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Exascale computing has been a dream for ages and is close to become a reality that will impact the 
way in which molecular simulations are being performed and the quantity and quality of the 
information derived for them. We review how the biomolecular simulations field is anticipating 
these new architectures, making emphasis in recent work from groups in the BioExcel Center of 
Excellence for High Performance Computing. We exemplified the power of these simulation 
strategies with the work done by the HPC simulation community to fight Covid-19 pandemics. 
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NEW COMPUTER ARCHITECTURES 

Biomolecular simulations have linked to computer power since their origin in the sixties. Thus, access 
to Golem computer explained (in part) the leadership of Weizmann’s institute in the development 
of the first force-field based methods oriented towards the study of biomacromolecules [1], [2], and 
a large computer placed at CECAM headquarters allowed the first molecular dynamics (MD) 
simulation of a protein by McCammon, Gellin and Karplus [3]. Since the seventies, continuous 
improvements in computers have allowed molecular simulations, and in particular MD to be 
established in the structural biology and biophysics worlds. 

The increase in computer power seemed unstoppable for decades but, unfortunately, current chip 
technology has reached a plateau and we cannot expect much more powerful processors emerging 
from current computer technology. Thus, while waiting for quantum computers, hardware 
developers have tried to maintain the increase in processing power by three different strategies: i) 
to build specific purpose processors, ii) to take advantages of secondary processors specialized in 
basic numerical operations (like the graphical processing units; GPUs) and iii) to increase the number 
of cores in the computers.  

MD specific computers such as Anton [4], [5] were a major promise for the MD field when first 
appeared in 2008, but thirteen years later, their global impact has been small. On the other hand, 
GPUs have revolutionized the field allowing small groups access to significant compute power. Yet, 
no single GPU can perform massive MD simulations, thus requiring the combination of a large 
number of CPUs (and eventually GPUs) in the simulation. Thus, most of massive MD simulations are 
performed in High-Performance Computing (HPC) environments, especially in gigantic 
supercomputers created by the aggregation of a massive number of CPUs or CPU/GPUs. Two 
excellent examples of Tier-0 supercomputers are Japanese Fugaku and American Summit. Rikken 
supercomputer Fugaku has 7.6 million general-purpose cores A64FX 48C and provides 0.5 ExaFlop 
of peak power, while American Summit has a hybrid CPU/GPU architecture based on Power9 and 
NVIDIA Tesla V100 cards, with 2.4 million cores and 0.2 ExaFlop of peak power. Both are amazing 
pieces of engineering and are approaching to the mythical ExaFlop barrier, but we cannot ignore 
that Fugaku is only 4 times faster than the top-of-the line computer five years ago (Chinese Sunway) 
and has an electrical consumption (close to 30 MW excluding cooling) that raises doubts on the 
sustainability of a much bigger computer [6]. 

In summary, the biosimulation community has largely benefitted from decades of continuous 
increase in computer power, but we cannot expect much faster processors in the next years. Most 
likely, increases in aggregated computer power would appear linked to massively parallel 
architectures. Our community, and in particular the molecular dynamics (MD) field should redefine 
its objectives and tools having in mind realistic expectations how new high-performance computers 
will be.  

TAKING ADVANTAGE OF HIGH-PERFORMANCE COMPUTING 

The quality of an MD simulation depends mainly on three factors: i) the accuracy of the Hamiltonian 
representing molecular interactions, ii) the similarity between the simulated system and the physical 
reality, and iii) the exhaustiveness of the sampling of the conformational space. Most MD simulation 
engines use the same type of classical Hamiltonian defined in the sixties by Lifson and coworkers 
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[7], which have been largely refined, reaching good agreement with experimental measurements 
when sufficient convergence is achieved for some macromolecular systems [8]–[11]. It means that 
in practice, the quality of MD calculations mainly depends on the ability of the simulated model to 
represent the reality, and on the completeness of the sampling of the relevant configurations. As 
some of the biologically relevant systems may contain millions of atoms, a tendency in the MD field 
in the last decade has been to simulate very big systems [12], [13], which are expected to be more 
realistic and better fitting with supercomputer architectures. Unfortunately, the larger the system, 
the longer the simulation generally should be, and the more complex the force evaluation is. In brief, 
the reliable treatment of very large systems is limited to a few computational groups with access to 
massive computer resources, while in everyday practice the simulation system sizes range from 104 
to 105 atoms. The challenge is how to efficiently use supercomputers on biological problems 
involving such “small” systems.  

Strategies for parallelization of a single calculation 

Molecular dynamics simulation approaches are based on the idea of sampling phase space, and as 
such the efficiency of the method ultimately comes down to the performance of individual 
simulations. The total throughput of methods relying e.g. on ensembles is multiplied by the speedup 
due to parallelization of individual simulations, which in turn is multiplied by speedups from 
acceleration and algorithmic advances. Several modern MD implementations such as Amber [14], 
NAMD [15], Desmond [16] and GROMACS [17] have been accelerated either for GPU hardware – 
using CUDA, OpenCL or SYCL APIs – or single-instruction multiple-data instruction units available on 
modern CPUs [18]. However, both hardware and software landscapes have become extremely 
diverse, and while almost all codes can be compiled on arbitrary systems, it cannot be taken for 
granted that a code is able to make good use of the hardware available on a particular system. For 
large projects, it has become an important decision to select a suitable combination of HPC hardware 
along with optimally accelerated simulation software already at the planning stage. GPU 
accelerators have been a revolution for MD simulations, just as for many other scientific fields, which 
is effectively due to new algorithms enabling parallelization of the force evaluation in each timestep 
over ~10,000 functional units in each GPU [19]–[21], although this is opaque to the user.  

On the other end of the spectrum, algorithms to explicitly parallelize simulations by communicating 
between multiple different nodes have evolved to use advanced load balancing and advanced 
domain decomposition techniques that limit communication to the neighboring nodes [22] and 
minimize communication e.g. by allowing an interaction between atoms present on two specific 
nodes to be evaluated on a third (“neutral-territory” methods) [23], [24]. While benchmarks 
occasionally use gigantic systems to showcase codes, biomolecular applications like Covid-19 are 
typically focused on achieving sampling e.g. for a protein by first reducing the system size as much 
as possible and the parallelizing the simulation of this given system over as many nodes as possible 
– so-called “strong scaling”, which is considerably more difficult. The algorithms above have enabled
truly impressive strong scaling where simulations have been able to make use of 10,000 cores or 
more [15], [25], resulting in long time scale simulations of individual SARS-CoV-2 proteins [26], 
sampling of their binding site dynamics [27], conformational changes [28], modeling of SARS-CoV-2 
proteins whose structure is not yet known [29], and multiscale simulations e.g. of the SARS-CoV-2 
spike protein [30]. 

One of the currently most critical bottlenecks is that the particle-mesh Ewald summation [31] 
algorithms used for long-range electrostatics involves global 3D fast fourier transforms, where the 
number of communication messages scale as the square of the number of nodes. Fortunately, there 
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are several promising new algorithms in development based e.g. on multipole expansion methods 
[32], [33] or multi-level summation [34]. However, since molecular dynamics is inherently an 
iterative stepwise method, high-end parallelism is subject to hard challenges of communication 
bandwidth and latency – it will not help to add more CPU resources to a simulation waiting for 
communication. These problems are even more severe when compounded with accelerators. First, 
some GPU codes do not even support multi-node parallelism since the random-access nature of 
indexing atoms to be communicated is not a great fit for accelerator hardware. Second, it introduces 
another layer of communication complexity and latency when data must first be sent between GPUs 
in each node and between CPU and GPU before it can be communicated to other nodes. Third, since 
the force calculation can be an order of magnitude faster on GPUs, the relative impact of network 
bandwidth and latency will also become tenfold higher, and thus dominate for much smaller node 
counts compared to CPU-only simulations. As an example, for GROMACS the current effective limit 
to strong scaling is somewhere around 40 atoms per CPU core, while it is typically not meaningful to 
go to less than 3000 atoms per GPU [19], and other major codes have qualitatively similar behavior. 
Notably, this means the relative strong scaling is typically considerably worse for GPU-accelerated 
simulations, and somewhat paradoxically they might not improve the absolute performance of the 
simulations in the limit of high-end parallelism, but they make it possible to reach the same 
performance with order-of-magnitude smaller hardware resources. These freed up resources can 
then instead be utilized much more efficiently to parallelize the solution to the scientific problem 
through combination with ensembles of many accelerated and parallel simulations.  

 

Ensemble simulations 

In effect, a direct alternative to escape the technical shortcomings of direct parallelism is based on 
the use of ensembles obtained from independent or loosely coupled simulations. The use of replicas 
is now well established and considered part of the “good practices” in the field [35], [36], especially 
when one is concerned with simulations of rare events [37]. As an example, in our 2010 study of 
spontaneous DNA hairpin folding [38], we were lucky to have found a fast “downhill” folding pathway 
in our first trajectory (1 µs long). However, to obtain good statistics, we had to collect more than 20 
such trajectories, and yet four of them never reached the folded state (after 4 microseconds), 
highlighting the variability in the outcomes of individual simulations. In fact, thanks to the chaotic 
nature of MD simulations, even initially correlated replicas rapidly lose memory of their common 
initial state and can thus be analyzed independently to obtain statistical bounds on a given MD-
derived quantity. Even more interestingly, they can be also combined to create meta-trajectories 
which provide ensembles much richer than expected from the length of individual replicas. In this 
spirit, it was shown that the multiple replica approach can be used not only to describe equilibrium 
properties, but also non-equilibrium transitions, even when their characteristic timescales are much 
larger than those sampled by the individual replicas [39]–[41]. In this spirit, Pande, Noe and others 
[42], [43] have demonstrated that short replicas can be combined into a Markov State Model (MSM) 
to trace complex kinetic pathways from the transition probabilities between a discrete number of 
states in the system, even when no single trajectory samples transitions between all states. In recent 
years, many generalizations of this scheme have been developed, including history-augmented 
MSMs that go beyond the simple theory of memoryless Markov processes [44], or the transition-
based reweighting analysis method (TRAM) that combines data from multiple ensembles, including 
explicitly biased ones [45]. 

Indeed, although an unbiased multiple-replica approach is often the most easily interpretable, the 
use of biasing schemes usually offers better sampling of the configurational space. This is especially 
important for the exploration of slow conformational transitions that are unlikely to happen within 
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currently accessible simulation times. An example of this approach is Hamitonian or Temperature 
replica exchange [46]–[49] where either the Hamiltonian or the kinetic energy is perturbed across 
replicas to improve sampling efficiency by pushing the systems out of metastable states with long 
residence times. An equally popular intermediate approach, called Solute Tempering (REST), 
combines these two ideas to perturb the effective temperature of a subsystem of interest [50], [51]. 
In Free Energy Perturbation (FEP) or Thermodynamic Integration (TI), the Hamiltonian is perturbed 
in discrete steps (FEP, discrete TI) or smoothly (slow growth TI, non-equilibrium TI) from one state to 
the other, allowing for the calculation of the associated work – which, depending on the Hamiltonian 
at hand, can be coupled to a conformational transition or an alchemical change [52]–[55]. In 
umbrella sampling or metadynamics [56]–[60], additional terms are added to the energy function 
to favor (in a guided or unguided manner) the exploration of a selected collective variable, often in 
conjunction with the replica exchange scheme [47], [61]. In the string method, trajectories are 
pinned to points forming a path in a low-dimensional subspace, and the displacements tangent and 
perpendicular to the path are used to iteratively refine this path, until a lowest-energy pathway is 
found between two initially defined states [62]–[64]. Subtler biasing techniques imply the use of 
information-based biasing as in Maxwell-Demon Dynamics, where after a certain time only 
trajectories approaching to a given target are extended or cloned [65], [66], or adaptive approaches 
(very popular in metadynamics or MSMs), which launch new trajectories from regions of the 
configurational space that have been undersampled in the original ensemble. As a notable example, 
the Weighted Ensemble (WE) method provides a rigorous scheme for evolving large batches of short 
trajectories to obtain kinetic and thermodynamic data without the application of external forces 
[67], [68]. Recently, machine learning approaches hold promise to enhance sampling efficiency by 
learning a refined biasing scheme from the collected trajectories [69], [70], by re-optimizing the 
reaction coordinate that is being explored on-the-fly [71], [72], by learning an approximate structural 
ensemble from which new uncorrelated seeds can be drawn [73], or by simplifying the structural 
description of the system without compromising on its physical accuracy [74]. Note that while 
unbiased replica approaches rely on completely independent trajectories, biased multiple replica 
approaches usually imply a loose coupling between trajectories, as decisions on a given trajectory 
should be made periodically based on the results obtained in the others. 

The multiple replica approach fits perfectly into massively parallel computers, as each of the 
simulations is independent (or nearly independent) from the others and as the CPU time required 
to compute the forces is quite independent on the specific coordinates, a good processor load 
balance is expected. In fact, unbiased multiple replica approaches can be run in distributed 
platforms, where volunteers provide access to their personal computers to run independent 
simulations, which are then integrated to obtain the representation of the system. As the first such 
distributed setup to achieve Exaflop performance in 2020 [75], the Folding@home project [76] is a 
paradigm for this type of initiatives that has advanced the study of many complex biophysical 
processes [77]–[81] and provided excellent results in SARS-Cov2 research (see below). 

There are several desirable properties that should characterize a well-scaling ensemble approach 
fitted to the Exascale era: 

• Direct parallelism should ideally be replaced with “trivial” parallelism, meaning that ideally 
ensembles should be generated by a very large number of short, independent trajectory 
segments.  

• The ideal method should be able to keep the number of parallel runs constant to make 
resource allocation efficient and predictable.  
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• Explicit communication between runs should be avoided or minimized, and ideally 
performed asynchronously as not all computing units perform equally even within a single 
machine.  

• Disk space requirements should be minimized, since 1000s of individual runs can easily 
overwhelm even purpose-built filesystems.  

• Efficient GPU implementations should be considered alongside more trivially parallelized 
CPU ones to ensure compatibility across all types of HPC resources.  

• Finally, popular, out-of-the-box parallelization schemes should be used to ensure 
interoperability across the increasingly diverse computational cluster architectures.  

When choosing a method, one should always consider the availability of resources, the existence of 
“natural” reaction coordinates, the expected complexity of the free energy landscape, the natural 
timescale of the process in question, and the desired levels of detail and accuracy in the final model. 

 

Non-equilibrium simulations 

Biased replica approaches are typically implemented in the context of equilibrium simulations. For 
example, in metadynamics, umbrella sampling, or FEP/TI, we expect that the trajectory collected at 
a given point of the transition (geometrical or alchemical) samples well the neighboring points along 
the reaction coordinate, and the reversible work associated with this microscopic change will not 
change by extending the trajectory, which often requires long simulations. Similarly, producing a 
well-converged MSM requires that the transition probabilities between any two states reach local 
equilibrium, i.e. the trajectory samples an equilibrium situation, which requires long aggregated 
trajectory times. The need to run a limited number of resource-intensive replicas is undesirable for 
HPC, as it limits the number of processors that can be allocated to a specific scientific problem. A 
potential solution arises from the use of non-equilibrium methods, which allow us to obtain 
transition free energies by combining a very large number of “irreversible works” derived from short 
non-equilibrium simulations starting from equilibrium start and end states. Non-equilibrium 
methods have a solid foundation in Jarzynski equation [82] and its later extension, the Crooks 
fluctuation theorem [83]. They provide access to equilibrium properties, e.g. free energy differences 
[84], and are efficient in an HPC environment, as they allow for a distributed use of processors 
working independently. Within the BioExcel consortium [85], De Groot and coworkers have pushed 
the limits of these non-equilibrium techniques in the context of alchemical perturbation, developing 
a full methodology that goes from defining an optimum pathway for the transition to collecting 
converged free energy results for the alchemical transition [86], [87]. This methodology is becoming 
very successful in exploring relative binding free energies of related drugs or the impact of mutation 
in protein interactions [84], [88] and has been extensively used in the context of Covid19 research 
(see below). Note that the technique can also be adapted to biasing schemes related to geometrical 
rather than Hamiltonian changes, even though initial attempts exposed a number of specific 
challenges that need to be addressed if a general workflow is to be established [89], [90]. 

 

Multi-simulation projects and workflows 

As already discussed, a typical research projects cannot be solved by running a single simulation, but 
require combining many of them. For example, to determine the structural role of sequence variants 
on a short loop of a protein, at least 20n (with n equal to the length of the loop) independent 
simulations need to be done. The Folding@home strategy is well suited for this type of problems as 
we are referring to completely independent and asynchronous simulations. There are, however, 
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other cases that require combining different types of simulations that must be arranged using 
flexible workflows. For example, before running a free energy calculation on the impact of sequence 
variants on the binding of a large series of drugs to a given target, many calculations need to be 
done: 3D models and topologies of the drugs need to be generated, force-field parameters have to 
be determined, and equilibrated structures need to be obtained. In parallel, 3D models of the target 
protein and its mutants have to be made, optimized, thermalized and equilibrated through MD 
simulations of both apo and holo forms of the protein. Finally, all these processes must be repeated 
for hundreds of drugs and sequence variants to reach biologically relevant conclusions, and after 
some analytics on all the results can be needed. In this context, the cost of running ultra-efficient 
free energy calculations might have no impact in the global project, as the limiting step can be the 
manual setup of chains of calculations. Thus, in order to be efficient, manual intervention need to 
be reduced to a minimum by using suitable applications [91]–[93] automating all the preparation 
steps. Furthermore, the execution of the different programs has to be coordinated by a workflow 
manager to guarantee no lag time between calculations.  

Workflows have been very popular in bioinformatics [94]–[98], but their adoption in the 
biomolecular simulation fields has been slower [99], [100], mainly due to the powerful 
computational resources needed and the large amounts of data generated. The recent advances in 
the informatics technology, including faster network bandwidths, optimized and distributed file 
systems and pre-exascale HPC supercomputers opened the door to biomolecular simulation 
execution pipelines. The combination of automated workflows with new optimized codes and HPC 
supercomputers [17], [101] allows an efficient usage of the available resources and the 
implementation of large studies through tasks parallelization. We anticipate that workflows will be 
in the core of biosimulations projects in a near future. 

Execution of workflows is typically controlled by Workflow Management Systems (WFMS): the 
software that regulates the execution of a defined sequence of tasks, arranges them in the most 
efficient way, manages intermediate data, and monitors the whole execution. The list of available 
WFMS is huge, and is still increasing every year (see the list of workflow managers compiled and 
regularly updated by the Common Workflow Language (CWL) team [102] at 
https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-
Workflow-systems). Some of these tools also allow for workflow setup by means of Graphical User 
Interfaces (GUIs) [103]–[109]. Very popular in the bioinformatics field, these drag-and-drop 
interfaces (KNIME [103], Pipeline-Pilot [104], Taverna [105], Galaxy [106], Unipro UGENE [107], 
Kepler [108]) allow for very easy workflow development based on interconnected nodes (building 
blocks). The chemoinformatics and MD fields have just recently developed GUI-based WFMS, with 
some available implementations in Galaxy [109], KNIME [110]–[112], Kepler [113] and Pipeline-Pilot 
[104], the most popular being integrated into commercial software. Although most of these WFMS 
can be used to launch jobs in HPC clusters through integrated remote execution functionalities, they 
were not designed to run massive HPC jobs.  

For this reason, the biomolecular simulation field should rely on a different type of WFMS adapted 
to work with HPC infrastructure, eventually reaching the Exascale regime. BioExcel CoE joined 
together some of the most important HPC WFMS around the world in a dedicated workshop (2018), 
with the goal of identifying specific software gaps and opportunities for improved workflow 
practices [114]. A representation of the most popular WFMS in the field were present in the 
workshop: Parsl [115], AdaptiveMD [116], PyCOMPSs [117], BioSimSpace [118], LongBow [119], 
FireWorks [120], Swift [121], ExTASY [122], [123], and RADICAL [124], [125]. Although sharing many 
of the most important features (automation, data control flow, task management, dependency 
graph), each WFMS has its own design goal, and adoption of one versus another implies a thorough 
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analysis on the particular research project needs and the WFMS features. Some of the differentiating 
elements that were identified are the possibility to run adaptive algorithms (ability to change their 
behavior in runtime), fault tolerance (ability to distinguish between critical and non-critical task 
failures), flexibility (ability to extend/reduce the number of resources used at runtime), and 
provenance (ability to store input metadata for reproducibility purposes). Some of these tools have 
been designed to cover very specific applications, whereas others are able to handle broader, more 
generic workflows. Finally, the installation and configuration overhead is a critical point that should 
be carefully considered before choosing a WFMS.  

HPC-focused WFMS have demonstrated their power in biomolecular research projects, and 
Molecular simulation pipelines are now regularly being used to gain insights into the binding free 
energy and the residence time of ligands in drug development studies [126]. They paved the way for 
the classical protein-folding problem before AlphaFold2 appeared [127], [128] and have been 
extensively used in recent studies helping the fight against the SARS-CoV-2 virus [30], [129]–[132] 
(see below). However, despite their obvious impact, HPC workflows are still not widely adopted by 
the biosimulation community, mainly due to the difficulty of integrating them with the most 
common simulation tools. One step towards such integration is the BioExcel Building Blocks (BioBB) 
library: a collection of portable wrappers on top of common biomolecular simulation tools [133]. 
The library is designed to: i) increase the interoperability between the tools wrapped; ii) facilitate 
the implementation of biomolecular simulation workflows; and iii) increase the reusability and 
reproducibility of the generated workflows. The library is being developed following the FAIR 
principles for research software development best practices. The result is a collection of building 
block modules, classified according to the functionalities offered (e.g. MD, analysis, chemistry). The 
BioBB library is compatible with different WFMS, including both GUIs (Galaxy, KNIME) and HPC-
focused (PyCOMPSs). Installation of BioBB workflows controlled by PyCOMPSs WFMS can be easily 
done using BioConda packages [134].  

The community has no doubt that biomolecular simulation workflows will have a clear impact on 
the future grand challenges in science [135], and that they will be essential tools for the efficient 
exploitation of the future Exascale supercomputer generation. However, important aspects linked to 
the pipeline execution still need further research and discussion to reach a community agreement. 
Data provenance, historical record of the data [136], [137]; workflow metadata, important 
information from the input, output and intermediate data; reproducibility, possibility to generate 
the same results using a particular pipeline [138], [139]; reusability, possibility to use a particular 
pipeline in different resources [102]; and FAIR computational workflows [140] are all crucial points 
whose treatment is still under debate. 

 

THE PROBLEM OF DATA 

As computer power increases, the management of data is becoming the Achilles heel of molecular 
simulation. As described in a recent review [141], one microsecond of a medium-sized protein 
system (105 atoms including solvent) generates around 5 Pb of data, and even if only 1‰ of 
coordinates are stored, a single trajectory would require 5 Tb of disk space. The common practice in 
the field has been to store trajectories locally and delete them after some period, which means that 
very valuable (and expensive to obtain) information is lost. FAIR (Findable, Accessible, Interoperable 
and Reusable) requirements for scientific data [142] forces the storage of plain trajectories and 
associated simulation metadata. This generates a formidable problem that requires at least: i) 
efficient metadata to specify the purpose and conditions of the simulation, ii) efficient ways to store 
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the raw data, iii) efficient transfer mechanisms and iv) flexible analysis portals including virtual 
research environments (VRE) for remote programmatic access to the data [143]. 

The BioExcel CoE and the ELIXIR European Initiative have defined a prototype of EDAM ontologies 
for metadata of MD simulations [144]. This should be extended and refined to be adopted by already 
existing [10], [145]–[151] or new simulation databases. Some recent databases such as BigNASim 
already implement an ontology metadata [150] which helps to classify trajectories, favoring then 
meta-analysis and the detection of artefactual simulations. Defining what should be stored from a 
trajectory is a major decision, which is often guided by traditions maintained since times when the 
throughput of HPC systems was a fraction of the current one.  A significant work has been done by 
communities such as ABC [147], [152], [153] to define the maximum acceptable frequency for 
storing data and the amount of solvent that needs to be maintained for reanalysis. In parallel, 
software developers are creating compression approaches and importing methods used to compress 
other type of massive data [154]. Again, the community should reach a consensus on the type of 
compression strategy and the amount of data to be stored, otherwise the FAIR requirement will not 
be fulfilled.  

Despite cleaver approaches to improve transfer efficiency (GridFTP, Aspera and others; see [141]), 
current network limitations are severely hampering transferring raw trajectories. Streaming 
methods which would allow basic analysis in remote before downloading the trajectory are going to 
be useful to avoid unnecessary downloads [141]. However, it seems that the most sensible approach 
is to reduce the movement of MD files, with big data centers placed physically close to the computer 
power concentrating the data, mimicking current situation in other fields such as bioinformatics or 
genomics. The first MD databases were available around 10-15 years ago and aimed to cover all 
representative structures in the protein data bank: Dynameomics, MoDEL, or Dynasome [10], [145]–
[147] are example of these families of databases. More recent efforts have been focused on specific 
families of proteins of special importance, such as GPCRmd that includes trajectories of G-protein 
coupled receptors, MemProtMD [152], which contains simulations on 3,500 membrane proteins in 
realistic membrane environments, or TMB-iBIOMES that includes hundreds of nucleosome 
trajectories [148]. A few databases are focused on small molecules with potential biomedical or 
biomolecular impact; an example is Cyclo-lib [149] that is focused on cyclodextrins, or BCE [151], 
which contains classical trajectories and quantum structural data on small drugs. Finally, BigNASim 
[150] is, to our knowledge, the only database focused on nucleic acids simulations, and contains 
hundreds of simulations including the latest ones obtained by the ABC consortium [155]. Recent 
efforts to create repositories and associated databases developed by the BioExcel CoE to help 
Covid19 research will be commented below.  

Most of these databases are coupled to flexible graphical web interfaces allowing access to key 
analyses of the trajectories. However, to be really useful, these user interface should be flexible and 
interactive, something made possible with recent database architectures. For example in the 
BioExcel-CV19 web server, an associated REST API allows the user to extract slices of the trajectory 
as well as fragments of the molecule, which are then shown by the NGL visualizer. Using these tools, 
the user can focus their analysis on configurations fulfilling certain criteria, or perform meta-analyses 
combining parts of different trajectories. The next step towards gaining interactivity for analysis tools 
coupled to databases is probably the generalization of virtual research environments (VRE), 
infrastructures that allow the users to deploy and share their software to perform customized 
analyses on databases. These infrastructures make it possible to perform specific analyses on the 
computers supporting the databases, eventually only downloading analysis results instead of the 
original trajectories.  
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Entering the Exascale era, we must not forget the Exabyte problem that will be created by the future 
generation of Exaflop computers. Otherwise, massive amounts of resources will be wasted without 
providing useful information for the community.  

 

COVID-19: A USE CASE FOR HPC-MD SIMULATIONS 

 

SARS-CoV-2, an enveloped and positive-strand RNA coronavirus, was first identified in the city of 
Wuhan in December 2019 and rapidly spread worldwide due to a high inter-human transmission 
rate and a relevant percentage of asymptomatic infections [156]–[158]. As of December 2021, 
almost 300 million cases and more than 5 million deaths have been registered worldwide, with 
dramatic implications for the global economy and human well-being. Since its emergence in late 
2019, both the SARS-CoV-2 virus and the host response – starting at the main receptor, the 
angiotensin-converting enzyme 2 (ACE2) – have been extensively studied to understand the disease 
etiopathogenesis, the structure of the functional viral proteins, and the viral-host interaction pattern 
to guide a rapid development of both direct-acting antiviral and host-directed therapeutic agents. In 
this context, the theoreticians’ community, assisted by the constantly increasing number of X-ray 
and high-resolution cryogenic electron microscopy (Cryo-EM) structures available, has promptly 
reacted and a massive worldwide computational endeavour has been made to unravel the molecular 
details of the virus’ functioning at a multiscale level, from force-field based all-atom simulations to 
hybrid quantum-mechanics/molecular-mechanics approaches. Here, we will summarize selected 
studies that have provided key information on the functioning of the virus obtainable uniquely via 
scientific HPC simulations. 

 

RNA-dependent RNA polymerase 

The RNA-dependent RNA polymerase (RdRp) is the core protein of the replication-transcription 
complex, which is the machinery in charge of the transcription and replication of SARS CoV-2’s viral 
genome and subgenomic mRNAs [159]. The RdRp holoenzyme is composed of four subunits: one 
core nsp12 and cofactors, two nsp8s and one nsp7. In addition to RdRp, other important proteins 
are involved in the replication complex: a helicase (nsp13), an exonuclease that proofreads the newly 
synthetized RNA (nsp14), mRNA capping enzymes (nsp14, 16), or a specific endoribonuclease 
(nsp15).  

Despite the great effort invested in vaccinating the global population, as of October 2021 still more 
than 50% of people remain without any dose of the vaccine. Moreover, the rapid spread of variants 
and its possible resistance to current vaccines still make antiviral drugs important means to alleviate 
the effects of the pandemic and react swiftly to its future outbursts. Thus, due to its central role in 
the viral life cycle, the RdRp has been an attractive target for antiviral drugs. Among them, 
Remdesivir has gained much attention currently being the only small-molecule drug approved for 
the treatment of Covid-19 by FDA. Remdesivir is an adenine nucleotide analog that acts by inhibiting 
RdRp through a delayed chain termination mechanism [160]. Other inhibition strategies have also 
been deployed towards protein partners involved in the replication machinery or by hacking the 
virus’ replication through lethal mutagenesis [161]. Although RdRp has been primarily investigated 
using experimental techniques, theoretical computations have helped understand different aspects 
of its inner workings.  In order to better understand SARS-CoV-2’s RdRp, Shaw and co-workers made 
use of Cryo-EM microscopy, RNA-protein cross-linking and unbiased molecular dynamics simulations 
to unveil RdRp’s backtracking mechanism [162]. In this study, three structures in which the 
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backtracked RNA was accommodated by the nucleotide-triphosphate (NTP) entry channel were 
resolved, a mechanism also found in cellular RNA polymerases. Starting from the cryo-EM structure 
that featured two nsp8 cofactors, a nsp7 cofactor, two nsp13 helicase cofactors, an RNA template 
and a product RNA strand with one mismatched nucleotide at its 3’ end, three independent 5-µs 
unbiased molecular dynamics simulations were carried out. Although the backtracking process was 
not captured in the simulations, these trajectories revealed the spontaneous fraying of the 3’ 
terminal mismatched nucleotide into the NTP entry channel. This positioning would disfavour the 
RNA translocation and thus the elongation process. 

Numerous experimental and computational studies have focused on understanding Remdesivir’s 
inhibitory mechanism inside RdRp. However, Remdesivir’s mode of action is still debated. A 
theoretical study investigated the possible mechanism of action at the molecular level with a total 
of 34 µs of simulation [163]. Absolute free energy calculations were performed to obtain binding 
free energies of Remdesivir and two other nucleotide analogues inside RdRp, followed by 
independent short molecular dynamics simulations (100 ns) for each of the systems where 
Remdesivir had been incorporated in the nascent RNA strand. Their results would support inhibition 
coupled by a delayed chain termination, or alternatively by destabilizing the protein complex. 

 

Main Protease 

Proteolytic cleavage of the SARS-CoV-2’s virally expressed polyproteins pp1a and pp1ab into its 
functional proteins is carried out by two viral proteases: the main protease Mpro (nsp5) that cuts 11 
sites, and the papain-like protease PLpro (nsp3) which cuts 3 sites [159]. This a crucial step that 
enables the formation of the replication machinery in charge of transcription and replication of the 
viral genome inside the host cell. In addition, viral proteases can act on cellular proteins to help 
escape the virus from immune response [164]. Thus, many efforts have been directed towards the 
inhibition of viral proteases as an effective antiviral strategy. Moreover, due to its dissimilarity to 
human proteases, Mpro and PLpro are promising drug targets. Mpro and PLpro are cysteine 
proteases composed of three and four domains respectively. While Mpro is active as a dimer, PLpro 
acts as a monomer, and as in other cysteine proteases, their active sites are formed by a Cys-His 
catalytic dyad.  

Joint crystallographic and molecular dynamics studies have analyzed the effects and mode of 
binding/action of substrates or promising inhibitors inside the Mpro/PLpro enzymes [165]. The work 
by Hummer and co-workers studied SARS-Cov-2 PLpro by means of biochemical, structural and 
functional analysis. Through multi-µs MD simulations they analysed the interaction between PLpro 
and two different protein substrates. In addition, 1-µs long MD simulations were obtained for both 
SARS-CoV and SARS-CoV-2 PLpros in complex with GRL-0617, a non-covalent inhibitor of SARS-CoV-
PLpro that was shown to also act against SARS-CoV-2-PLpro. Kovalevsky et al. crystalized Mpro at 
room temperature and performed 1 µs molecular dynamics simulations to analyse the flexibility of 
some of the protein’s regions [166]. Experimental and theoretical approaches were also combined 
to study Mpro inhibition by myricetin and its derivatives [167]. Two independent ~1.5 µs long 
Gaussian accelerated-MD simulations explained myricetin’s dynamic interactions inside Mpro’s 
active site. In addition to drug-design efforts, quantum mechanics (QM) calculations were 
performed on a small active-site QM-cluster model, including implicit solvation. Reaction pathways 
and transition states were characterized for myricetin and two other derivatives, explaining the 
formation of a covalent bond. The calculated activation free energies were obtained through 
thermal correction. Alternative approaches combining MD-metatrajectories, docking experiments 
and machine learning strategies have been used to explore binding of millions to billion of chemical 
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compounds as binders of the protease. These massive efforts, which fit into the paradigm of 
distributed computing, allowed the community to develop chemical moieties that could then 
undergo lead optimization protocols [28], [168]–[170] . 

Additionally, fully theoretical studies have helped understand features not accessible to 
experiments. Atomistic simulations unveiled the binding preferences of the promising inhibitor 
ebselen to Mpro through 6 µs of cumulative MD calculations [171]. In another computational study, 
important insights into structure-function relationships of Mpro were obtained through continuous 
constant pH MD simulations [172] coupled to replica-exchange enhanced sampling. The study 
revealed the impact of the protonation of His172, which causes a conformational change of Mpro 
resulting in its deactivation. Based on their results, the authors provide a set of guidelines to design 
new inhibitors that could bind to Mpro’s residues. Tuñon and co-workers made use of extensive 
QM/MM-MD simulations to characterize the free energy profiles of the reaction mechanism of Mpro 
with a peptidic substrate [173]. Exploration of the reaction free energy landscape was performed at 
the DFT(B3LYP)/MM level making use of the string and umbrella sampling methods, with a total of 
2.4 ns of cumulative sampling. They propose a Mpro reaction mechanism consisting of three steps 
with 4 transition states, with deacylation as the rate-limiting step of the overall reaction. The study 
unveils the most important residues involved in catalysis which can help guide drug-design.  

 

Spike: the crucial protein for infection 

One of the most widely investigated SARS-CoV-2 protein is the viral Spike protein, a transmembrane 
homotrimeric class-I fusion glycoprotein which exists in a metastable prefusion architecture and 
comprises two functional subunits for binding to the host cell receptor ACE2 (S1 subunit) and for 
fusion of the viral and host cell membranes (S2 subunit) [174]. The Spike protein of SARS-CoV is 
cleaved by a host-cell protease, the transmembrane protease/serine subfamily member 2 
(TMPRSS2); an alveolar cell serine protease preferentially expressed on epithelial cells of the 
respiratory tract [175]–[177]. TMPRSS2-mediated cleavage of SARS-CoV Spike protein is 
propaedeutic to host ACE2 binding, membrane fusion and cell-entry mechanism; a highly-concerted 
and regulated step-wise mechanism. Particular attention has been paid to the highly antigenic S1-
based receptor-binding domains (RBD) that by undergoing substantial hinge-like conformational 
rearrangements, transiently expose (Up conformation) or hide (closed conformation) the interface 
area required for ACE2 receptor binding and subsequent shedding of S1, refolding of S2 for 
membrane fusion and virus internalization [178]–[180]. Many aspects of Spike have been subjected 
to massive simulations. 

Among them, glycosylation of both viral and host receptor has been quite a debated topic among 
theoretical chemists and biochemists. Indeed, it is known that extracellular portion of ACE2 contains 
at least seven N-glycosylated sites (i.e., N53, N90, N103, N322, N432, N546, N690) and several O-
glycosylation sites (e.g., T730) [181], [182], with the latter shown to be crucial in the process of 
protein-protein recognition and binding mode [179], [183], [184]. To shed light on the role of glycans 
in mediating virus internalization and spread, Hummer and coworkers have recently performed 
extensive multi-replica approach MD simulations of the fully-glycosylated human ACE2 receptor 
bound to the RBD of SARS-CoV-2 Spike and its unbound state [185]. Their results have shown that 
glycosylation at position N90 in human ACE2 structurally hampers virus binding. This explains, at the 
atomistic level, the experimental data on the augmented susceptibility to SARS-CoV-2 infection 
when N90 glycosylation is lost [185]. On the other hand, N322 glycan aids infectivity by hiding a key 
cryptic epitope known to be the target of CR3022 neutralizing antibody [186]. In their work, Hummer 
and collaborators have used a classical multi-replica approach of the 11 different glycosylated sites 
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of ACE2. For each of the 11 setups, they carried out three independent MD simulation runs [(1 × 1 
μs and 2 × 480 ns) × 11] for a total of ~22 μs trajectory for almost 1 million atoms. The so obtained 
trajectories were analysed to dissect protein-protein interactions starting from the Cryo-EM native 
contacts, which were identified accordingly to the Best et al. approach [187].  

Glycosylation was also intensively analysed by Amaro and co-workers that have built a full-length 
model of the glycosylated SARS-CoV-2 S protein, both in the open and closed states and have 
performed multiple microsecond-long, all-atom molecular dynamics simulations. Their efforts have 
produces key full-atom structural and dynamical insights on the roles of glycans and their 
implications on the i) protein geometry, ii) the global plasticity of Spike and iii) the shielding role 
against antibody epitope recognition [188]. In general, the numerous glycans found on the whole 
Spike protein play diverse roles and contribute differently to the global and local conformational 
rearrangements in a time-dependent manner. Indeed, they observed that the two N165 and N234 
glycosylation sites play a major role in shifting the equilibrium ensemble from closed to open RBD 
conformation. The simulated models pinpoint N165 and N234 positions as a major modulator of the 
RBD conformational plasticity with N234 glycan that promotes RBD exposure and concurrent 
stabilization. To provide further support for their findings, they performed additional sets of 
extensive MD simulations on the N165A/N234A mutant of the SARS-CoV-2 Spike protein, which 
corroborated the importance of these glycosylated positions in the infective dynamics of the 
protein.This result was also confirmed by bilayer interferometry experiments. From the technical 
point of view, this work required an enormous computational effort as the full-length structures 
were embedded into an equilibrated all-atom membrane bilayer with a composition mimicking the 
one where the virus buds. Subsequently, explicit water molecules and ions were added, resulting in 
two final systems of ∼1.7 million atoms each for which multiple replicas were simulated collecting 
more than 15 μs of the overall sampling time. Massively paralel computers were used for this study. 

Spike conformational transitions and the functional characterization of SARS-CoV-2 rising variants 
have been an additional question the scientific community has targeted. As anticipated before, the 
three-protomeric Spike protein can adopt different macrostates prevalently determined by the serial 
combination of each single RBD arrangement. Since RBD exposure (i.e., closed-to-open) is 
propaedeutic to ACE2 binding and virus internalization, and considering that the vast majority of 
evolution-selected mutations fall within the RBD domain (contributing to the creation of higher-
infective viral strains), dissecting RBD’s opening/closing mechanism and energetics at molecular 
level is of utmost importance. In this regard, S. Gnanakaran and co-workers [189] have characterized 
the flexibility and conformational transition of the Spike protein in a work where MD simulations 
using an HPC resource have provided a unique and detailed perspective that other standard 
biophysical approaches would have not produced. In particular, they have analyzed the effect of 
D614G mutation on the Spike protein discovering that the mutation heavily affects the interaction 
pattern of RBD, especially when this adopts the open-state conformation. Briefly, they found three 
contributions to structural rearrangements associated with the D614G mutation: (i) variation in the 
inter-protomer contacts, (ii) alteration in the correlations between the single RBDs, and (iii) variation 
in the specific inter-protomer hydrogen bond pattern. As a consequence, the infection-capable one-
up state conformation of RBD is favored when D614G mutation occurs. Based on these results, the 
authors suggest that these three effects can lead to an increase in infectivity through an increase in 
the one-up population of the G-form. In this work, mainly unbiased MD simulations were performed, 
generating 5 replicas for each of the system analyzed in the study, generating overall ~20 μs of 
trajectories for ~1 million atoms simulated in explicit solvent.  In a similar vein, Ray, Le and 
Andricioaei studied the long-range allosteric communication within the Spike, using an enforced 
closed-to-open transition to study dynamical correlations between individual residues [190]. By 
calculating correlation scores, mutual information-based cross-correlation metrics and connectivity 
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graph networks from a set of over 40 short trajectories, they traced allosteric pathways governing 
the global motions of the RBD to identify residues that, upon mutation, would most likely disrupt 
interdomain communications. Their analysis was able to recover the established effect of the D614G 
substitution on Spike opening, as well as provide a plausible explanation for the biological effects of 
other observed mutations such as A570D or P681H. However, the authors note that their model 
does not yet have predictive power, one that would allow to score new mutations by their potential 
threat to human health. 

Nevertheless, the effect of natural mutations of SARS-CoV-2 on Spike structure, conformation, and 
antigenicity has been the leading-topic recently due to the rapidly growing number of virus variants 
with increased transmissibility, higher disease severity, resistance to neutralizing antibodies elicited 
by current vaccines or from previous infection, reduced efficacy of treatments, or failure of 
diagnostic methods. For this reason, these variants have been named Variants of Concern (VoCs). 
Gobeil et al. [191] investigated the Spike VoC involved in transmission between minks and humans, 
as well as the B1.1.7 (alpha variant), B.1.351 (beta variant), and P1 (gamma variant) Spike variants. 
All variants showed a remarkedly increased ACE2 binding affinity accompanied by a higher 
propensity of RBDs to stably adopt the functionally-active up states. While adaptation to mink 
resulted in Spike destabilization, the B.1.1.7 (UK variant) Spike balanced stabilizing and destabilizing 
mutations. A local destabilizing effect of the RBD E484K mutation was implicated in resistance of the 
B.1.1.28/P.1 (Brazil Variant) and B.1.351 (South Africa Variant) lineages to neutralizing antibodies. 
Also, authors have revealed allosteric effects of mutations and mechanistic differences that may 
govern zoonotic jumps or escaping mechanisms from antibody neutralization. Finally, extensive 
Adaptive Sampling Molecular Dynamic Simulations (ASMD) were performed by De Fabritis and co-
workers [192], [193] to explore more under-sampled regions of the conformational space of Spike, 
hence overcoming energetic barriers separating free energy wells. In ASMD, simulations are 
launched in sequential batches called epochs utilizing knowledge of the conformational space 
obtained from all previous epochs. To generate an ensemble of the RBD tip conformations required 
to start the adaptive sampling routine, authors have performed 100 distinct 50ns-long simulations 
in the NVT ensemble with randomized initial velocities for each of the WT and mutant systems. Each 
iteration consisted of 50 to 100 short independent simulations, conformations from which were 
selected to further sample the most under-sampled conformational space regions. Time 
independent component analysis (TICA) [194] was performed to identify slowly changing molecular 
order parameters and subsequently Markov state models were built. A total of 29 adaptive iterations 
were performed, yielding total simulation times of 274.8 μs and 256.8 μs for the WT and Mut 
systems. 

An out-scaling Folding@home distributed computing project [76] involved 1 million people to create 
a distributed exascale computer with the aim of simulating ~0.1 seconds of the entire viral 
proteome. The brilliant idea of Gregory R. Bowman and collaborators [75] has permitted to observe 
a dramatic opening of the apo Spike complex, far beyond that seen experimentally, explaining and 
predicting the existence of ‘cryptic’ epitopes. The project has also highlighted large conformational 
changes across the proteome, which reveal over 50 ‘cryptic’ pockets that expand targeting options 
for the design of antivirals, thus paving the way towards dozens of alternative drug discovery 
projects. Important observations were also made in other aspects of Spike dynamics. The authors, 
thanks to extensive sampling, successfully captured this rare event for both glycosylated and 
unglycosylated protein and found that glycosylation only slightly increases the population of the 
open state, the effect being smaller than that produced by genetic variation in the protein. The 
authors also found that opening occurs only for a single RBD at a time and that the scale of spike 
opening is often substantially larger than has been observed in experimental snapshots in the 
absence of binding partners. An enormous amount of calculating nodes worldwide were created 
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and authors measured an impressive Folding@home peak performance of 1.01 exaflops. This was 
achieved at a point when ~280,000 GPUs and 4.8 million CPU cores were performing simulations 
simultaneously; a performance five-fold greater than the peak performance of the world’s fastest 
traditional supercomputer at that time, Summit [6]. 

All the simulations were performed with the Gromacs package [17] and the immense computational 
power of peers distributed around the globe has permitted to investigate intensively and with the 
richest sampling ever obtained 36 distinct proteins associated to SARS-CoV-2 virus. The endeavors 
have produced (so far) a total outstanding simulated time-scale of ~115 ms (> 0,1 s).  

 

The combination of BioExcel Building Blocks and the PyCOMPSs workflow manager illustrates how 
workflows can help reaching the High Throughput (HT) regime in HPC infrastructures, running 
hundreds of calculations using hundreds of cores, thus exploiting thousands of cores in one single 
job. The possibility of running these huge executions will help the efficient usage of large 
supercomputers such as the ones that are to become available in the coming years. Workflows built 
using these tools have been used in some of the COVID-19 related research presented in this review. 
One example is a pipeline for the calculation of binding free energy differences upon protein residue 
mutations (Fig. 1). The relative changes in binding free energies (ΔΔGs) are computed using a so-
called alchemical fast-growth thermodynamic integration (TI) method that does not require a quasi-
equilibrium simulation during the alchemical transition [195]. The workflow starts from two 
independent equilibrium simulations: WT and mutant. These simulations need to sufficiently sample 
the end state ensembles, as the free energy accuracy will depend on the sampling convergence. 
From the generated trajectories snapshots are selected to start fast (picoseconds-long) transitions 
driving the system in the forward (WT to mutant) and reverse (mutant to WT) directions. The work 
values required to perform these transitions are collected and the Crooks Fluctuation Theorem [83] 
is used to calculate the free energy difference between the two states. 

 

 

Figure 1: Left: Schematic representation of the non-equilibrium alchemical free energy calculations 
(taken from Aldeghi, 2019). Right: Alchemical Free Energy calculations workflow implemented with 
BioExcel Building Blocks.  
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The whole pipeline was implemented using the BioExcel Building Blocks library, wrapping GROMACS 
and pmx biomolecular tools [86], [87]. pmx is used to generate hybrid structures and topologies for 
the mutated residues and GROMACS to perform molecular dynamics simulations. The PyCOMPSs 
workflow manager is used to automatically distribute and parallelize the high number of transitions 
between the wild type and mutant states of the protein. Many of these integration steps are 
independent calculations, and in principple can be run at the same time The flexibility added by 
PyCOMPSs allows a variable number of HPC cores depending on their availability (see use example 
in Fig. 2). Here, a particular alchemical free energy calculation was performed on a 218,179-atom 
system, running a total number of short 1,000 TI runs using 32 nodes (1,536 cores) of the 
MareNostrum supercomputer in a single job. This particular execution took four hours, using 100% 
of the CPUs available during most of this time. The number of nodes/cores to be used in the pipeline 
is completely flexible as PyCOMPSs is taking care of distributing the independent simulations across 
the number of available cores (see examples of pre-exascale workflows built within the BioExcel CoE 
including the one described in this section in the BioExcel GitHub repository: 
https://github.com/bioexcel/biobb_hpc_workflows).  

 

 

 
Figure 2: High parallelization reached thanks to the PyCOMPSs workflow manager. Example of a 
single job using 32 nodes  (1,536 cores) of the Marenostrum supercomputer at the BSC. Each line 
shows the CPU usage in % of a single MareNostrum node.  

 

These workflows were heavily used to understand the effect of mutations in both virus and host on 
spike recognition by ACE2, finding, for example, that most human ACE2 sequence variants have a 
negligible effect on the binding affinity of the RBD, but also that the presence of some rare sequence 
variants would protect a small fraction of the population from virus infection (see Figure 3).  



17 
 

 
Figure 3. Impact of human sequence variants in RBD-hACE2 binding free energy, computed with 
BioExcel workflows including GROMACS and pmx. Human ACE2 protein mutations with higher 
frequency in the population are shown. Positive ΔΔG values indicate that a mutation reduces binding 
affinity. The ΔΔG values are in kcal/mol.  

 

Similarly, Gapsys & de Groot have explored an effect of ACE2 mutations  on the ACE2-RBD binding 
creating a two-level screening strategy (Figure 4). Firstly, the residues at the ACE2-RBD interface 
were exhaustively scanned with Rosetta Flex ddG [Barlow2018] protocol. This approach provides a 
good compromise for accuracy and computational efficiency [Aldeghi2018] allowing to predict 
changes in binding affinity for a large number of mutations. In the second step, a selection of 
mutations based on the predictions from the previous step was subjected to the pmx/Gromacs 
based alchemical free energy calculation protocol. While these calculations are computationally 
demanding, they also offer high prediction accuracy [Gapsys2016]. In addition to estimating changes 
in the ACE2-RBD binding affinity, relative changes in ACE2 stability upon amino acid mutation were 
evaluated as well. All in all, this multi-step strategy allows identifying the residue positions in ACE2 
and their mutations which would have the largest impact on the binding with the viral RBD. This 
strategy can be easily adjusted to probe for RBD mutations and their effect on the binding affinity, 
thus identifying viral variants of higher potency. Furthermore, by replacing ACE2, as the RBD binding 
partner, to an antibody or peptide, such mutation scan can be used to design novel therapeutics by 
enhancing their binding affinity to the viral RBD. 
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Figure 4. A multi-step strategy to predict the effect of ACE2 mutations on the ACE-RBD binding 
affinity. In the first step, the ACE2 residues at the protein binding interface are scanned by means of 
the computationally efficient Rosetta Flex ddG protocol. In the second step, a selection of the 
mutations is probed by the computationally more demanding MD based free energy calculations 
using pmx and Gromacs software packages. The calculations allow evaluating the effect of mutations 
on the protein binding affinity, as well as on the stability of the ACE2 protein. This strategy can be 
further adapted to predict the effects of virus mutations, design high affinity antibodies or peptide 
therapeutics. 

 

The data 

The entire scientific community reacted to the COVID-19 pandemic by redirecting efforts to study 
the SARS-CoV-2 infection and its mechanisms of action. The biomolecular simulation field 
contributed since day one with an incredible number of MD simulations, which in turn produced an 
enormous amount of data distributed around the different groups working on them. BioExcel CoE, 
in collaboration with the Molecular Sciences Software Institute (MolSSI), developed the COVID-19 
Molecular Structure and Therapeutics Hub (https://covid.bioexcel.eu/), a website presented as a 
community-driven data repository and curation service for molecular structures, models, 
therapeutics, and simulations related to COVID-19 computational research. The repository was 
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designed from scratch to share data (including MD data) from the scientific community, making them 
completely open to better tackle the COVID-19 global emergency. The Hub has become a reference 
repository with huge amounts of useful information gathered in one single portal. Renowned groups 
in the field (e.g. D.E. Shaw, Riken, Folding@home) have contributed to the repository, summing up 
to milliseconds of trajectory data. Trajectories stored include different structures involved in the 
process of virus infection and virus life cycle, such as the ones previously presented in this review 
(Spike, Protease, RNA Polymerase).  

Today the Hub is an essential repository for the field, a central point where to find and download 
useful data for research.  The BioExcel-CV19 database and associated web server (Fig. 5) expand the 
power of the Hub, including interactive graphical representations of the trajectories and analyses 
performed on them. The main objective of the BioExcel-CV19 project is to generate a tool for 
scientists interested in the COVID-19 research to interactively and graphically check key structural 
and dynamic features stemming from MDs. As these features vary depending on the structure 
analyzed, specific analyses were performed, uploaded to the database, and represented in the web 
portal.  These analyses and key features were collected by direct interaction with the authors of the 
simulations. As an example, trajectories corresponding to the viral RBD-hACE2 complex include 
interface observables (e.g. residue distances, hydrogen bonds), allowing an easy analysis of their 
behaviour along the simulation (see Figure 5) 

 
Figure 5. Screenshots from the BioExcel-CV19 web server. a) Trajectory representation (berzosertib 
FDA approved drug molecule binding to the ectodomain of human ACE2); b) Analysis of the ligand 
pocket flexibility; c) Analysis of electrostatic and Van der Waals interactions between the ligand and 
the ACE2 receptor; d) Analysis of Hydrogen Bonding between the ligand and the ACE2 receptor; e) 
Electrostatic potential surface in the ligand-binding pocket; f) Insight on the main interaction 
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between the ligand and the ACE2 receptor involving an Aspartic Acid. URL: https://bioexcel-
cv19.bsc.es/#/browse/MCV1900072  

All the analyses integrated in the web portal are completely interactive. Whenever possible, a direct 
link from the analysis to the 3D representation is offered, using NGL viewer tool. The fast extraction 
of a particular snapshot from the whole trajectory is possible thanks to the NoSQL Mongo database 
backend powering the server. The whole set of trajectories (atomistic 3D coordinates for every atom 
and every frame of the simulation) and analyses are stored in this distributed database and 
efficiently retrieved on the fly from any web portal request. The entire pipeline is automated and 
new COVID-19 related trajectories are currently being processed. The set of analyses will be 
continuously extended, according to the suggestions of the authors of MD simulations.  

 

THE ROAD AHEAD 

 

MD and, in general, biomolecular simulation tools are no longer marginal techniques used by a small 
set of groups to confirm already known facts. Rather, the methods are used by a huge community, 
helping to understand the mechanisms of life, making predictions and guiding experiments. The 
Covid-19 pandemic has highlighted the incredible power of MD simulations, either alone or 
combined with experimental techniques, to reveal atomistic details of biologically relevant 
mechanisms. These research projects have also shown how large the computational requirements 
of state-of-the-art MD simulations are. It is not only a question of access to massive computer 
platforms, but also of strategies for how to use them in an efficient manner. The bio-simulation 
community will not have the power to tailor new-generation computers, nor to define the nature of 
the biological problem. However, we have to be the interface between computer science and 
biology. Exascale supercomputing will be soon a reality, while Exascale distributed platforms are 
already here. If we learn from the past, computer scientists will soon dream of the YottaFlop 
computers [196]. The computational science community should escape the sterile discussion 
between capacity and capability of computers and our community should strive to take the best 
from whatever new computer technology emerges, and to fully exploit the data derived from 
simulations.   
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