prove the security of two common simplifications of it, as well as
delve into how a recent reformulation of it by Beullens in [6] provides an opportunity to
shorten secret keys.

We note that, although we will not talk about it in this text, there is a great deal of literature
focused on cryptanalizing UOV, as it is not formally known to be secure. We recommend
[6] as a reference for known attacks.

10
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3.1 Fundamental hard problems

We aim to introduce the problems upon which Multivariate Cryptography is built. Infor-
mally, one would expect to interpret this as problems that admit reductions from breaking
MVQC schemes — however, in the case of MVQC, the relationship is less straightforward
(and formally weaker). In this section, we will introduce the necessary concepts to define
these problems, and later discuss their relationship to MVQC.

3.1.1 Single-component quadratic maps

The fundamental object of interest will be quadratic maps of several variables over finite
fields — however, to start building up some helpful results, we will briefly be restricting
ourselves to quadratic maps with a single component. Indeed, let p : Fn

q → Fq be a
quadratic map of n variables x = (x1, . . . , xn). Note that one can easily organize the
coefficients of p:

p(x) = ∑
1≤i≤j≤n

Aijxixj + ∑
1≤i≤n

bixi + c

At this point, if we define Aij to be zero for i > j, A can be regarded as a matrix and b as
a (column) vector. So we have that:

p(x) = x⊤Ax + b⊤x + c

This is a matricial representation of p. Note that it is not unique, as adding any skew-
symmetric matrix to A would not change the value of x⊥Ax — it will be useful to charac-
terize exactly when two different representations give rise to the same quadratic map.

Unique matricial representations

Though somewhat obtuse, it is useful to note that matricial representations are “linear”.
What we mean by this is that, if we introduce the notation [A, b, c] := x 7→ x⊥Ax+ b⊥x+ c,
then a simple calculation reveals that

[A1, b1, c1] + [A2, b2, c2] = [A1 + A2, b1 + b2, c1 + c2],

where the + on the LHS denotes a sum of functions, but on the RHS of standard matri-
ces over Fq. So for unicity, we want to restrict the value of (A, b, c) such that it cannot
happen that (A1, b1, c1) ̸= (A2, b2, c2) while [A1, b1, c1] = [A2, b2, c2] — or put another way,
(A1− A2, b1− b2, c1− c2) ̸= 0 = [A1− A2, b1− b2, c1− c2]. This is tantamount to imposing
that there cannot be (A, b, c) ̸= 0 with [A, b, c] = 0.

It is easy to see that we can restrict A to be upper triangular — indeed, since xixj = xjxi
(in Fq, at least), any quadratic expression of n variables can be written such that all the
quadratic terms xixj have i ≤ j. At this point, we have to segregate the analysis according
to the characteristic of the underlying field:
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• If q > 2, we have enough to ensure uniqueness. To show this, assume that p =

[A, b, c] = 0, and we will show that (A, b, c) = 0. To start, p(0) = c = 0. Moreover,
for each i ∈ [n], p(ei) = Aii + bi = 0, and letting x ∈ Fq be such that x2 ̸= x, we
also have that p(xei) = x2 Aii + xbi = 0. This linear system implies that Aii = bi = 0,
since it is homogenous and its determinant is x2 − x ̸= 0. Finally, for off-diagonal
elements Aij of A, note that p(ei + ej) = Aij + bi + bj = 0. Since bi = bj = 0, we have
that also Aij = 0 — so every entry of A, b and c is null, like we wanted.

• The case of q = 2 is different, primarily owing to the fact that there is no x with
x2 in F2 — in particular, x2

i = xi, and so the diagonal of A (i.e. coefficients of the
x2

i terms) and b (i.e. coefficients of the xi terms) are playing the exact same role.
In other words, [A, b, c] = [A + diag(b),

#»

0 , c] — so, in F2, we impose the additional
restriction that b =

#»

0 . Proceeding similarly to before1, we obtain that this already
yields uniqueness. This motivates the following two statements:

Definition 3.1. Let p : Fn
q → Fq be a quadratic map. If q > 2, a matricial representation [A, b, c]

of p is standard if A is upper triangular. If q = 2, a matricial representation [A, b, c] of p is
standard if A is upper triangular and b =

#»

0 .

Proposition 3.2. Any quadratic map p : Fn
q → Fq has a unique standard representation.

Polar forms

Given some quadratic map p : Fn
q → Fq, we will associate to it a polar form, p∗ : (Fn

q )
2 →

Fq, defined by p∗(x, y) = p(x + y)− p(x)− p(y) + p(
#»

0 ). Note that it is not necessary to
know the definition of p to work with p∗ — indeed, p∗ can be computed just with access
to p as an oracle. The polar form is useful, then, because it distills the (homogenously)
quadratic part of a quadratic map.

For the sake of clarifying what this statement means, consider the map ϕ : f 7→ f ∗ sending
any function between some pair vector spaces f to its polar form f ∗. Note that ϕ is clearly
linear, and moreover it is easy to verify that both constant and linear functions must belong
in the kernel of ϕ:

f constant =⇒ f ∗(x, y) = f (x + y)− f (x)− f (y) + f (0)

= f (0)− f (0)− f (0) + f (0) = 0,

f linear =⇒ f ∗(x, y) = f (x + y)− f (x)− f (y) + f (0)

= f (x) + f (y)− f (x)− f (y) = 0.

1Obviously evaluating at 2ei is not useful in F2, where 2 = 0. However, this is unnecessary, since we already
have that bi = 0.
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So if p is like before with some matricial representation p(x) = x⊤Ax + b⊤x + c, then

p∗ = ϕ(p) = ϕ(x 7→ x⊤Ax + b⊤x + c)

= ϕ(x 7→ x⊤Ax) + ϕ(x 7→ b⊤x) + ϕ(x 7→ c)

= ϕ(x 7→ x⊤Ax)

=⇒ p∗(x, y) = (x + y)⊤A(x + y)− x⊤Ax− y⊤Ay +
#»

0⊤A
#»

0

= x⊤Ay + y⊤Ax

= x⊤(A + A⊤)y.

Note that p′ is a bilinear form. We show the use of p′ by way of example, showing how it
can let us retrieve a matricial representation of p just from oracle access to p.

Retrieving representations of quadratic maps

We introduce a couple of standard results necessary for the following couple sections:

Lemma 3.3. Let M be an skew-symmetric matrix inM(K, n, n). Then, for any x ∈ Kn, it holds
that x⊤Mx = 0.

Proof. x⊤Mx = (x⊤Mx)⊤ = x⊤M⊤(x⊤)⊤ = x⊤(−M)x = −x⊤Mx, and so x⊤Mx = 0.

Lemma 3.4. Let A, B be two matrices from M(K, n, n) such that A − B is skew-symmetric.
Then, for any x ∈ Kn, it holds that x⊤Ax = x⊤Bx.

Proof. x⊤Bx ∗= x⊤Bx + x⊤(A− B)x = x⊤Bx, the marked equality from Lemma 3.3.

Now, observe that 2A − (A + A⊤) = A − A⊤ must be skew-symmetric, and therefore
p∗(x, x) = 2x⊤Ax, meaning that, as long as we are in Fq with q ̸= 2 (i.e. we are in
a field where 2 is invertible), the polar form allows us to recover a matrix M such that
x⊤Mx = x⊤Ax (by setting (Mij) =

1
2 p∗(ei, ej)). With this, it is easy to consider the function

p(x)− 1
2

p∗(x, x) = x⊤Ax + b⊤x + c− x⊤Ax = b⊤x + c,

from which we can easily extract b and c — the takeaway being that we can obtain a
matricial representation of p just from querying p at certain values (in particular, with
a quadratic number of queries). Moreover, let L be the strictly lower triangular part of
M. Then, L⊤ − L is skew-symmetric, so x⊤Ax = x⊤Mx = x⊤(M− L + L⊤)x. Note that
M− L + L⊤ is upper triangular, so this also allows us to recover a standard representation
of p.

This is just one application. The polar form is generally more useful as a theoretical tool —
however, the essence of its application is always similar to its usage above, i.e. separating
out the homogenous part of a quadratic map.
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Retrieving representations in F2r

The analysis from the prior section is valid in F2 exactly up until the point where we talk
about “ 1

2 ” — this implies that, in F2, for any quadratic map p, the polar map satisfies
p′(x, x) = 2x⊤Ax = 0, meaning it cannot tell us anything about the diagonal of A. So, let
p = [A, b, c] be a standard matricial representation, and we will have to find some other
way to extract the values of A, b, c from querying p. Clearly c = p(

#»

0 ). Now, we segregate
according to r:

• If r = 1, that is, we are in F2, and so b =
#»

0 . Moreover, A2
ii = p(ei)− c.

• If r > 1, again letting x ∈ F2r be such that x ̸= x2, we have that p(ei)− c = A2
ii + bi

and p(xei)− c = x2 A2
ii + xbi — a linear system which we can invert.

In both cases, we can determine b and the diagonal of A. Now, for each i < j, we have
p∗(ei, ej) = e⊤i (A + A⊤)ej = Aij — so, like before, we can retrieve a standard representa-
tion of p.

Homogeneization

Consider some quadratic map p : Fn
q → Fq of n variables x, and a matricial representation

of this quadratic map, p(x) = x⊤Ax + b⊤x + c. Notice that

(
x⊤ 1

)
 A b

0 c


 x

1

 = x⊤Ax + bx + c = p(x)

This is an affine representation of p. The same restrictions on A, b, c as before work to
ensure that this representation is unique. Moreover, define the homogeneization of p to
be the map p : Fn+1

q → Fq defined by

p(v) = v⊤

 A b

0 c

 v

and note that p(x1, . . . , xn, 1) = p(x1, . . . , xn). The homogeneization is, unsurprisingly, a
(quadratically) homogenous map. Now, such a map q can be represented as q(x) = x⊤Mx,
and clearly (or by Prop. 3.1) this representation can be made unique by imposing that M be
upper triangular. Moreover, if p = [A, b, c] is a standard representation, then the composite
matrix above is upper triangular — in fact, it can be any upper triangular matrix, as all its
entries will be entries of either A, b or c. Therefore:

Proposition 3.5. The set of quadratic maps p : Fn
q → Fq and the set of homogenous quadratic

maps q : Fn+1
q → Fq are of the same cardinality — in particular, the homogeneization map p 7→ p

is a bijection between them.
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Computational aspects

We mentioned in §2.2.1¶2 that we would treat algorithms as if their input could be pure
mathematical objects, without much regard for how these would be represented. Since all
our algorithms will be dealing with quadratic maps, it is worthwhile to collect some of the
observations from this section regarding how algorithms may deal with quadratic maps:

• The most useful observation is that the representation of a quadratic map p is irrel-
evant, as long as it allows for efficient evaluation. If this is the case, then, as we saw
earlier, this permits efficiently retrieving a standard matricial representation.

• Given p, one can efficiently evaluate its polar form p∗, and also retrieve a matricial
representation of p∗ — either directly or through a representation of p.

• Given p, one can efficiently (through finding a representation of p) find a represen-
tation of its homogeneization p, and thus also evaluate p.

• Given p = [A, b, c], and a matrix M, one can efficiently compute a representation of
the composition map p ◦M = [M⊥AM, bM, c].

• One can efficiently generate an uniformly random quadratic map p by simply gen-
erating an uniformly random standard matricial representation, i.e. filling each
nonzero entry with a random element of Fq, and likewise for homogenous maps.

During the next section, note that all of these observations extend without difficulty to the
multivariate case. With this in mind, during the remainder of the text we will be able to
describe algorithms that perform use the operations enumerated above — and we will do
this without precisely specifying how these operations are carried out.

3.1.2 Multivariate quadratic maps

For a fixed power-of-prime modulus q, a multivariate quadratic map over n variables x
with m components is a map P : Fn

q → Fm
q , sending x to (p1(x), . . . , pm(x)), with each

component pi being a quadratic map of n variables. We say that a multivariate quadratic
map is homogenous if each of its components is homogenous of degree 2. The polar
form P∗ of P is the element-wise polar form, (p∗1(x), . . . , p∗m(x)), and likewise the homo-
geneization P of P is obtained through element-wise homogeneization.

The MQ problem

The fundamental problem buttressing the safety of multivariate cryptography is the MQ
problem — for fixed q, n, m, an instance of this problem consists of a multivariate quadratic
map P : Fn

q → Fm
q and an element t ∈ Fm

q , and a solution to this instance would be an
element x ∈ Fn

q such that P(x) = t, if such an element exists. In short, the MQ problem is
the problem of inverting multivariate quadratic maps over some field Fq — or, in perhaps
more familiar terms, the problem of solving multivariate quadratic equations over this
same field. This problem is known to be computationally hard (see AppendixA).
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The relationship between MVQC and MQ

The fact that MQ is computationally hard does not mean that it is hard in the cryptograph-
ical sense. Indeed, the proof that this problem is computationally hard relies on some
specific farfetched polynomial systems that encode other NP-hard problems — however,
one can imagine a “partial” MQ solver that only solved some (non-negligible) portion of
all problem instances. As far as the wisdom of computational complexity is concerned,
this solver could definitely exist, as its existence does not suggest that P=NP as long as it
fails on the particular problem instances that encode other NP-hard problems — but such
a solver would definitely threaten the cryptographical security of any scheme based on
the hardness of MQ, because a scheme that is secure some of the time (or even most of the
time) is not actually secure at all.

However, it is generally believed that MQ is hard-on-average, i.e. that no such solver exists.
More importantly, it is also generally believed that (the distribution of) quadratic systems
that come up in specific instances of MVQC schemes is computationally indistinguishable
from that of uniformly sampled quadratic systems. If this is indeed the case, then no
solver can perform better on average at solving the systems that come up on MVQC, as
otherwise it would serve as an algorithm to distinguish these systems from uniform ones.
Indeed, the best algorithms known for solving polynomial systems (primarily XL[11] and
Gröbner-base[14] algorithms) do not exhibit any kind of speedup when running on the
kinds of systems used in MVQC. All in all, the current state of the art in attacks suggests
that (for appropiately chosen parameters), solving the quadratic systems underpinning
the security of MVQC is no easier than solving the MQ problem altogether.

The homogenousMQ problem

At some points in the text we will focus on (quadratically) homogenous maps — so it
becomes necessary to justify that this does not incur a significant loss in security.

Denote by MQMq(n, m) the set of multivariate quadratic maps from Fn
q to Fm

q , and like-
wise HMQMq(n, m) for homogenous multivariate quadratic maps. With this, MQq(n, m)

is the problem of inverting random maps from MQMq(n, m) at random t ∈ Fm
q , and

likewise for homogenousMQq(n, m). Then:

Proposition 3.6. If there exists an efficient algorithm A that can solve homogenousMQq(n, m)

with probability at least p, then there exists an efficient algorithm B that can solve MQq(n, m) with
probability at least p/q.

Proof. We directly construct B (Fig. 3.1), in the usual style of cryptographic reductions.

Before discussing the reduction, note that B contains an instruction to uniformly sample
a random invertible matrix. That this is possible to do efficiently, i.e. in polynomial time
(as opposed to in polynomial expected time) is not trivial. An (optimal) algorithm for
this purpose is given in [24]. With that resolved2 — evidently, if A returns an x′ such that

2We could also just have B abort if it takes too long to find an invertible matrix, since this should only happen
with probability 1/poly(q) — however, avoiding this makes the relationship between A and B cleaner.
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B R← GL(Fq, n + 1)

P ′ ← H ◦P

Abort if B · x′ is not of the form x∥1

A
P ′, t

x′

B

P R← MQMq(n, m)

t R← Fm
q

Accept iff P(x) = t

MQq(n, m) challenger

P , t

x

Figure 3.1: Reduction from MQq(n, m) to homogenousMQq(n + 1, m)

t = P ′(x) = H(B · x′), and B · x′ is of the form x∥1, then B returns a x such that P(x) = t,
and so the challenger accepts. To complete the proof, however, we need to show two more
facts:

1. P ′ is distributed uniformly over HMQMq(n + 1, m). Since t is uniform over Fm
q and

independent from P and P ′, this will imply that A is recieving inputs as in a real
homogenousMQq(n + 1, m) challenge, and thus will output x′ satisfying P ′(x) = t
with probability p.

2. After A returns x′, the probability that B · x′ is of the form x∥1 is exactly 1/q.

Combining these two facts we have that the scenario described above (i.e. B succes-
fully computes a preimage) happens with probability p/q, as we wanted. So, regard-
ing (1) — note that by 3.5, H is uniformly distributed over HMQMq(n + 1, m). Now, if
H(x) = x⊤Mx, then P ′(x) = (Bx)⊤M(Bx) = x⊤(B⊤MB)x — i.e., as expected P ′ is just
an arbitrary change of basis of H, and thus is also uniform over HMQMq(n + 1, m).

Then, regarding (2). The idea is to show that P ′ is independent from B. Since B is clearly
also independent from t, and P ′, t is the only input that A gets, this would imply that the
output x′ is also independent from B. Then, B is uniformly distributed, which implies
that B · x′ is also uniformly distributed, and thus the last coordinate of B · x′ is 1 with
probability 1/q, like we want.

So it only remains to show that P ′ is indeed independent from B. Let p′, b be two
particular values that P ′ and B may take — then, P ′ = p′ ∧ B = b if and only if H =
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p′ ◦ b−1 ∧ B = b. Moreover, H and B are independent, so

Pr(P ′ = p′ ∧ B = b) = Pr(H = p′ ◦ b−1 ∧ B = b)

= Pr(H = p′ ◦ b−1) · Pr(B = b)

= Pr(B = b)/#HMQMq(n + 1, m)

= Pr(P ′ = p′) · Pr(B = b)

Remark. Though it will not be useful to us, it is rather easy to come up with a computa-
tional reduction between the same two problems which does not incur this 1/q factor — to
solve some quadratic system P(x) = t, simply solve the homogeneization P(x∥xn+1) = t,
with the extra (homogenous) constraint that x2

n+1 = 1. The solution will have xn+1 = ±1
— even if xn+1 = −1, the homogeneity of P ensures that one can recover a solution of the
form x∥1, and so x will be a solution to our original system.

3.2 UOV

At its core, UOV is simply a rather elegant trapdoor function scheme, where the functions
are multivariate quadratic maps P : Fn

q → Fm
q . As is usual in the literature, we will treat

UOV as an FDH-like signature scheme: a message is signed by taking its hash and then
using the trapdoor to find an preimage of this hash. We will give two different descrip-
tions of UOV, according to two different ways of conceptualizing its secret key.

We note that we will not be salting the hashes, that is, hashing m∥s and adding s to the
signature of m. Salting is standard, as it ensures that the resulting signature scheme has
nondeterministic signatures regardless of the underlying trapdoor scheme — nonetheless,
avoiding this simplifies the analysis a great deal. We will draw attention to the distinction
when it is relevant.

The origin of (the traditional description of) UOV can be traced to [23], wherein Patarin
introduced the “Oil and Vinegar scheme” – importantly, this OV scheme took n = 2m.
This was later found to be insecure by Kipnis and Shamir in [17], which prompted the
introduction of “Unbalanced Oil and Vinegar” (UOV) in [16], taking n > 2m. In the
following section we will give the original description of this signature scheme.

3.2.1 Traditional description

For convenience, we will say that a multivariate quadratic map P has the OV property if
none of its components has aj,kxjxk terms with j, k ∈ [n− m, n]. The construction begins
with the so-called central map F : Fn

q → Fm
q , which is a map with the OV property.

It will be useful to rephrase this in terms of matricial representation. For this, consider any
x ∈ Fn

q , and split the last m components from the rest: x = (xv | xo), with xv ∈ Fn−m
q and

xo ∈ Fm
q . Note that the prior paragraph essentially states that fi(xv | xo) has no quadratic

term in the xo variables. Then, let fi = [Ai, bi, ci] be a standard matricial representation,
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and split Ai analogously to x = (xv | xo):

fi(x) = fi(xv | xo) = (xv | xo)
⊤
(

Si Di
#»
#»

0 Fi

)(
xv

xo

)
+ b⊤i x + ci

The restriction we put earlier on P is equivalent to saying that the matrix Fi must be
uniformly zero, as otherwise fi would have quadratic terms in the last m variables3. With
this in mind, we can expand the expression by multiplying out the x⊤Aix term:

fi(x) = x⊤v Sixv + x⊤v Dixo + b⊤i x + ci

The key observation now is that, if one fixes xv, then fi(xv | xo) becomes an affine function
of xo. More importantly, the same can be said of F (xv | xo), which now becomes an affine
map Fm

q → Fm
q — since the dimension of domain and codomain are equal, this map is

easy to invert as long as it is of full rank. This gives us a procedure to invert the central
map F — if we are seeking x = F−1(t):

1. Fix the first n−m variables randomly.

2. Repeat the first step until the resulting map xo 7→ F (xv | xo) is of full rank4.

3. Inverting the resulting affine map, find xo such that F (xv | xo) = t.

4. Output x = (xv | xo).

The core idea of UOV (and OV), then, is as follows: the secret key will be a full-rank
affine map T : Fn

q → Fn
q — essentially acting as a change of coordinates in Fn

q . The public
key will be P := F ◦ T . To someone without knowledge of T , this should just look like
an arbitrary multivariate quadratic map. However, with knowledge of T , one can easily
compute F = P ◦ T −1, and thus P−1 = (F ◦ T )−1 = T −1 ◦ F−1 — and this can be
computed easily too, as T is an affine map and F can be inverted with the procedure we
just described. These are all the pieces we need to define the signature scheme UOV:

• keyGen(1λ) generates a random central map F : Fn
q → Fm

q and affine map T : Fn
q →

Fn
q , and returns (pk, sk) = (F ◦ T , T ).

• sign(pk,sk,m) employs the procedure described above, using T = sk to invert P =

pk at H(m), and returns the resulting σ.

• verify(pk, m, σ) outputs 1 iff P(σ) = H(m), where F = pk.

Note here that we are not specifying the value of q — in practice, these depend will
depend on the security parameter λ in some way to be defined by the specification. We
will not fix them, however, to be able to study UOV for any value of q, n, m — we will

3more precisely, Fi must be skew-symmetric, but since we constrained it to be upper triangular, this implies
that it is zero.

4Note that the probability that this map is of full rank depends on P , and may be as low as 0 for extremely rare
(not necessarily trivial) maps. This is almost always ignored in the literature, as with overwhelming probability
P will be "regular" enough for these restrictions to be invertible with probability ≈ 1− q−1.
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speak of UOVq(n, m) when these parameters are relevant. Moreover, a full specification of
UOV should also depend on what hash function H we are going to use — although this
does not matter very much, on account of the fact that we will deal with H in the random
oracle model. Nonetheless, Rainbow, the close cousin of UOV in the second round of the
NIST competition for post-quantum digital signatures ([12]) specifies the usage of hash
functions from the SHA2 family.

3.2.2 A secure simplification of UOV

In this section, we will intend to make two simplifications to the signature scheme de-
scribed above — more for theoretical than practical convenience. In this subsection, we
will show that we can assume that T is linear — the other simplification we will deal with
in §3.2.4, as it is easier to reason about with the modern definition.

The fact that choosing T to be linear is safe is an observation originally made by Braeken
et al. in [10, §3.1]5, essentially about a useful way to rewrite P(x) = (F ◦ T )(x). Let M
and v be such that T (x) = Mx + v, and define F ′(x) = F (x + v) and T ‘(x) = Mx. The
important observation is that

(F ◦ T )(x) = F (Mx + v) = F ′(Mx) = (F ′ ◦ T ′)(x),

and so F ◦ T = F ′ ◦ T ′, with F ′ being a multivariate quadratic map and T ′ a linear map,
with the same domains and codomains as F and T .

So let linearUOV be a scheme exactly like UOV, except that keyGen always picks T to
be linear. We are interested in seeing that breaking UOV can be reduced to breaking
linearUOV, and thus the security of the latter is implied by that of the former. For this, we
need a small result:

Lemma 3.7. Let F : Fn
q → Fm

q be a multivariate quadratic map, and v be any element from Fn
q .

Then, F ′(x) := F (x + v) is also a multivariate quadratic, with the same quadratic terms as F .

Proof. We show that the condition holds for each component f ′i of F ′. Consider a matricial
representation fi = [Ai, bi, ci]. Then,

f ′i (x) = fi(x + v) = x⊤Aix (quadratic terms)

+
(
v⊤(Ai + A⊤i ) + b⊤

)
x (linear terms)

+ v⊤Aiv + b⊤v + ci. (constant terms)

Corollary 3.8. Let F , v and F ′ be like above. If F has the OV property, then so does F ′.

With this corollary, we are equipped to prove the result:

Proposition 3.9. Let A be an algorithm that breaks the EUF(/-CMA) security of linearUOV (resp.
UOV). Then, A also breaks the EUF(/-CMA) security of UOV (resp. linearUOV).

5a complete reduction is not given (though the existence of one is suggested in §3.1¶3). The remainder of this
section shows that such a reduction does indeed exist.
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Proof. In fact, we show something quite a bit more fundamental: UOV and linearUOV are
the same scheme, at least from the perspective of someone trying to break them. The
only part where their definitions differ is in the keyGen — but we will show that both
definitions, in fact, produce the same public keys with the same probabilities. So let U
be the set of maps in MQMn,m

q with the OV property, and consider the following three
methods of sampling a public key:

Method 1 Method 2 Method 3

1. M R←M(Fq, n, n) 1. M R←M(Fq, n, n) 1. M R←M(Fq, n, n)

2. b R← Fn
q 2. b R← Fn

q 2. T ← [x 7→ Mx]

3. T ← [x 7→ Mx + b] 3. T ′ ← [x 7→ Mx] 3. F R← U
4. F R← U 4. F R← U 4. P ← F ◦ T
5. P ← F ◦ T 5. F ′ ← [x 7→ F (x + b)]

6. P ← F ′ ◦ T ′

Notice that Method 1 corresponds to UOV, while Method 3 corresponds to linearUOV.
Method 2 is an intermediate step, and, by the observation of Braeken et al., is equivalent
to Method 1 — so, we focus on showing that Method 2 and Method 3 are equivalent.
Evidently T and T ′ have the same distribution and are independent from F ′ and F , re-
spectively, so we simply have to show that F ′ in Method 2 has the same distribution as F
in Method 3 - i.e. that F ′ in Method 2 is uniform over U .

But this is rather straightforward: let f be some particular map from U , and we’d like to
show that Pr(F ′ = f ) does not depend on f . Note that F ′(·) = f (·) ⇐⇒ F (·+ b) =

f (·) ⇐⇒ F (·) = f (· − b), and so Pr(F ′ = f ) = Pr(F = f (· − b)). Notice that F is
uniformly distributed and independent of b, so this last probability does not depend on f
— like we wanted.

From this point on, we assume T to be a linear map, with the knowledge that this cannot
compromise the security of UOV.

3.2.3 Modern description

What we call the “modern description” of UOV was introduced by Beullens in [6]. Similar
ideas can be found in earlier key recovery attacks (i.e. ways to recover T from P = F ◦
T ), where it was already noticed that with overwhelming probability one would simply
recover a linear map T ′ such that P ◦ T ′−1 had the OV property (and thus was easy to
invert). This T ′ would be called an “equivalent key” (to T ). With some work, one can
find that maps T ′ with this property are exactly the maps such that

T (F) = T ′(F), where F = {0}n−m ×Fm
q ⊆ Fn

q .

If one knows T (F) it is not hard to construct a T ′ satisfying the property above. With
this in mind, the idea underlying this new way of describing UOV is to eschew a full
description of T , and only keep the subspace O := T −1(F). Ideally, we would want to
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eschew the need to talk about a map T at all — but, for this, we need to figure out what
properties O needs to inherit from T .

For this, note that if one restricts a map with the OV property (say, F ) to F, all the
quadratic terms vanish, and thus F|F is affine. Therefore, composing the two linear maps
F|F and T with the adequate restrictions, we obtain that F|F ◦ T|T −1(F) = (F ◦ T )|O = P|O
must also be affine — that is, the public key P must be affine when restricted to the sub-
space O, which will be the private key.

We show that knowledge of the secret key O is indeed enough to invert P — suppose
that, given some t ∈ Fm

q , we want to find v ∈ Fn
q such that P(v) = t. To start, pick a

random x ∈ Fn
q , and consider, for any y ∈ O, P(x+ y) = P∗(x, y) +P(x) +P(y) +P( #»

0 ).
Note that, having x fixed and y ∈ O, this is an affine function of y — hence, it is easily
invertible, and we can find y with P(x + y) = t, obtaining our inverse x + y. With this,
we can describe UOV just in terms of P and O:

• keyGen sets the secret key to a description of O, an m-dimensional subspace of Fn
q ,

and the public key to P , a random multivariate quadratic map Fn
q → Fm

q , such that
P|O is affine.

• sign(pk,sk,m) employs the procedure described above, using O = sk to invert P =

pk at H(m), and returns the resulting σ.

• verify(pk, m, σ) outputs 1 iff P(σ) = H(m), where P = pk.

Remark. We are already working with the assumption that T is linear — if T were affine,
O = T −1(F) would be an affine subspace, as opposed to a linear subspace.

Relation to the traditional description

We will not prove that this modern description of UOV is equivalent to the traditional
description (i.e. that either scheme reduces to each other), but it is rather intuitive to see
that this should be the case. The following might be regarded as a proof sketch that these
two schemes are indeed equivalent:

• verify works exactly the same.

• keyGen produces the same public keys with the same distribution — this may not
be immediately obvious, but notice that the description given of what keyGen does,
“setting the public key P to a uniformly random multivariate quadratic map Fm

q →
Fn

q ”, is rather non-specific. In practice, it is easy to see that traditional UOV’s keyGen
already selects P to be a uniformly random multivariate quadratic map affine on
T −1(F), and thus modern UOV’s keyGen can be built on top of the traditional keyGen
by simply outputting O = T −1(F) instead of T .

• sign is the least obvious. To begin with, note that modern UOV’s sign picks x
uniformly at random from all Fn

q , but it could just as well pick x from O⊤. Since
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this is a set of representatives of the cosets of O, which are going to be where the
inputs of P(x + y) run over when y is picked from O, this does not change the
resulting x + y unless y 7→ P(x + y) is not of full rank, which only happens with
negligible probability. Then, with some algebra, it is easy to see that this is equivalent
to picking x ∈ F⊤, and then inverting F ∋ y 7→ (P ◦ T −1)(x + y) — a moment’s
thought should reveal that this is exactly what traditional UOV’s sign already does.

3.2.4 Another secure simplification of UOV

The second simplification we intend to make is assuming that P is quadratically homoge-
nous. So, consider the modern description of UOV, and let homogenousUOV be a scheme
exactly like UOV, except keyGen picks the public key P to be quadratically homogenous.
It is worthwhile to focus for a moment on the fact that, in homogenousUOV, P is quadrat-
ically homogenous, but it is also expected to be affine in O. The fact that it is homogenous
clearly implies that P( #»

0 ) = 0, and thus it must necessarily be linear in O. Therefore, for
any o ∈ O, we have that P(2o) = 22P(o), but also P(2o) = 2P(o) — meaning that either
q = 2 or P(o) = 0.

We obtain that, in homogenousUOV with q > 2, we must have that the public key P is
uniformly null on the secret key O. In fact, this is largely also the case for q = 2 (except
when no component of P has a term of the form xixj with i ̸= j, which is exceedingly
rare), so it is reasonable to restrict P to be unformly null on O in general — this restriction
yields the scheme actually presented in [6]. Nonetheless, for the remainder of this subsec-
tion we will simply assume that, in homogenousUOV, P just simply affine on O.

The relationship between the security of UOV and that of homogenousUOV is not straight-
forward. With the intent of figuring out the nature of this relationship, we make these four
claims, which we will prove during the remainder of this subsection:

1. If homogenousUOVq(n, m) is vulnerable to key recovery attacks, then so is UOVq(n, m),
with the same advantage.

2. If public keys in UOVq(n, m) are indistinguishable (in distribution) from random
maps from MQMq(n, m), then public keys in homogenousUOVq(n + 1, m) are indis-
tinguishable (in distribution) from random maps from HMQMq(n + 1, m).

3. If UOVq(n, m) is EUF, then so is homogenousUOVq(n + 1, m) — with a loss factor of
1/q, i.e. attacks against UOV may be q times harder than against homogenousUOV.

4. If q > 2 and UOVq(n, m) is EUF-CMA, then so is homogenousUOVq(n + 1, m) — but
having to introduce new hardness assumptions and/or the ROM.

Before proving these four statements, we discuss their implications. (1) and (2) are in
some sense heuristic arguments for the security of this simplification. On the one hand,
(1) essentially implies that UOV and homogenousUOV are equivalent in practice, since
the literature is primarily focused on key-recovery attacks — and indeed, all the best-
performing attacks against UOV (resp. homogenousUOV) are key-recovery attacks, and
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they apply with minimal overhead to homogenousUOV (resp. UOV). On the other hand,
(2) implies that UOV and homogenousUOV are fully equivalent in theory, if one accepts
the widely believed assumptions that:

a. MQ is hard on average — we saw in Prop.3.6 that this implies that homogenousMQ
is also hard on average; and

b. the distribution of public keys in UOV is indistinguishable from uniform, and so (2)
implies that this is also the case for homogenousUOV.

If these two claims are accepted, then homogenousUOV is secure by an argument analo-
gous to the one used in the case of UOV.

In the realm of properly defined notions of security — (3) and (4) are formal reductions.
(3) is not very interesting, as it essentially amounts to a restating of Prop. 3.6 through the
lens of (2). (4) is the most theoretically relevant result (as EUF-CMA is the most common
notion of security for signature schemes), but it has non-insignificant loss in advantage,
requires new hardness assumptions, and is performed in the ROM.

We note that we consider EUF(-CMA) security because it is the notion of security that we
have defined, but we claim (without proof) that these reductions extend without much
difficulty to every notion of security in {UUF/SUF/EUF}-{CMA/KMA}. As for sEUF, note
that, as presented, homogenousUOV is not strongly existentially unforgeable, as the ho-
mogeneity of P begets the malleability P(x) = P(−x) — this allows us to, given any
signature σ for m, obtain another valid signature −σ. It seems that this could be fixed
by restricting signatures to only be valid if they are in a certain set of representatives of
Fn

q /(x ∼ −x), but we have not considered this to simplify the analysis in this subsection.

The remainder of this subsection is dedicated to the proofs. Statements (1), (2) and (3)
correspond to (or follow easily from) Prop. 3.10, Cor. 3.12, and Prop. 3.13, respectively.
Statement (4) corresponds to Cor. 3.18, as well as the entire subsubsection containing this
corollary.

Proposition 3.10. If there exists an efficient algorithm A that succeeds in performing a key recovery
attack against homogenousUOVq(n, m) with some probability p, then there exist an efficient
algorithm B that succeeds in performing a key recovery attack against UOVq(n, m) with the same
probability p.

Proof. B is simple enough that it is easier to describe it and justify its correctness in tan-
dem. Thus, we describe the actions of B on input P . First, B separates out the input’s
homogenous and affine parts, i.e. finds maps P1 and P2 such that P(x) = P1(x) +P2(x),
P1 is homogenous, and P2 is affine. Then, B internally runs A with input P1, obtaining a
subspace O where P1 is affine. Since P2 is already affine on its entire domain, it follows
that P is affine on O, and thus B outputs O, a valid secret key for P .

Note that, unlike the reductions that follow, this does not have a 1/q loss factor, nor
does it rely on increasing the n parameter for the homogenous instance.The fact that
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this reduction incurs no loss in advantage, by itself, isn’t special: any polynomial loss in
advantage can be overcome by a polynomial amount of repetitions. What’s remarkable is
that there is no loss in advantage while the only increase in runtime is due to separating
the homogenous part of the public key. This increase is likely O(n2), which cannot be
higher in complexity than A, as otherwise A could not read its own input. Therefore, the
runtime of B is asymptotically equivalent to that of A.

Lemma 3.11. Consider the distribution of P ′ given by running P ,O ← keyGenUOV(q,n,m)(1
λ),

B R← GL(Fq, n + 1), P ′ ← P ◦ B. This is identical to the distribution of public keys generated by
keyGenhomogenousUOV(q,n+1,m)(1

λ).

Proof. P is affine on O, meaning that P is affine on O×{1}. Moreover, P is also affine on
each coset of O × {1}, in particular O × {0}, which is a subspace of Fn+1

q . Therefore, P ′

is affine on O′ := B−1 · (O×{0}). Since B, and therefore also B−1, is independent from O
and uniformly sampled from GL(Fq, n + 1), this means that O′ is uniformly distributed
over Gr(m, Fn+1

q ).

Recall from Prop. 3.5 that the homogeneization map P 7→ P is a bijection6, and thus it
must have an inverse — during this proof, we will denote this by P 7→ P . Now, consider
any given homogenous multivariate quadratic map p′ : Fn+1

q → Fm
q that is affine on O′ —

we would like to show that Pr(P ′ = p′) does not depend on p′, and thus P ′ is uniformly
distributed over the set of such maps.

To start, note that since p′ is affine on O′ = B−1(O × {0}), p′ ◦ B−1 is affine on O × {0},
and thus also on O × {1}, which must mean that p′ ◦ B−1 is affine on O. With that in
mind, note that P ′ = p′ ⇐⇒ P ◦ B = p′ ⇐⇒ P = p′ ◦ B−1, and thus Pr(P ′ = p′) =

Pr(P = p′ ◦ B−1) — this is constant, and so it does not depend on p′.

Corollary 3.12. If there exists an efficient algorithm A that can distinguish public keys generated
by keyGenhomogenousUOV(q,n+1,m)(1

λ) from uniformly random maps from HMQMq(n + 1, m)

then there exists a likewise efficient algorithm B, with the same advantage as A, that can distinguish
public keys generated by keyGenUOV(q,n,m)(1

λ) from uniformly random maps from MQMq(n, m).

Proof. B would simply recieve maps P , apply the process described in Prop. 3.11:

B R← GL(Fq, n + 1), P ′ ← P ◦ B

and feed the resulting maps P ′ to A, eventually outputting whatever A outputs. With this:

• If B is recieving maps generated by the keyGen of UOVq(n, m), Prop. 3.11 implies
that the maps that B sends to A will match the distribution of those generated by the
keyGen of homogenousUOVq(n + 1, m).

• If the P are uniformly selected from MQMq(n, m), Prop. 3.5 implies that P is uni-
form over HMQMq(n + 1, m). At this point, the argument proceeds analogously to

6Prop. 3.5 refers only to the single-component case, but this generalizes trivially.
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before: if p′ ∈ HMQMq(n + 1, m), P ′ = p′ ⇐⇒ P = p′ ◦ B−1. Clearly p′ ◦ B−1 is
also in HMQMq(n + 1, m), and so the probability of these events is constant, imply-
ing that P ′ is uniform over HMQMq(n + 1, m).

We obtain that B efficiently turns the distributions it has to distinguish intro distributions
that A can distinguish, and thus it works with the same advantage as A.

Proposition 3.13. If there exists an efficient algorithm A that can break the EUF security of
homogenousUOV with probability at least p, then there exists an efficient algorithm B that can
break the EUF security of UOV with probability at least p/q.

Proof. The proof is essentially analogous to Prop. 3.6 — B will be trying to invert a map
by homogenizing it, obscuring it, and passing it to A. As before, the main issue will be
ensuring that the distribution of B’s messages to A (in this case, only the public key) match
a genuine EUF challenger of homogenousUOV.

B R← GL(Fq, n + 1)

P ′ ← P ◦ B

Abort if B · σ′ is not of the form σ∥1

A
P ′

m, σ′

B

P ,O R← keyGen(1λ)

Accept iff P(σ) = H(m)

UOV EUF challenger

P

m, σ

Figure 3.2: Reduction from breaking EUF security of UOVq(n, m) to EUF security of
homogenousUOVq(n + 1, m).

The reduction is given in Fig. 3.2. We will need to prove the following two statements:

1. The distribution of the P ′ that B sends to A matches that of a genuine homogenousUOV
challenger, i.e. the distribution produced by homogenousUOV’s keyGen.

2. The distribution of B is independent from that of P ′.

If (1) is true, then with probability P, A will output a valid forgery. If (2) is true, because
P ′ is A’s only input (apart from the security parameter), then B will also be independent
from the distribution of m and σ′ — since B is uniform, this means that B · σ′ will be of the
form σ∥1 with probability 1/q. Combining these two facts, we have that with a probability
of p/q, B will output (m, σ) satisfying that P(σ) = P(σ∥1) = P(B · σ′) = P ′(σ′) = H(m),
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that is, a valid forgery — so we focus on proving these two statements.

(1). This follows immediately from Prop. 3.11.

(2). Let p′ be any element of HMQMq(n + 1, m), and b ∈ GL(Fq, n + 1). Now, Pr(P ′ =
p′, B = b) = Pr(B = b) · Pr(P ′ = p′ | B = b). Prop. 3.11 implies that the latter probability
is constant, and thus does not depend on b — therefore, Pr(P ′ = p′, B = b) = Pr(B =

b)Pr(P ′ = p′), like we wanted.

On the EUF-CMA security of UOV and homogenousUOV

In this subsubsection, we will give or sketch several reductions. All of these are built from
(and thus better understood by) taking as a starting point the naïve adaptation of Prop.
3.13 to the -CMA setting, that is, the reduction in Fig. 3.2 adapted to naïvely to handle
signing queries. This is presented in Fig. 3.3 — from this point on, we will omit the
challenger from the diagram to avoid clutter.

B R← GL(Fq, n + 1)

P ′ ← P ◦ B

σ′ ← B−1 · (σ∥1)

Abort if B · σ′ is not of the form σ∥1

A
P ′

m

σ′

m, σ′

BP

m

σ

m, σ

Figure 3.3: Starting point for reductions from breaking EUF-CMA security of UOVq(n, m)
to EUF-CMA security of homogenousUOVq(n + 1, m).

Note that, throughout this section, all reductions presented will have the property that B
only ever sends messages to its challenger that it has recieved from A (as signing queries
or forgeries). Therefore, given that if A succeeds it will do so with a message that it has not
queried for a signature on, and thus the same is true of B — so we do not need to worry
about checking that B does not forge signatures on messages for which it has queried
a signature. Moving on, then — there are two standard “validity” properties that we
will expect all reductions to satisfy (and generally, most non-contrived EUF-CMA security
reductions will follow):

V1. If A outputs a valid forgery and B does not abort, then B produces a valid forgery.
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V2. The signatures that B produces upon A’s queries are valid (with respect to the rele-
vant oracle, if in the ROM).

In this case, V1 is identical to the same property we already proved in Prop. 3.13. V2 is
likewise rather easy to check — indeed, P ′(σ′) = P ′(B−1 · (σ∥1)) = P(σ∥1) = P(σ) =

H(m). However, these signatures will appear very conspicuous to A, as it is very easy to
detect that they do not follow the distribution of real responses to signing queries — they
will all lie in the hyperplane B−1 · (∗∥1). A does not know this hyperplane — but it is easy
to, after having performed sufficient signing queries, check that the signatures it recieves
do not span Fn+1

q , which would be overwhelmingly unlikely if it A playing against a gen-
uine challenger.

So our focus becomes on solving this issue — that is, modifying B such that the signatures
it produces are indistinguishable from those of a real challenger. From this point on we
let A be an efficient algorithm that breaks the EUF-CMA security of homogenousUOV with
probability at p. Our first attempt at a reduction algorithm, B1, is presented in Fig. 3.4.

B R← GL(Fq, n + 1)

P ′ ← P ◦ B

R R← {functions Fm
q → F∗q}

σ′ ← R(m) · B−1 · (σ∥1)

Abort if R(m)−1 · B · σ′ is not of the form σ∥1

A
P ′

m

σ′

m, σ′

h← H(m)

h′ ← R(m)2 · h

Oraclem

h′

B1P

m

σ

m, σ

Figure 3.4: Reduction from breaking EUF-CMA security of UOVq(n, m) to EUF-CMA secu-
rity of homogenousUOVq(n + 1, m).

In essence, B1 takes advantage of the homogeneity of P ′ as much as possible, randomly
redistributing signatures across nearly the entire input space and adjusting A’s oracle such
that these signatures are valid (this assumes that UOV and homogenousUOV are defined
with different hash functions). Note that the function R here is used as a shorthand for
generating and keeping a random value R(m) ∈ F∗q for each message m. If one is inter-
ested in making B stateless, R can be replaced by a secure pseudo-random-function.
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Like before, V1 is identical to the previous proof, and V2 is easy to check. Indeed, as P ′ is
quadratically homogenous, this means that P ′(R(m)−1 · σ′) = R(m)−2 · P ′(σ′) = H(m),
that is, P(B · R(m)−1 · σ′) = H(m). If B · R(m)−1 · σ′ is of the form σ∥1, which must be the
case if B does not abort, we have that P(σ) = P(σ∥1) = P(B · R(m)−1 · σ′) = H(m).

However, also like before, the distribution of the signatures may arouse suspicion in A —
indeed, since R(m) ̸= 0, we have that all signatures will be of the form R(m) · B−1 · (σ∥1) =
B−1 · (R(m) · σ∥R(m)), that is, they will never be of the form B−1 · (∗∥0). We will work
around this issue to tease out a hardness assumption under which B1 can be shown to
produce a valid forgery with probability p/q.

For the sake of illustrating the issue, let us briefly act as if though genuine signatures
of UOVq(n, m) and homogenousUOVq(n + 1, m) are uniformly distributed over Fn

q and
Fn+1

q , respectively. If this is the case, then σ′ = R(m) · B−1 · (σ∥1) will be uniformly
distributed over Fn+1

q ∖ B−1 · (∗∥0) — a statistical distance of 1/q to the distribution of
true signatures, which at first might seem far too high. Crucially, however, A does not
know B, and thus it does not know the subspace B−1 · (∗∥0) that signatures are going to
be absent from — therefore, the problem that A faces if it wants to make the reduction
invalid is to distinguish these two distributions:

• That of a genuine challenger, that is, uniform over Fn+1
q .

• That of B1 — uniform over Fn+1
q ∖ H, where H = B−1 · (∗∥0) is a hyperplane un-

known to A.

This motivates the definition of the following problem:

Definition 3.14. The missing hyperplane problem in order q and dimension n, abbreviated
MHq(n), is the problem of distinguishing a uniform distribution over Fn

q from a uniform distribu-
tion over Fn

q ∖ H, where H is a random hyperplane unknown to the distinguishing algorithm.

The hardness of this problem is explored in Appendix B. The main takeaway pertaining
to this problem is that it is easy when q = 2, and we assume it to be hard if q > 2. This
is supported by the fact that the “decision version” of MHq(n), i.e. deciding whether a set
P ⊆ Fn

q is such that there exists a hyperplane H satisfying P ⊆ Fn
q ∖ H, i.e. P ∩ H = ∅, is

NP-complete when q > 2.

It turns out that, with some work, the validity of the reduction B1 can be based on the
hardness of MHq(n + 1− m). Note that this disagrees with our earlier reasoning, which
suggested that this would be MHq(n) — loosely speaking, the difference comes from tak-
ing into account that the distribution of signatures is not actually uniform on Fn

q , but
rather uniform on the cosets in Fn+1

q /O where P is of full rank.

For the sake of readability, it is easier to first prove a lemma about B1, before discussing
some other aspects of MH that will ensure the validity of B1:
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Lemma 3.15. Let A be an efficient algorithm that can, with probability p, break the EUF-CMA
security of homogenousUOVq(n + 1, m), and B1 as constructed in Fig. 3.4, letting pa be the
probability that A outputs a valid forgery with respect to its simulated random oracle. Then, there
exists an efficient algorithm C such that, letting pc be its probability of solving MHq(n + 1−m),
it holds (in the Random Oracle Model) that pc ≥ |pa − p|.

The proof of Lemma 3.15 is rather long and technical — to facilitate reading, the full proof
is given in Appendix C, and here we only give a sketch so we can quickly move on to
discussing the implications.

Proof Sketch. The idea is to consider the game for breaking the EUF-CMA security of
homogenousUOVq(n + 1, m), and begin by modifying how the signature process works.
In picking an x to consider O ∋ y → P(x + y), what the challenger is really doing is
picking a coset of O in which to invert P . The space of such cosets can be parametrized
by F

n−dim(O)
q = Fn−m

q , and so the challenger can be made to sample an x from Fn+1−m
q

and suitably project it into some space in Fn+1
q complementary to O.

We can reformulate this game so that the sampling x from Fn+1−m
q is provided by an

external challenger for MHq(n + 1−m) — what remains as the adversary is C, and if we
believe MHq(n + 1−m) to be hard, the result of this game should be negligibly affected if
x is now sampled from Fn+1−m

q except some hyperplane unknown to the adversary. We
call the resulting game Game1, while Game2 is the one in Fig. 3.4.

The remainder of the proof deals with checking that the distribution of the messages re-
cieved by A in either game is indistinguishable. The fact that the “keys” (B1 is not aware
of its own secret key) in either game are the same follows from Prop. 3.11. Moreover,
in the signing processes, both games will have a hyperplane H from where cosets of
the secret key are never picked for signing — in Game1, this hyperplane H1 will be de-
cided by the MHq(n + 1− m) challenger, while in Game2 we have already seen that this
is H2 = B−1(∗∥0). In both games, one can see that this hyperplane is uniformly selected
from all the hyperplanes containing the secret key. Finally, we obtain that in both games,
the joint distribution of the keys and this hyperplane is identical.

Finally, we note that the state of the game outside A does not change when responding to
queries from A, and thus we only need to show that the distribution of the answers to any
given signing query is identical in either game. It is rather straightforward to check that
in Game1, the signing process uniformly selects a coset of the secret key not contained
in H1 where the public key is invertible, and then returns the unique antiimage there. In
Game2, a number of reformulations of the signing process yield that one essentially picks
an affine hyperplane parallel to H2 (in particular, B−1 · (∗∥1)), finds a signature there,
and then returns R(m) · B−1 · (∗∥1), adjusting A’s oracle so that this remains valid. Some
cursory checks reveal that this is the same as uniformly picking from cosets contained in
any affine hyperplane parallel to H2 — i.e., cosets not contained in H2, which is the same
as in Game1.

Note that this only tells us that A will output (m, σ) with P ′(σ′) = R(m)2 · H(m), and thus
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P(B · R(m)−1 · σ′) = H(m) — B will be able to turn this into a valid signature for its own
challenger iff B · R(m)−1 · σ′ is of the form σ∥1. Unlike in Props. 3.6 and 3.13, here we
cannot claim that B is independent from the rest of A’s input, so we cannot be sure that B
will be able to produce a valid signature 1/q of the time.

However, whatever final forgery A outputs, it will have to be on a message m for which
it has not queried a signature. This means A will not have seen R(m) anywhere outside
of a random oracle query, where it was multiplied by H(m) — in the ROM, both of these
values are randomly distributed, and thus we may assume that H(m) masks R(m) and
R(m) is uniformly distributed when A outputs its final forgery (m, σ′). This means that, if
B · σ′ is not of the form (σ∥0), then there is an exactly 1/q− 1 chance that B · R(m)−1 · σ′
is of the form (σ∥1), and thus B outputs a valid forgery.

To recap, this means that B’s probability of outputting a valid forgery is p · (1− p̃)/(q− 1),
where p̃ is the probability that the forged signature that A outputs is not in B−1 · (∗∥0). To
see that this reduction works, then, it only remains to see that (1− p̃) is non-negligible.
This requires introducing a new problem:

Definition 3.16. The missing hyperplane sampling problem in order q and dimension n,
abbreviated MHSq(n), consists of, given a uniform distribution over Fn

q , where V is some unkown
(random, uniform) hyperplane in Fn

q , finding a point p ∈ V, with p ̸= #»

0 .

As with MHq(n) earlier, the hardness of this problem (in particular, its relationship to
MHq(n)) is discussed in Appendix B. In any case, the takeaway is that, if MHq(n) is hard,
then MHSq(n) cannot be solved with probability negligibly close to 1. Knowing this,

Proposition 3.17. Let A be an efficient algorithm that can break the EUF-CMA security of
homogenousUOVq(n + 1, m) with probability p, and B1 as constructed in Fig. 3.4, letting pa be
the probability that A outputs a valid forgery with respect to its simulated random oracle, and pb
the probability that B1 outputs a valid forgery. Then, there exist efficient algorithms C and D such
that, letting pc and pd be their probabilities of solving MHq(n + 1−m) and MHSq(n + 1−m),
it holds (in the Random Oracle Model) that pc ≥ |pa − p| and pb = (1− pd) · pa/(q− 1)

Proof. We let C, Game1, and Game2 be as in the proof of Prop. 3.15. As per the observa-
tion above, B1 (in Game2) will find a valid forgery with probability 1/(q− 1) if A outputs
a valid forgery (with respect to its random oracle) that is not in B−1(∗∥0).

Consider Game2, and modify it thusly: switch out the challenger of MHq(n + 1− m) for
that of MHSq(n + 1−m), and modify the adversary so that it directly sends the signature
of A’s final forgery directly to the adversary. The resulting adversary is algorithm D, and
thus with probability pd it sends a signature σ in the hidden hyperplane. We have seen,
however, that the distribution of this signature will be identical in Game1, therefore we
have that, in Game1, with probability pa · (1− pd), A will output a signature not in the
hyperplane B−1(∗∥0). This completes the proof.

Corollary 3.18. Let A be an efficient algorithm that can break the EUF-CMA security of the scheme
homogenousUOVq(n + 1, m) with non-negligible probability. If MHq(n + 1−m) is hard, then
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we can construct an efficient algorithm B1 that can break the EUF-CMA security of UOVq(n, m)

with non-negligible probability.

Proof. With the same definitions as Prop. 3.17, we have that pc is negligible, and so pa is
negligibly close to p and thus non-negligible. Moreover, pd cannot be negligibly close to
1, and so (1− pd) is non negligible, and therefore so is pb = (1− pd) · pa/q.

There are other approaches to showing that restricting UOV to be homogenous should not
compromise EUF-CMA security. We do not present them fully, as we have not found a
formal basis for their safety and/or their loss factor is too large. These are:

A modification of B1 without the ROM. We call this B2, illustrated in Fig. 3.5. A sim-
ilar issue to B1 crops up, in that the signatures that A recieves from B2 are all of the
form B−1(σ∥ ± 1). Analogously to MHq(n), we define the hidden hyperplanes prob-
lem, HHsq(n), of distinguishing an uniform distribution over some unknown B−1(σ∥± 1)
from an uniform distribution over Fn

q . This problem is also discussed in Appendix B, and
shares many of the properties of MHq(n). However, B2 also runs into the problem that A’s
forgeries may not be of the form that B2 needs to produce a forgery of its own — and the
problem seems significantly more severe in this case, as there is no R(m) allowing us to
make an argument like in B1

B R← GL(Fq, n + 1)

P ′ ← P ◦ B

σ′ ← ±B−1 · (σ∥1)

Abort if R(m)−1 · B · σ′ is not of the form σ∥1

A
P ′

m

σ′

m, σ′

B2P

m

σ

m, σ

Figure 3.5: Reduction from breaking EUF-CMA security of UOVq(n, m) to EUF-CMA secu-
rity of homogenousUOVq(n + 1, m), without the ROM. The instruction σ′ ← ±B−1 · (σ∥1)
means that σ′ is set to B−1 · (σ∥1) with probability 1/2, and −B−1 · (σ∥1) otherwise.

A standard reduction in the ROM. Since homogenousUOV is a FDH-type scheme, there
is an approach for obtaining a reduction from breaking its EUF-CMA security to simply
breaking its EUF security — the reduction algorithm B3 would simply, upon recieving
a signing query m, pick a random x ∈ Fn

q , set y = P(x), send x to its black box as a
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signature, and story in memory that if its black box ever asks for the hash of m, it will
return that this hash is y — this forces the signatures to be correct with respect to the
simulated random oracle. Oracle queries would be handled analogously. This approach
presents two issues:

• With overwhelming probability, the resulting forgery will not be valid with respect
to the true hash. This can be solved with an application of the forking lemma ([4]).
However, this introduces very significant loss in advantage — if the EUF forger
succeeds with probability p, B3 can only be quaranteed to succeed with probability
≈ p2/N, where N is the maximum amount of oracle queries answered.

• It is not clear whether the distribution of the signatures/hashes given to the black
box will follow that of a legitimate challenger — in short, this is to do whether one
can distinguish whether (input, output) pairs for homogenousUOV public keys have
been generated output-first (with the secret key) or input-first. The necessary hard-
ness assumption is would be that UOV, without the hashing, is a preimage sampleable
trapdoor — this notion is defined in [15, §5.3].

Note that this (and the following approach) does not work if the hashes are not salted, as
B4 will be unable to commit to two different signatures to the same message (once it has
commited to a fake hash).

A modification of B1 that attempts to hide B−1(∗∥0). A fourth possibility, B4, would upon
recieving any query, with probability 1− 1/q proceed like B1, but otherwise proceed like
B3 and produce a fake signature in B−1(∗∥0). In this approach, the validity of B4 would
need to be supported by both the hardness of MH and UOV being preimage sampleable —
however, the two problems are now combined, in such a way that what A would actually
need to do for the reduction to fail is identify a hidden hyperplane where signatures
are generated dishonestly. This certainly sounds harder, but it is also significantly more
convoluted, to the point that it does not seem feasible to prove that this reduction is secure
without some very specific ad-hoc hardness assumptions.



Chapter 4

Subspace encoding

In the last chapter we found that, although traditionally the secret key of UOV is described
by a linear map T : Fm

q → Fn
q , this can be reformulated in such a way that we only need

to know T ({0}n−m × Fm
q ), a m-dimensional subspace of Fn

q . This evidently carries less
information than all of T , which leads to considering exactly how much one can reduce
the amount of information necessary to describe the secret key — this will be the subject
of this chapter.

As of right now, a description of T is simply a matrix of T , as there is no ambiguity about
the base being used for either Fm

q or Fn
q — this takes m · n elements of Fq to describe.

Note that Fq is the natural choice of alphabet to describe elements of M(Fq, m, n), and
thus also linear maps Fn

q → Fm
q . Now, however, we are only interested in representing

linear subspaces of a certain dimension, say k, i.e. elements of Gr(k, Fn
q ). It will be handy

to keep using the same alphabet Fq — and so our objective becomes to find an “optimal”
encoding of Gr(k, Fn

q ) using Fq. There are three things to note about this goal:

• Using Fq as an alphabet is the natural choice for any tensor with entries in Fq, but
for any practical applications it would be preferable to use [q] as an alphabet. A
canonical bijection Fq → [q] exists only if q is prime, however. For q = pr with r ̸= 1,
a way to select a particular bijection could be to single out a particular irreducible
polynomial P in Fp[X] (for instance, the first such polynomial lexicographically), and

then consider the canonical bijection Fq ∼= Fp[X]/⟨P⟩ 1→ Fr
p

2→ [p]r 3→ [pr] = [q],
where the intermediate maps correspond to:

1. Reading a polynomial with no terms of degree ≥ r as a tuple of its coefficients,

2. Element-wise application of the canonical bijection Fp → [p],

3. Reading an r-tuple of elements from [p] as an r-digit number in base p.

We only specify this for completeness — to avoid confusion, however, we will simply
use Fq as the alphabet for the remainder of this chapter. In examples, q will always
be prime to avoid having to pick a particular representation of Fq.

34
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• As far as practical application goes, it would obviously be better to simply use {0, 1}
as alphabet. We will not do this — if necessary, it would suffice to compose our code
with any (uniquely decodable) encoding [q]→ [2].

• It is not immediately clear what we mean by “optimal.” If we had some informa-
tion about the distribution of elements form Gr(Fn

q , k) that we’d be encoding, we
might try to minimize expected word length. For the application in MVQC, this
distribution should presumably be uniform, and thus we would be minimizing av-
erage word length. Nonetheless, this is not what we pursure here, instead trying to
minimize maximum word length.

Remark. This is not as much of a concession as it might seem at first — indeed,
say ℓ is the shortest possible maximum word length for encoding some set S with
an alphabet Σ with m symbols. This must mean that mℓ−1 < #S. Now, assume we
just build an encoding S → Σ∗ by greedily assigning to every element the shortest
codeword available, with no regard for whether the final code is uniquely decodable
— clearly the average word length of this will be a lower bound for the average word
length of any code. So we compute this lower bound:

ℓ−1

∑
i=0

i ·mi + ℓ(#S−mℓ−1) ≥ (ℓ− 1)
mℓ−1

#S
+ ℓ

#S−mℓ−1

#S
= ℓ− mℓ−1

#S
> ℓ− 1

So the optimal average word length cannot be a symbol lower than the optimal
maximum word length.

So we aim to find the smallest ℓ such that there exists an encoding Gr(k, Fn
q )→ [q]ℓ. This

must be an injection and thus #Gr(k, Fn
q ) ≤ #([q]ℓ) = qℓ =⇒ ℓ ≥ ⌈logq #Gr(k, Fn

q )⌉. This
will be our first step — using this expression to investigate the value of ℓ.

4.1 Theoretical bounds

So we begin by interesting ourselves in ⌈H⌉, where H = Hk,n
q := logq #Gr(k, Fn

q ) , for
0 ≤ k ≤ n and q ≥ 2. The cases 0 = k and n = k are both trivial (H = 0, as there is
only one subspace in both cases), so we assume that 0 < k < n. Then: #Gr(k, Fn

q ) is the
q-Gaussian binomial coefficient, often written as (n

k)q, and it is well known (and easy to
verify) that (

n
k

)
q
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)
(q− 1)(q2 − 1) · · · (qk − 1)

.

Therefore, grouping terms appropiately:

H = logq
qn − 1
qk − 1

+ logq
qn−1 − 1
qk−1 − 1

+ · · ·+ logq
qn−k+1 − 1

q− 1
=

k−1

∑
i=0

logq
qn−i − 1
qk−i − 1

.
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At this point, it seems natural to try making an approximation inspired by

qn−i − 1
qk−i − 1

≈ qn−i

qk−i = qn−k.

This yields a fairly neat expression:

H ≈
k−1

∑
i=0

logq qn−k =
k−1

∑
i=0

n− k = k(n− k)

This will be our jumping-off point for tighter bounds on H, though we will see that, in
fact, it is already pretty close. One can realize that it’s not surprising that this should
be the case: indeed, consider representing a subspace as the row-span of a k× n matrix
M. Write M = (P | Q), where P is the first k × k minor of M. With rather high proba-
bility (≈ 1− q−1, as noted in [26]), P will be of full rank, meaning that we can consider
M′ = P−1M = P−1(P | Q) = (Id | P−1Q). Since M = PM′ and P is a full-rank ma-
trix, M and M′ have the same row-span, but only k(n− k) elements of Fq are needed to
represent M′, as we only need to store the last n− k columns. Nonetheless, it holds that
H > k(n− k), which owes to the fact that P can occasionally be singular — but both in
getting closer to the true value of H, and finding actual practical encodings with word-
length ⌈H⌉, we will proceed with the idea above as a starting point.

Following this philosophy, then:

H − k(n− k) =
k−1

∑
i=0

logq

(
qn−i − 1
qk−i − 1

)
− logq(q

n−k)

∗
≤

k−1

∑
i=0

qn−i − 1
qn−k(qk−i − 1)

− 1

=
k−1

∑
i=0

qn−k − 1
qn−k(qk−i − 1)

≤
k−1

∑
i=0

qn−k

qn−k(qk−i − 1)

=
k−1

∑
i=0

1
qk−i − 1

≤
∞

∑
i=1

1
qi − 1

Where the marked inequality comes from the fact that, for 0 < x ≤ y, we have that
log(y)− log(x) = log y

x ≤
y
x − 1. Now, it is rather easy to see that, for q > 2, the latter

sum converges to a value < 1. Indeed, given that i > 1 and q > 2, clearly qi − 1 > (q− 1)i,
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and therefore
∞

∑
i=1

1
qi − 1

<
∞

∑
i=1

1
(q− 1)i ≤

∞

∑
i=1

1
2i = 1.

So we have that, for q > 2, Hn,k
q > k(n − k), but also Hn,k

q − k(n − k) < 1 — from this
it follows that ⌈Hn,k

q ⌉ = k(n − k) + 1 for q > 2. As per usual, the q = 2 case has to be
handled separately:

4.1.1 The case of F2

For q = 2, simply evaluating the first term already tells us that ∑k
i=1(q

i − 1)−1 > 1. How-
ever, some cruder analogues of the bounds above yield that ∑k

i=1(2
i − 1)−1 < 2, so we can

claim to know that k(n− k) < Hn,k
q < k(n− k)+ 2. This tells us that ⌈Hn,k

q ⌉ = k(n− k)+ M,
for M ∈ {1, 2} — but we do not know which.

It will turn out that, in most cases (except for some specific small values of k and n− k),
M = 2, that is, Hn,k

2 − k(n− k) > 1. The proof of this inequality is rather uninteresting —
focusing on the expression of H − k(n− k) as a summation, it is easy to notice that all of
its summands are positive, and thus we will show that the sum is > 1 by picking some
fixed amount of terms that already add up to > 1. For this, it is convenient to slightly
rearrange the summation:

H − k(n− k) =
k−1

∑
i=0

log2

(
2n−i − 1
2k−i − 1

)
− log2(2

n−k)

=
k−1

∑
i=0

log2

(
2n−i − 1

2n−k(2k−i − 1)

)

=
k−1

∑
i=0

log2

(
2(n−k)+(k−i) − 2(k−i)−(k−i)

2n−k(2k−i − 1)

)

=
k−1

∑
i=0

log2

(
2k−i

2k−i − 1
· 2n−k − 2−(k−i)

2n−k

)

=
k−1

∑
i=0

log2

(
2k−i

2k−i − 1

)
+ log2

(
1− 2−(n−i))

For convenience, we switch to j = k − i indices, and introduce the change of variables
(k, r) = (k, n− k), such that n = r + k and 0 < k < n ⇐⇒ 0 < k, r:

H − kr =
k

∑
j=1

log2

(
2j

2j − 1

)
+ log2

(
1− 2−(r+j))

Observe that log2(1− 2−x) is increasing w.r.t. x, and therefore log2(1− 2−(r+j)) is increas-
ing w.r.t. r, meaning that f (k, r) := Hr+k,k

2 − kr is increasing w.r.t. r. Moreover, both of the
terms in f (k, r) are symmetric w.r.t. (k, r), that is, f (k, r) = f (r, k), meaning that f (k, r) is
increasing w.r.t. both r and k. With this in mind, we can evaluate at k = r = 2 by hand
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(computer) to find that f (2, 2) = log2(35/16) > log2(2) = 1. Since f is increasing w.r.t.
both of its variables and it is bounded by two, this implies that ⌈ f (k, r)⌉ = 2 for k, r > 2.
As for r = 1 or k = 1, note that

f (r, 1) = f (1, r) = log2

(
21

21 − 1

)
+ log2

(
1− 2−(r+1))

= 1 + log2
(
1− 2−(r+1)) < 1,

Therefore, these are the conclusions that we can draw about ⌈Hr+k,k
2 ⌉ − kr:

Where both tables can be extended indefinitely by repeating the edges, and for the lat-
ter table we used the knowledge that f (k, r) < 2. In any case, the takeaway is that
Hn,k

2 < k(n − k) + 2, and in fact ⌈Hn,k
2 ⌉ = k(n − k) + 2 for most values of k, n — so

we will attempt to encode elements of (Fn
2

k ) with k(n− k) + 2 bits (i.e. 2-registers).

Remark. In fact, in the context of MVQC, those values for which ⌈Hn,k
2 ⌉ = k(n− k)+ 1 will

actually correspond to parameter sets for which UOV is insecure. In any case, it is easy
to provide an optimal encoding when k =∈ {1, n− 1} — these correspond to lines and
hyperplanes, both of which can be represented by a single (generating or perpendicular,
respectively) vector in Fn

q .

4.2 Concrete encodings

At this point, after having established that ℓ := ⌈Hn,k
q ⌉ = k(n− k) + M, for M = 1 when

q > 2 and M ∈ {1, 2} when q = 2, we know that there must exist a way to encode sub-
spaces from Gr(k, Fn

q ) with ℓ elements from Fq. Naïvely, constructing an actual encoding
is not difficult — one need only find some way to enumerate Gr(k, Fn

q ), and pair the ele-
ments with elements from [q]ℓ according to the canonical enumeration of the latter.
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However, since our search for this encoding is motivated by a practical application, we
should look for a practical encoding — i.e. one that is reasonably efficient to compute and
uniquely decodable. In fact, we will look for a prefix code — this is easier to work with,
will be useful for a construction later on, and by the Kraft-McMillan inequalities (Thms.
2.1, 2.2) this requirement does not constrain the resulting word-lengths.

The core idea is that an element of Gr(k, Fn
q ) can be represented as the row-span of a

(full-rank) k× n matrix, and moreover, the row-span of a matrix is invariant with respect
to left-multiplication by nonsingular matrices — in particular, it is invariant with respect
to elementary row operations. Now, any matrix can be put into reduced row echelon form
(RREF) by a series of elementary row operations, and thus any subspace can be repre-
sented by a matrix in this form — our approach, then, will be to find an optimal encoding
of matrices in RREF, and use this to encode elements of Gr(k, Fn

q ).

4.2.1 Reduced row echelon form

RREF is a rather elementary concept, but we will give a refresher for the sake of establish-
ing terminology (and a slight convention): a k × n matrix M is in reduced row echelon
form if there exist indices 0 < x1 < · · · < xk ∈ [n], such that:

Mij =


1 if j = xi

0 if ∃i′ > i with j = xi′

0 if j < xi

∗ otherwise

Where ∗ means that the corresponding entry of M can be any element of Fq. We give an
example of a matrix fromM(F11, 5, 10) in RREF:

1 0 2 0 4 8 6 0 0 1
0 1 5 0 7 2 0 0 0 5
0 0 0 1 3 9 6 0 0 8
0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0 0 0 1 3


In this case, (x1, . . . , x5) = (1, 2, 4, 8, 9). In general, for any matrix in RREF, we will de-
note by xM the associated sequence of indices (note that any positive strictly increasing
sequence 0 < x1 < · · · < xk will have x = xM for some matrix M). Below is what a
generic matrix M ∈ M(F11, 5, 10) in RREF with xM = (1, 2, 4, 8, 9) can look like:

1 0 ∗ 0 ∗ ∗ ∗ 0 0 ∗
0 1 ∗ 0 ∗ ∗ ∗ 0 0 ∗
0 0 0 1 ∗ ∗ ∗ 0 0 ∗
0 0 0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 0 0 1 ∗
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Where any specific matrix will replace the ∗ entries with some elements in Fq. We will
denote this matrix (with entries in {0, 1, ∗}, ∗ being a formal symbol) as RREFk,n

x , and
write M ∈ RREFk,n

x if M is a k× n matrix in RREF with xM = x.

Remark. Our definition of RREF is different from the usual definition in that it cannot rep-
resent non-full-rank matrices — usually the definition would allow for xM = (x1, . . . , xr),
with r < k, and having that Mij = 0 for any i > r. This does not affect us, however,
because we are only interested in full-rank matrices, as otherwise their row-span would
not be a k-subspace of Fq. Nonetheless, it is not difficult to expand the analysis of RREF
matrix encoding to include non-full-rank matrices, but this is left out of this text as it is
not relevant and would complicate the remainder of this chapter.

4.2.2 Encoding matrices in RREF

We begin with a slightly strange definition: for a positive strictly increasing sequence x,
we denote x̃ the sequence of the same length such that x̃i = xi − i. Note that x̃ will be
nonnegative and increasing. The interesting fact about this substitution is the following:

Proposition 4.1. Let x = xM, with M a k× n matrix in RREF. Then, the amount of ∗ symbols
in RREFk,n

x is exactly k(n− k)−∑ x̃.

Proof. We prove that each i − th row of M has n − k − x̃i ∗ symbols — the result then
directly follows by taking the sum over i = 1, . . . , k. So indeed, fix an i and consider the
row (Mij)j. Note that, for j < xi, Mij = 0, and for j = xi, Mij = 1. So we only need to focus
on j > xi, that is, j = xi + 1, . . . , n. With this restriction, only two cases of the definition
of Mij can apply — either Mij = 0, if ∃i′ > i with j = xi′ , or Mij = ∗ otherwise. The
first case will apply once for each i′ = i + 1, . . . , xk, meaning that it will apply k− i times.
Therefore, the Mij = ∗ case will apply (n− xi)− (k− i) = (n− k)− (xi − i) = n− k− x̃i
times, as we wanted to show.

Having this proposition, we know that, for some fixed k, n and positive strictly increasing
sequence x, optimally encoding some M ∈ RREFk,n

x must take k(n− k)−∑ x̃ elements of
Fq — this encoding ⟨M|x⟩ (1) will just be the elements of M corresponding to ∗ symbols in
RREFk,n

x in some particular order (we default to column-major). So, if we want to encode
M as an arbitrary matrix in RREF, we might do this by finding some encoding ⟨x⟩ of x,
and appending ⟨M|x⟩ to this encoding — and so ⟨M⟩ = ⟨x⟩⟨M|x⟩, with juxtaposition de-
noting concatenation. After a specific example, we will see that this construction of “code
composition” is valid (and uniquely decodable) in general.

1this notation should be read as "the encoding of M with previous knowledge of x"
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Example. Consider again the same matrix as earlier, with xM = (1, 2, 4, 8, 9)

M =


1 0 2 0 4 8 6 0 0 1
0 1 5 0 7 2 0 0 0 5
0 0 0 1 3 9 6 0 0 8
0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0 0 0 1 3

 RREF5,10
x =


1 0 ∗ 0 ∗ ∗ ∗ 0 0 ∗
0 1 ∗ 0 ∗ ∗ ∗ 0 0 ∗
0 0 0 1 ∗ ∗ ∗ 0 0 ∗
0 0 0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 0 0 1 ∗


We would have that ⟨M⟩ = ⟨x⟩⟨M|x⟩ = ⟨x⟩ 25 473 829 606 15893, with the spaces only be-
ing for clarity. To decode this, one would first read ⟨x⟩, construct RREF5,10

x , and then fill
the ∗ elements in column-major order as read from ⟨M|x⟩.

This encoding would take |⟨M⟩| = |⟨x⟩⟨M|x⟩| = |⟨x⟩|+ |⟨M|x⟩| = |⟨x⟩|+ k(n− k)−∑ x̃
symbols from Fq. According to the results of §4.1, for optimality we should have that

k(n− k) + M ≥ |⟨M⟩| = |⟨x⟩|+ k(n− k)−∑ x̃ =⇒ |⟨x⟩| ≤∑ x̃ + M.

So, for this to be a viable strategy, we need to find a way to encode increasing strictly
positive sequences x with |⟨x⟩| ≤ ∑ x̃ + M.

On the viability of encoding positive strictly increasing sequences

Though not strictly necessary, as we will directly construct such encoding, it is somewhat
informative to, through Kraft’s inequality (Thm.2.1), verify that such encodings can exist.
So — to encode x, it is easier to work with x̃, and it is easier to generalize this to encoding
strictly positive increasing sequences of any length. If such a sequence x must be encoded
with ∑ x + M characters, then the sequences encoded with ℓ characters will be those that
sum to ℓ−M, and thus Kraft’s inequality tells us that this encoding will exist if

∞

∑
n=0

#{increasing sequences adding up to n−M} · q−n ?
≤ 1

Now, note that positive increasing sequences adding up to ℓ − M are in bijection with
positive multisets adding up to ℓ−M — indeed, an increasing sequence may be regarded
simply as a particular representation of a multiset. More importantly, the amount of
multisets adding up to some number n is the well-known2 partition function p(n). With
this, we rewrite the inequality above as

q−M
∞

∑
n=0

p(n) · q−n ?
≤ 1

Note that the summation is the generating function of p(n) evaluated at 1/q — a useful
way to rewrite this generating function is 1/ ∑k∈Z(−1)k · q−k·(3k−1)/2, and it is not difficult
to, leveraging this expression, show that the optimum integer values of M for the bound

2For reference, a whole chapter is devoted to this function in [1, §14]. In particular, §14.3 deals with generating
functions of p(n), one of which we will be using shortly.
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above to hold are M = 2 when q = 2, and M = 1 for q > 2.

Remark. In [26], Waterhouse points out that this expression, the generating function
of p(n) at 1/q, is the reciprocal of (the limit as n → ∞ of) the proportion of nonsingular
matrices inM(Fq, n, n). Therefore, the bound above holds when this proportion is greater
than q−M. Interestingly, although our current concerns are far removed from matrices3,
this echoes our observation from §4.1¶5 that the only reason that M must be > 0 at
all is that, over a finite field, a non-negligible proportion of matrices will have a null
determinant.

4.2.3 Code composition

We describe a more general version of the construction above, and specify conditions with
which this construction can be shown to be uniquely decodable:

Definition 4.2. Given a set F, an encoding ϕ : F → Σ∗, a family of sets indexed by F, {Sx}x∈F,
and for each x ∈ F, an encoding ϕx : Sx → Σ∗, the composition of ϕ and {ϕx}x∈F is the code

Φ : {(x, y) | x ∈ F, y ∈ Sx} → Σ∗

(x, y) 7→ ϕ(x)ϕx(y).

Proposition 4.3. Let ϕ and {ϕx}x∈F be as above. If all of these are prefix codes, then their
composition Φ is also a prefix code.

Proof. By contrapositive: assume there is some (x1, y1) ̸= (x1, y2) such that Φ(x1, y1) is
a prefix of Φ(x2, y2), that is, ϕ(x1)ϕx1(y1) is a prefix of ϕ(x2)ϕx2(y2). Notice that either
ϕ(x1) is a prefix of ϕ(x2), in which case ϕ is not a prefix code and we are finished, or
ϕ(x1) = ϕ(x2), and thus x1 = x2 =: x and we have that ϕx(y1) is a prefix of ϕx(y2), and
thus ϕx is not a prefix code.

In the application relevant to this chapter, for fixed q, k, n, ϕ would be an encoding of
strictly increasing k-tuples from [1, n] using Fq as an alphabet, and for one such tuple x,
ϕx : RREFx(k, n) → Fq simply encodes a matrix M by writing its elements corresponding
to ∗ entries from RREFx(k, n) in column-major order. This is a code in which every code-
word is of the same length, and thus it must be a prefix code — so to see that the code
composition is a prefix code, we only need to find a prefix code for describing strictly
increasing k-tuples in [1, n].

4.2.4 Encoding positive strictly increasing sequences

Immediately, something about the requirement that |⟨x⟩| ≤ ∑ x̃ + M might seem note-
worthy. If we intend to encode elements of Gr(k, Fn

q ), for this we will need to encode
increasing k-tuples of elements from [n]. The set of tuples that we’re trying to encode
doesn’t depend on q, but our bound on the length, ∑ x̃ + M, does — usually M = 1, but

3A similar but more detailed observation has already been made by Knuth, regarding the connection between
subspaces and partitions, in [18].
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if q = 2 then M = 2. We start with the q = 2 case.

It turns out that finding an encoding like the one we want is not particularly hard. To
encode x, we will consider x̃ — and, since x (and thus also x̃) is prescribed to be of length
k, we will be ignoring all leading zeroes of x̃, as they can be recovered later by simply
adding them back until we have k elements. Indeed, let i be the first index such that
x̃i > 0 (or k + 1, if no such index exists), and moreover, s be the smallest integer such that
x̃i+s > 1 (or k + 1− i, if no such integer exists) — put another way, s is the amount of
leading ones in x̃. With these two values in mind, our encoding will be:

⟨x⟩ = 1s0
( k

∏
j=i+s

1x̃j−10
)

0

We need to check that this code has the following three properties:

• It is a prefix code. Indeed, for any sequence x, ⟨x⟩ ends with 00, and there can be no
other 00 in ⟨x⟩, on account of the fact that x̃j − 1 > 0, since j ≥ i + s.

• It is a valid code, i.e. injective. Indeed, it is easy to recover x̃, and therefore x, from
⟨x⟩ — we can always find s to be the length of the starting sequence of 1s, and
x̃j − 1 to be the length of successive sequences. This obviously allows one to recover
all x̃j > 2, after which one only need prepend s ones, and enough zeroes for the
resulting chain to have length k.

• Its length satisfies the expected bound. Indeed:

|⟨x⟩| = |1s0|+ |
( k

∏
j=i+s

1x̃j−10
)
|+ |0|

= s + 1 +
( k

∑
j=i+s

x̃j − 1 + 1
)
+ 1

=
i−1

∑
j=1

x̃j︸ ︷︷ ︸
0

+
i+s−1

∑
j=i

x̃j︸ ︷︷ ︸
s

+
k

∑
j=i+s

x̃j + 2

= ∑ x̃j + 2

On the other hand, the case of q > 2 allows us to use a larger alphabet for our encoding, at
the cost of having one less q-register to work with. It is rather easy to adapt our previous
strategy to work for this case — let g be any element in our alphabet different from 0, 1,
and let i and s be as before. Then:

⟨x⟩ = gs
( k

∏
j=i+s

1x̃j−10
)

0
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It is easy to see, with arguments analogous to the ones from the q = 2 case, that this is a
valid prefix code. Moreover, it uses one less symbol, and thus |⟨x⟩| = ∑ x̃ + 1, as expected.

Example. We give an instance of the full encoding process for q > 2. Say we want to
encode the element of Gr(5, F10

11) represented as the row-span of the following matrix:

M =


2 0 4 3 6 10 8 4 9 1
9 8 3 1 7 9 5 1 4 1
6 0 1 6 9 3 6 0 4 0
8 10 0 0 3 7 4 10 9 10
2 0 4 8 10 0 5 1 9 3


We begin by putting the matrix in RREF, which takes O(k2n) operations:

M =


1 0 2 0 4 8 6 0 0 1
0 1 5 0 7 2 0 0 0 5
0 0 0 1 3 9 6 0 0 8
0 0 0 0 0 0 0 1 0 9
0 0 0 0 0 0 0 0 1 3


From here we extract that x := xM = (1, 2, 4, 8, 9). As per our definition, ⟨M⟩ = ⟨x⟩⟨M|x⟩.
We saw in the earlier example that ⟨M|x⟩ = 25 473 829 606 15893. As for ⟨x⟩, we begin by
computing x̃ = (0, 0, 1, 4, 4), and selecting a g ∈ F11 different from both 0 and 1 — for
instance, 2. Then, we set i = 3, the first nonzero index, and s = 1, the amount of leading
ones. With this, we have:

⟨x⟩ = 2s1x4−101x5−100 = 211301300 = 2111011100

And so, ⟨M⟩ = ⟨x⟩⟨M|x⟩ = 2111011100 25 473 829 606 15893

4.2.5 Encoding affine subspaces

Having found an optimal encoding of k-subspaces of Fn
q , we now use this as a jumping-off

point to find likewise optimal encodings of a related object — affine subspaces of Fn
q .

For each k-dimensional linear subspace V of Fn
q , there exist qn−k affine subspaces of the

form p + V — precisely the elements of Fn
q /V. It follows, then, that the amount of k-

dimensional affine subspaces of Fn
q should be qn−k · #Gr(k, Fn

q ), and therefore the amount
of q-registers necessary to encode one such affine subspace should be

⌈logq
(
qn−k · #Gr(k, Fn

q )
)
⌉ = n− k + ⌈Hn,k

q ⌉ = n− k + k(n− k) + M,

where Hn,k
q is as in §4.1, and M = 2 when q = 2 and M = 1 otherwise.

It turns out that we can readily find an encoding using this amount of q-registers. For this,
consider the inclusion π from Fn

q to its projective closure P(Fq × Fn
q )
∼= P(Fn+1

q ), given
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by π : (x1, . . . , xn) 7→ (1 : x1 : · · · : xn). Recall that this projection will send4 k-dimensional
affine subspaces of Fn

q to k-dimensional projective subspaces of P(Fn+1
q ), which corre-

spond to (k + 1)-dimensional linear subspaces of Fn+1
q . Restating this more explicitly —

we are associating each k-dimensional affine variety in Fn
q , affinely generated by a set of

points (p1, . . . , pk+1), with coordinates pi = (pi
1, . . . , pi

n), to the (k + 1)-dimensional linear
subspace of Fn+1

q generated by (v1, . . . , vk+1), where vi = (1, pi
1, . . . , pi

n).

Now, each k-dimensional affine subspace of Fn
q can be represented as a (k+ 1)-dimensional

linear subspace of Fn+1
q . Encoding these will take (k + 1)(n + 1− (k + 1)) + M q-registers,

which is the amount that we wanted.

Remark. There will be some redundancy if one directly applies the methods of linear
subspace encoding to obtain affine subspace encoding — for instance, since the vectors
generating the subspace of Fn+1

q will all be of the form (1, pi
1, . . . , pi

n), inserting them as
the rows in a (k + 1)× (n + 1) matrix and performing row reduction to obtain a matrix in
RREF will always have the following first step:

1 p1
1 . . . p1

n
1 p2

1 . . . p2
n

...
...

...
...

...
...

1 pk+1
1 . . . pk+1

n

→


1 p1
1 . . . p1

n
0 p2

1 − p1
1 . . . p2

n − p1
n

...
...

...
...

...
...

0 pk+1
1 − p1

1 . . . pk+1
n − p1

n

 .

If one intends to actually use this method to encode affine subspaces, it would be sensible
to tease out every such redundancy. Though we do not prove this, we claim that the
process described above to represent an affine subspace p+V is tantamount to expressing
V as the row-span of a matrix in RREF M, and p as a vector such that pxM

1
= · · · = pxM

k
= 0,

and then encoding M followed by the nonzero coordinates of p.

4.3 Applicability to MVQC

While there is clear applicability and potential benefit in using the material of this chapter
in UOV, there are two notable shortcomings with this idea that should be taken into
consideration. We will discuss them in this section:

Secret keys can already be (efficiently) represented by their seed

In UOV, the trapdoor information necessary to invert the map described by the public
key is a subspace. We have shown how to represent this subspace in a space-optimal way
— however, this subspace is the secret key of UOV. This presents a problem: the holder
of the secret key is often, especially in the case of traditional signature schemes, the one
who generated the keys in the first place, and thus someone who knows the seed that

4note that this is an injection, not a bijection. The linear subspaces obtained this way cannot b te contained
in the “hyperplane at infinity” {0} × Fn

q — however, we will also be able to encode affine subspaces in this
hyperplane, if for whatever reason this kind of object from the projective closure is useful to us.
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was input to keyGen (or, in any case, someone who could reasonably know the seed, e.g.
by asking the authority that ran keyGen). For this reason, if the signer were interested in
compressing the secret key as much as possible, they could just discard the key altogether
and keep the seed value, rerunning keyGen to generate the secret key again whenever
necessary.

There are a couple of reasons to consider our approach to be a valid alternative, however:

• At least in this context, storing the seed as opposed to the entire key is not standard
— indeed, the MVQC-based submission to NIST ([12]) only suggests storing the
seed instead of the secret key for small devices, where memory might be more
constrained. This is due to the fact that keyGen is rather slow5 when compared to
the signature/verification processes.

• Our representation of the secret key might not only be useful to increase space
efficiency, but time efficiency aswell — though we have not explored the topic in
this text, it is not difficult to imagine how one might speed up basic operations from
linear algebra knowing that a matrix is in RREF.

However, both of these points become moot when considering the next shortcoming:

Most subspaces are the rowspan of a (I | A) matrix

We recall the observations from §4.1¶5: A k-dimensional subspace of Fn
q can be repre-

sented as the rowspan of a k × n matrix M. The rowspan of such a matrix is invariant
with respect to left-multiplication by nonsingular matrices. As long as the first k× k minor
of M is nonsingular, which happens with probability ≈ 1− q−1, we have that M can be
left-multiplied by the inverse of this minor to obtain M′ = (Ik | A). Therefore, in the
context of MVQC, we could store A as the secret key, a k × (n − k) matrix, and under-
stand that this refers to the row-span of (Ik | A). Chapter 4 has been largely dedicated to
patching up this idea so that it can also represent the remaining 1/q portion of subspaces
which cannot be represented in this way — however, it is also a possibility to simply re-
move these subspaces from consideration, i.e. have keyGen always output subspaces that
can be represented as the rowspan of a matrix in the form (Ik | A).

This is suggested in [7, §3.1¶5], with good reason — it provides several improvements at
the cost of extremely marginal security loss. We go through these:

Security loss. Excluding 1/q of the possible secret keys from consideration incurs a loss
of log2(1− q−1) ≈ ln(2)/q bits6 of security against direct key-guessing attacks. Practical at-
tacks would likely not see any increase in effectiveness at all, and in any case this increase

5Slow in practice. In theory, the asymptotic complexity of keyGen is smaller than that of sign or verify,
but keyGen requires running a (usually not parallelizable) PRG O(n2m) times, while sign and verify primarily
involve the execution of Basic Linear Algebra Subprograms (BLAS), which are exceedingly fast on modern
computers.

6The parameter sets for the MVQC NIST submission take q = 16 and q = 256, meaning a loss of < 5% and
< 0.3% of a bit, respectively
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would be bounded above by ≈ ln(2)/q bits.

Reduced key sizes. Secret keys can be represented with k(n− k) elements of Fq.

Efficient computation. Essentially the same point as above regarding matries in RREF.
Computation would be strictly faster with matrices in general RREF (as they may have
less than k(n − k) nonzero elements), but it is out of scope to extend BLAS routines to
handle RREF matrices, whereas computation with matrices of the form (I | A) can be
efficiently represented as traditional linear algebra operations.

Reduced attack surface. Assuming that secret keys are of the form (I | A) makes the
scheme significantly simpler in practice, leading to much less probability of potentially
exploitable human error in implementation.



Chapter 5

Conclusion

This thesis has dealt in decent depth with two separate aspects of UOV.

In the realm of the security of UOV simplifications — we have shown that the traditional
simplification of assuming that the masking term is linear cannot compromise security in
any cryptographical sense. The question of whether it is safe to assume that the central
map is homogenous, however, turns out to be a lot more nuanced. We have seen that
this is most likely safe in practice, as key-recovery attacks (which essentially amounts to
all known attacks) transfer losslessly from UOV to homogenousUOV and back. A formal
result about the EUF security of this simplification likewise straightforward.

The case of EUF-CMA, however, turns out to be significantly more convoluted, as it is dif-
ficult to use a UOV challenger to simulate the signature distribution of a homogenousUOV
challenger — without somehow leaking some information that should be hidden from the
UOV adversary for the reduction to work. We obtain a reduction supported on a (some-
what natural, non ad-hoc) hardness assumption that essentially serves to bound how
much the adversary should be able to learn from the differences between the distribution
of legitimate signatures and sufficiently clever fake signatures. The following appendix
deals with these hardness assumptions, providing some heuristic arguments that suggest
that the relevant problems may well be cryptographically hard.

Though we have not covered it in this text, there is a clear avenue for future work on inves-
tigating how these results apply to the sEUF (-CMA, -KMA) setting — as well as seeing if
they extend to MVQC schemes derived from UOV, such as Rainbow or MAYO. Moreover,
as MVQC is usually understood as a candidate for post-quantum cryptography, another
very useful result would be to figure out if the reductions we give in the ROM extend to
the QROM, where the black box is allowed to make quantum queries to the random oracle.

On the other hand, we have found optimal representations for UOV secret keys — which
is tantamount to finding optimal representations of subspaces. This has turned out to
be much too complicated for the very slim benefit it begets when applied to UOV —
nonetheless, much like in the previous point, there may well be a possibility that extending
these results to Rainbow or MAYO may yield ideas which are more practically applicable.
Moreover, it seems likely that optimal encodings of subspaces may be useful elsewhere.
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Appendix A

Hardness of quadratic systems

Theorem A.1. Let K be a nontrivial field. The problem MQD of deciding whether a given system
of quadratic equations over K has a solution is NP-complete.

This is rather well known, but no complete proof is available online without journal access,
so a sketch of a reduction of 3SAT to MQD is provided. This implies that MQD is NP-hard
— moreover, MQD is obviously in NP, so it is NP-complete.

Proof. Consider some boolean formula over variables in 3CNF form C = ϕ1 ∧ · · · ∧ ϕm,
where each ϕi is a disjunctive clause of three literals, and call the variables x1, . . . , xn. We
aim to reduce this to an instance of MQD.

First we introduce a number of variables that model the literals in the formula — de-
fine n variables x̃1, . . . , x̃n, all living in K. Add to the system of equations the constraint
x̃2

i − x̃i = 0, for each i ∈ [n]. Notice that, independent of K, this implies that each x̃i only
takes values in {0, 1}. Intuitively, this will represent the truthiness of xi. Moreover, add
n new variables ¬x̃i, and n new equations ¬x̃i + x̃i = 1. As before, ¬xi represents the
truthiness of ¬αi. At this point, for any literal α (irrespective of polarity), we can unam-
biguously refer to a variable α̃, where we expect that α ⇐⇒ α̃ = 1

Now we intend to model conjunction — for this, notice that αi ∧ αj ⇐⇒ α̃i · α̃j = 1.
Possible justifications aside, it is easy to just draw up the truth tables of both of these
statements and see that they match (and that the RHS evaluates only to 0 or 1). Similarly,
we can model disjunction: αi ∨ αj ⇐⇒ ¬(¬αi ∧ ¬αj) ⇐⇒ 1− (1− α̃i) · (1− α̃j) = 1.

The only thing that remains is to expand this to disjunctions and conjunctions of several
terms, and we can proceed to model the entire formula. Consider, for some i ∈ [m],
ϕi = α1 ∨ α2 ∨ α3. Add two new variables Pi, ϕ̃i, and two new equations, Pi = 1− (1−
α̃1) · (1− α̃2) and ϕ̃i = 1− (1− Pi) · (1− α̃3). As per the prior paragraph, ϕ̃i takes values
in {0, 1} and ϕ̃i = 1 ⇐⇒ (Pi = 1) ∨ α3 ⇐⇒ (α1 ∨ α2) ∨ α3 ⇐⇒ ϕi.

Finally, define variables Si for i ∈ [0, m], with the constraints that S0 = 1, and for each
i ∈ [m], Si = Si−1 · ϕ̃i. A straightforward induction yields that Si ∈ {0, 1}, and that
Si = 1 ⇐⇒ ϕ1 ∧ · · · ∧ ϕi, and thus C ⇐⇒ Sm = 1. Finally, we add the equation Sm = 1,
and obtain that our polynomial system has a solution iff C has a satisfying assignment.
A cursory check reveals that we used an amount of variables and equations linear in
max(n, m), and that all the equations of degree ≤ 2, so this is a valid reduction.

We make a couple remarks.
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On generality. Note that, aside having NP-hardness independent of the base field chosen,
the fact that this result holds for quadratic systems means that it trivially also holds for
generic polynomial systems (as well of systems of any constrained degree ≥ 2 — the lin-
ear case is well-known to be in P, as per any linear algebra course).

On underdetermined systems. Importantly, here MQD is phrased as a decision prob-
lem (hence the D). However, one is often rather interested in the task of solving systems
of equations, rather than deciding whether a system has a solution at all. This can be
interpreted in (at least) two different ways:

• Given a polynomial system, return a solution, or ⊥ if no solution exists.

• Given a polynomial system and the knowledge that it is solvable, return a solution.

There is a trivial reduction from MQD to the former of these two interpretations, so this
interpretation must also be computationally hard. However, the same is not immediately
clear for the latter interpretation — and this is not a farfetched scenario, since this very
text is often interested in finding solutions to underdetermined quadratic systems. In this
context, one can imagine an algorithm that acts as if though it has been promised that
the equation system fed as an input is solvable, and if the algorithm is correct when this
assumption is true, then it will be correct in general with high probability.

However, it turns out that finding a satisfying assignment of a CNF formula is hard, even
with the knowledge that a satisfying assignment exists (this is a specific case of the main
result in [3]). Thus, the same reduction as above shows that it is computationally hard to
solve a quadratic system even if one is promised that the system is solvable.



Appendix B

Hardness of MH and related
problems

In §3.2.4, we show that homogenousUOV is, in some sense, as secure as UOV. In partic-
ular, for showing that homogenousUOV retains EUF-CMA security, we need to introduce
some new problems and base the reductions on assuming the hardness of these problems.
In this appendix, we support the claim that these problems are computationally hard, by
dicussing the relationships between these problems and showing that some variants of
them are indeed hard.

The first problem that we introduce is the missing hyperplane problem — MHq(n) consists
of, given a sampleable distribution Xi, distinguishing which of these distributions it is:

• X1, uniform on Fn
q

• X2, uniform on Fn
q ∖V, where V is a random hyperplane unknown to the adversary.

We (arbitrarily) focus on one type of strategy: sampling a set P of an amount N(q, n) of
points from Xi, and then checking if there exists a hyperplane H such that P ∩ H = ∅.
This will always be the case if i = 2 — however, we can see that the probability that
such ah H exists when i = 1 can be made arbitrarily low. Indeed, consider the expected
number of hyperplanes H not intersecting N(q, n) uniform samples from Fn

q : since these
are uniform, the probability of a certain H not intersecting one of them is 1− 1/q, and thus
the probability of not intersecting any of them is (1− 1/q)N(q,n), and thus the expected
number of such hyperplanes is (

n
n− 1

)
q
· (1− 1/q)N(q,n).

Moreover, by Markov’s inequality, this expression above bounds the probability that any
such hyperplane exists. If we allow some crude estimations, we have that

(
n

n− 1

)
q
· (1− 1/q)N(q,n) =

qn − 1
q− 1

· (1− 1/q)N(q,n)

= exp
{

log
( qn − 1

q− 1

)
+ N(q, n) log(1− 1/q)

}
≈ exp

{
(n− 1) log(q)− N(q, n)/q

}
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Now, if we want to have this be bounded above by some p (such that 1 − p is non-
negligible), isolating N(q, n) yields that this is equivalent to

N(q, n) ≥ q ·
(
(n− 1) log(q)− log(p)

)
.

All in all, we have that N(q, n) ∈ O(n · q · log(q)) is enough for the strategy we described
to be able to distinguish X1 and X2 with non-negligible advantage. However, we skipped
over one important point — the process of finding out whether there exists an hyper-
plane H not intersecting any point of our sample of N(q, n) points. This is a nontrivial
computational problem:

Definition B.1. The non-intersecting hyperplane problem in order q, abbreviated NIHq, con-
sists of, given n, N, and a set P of N points in Fn

q , deciding whether there exists an hyperplane
H ⊆ Fn

q such that H ∩ P = ∅.

It is not clear that this problem should be easy or hard — so our previous argument only
amount to showing that MHq(n) is easy if NIHq is easy. We will give two results about
NIH. Before this, however, it is convenient to slightly reformulate NIH: any hyperplane
H is uniquely determined by a vector v, such that H = {x | ⟨x, v⟩ = 0}. Evidently,
p /∈ H ⇐⇒ ⟨p, v⟩ ̸= 0. Thus, an instance of NIHq can be reformulated as, given a set of
vectors P ⊆ Fn

q , deciding whether there exists a vector v such that, for any p ∈ P, it holds
that ⟨v, p⟩ ̸= 0.

Proposition B.2. NIH2 is in P.

Proof. Given a set of vectors P, we have to decide whether there exists a vector v such
that, for every p ∈ P, ⟨v, p⟩ ̸= 0. Because the underlying field is F2, we have that ⟨v, p⟩ ̸=
0 ⇐⇒ ⟨v, p⟩ = 1. This is a linear system (and moreover, the amount of variables and
constraints are sublinear in the size of the problem instance).

Corollary B.3. MH2(n) can be efficiently solved with non-negligible advantage.

While this is not great news for the hardness of our problems, it turns out that NIH
is NP-complete in every other case. This result will be based on the well-known NP-
completeness of 3-COL, the problem of deciding whether a given graph has a 3-coloring
— however, it will be convenient to go through the intermediate step of verifying that
k-COL is NP-complete for any k > 2.

Lemma B.4. Let k > 2. Then, k-COL, the problem of deciding whether a given graph has a
k-coloring, is NP-complete.

Proof. By reduction to 3-COL — trivially if k = 3, so we assume that k > 3. Let G be a
graph for which we want to figure out if there exists a 3-coloring. Consider a new graph
G′, constructed by adding k − 3 new vertices to G and connecting them to every other
vertex (including each of the other k− 4 new vertices). If we have a solver for k-COL, then
we can figure out whether G′ has a k-coloring — to complete the reduction, we only need
to check that G′ has a k-coloring iff G has a 3-coloring.
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But this is easy. ( ⇐= ) If G has a 3-coloring, then G′ can be k-colored by starting with
the 3-coloring of G and using each of the remaining k − 3 new colors on the k − 3 new
vertices. ( =⇒ ) On the other hand, if G′ has a k-coloring, since the k − 3 new vertices
are all connected among themselves, they must use k− 3 different colors. Moreover, since
they are connected to each of the original vertices in G, none of these vertices can use
these k− 3 colors, leaving only 3 colors — so we can recover a 3-coloring of G.

Proposition B.5. Let q > 2. Then, NIHq is NP-complete.

Proof. By reduction to q-COL — in fact, NIHq essentially amounts to a very broad gener-
alization of q-COL. So consider a graph G = (V, E) for which we want to decide if there
exists a q-coloring. We fix n = #V and N = #E, and we intend to select N vectors {pi}i∈[N]

from Fn
q , such that the existence of another v ∈ Fn

q with ⟨pi, v⟩ ̸= 0 for each i determines
the existence of a q-coloring for G.

The idea is rather straightforward. Each coordinate of v = (v1, . . . , vn) will correspond to
a vertex in V (for convenience, we relabel such that V = [n]). The value of this coordinate
will be the color of the associated vertex. Let bi denote the i-th element of the canonical
basis of Fn

q — then, since ⟨v, bi − bj⟩ = vi − vj, we have that ⟨v, bi − bj⟩ ̸= 0 ⇐⇒ vi ̸=
vj. So, letting αi and ωi be the vertices incident to each edge ei, we set pi = bαi − bωi .
Therefore, imposing that ⟨pi, v⟩ ̸= 0 for each i is equivalent to imposing that vαi ̸= vωi for
each edge ei — clearly a k-coloring of G can be recovered from such a v and viceversa, so
this v exists iff G is k-colorable.

Corollary B.6. If NP ̸=BPP, then NIHq /∈BPP for q > 2.

The antecedent in the corollary above is generally believed, with rather high confidence, to
be true, so we can conclude with reasonable confidence that NIHq is not in BPP. Nonethe-
less, we remark that this is two steps removed from being useful: the corollary above
only suggests that NIHq is cryptographically hard, which in turn only suggests that MHq(n)
might also be cryptographically hard (as we only focused on one possible approach to
solving MHq(n) with the hopes that it would be reasonably generic).

Another problem that comes up in §3.2.4 is the hidden hyperplanes problem, HHsq(n),
which asks us to, given a sampleable distribution Yi, distinguish which of these distribu-
tions it corresponds to:

• Y1, uniform on Fn
q

• Y2, uniform on V ∪ −V, where V is a random affine hyperplane unknown to the
adversary.

Recall the reformulation that we gave earlier of NIHq. We could have given a similar re-
formulation of MHq(n) — distinguishing a uniform distribution on Fn

q from a uniform
distribution on {x ∈ Fn

q | ⟨x, v⟩ ̸= 0} for some unknown v. An analogous idea applies to
HHsq(n), as, if v is a (the) vector such that V = {x | ⟨x, v⟩ = 1}, then we have that X2 is in
fact uniform on {x ∈ Fn

q | ⟨x, v⟩ = ±1}. now, since X = ±1 ⇐⇒ X ̸= 0 when q ∈ {2, 3},
we immediately obtain that MHq(n) and HHsq(n) are equivalent when q ∈ {2, 3}, and
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therefore HHs2(n) is easy and we suspect HHs3(n) to be hard.

As for q > 5, we show that, unsurprisingly, MHq(n) must always be harder than HHsq(n):

Proposition B.7. For any efficient algorithm A that solves MHq(n), there exists an efficient algo-
rithm B that solves HHsq(n) with the same advantage and linear overhead in execution time.

Proof. The idea is that there exists an efficiently computable function f : Fn
q → Fn

q such
that f (Yi) ∼ Xi — so B will simply recieve samples, take their image under f , and feed
these images to A, outputting whatever A eventually outputs.

The function f is rather simple — on input y, it simply selects a random nonzero r ∈ F∗q ,
and returns r · y. Since y 7→ r · y is a bijection for each r, we have that it preserves uniform
distributions, and since f simply applies this transform for a random r, we obtain that
f (Y1) ∼ X1. We also have to verify that f (Y2) ∼ X2 — so say that y is sampled from Y2,
and therefore it is an element from V ∪−V. As we saw before, there is a certain vector v
such that this is tantamount to saying that ⟨v, y⟩ = ±1. Now, if r is randomly selected from
F∗q , we have that ⟨v, r · y⟩ = r⟨v, y⟩ = ±r will be uniformly distributed over F∗q . Moreover,
again since multiplication by nonzero r is bijective, and since y is uniformly distributed
over {z | ⟨v, z⟩ = ±1}, then r · y is uniformly distributed over {z | ⟨v, z⟩ = ±r}. We
obtain that the distribution of f (y) is the one obtained by uniformly selecting a random
pair of (mirrored) hyperplanes {z | ⟨v, z⟩ = ±r}, and then uniformly selecting one of their
elements — since all these hyperplanes have the same cardinality and they span all of Fn

q
except for {z | ⟨v, z⟩ = 0}, it follows that the distribution of f (y) is uniform on Fn

q ∖ V,
that is, f (Y2) ∼ X2.

Along the same lines as before, we can also (non-canonically) turn HHs into a decision
problem to make a study of its hardness more feasible. Following a reasoning analogous
to the case of MH and NIH, we obtain:

Definition B.8. The spanning hyperplanes problem in order q, abbreviated SHsq, consists of,
given n, N, and a set P of N points in Fn

q , deciding whether there exists an affine hyperplane
V ⊆ Fn

q such that P ⊆ V ∪−V.

For the same reason that MHq(n) and HHsq(n) are equivalent when q ∈ {2, 3}, we have
that NIHq and SHsq are equivalent when q ∈ {2, 3} meaning that SHs2 is in P, while SHs3
is NP-complete and likely cryptographically hard. As for q > 5, clearly NIHq is harder
than SHsq — but this tells us nothing, since we already new NIHq to be NP-complete.
However, it turns out that SHsq is also NP-complete. The same observations about the
relationship between MH and NIH apply to that of HHs and SHs.

Proposition B.9. Let q > 2. Then, SHsq is NP-complete.

Proof. We already know this to be true for q = 3, so we assume that q > 5. We will show
that, for any q, there is a reduction from 3SAT to SHsq

So, let us consider an instance F of 3SAT, with X variables x1, . . . , xV and C clauses
φ1, . . . , φC. We begin by fixing n = 1 + 2X + C and N = 1 + 3X + 2C, and we intend
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to select N vectors {pi}i∈[0,3X+2C] from Fn
q , such that the existence of another v ∈ Fn

q with
⟨pi, v⟩ ̸= 0 for each i determines the existence of a satisfying assignment for F.

It will be convenient to, for the length of this proof, 0-index our vectors, such that
v = (v0, v1, . . . , v2X+C). Notice that we also 0-indexed the set of points {pi}i∈[0,3X+C]
earlier. Let bi denote the i-th element of the canonical basis of Fn

q , also 0-indexed.

We begin by setting p0 = b0 — therefore, v will have to satify v0 = ⟨v, p0⟩ = ±1. At this
point, it is important to note that if v satisfies that ⟨pi, v⟩ = ±1 for each i, then clearly −v
also satisfies this, and thus we may assume WLOG that v0 = 1.

So we begin to model the variables. For each i ∈ [1, . . . , X], we set pi = bi, pi+X = bi+X ,
and pi+2X = 2−1bi − 2−1bi+X . This determines pj for j = 1, . . . , 3X. For any fixed i, the
values of pi and pi+X imply that vi = ±1 and vi+X = ±1, respectively, and moreover,
±1 = ⟨pi+2X , v⟩ = 2−1(vi − vi+X) — since this cannot hold if vi and vi+X have the same
sign, we have that vi = −vi+X . Conceptually, the sign of vi represents the truthiness of xi,
and vi+X that of ¬xi. Thus, for any literal α in F, there is an unique index i(α) such that
vi(α) represents the truthiness of α.

We move on to the more interesting subject of modeling clauses. Each clause φi = α1∨ α2∨
α3, with i ∈ [1, . . . , C], will be modeled by v3X+i, with p3X+i = bi(α1)

+ bi(α2)
+ bi(α3)

− b3X+i
and p3X+C+i = b3X+i − b0. Note that ±1 = ⟨p3X+C+i, v⟩ = v3X+i − v0 = v3X+i − 1, and
so v3X+i ∈ {0, 2}. Moreover, ±1 = ⟨p3X+i, v⟩ = (vi(α1)

+ vi(α2)
+ vi(α3)

)− b3X+i, and there-
fore, (vi(α1)

+ vi(α2)
+ vi(α3)

) ∈ {−1, 1, 3}. Since vi(α1)
, vi(α2)

and vi(α3)
) are all ±1, the fact

that their sum is in {−1, 1, 3} is equivalent to at least one of them being 1 — i.e., at least
one of α1, α2, α3 is truthy, and so we have succesfully modeled a disjunctive clause.

We obtain that an v such that ⟨pi, v⟩ ̸= 0 for each i exists if and only if there is a satisfying
assignment for F — moreover, the set of points p is polynomial in the size of F and can be
constructed efficiently, thus completing the reduction.

Yet another problem that comes up in §3.2.4 is the missing hyperplane sampling problem,
MHSq(n), which asks us, given a distribution over Fn

q ∖ V, where V is some unkown
hyperplane, to output a p ∈ V, p ̸= #»

0 . In the bounded-error setting, we have a somewhat
underwhelming result (which is nonetheless sufficient for §3.2.4):

Proposition B.10. If there exists an efficient algorithm A that can solve MHSq(n) with probability
p(n), then there exists another efficient algorithm B which can solve MHq(n) with probability
p(n) · p(n− 1) . . . p(1).

Proof. We describe B.

• B initially sets V = {0} (as a subspace).

• For each m = n, . . . , 1

1. B repeatedly samples values xi from the given distribution, computes yi ←
πV(xi), writes zi ← base(V)−1 · yi, and sends yi to A.
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2. When A outputs some point pj, B resets A, updates V ← V + ⟨base(V)pj⟩, and
continues to the next m.

• B checks that V does not contain any of the points it has sampled so far. If so, it
accepts, otherwise it rejects.

Note that B would simply keep track of a basis of V, such that it is always the same basis.
Essentially, for each value of m, B is playing the role of the challenger of MHSq(m) against
A, feeding it the distribution projected to the quotient of the parts of the hyperplane that A
has already figured out. If B is sampling from X2, this is valid if A correctly finds a p in the
(reparametrized) hidden hyperplane at each step, which happens with probability p(m)

at each step. On the other hand, if B is sampling from X1, with high probability the check
at the end will fail, since no hyperplane like the one B wants will exists (unless not enough
points have been sampled, but B can simply remedy this by sampling ≈ n · q · log(q) points
at the start).

Corollary B.11. If MHq(n) is hard, there does not exist any algorithm that can solve MHSq(n)
with probability that is negligibly close to 1.

Proof. Otherwise, the construction of Prop. B.10 would yield an algorithm capable of
solving MHq(n) with non-negligible probability.

This result essentially just says that, if MHq(n) is very hard, then MHSq(n) isn’t very easy
— this is essentially true, since one needs to get MHSq(n) right n times in a row to solve
MHq(n). However, it is worthwhile to note that a tighter reduction exists in the polynomial
expected time setting:

Proposition B.12. If there exists an efficient algorithm A that can solve MHSq(n) with probability
1 in polynomial expected time, then there exists another efficient algorithm B which can solve
MHq(n) with probability negligibly close to 1 in polynomial expected time.

Proof. The same construction as in Prop. B.10. Regarding B’s execution time — in aggre-
gate, the internal executions of A take an expected poly(n) + poly(n + 1) + · · ·+ poly(1) ≤
n · poly(n) = poly(n), and B only has some extra polynomial overhead, so B finishes in
expected polynomial time, as we wanted. Regarding correctness, if B is sampling from
X2, then A correctly finds an element of the hidden hyperplane at each step, and therefore
the final check by B passes and B accepts. If B is sampling from X1, it rejects with high
probability, with the same considerations as in the proof of Prop. B.10.



Appendix C

Proof of Lemma 3.15

Claim. Let A be an efficient algorithm that can break the EUF-CMA security of homogenousUOVq(n+

1, m) with probability p, and B1 as constructed in Fig. 3.4, letting pa be the probability that A out-
puts a valid forgery with respect to its simulated random oracle. Then, there exists an efficient
algorithm C such that, letting pc be its probability of solving MHq(n + 1− m), it holds (in the
Random Oracle Model) that pc ≥ |pa − p|.

Since it is a key part of this statement, we repeat Fig. 3.4:

B R← GL(Fq, n + 1)

P ′ ← P ◦ B

R R← {functions Fm
q → F∗q}

σ′ ← R(m) · B−1 · (σ∥1)

Abort if R(m)−1 · B · σ′ is not of the form σ∥1

A
P ′

m

σ′

m, σ′

h← H(m)

h′ ← R(m)2 · h

Oraclem

h′

B1P

m

σ

m, σ

Figure C.1: Reduction from breaking EUF-CMA security of UOVq(n, m) to EUF-CMA se-
curity of homogenousUOVq(n + 1, m).

Proof. We begin by pitting A against the standard challenger for the EUF-CMA security of
homogenousUOVq(n + 1, m). As per the definition of A, there is a probability of p that
this game ends with the challenger accepting. This is illustrated in Fig. C.2, where
we simply use keyGen, sign and verify to refer to the corresponding algorithms in
homogenousUOVq(n + 1, m).

We will introduce some variations in how the signing process of the challenger works,
while justifying that these do not significantly alter the outcome of the game — these are
given in the table below. base denotes a function that, given a subspace, produces a matrix
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A

P ,O R← keyGen(1λ)

σi
R← sign(P ,O, mi)

Output 0 if (m, σ) = (mi, σi) for any i
Otherwise, output verify(P , m, σ)

homogenousUOVq(n + 1, m) EUF-CMA

P

mi

σi

m, σ

Figure C.2: Game for the EUF-CMA security of homogenousUOVq(n + 1, m), played by A.

with this subspace as its column-span. πV(x) denotes the orthogonal projection of some
vector x to a subspace V.

sign′(P ,O, m) sign′′(P ,O, m) sign′′′(P ,O, m)

1. t← H(m) 1. t← H(m) 1. t← H(m)

2. v R← Fn+1
q 2. x R← O⊥ 2. v R← Fn+1−m

q
3. x← πO⊥(v) 3. Q : O → Fm

q 3. x← base(O⊥) · v
4. Q : O → Fm

q y 7→ P(x + y) 3. Q : O → Fm
q

y 7→ P(x + y) 4. If Q is not of full rank, y 7→ P(x + y)
5. If Q is not of full rank, return to step 2. 5. If Q is not of full rank,

return to step 2. 5. z← Q−1(t) return to step 2.
6. z← Q−1(t) 6. Output x + z 6. z← Q−1(t)
7. Output x + z 7. Output x + z

It is rather easy to check that the three algorithms presented above are equivalent, as their
only difference is in the way that they uniformly sample a vector x from O⊥. Moreover,
sign’ is equivalent to the standard sign of homogenousUOVq(n + 1, m) — note that the
only difference between the two algorithms is that sign′ orthogonally projects the vector
it samples to O⊥. This cannot change which coset of O the map y 7→ x + y runs over, and
thus it does not change whether Q is invertible — and if it is indeed invertible, it does not
change the unique solution returned in step 7.

It follows, then, that we can substitute sign for sign′′′ in the game in Fig. C.2, and this will
not change the distribution of the outcome. Note, then, that sign′′′ contains an instruction
to sample uniformly from Fn+1−m

q — therefore, the game in Fig. C.2 is equivalent to the
game in Fig. C.3 when b = 0.

We remark that C should also check that the final forgery (m, σ) does not coincide with any
of A’s previous signing queries. In any case, this is the C from the statement of Lemma 3.15
— by definition, the probability of the challenger accepting cannot change by any amount
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P ,O R← keyGen(1λ)

A
P

m

x← base(O⊥) · v
Q : O → Fm

q

y 7→ P(x + y)

Restart signing if

Q is not full-rank

σ← x +Q−1(H(m)) σ

m, σ

Accept iff 1 = verify(P , m, σ)

C

V R← Gr(n−m, Fn+1−m
q )

U ← Fn−m
q if b = 0,

Fn−m
q ∖ V otherwise

v R← U

MHq(n−m) challengerb

v

Figure C.3: Rewriting of the previous game as an instance of MHq(n−m).

greater than pc when we change b from 0 to 1. So we set b = 1, with the knowledge that
the resulting game will accept with a probability at most pc away from p.

What we intend to prove, then, is that the game above when b = 1 (which we will call
Game1) and the game in the reduction B1 (which we will call Game2) look the same from
the perspective of A — that is, the messages to A have the same distribution. If this is
true, then it follows that the probability pa that A outputs a valid forgery in Game1 is
the probability that C accepts in Game2 — and so we have just seen that it will hold that
pc ≥ |p− pa|, as we intend to show.

So we need to show that the distribution of messages to A in Game1 is identical to in
Game2. We begin by repeating a result we obtained in the proof of Prop. 3.11, regarding
the distribution of the public and secret keys. Letting sk be the secret key of the challenger
in Game2, we saw that if we define O′ = B−1 · (sk× {0}), then (P ′,O′) follows the dis-
tribution of a genuine key pair for homogenousUOVq(n + 1, m) — and so it has the same
distribution as (P ,O) in Game1.

We focus ourselves on Game2 for a paragraph. Consider the hyperplane B−1 · (∗∥0), and
note that it must containO′ = B−1 · (sk×{0}). Moreover, since B−1 · (∗∥0) is the row-span
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of the first n− 1 columns of B−1, it is uniformly distributed, and therefore B−1 · (∗∥0)/O′
will be uniformly distributed over the quotient. Therefore, for any value of O′, B−1 · (∗∥0)
is uniformly distributed over all hyperplanes containing O′.

Going back to Game1, we can see that analogous behaviour arises for O + base(O⊥) · V
— for any value of O, the term base(O⊥) only amounts to a choice of basis, and since V
is uniformly distributed and of dimension n−dim(O)− 1, the expression +base(O⊥) ·V
extends O to any hyperplane containing it, uniformly and at random.

So we obtain that (P ,O,O + base(O⊥) ·V) in Game1 and (P ′,O′, B−1 · (∗∥0)) in Game2
have the same distribution. Next, we see that they are used in the same way to answer A’s
signing queries.

An important note about the distribution of the signatures is that in both games, the chal-
lenger to A is does not change state when answering A’s queries, and thus the distribution
of each signature will be identical and independent from the other signatures. Therefore,
we simply have to show that for some signing query m from A, the distribution of the
signature it recieves will be the same in Game1 and Game2.

Game1 is easier to describe — upon recieving a signing query m, C repeatedly picks uni-
formly random cosets ofO not contained inO+base(O⊥) ·V — indeed, note that v deter-
mines the choice of coset and it is uniformly distributed everywhere except base(O⊥) ·V.
C repeats this process until it finds a coset where P is of full rank, which, as far as the
resulting distribution goes, amounts to uniformly selecting one such coset. It then returns
the only possible signature within this coset.

Game2 is more convoluted, but it amounts to the same process. Upon recieving a signing
query m, B1 passes it back to its challenger, which will uniformly select a random coset
of sk where pk is invertible, and send back the unique antiimage σ of H(m) in this coset.
Regarding the next few steps:

• B1 will then consider (σ∥1). The resulting distribution of (σ∥1) would be the same
as if A uniformly selected a coset of sk× {1} from Fn

q × {1} where is invertible, and
returned the unique signature there — A simply carries out the same operations, but
in the homogeneization.

• Next, B1 will consider B−1 · (σ∥1). Now the process of uniformly selecting a coset
of sk× {1} from Fn

q × {1} where is invertible is tantamount to uniformly selecting
a coset of B−1(sk × {1}) from B−1(Fn

q × {1}) = B−1(∗∥1) where ◦ B−1 = P ′ is
invertible. Moreover, any coset of B−1(sk × {1}) is a coset of O′, and so we can
rephrase this as selecting a random coset of O′ in B−1(∗∥1) where P ′ is invertible.

• Finally, B1 sets σ′ = R(m) · B−1 · (σ∥1). The process of selecting σ′, therefore, is
equivalent to first picking an R(m), then a coset of O′ within B−1(∗∥R(m)) where
P ′ is invertible, and returning the unique signature σ′ within this coset. Note that
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the amount of such cosets in B−1(∗∥R(m)) does not depend on R(m) (indeed, mul-
tiplication by any constant nonzero preserves the property of being a coset of O′,
and since P ′ is homogenous, it also preserves the property of having a unique so-
lution within a certain coset) — therefore, this uniformly picking an R(m) first and
then a coset of O′ within B−1(∗∥R(m)) is tantamount to simply picking any coset
of O′ lying in some B−1(∗∥r), with r ̸= 0 — so, picking a random coset of O′ from
Fn+1

q ∖ B−1 · (∗∥0) where P ′ is invertible.

So the signature process in Game2 amounts to uniformly selecting a coset of O′, not
within B−1(∗∥0), where P ′ is invertible, and then returning the unique antiimage of H(m)

within. We have seen that Game1 does the same, substituting (P ′,O′, B−1 · (∗∥0)) for
(P ,O,O + base(O⊥) · V) — but these two triplets have the same distributions in either
game, so the signatures returned to A also have the same distribution.

Finally, since we are in the random oracle model and R(m) is independent from the “ran-
dom” value H(m), the simulated random oracle of A also behaves indistinguishably from
a legitimate random oracle, thus completing the proof.
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