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Abstract—The millimeter waves (mmWave) bands, considered
to support the forthcoming generation of mobile communications
technologies, have a well-known vulnerability to blockages. Re-
cent works in the literature analyze the blockage probability
considering independence or correlation among the blocking
elements of the different links. In this letter, we characterize
the effect of blockages and their correlation on the ergodic
capacity. We carry out the analysis for urban scenarios, where
the considered blocking elements are buildings that are primarily
parallel to the streets. We also present numerical simulations
based on actual building features of the city of Chicago to validate
the obtained expressions.

Index Terms—blockage effects, millimeter waves, Poisson point
process, random shape theory, stochastic geometry, ergodic
capacity, rate, correlation.

I. INTRODUCTION

A. Background and Motivation

THE problem of blockages in mmWave and the computa-
tion of relevant metrics such as blockage probability has

received considerable attention in the recent literature [1]–[5],
as an obstacle in the middle of a mmWave link can impede
the communication between a user and the serving base station
(BS) completely. Assuming that users can only communicate
with a visible BS, that is, in line of sight (LOS), an interesting
problem is to relate the blockages in the paths to different BSs
with the achievable communication rate. In relation to this
problem, the goal of this paper is to provide an approximation
of the uplink (UL) ergodic capacity in a scenario of BSs with
random positions, as modeled in [1].

The addition of blockages in the scenario yields us to the
central problem of the derivation of the distribution of the
distance to the closest visible BS when a set of elements may
obstruct the communication links. In mmWave, communica-
tion blockages can be caused by large static objects such as
buildings in urban scenarios [1], [3]–[7], or small dynamic
objects such as human body blockages [5], [8], [9], both types
resulting in non-line of sight (NLOS) situations. In this paper,
we consider the first type of blockages, that is, blockages due
to buildings in urban scenarios. We will leave for future work
the effect of human body blockage, which will translate into
an increase of the total blockage probability.

Although initial works on blocking characterization did not
consider the correlation among blockages [1], its impact on
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versitat Politècnica de Catalunya, Barcelona, Spain. Emails:
∗cristian.garcia.ruiz@estudiantat.upc.edu, †olga.munoz@upc.edu,
‡antonio.pascual@upc.edu.

The work presented in this paper has been funded through the
project ROUTE56 - PID2019-104945GB-I00 (funded by Agencia Estatal
de Investigación, Ministerio de Ciencia e Innovación, MCIN / AEI /
10.13039/501100011033).

!

Fig. 1: Scenario with blockages with parallel orientations (left)
and a real deployment in Chicago (right).

the blockage probability was studied in [2], [4]–[6], [10]. The
bounds for the distribution of the distance to the closest visible
BS derived in [3] also considered the effect of correlation. All
these works showed that correlation has a relevant impact and
can not be neglected. Although in [3] blockages with random
orientations were considered, in urban scenarios, buildings
are regularly deployed, forming streets. Therefore, the impact
of this regularity must also be considered. Accordingly, in
this paper, we include this pattern in the blockages model to
compute the cumulative density function (CDF) of the distance
to the closest visible BS. Then, we use this result to study the
effect of correlated building blockages on the ergodic capacity.

B. Goals and Contributions
The contributions of this work are, for urban scenarios with

blocking elements parallel to the streets, the derivation of:
• the CDF of the distance to the closest visible BS for both

uncorrelated and correlated building blockages,
• a methodology to consider the heights of the blockages,
• an approximation of the CDF of the ergodic capacity.

II. SYSTEM MODEL

We consider a scenario with a set of BSs (such as small
cells) whose positions follow a Poisson point process (PPP)
ΨBS with uniform density λBS BSs/m2. We assume that
intracell users share orthogonal resources while adjacent BSs
are coordinated by employing different frequencies, leading to
an interference-free scenario (as assumed in [11], [12]).

Following [1], [6], [13], we model the blocking elements as
line segments with random lengths represented by the random
variable (r.v.) L with probability density function (PDF) fL(l).
The centers of the segments follow a PPP Ψb with density
λb blockages/m2. Inspired by the regularity of buildings in
cities, we consider parallel segments. Although this simple
model does not account for the thickness of the buildings, the
addition of a correction factor to the density can capture this
effect, as shown in [6] and later in this paper.

Given the uniformity of the scenario, we consider, without
loss of generality, a reference user at the origin [1], [13]. The
user is served only by the closest visible BS, that is, in LOS.
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As the heights of in-street users are low, we assume that
any building in the line connecting the user and a BS will
cause NLOS regardless of the height of such building. This
assumption reduces the complexity of the analysis.

An example of this scenario is shown on the left in Figure 1.
On the right, a real layout of the Chicago city can be seen [14].

In the UL, the signal-to-noise ratio (SNR) γ at 1m is

γ =
PU

σ2Lref
, (1)

where PU, σ2, and Lref account for the user power, the noise
power, and the equivalent path-loss at a distance of 1m,
respectively. Transmitter and receiver antenna gains and multi-
antenna processing gains could be included in (1) as in [11],
[12]. Similarly, another term could be added to account for
other losses due to, for example, atmospheric effects [4].
However, these terms are omitted for simplicity in the notation.

III. BOUND ON THE ERGODIC CAPACITY

Let D and R be the r.v.s (with PDFs fD(d), fR(r); and
CDFs FD(d), FR(r)) representing the distance between the
reference user and the closest visible BS and the corresponding
UL ergodic capacity. The r.v.s D and R depend on the statistics
of the blockages (e.g., density, correlation among them, etc.)
and are related to each other as follows:

R = Eh

[
log
(
1 +D−α|h|2γ

)]
, (2)

where h denotes the fast fading Rayleigh channel that follows
a complex zero-mean circularly symmetric Gaussian distribu-
tion with a variance equal to 1, α is the path-loss exponent,
and γ is the UL SNR at 1 m defined in eq. (1). Whenever
there is no visible BS (i.e., all the BSs are blocked), the r.v.s
D and R become infinity and 0, respectively.

A lower bound of the ergodic capacity in eq. (2) was given
in [15]. This bound, which we will denote with the r.v. R, is

R= log
(
1 + γρe−α log(D)

)
≤ Eh

[
log
(
1 +D−α|h|2γ

)]
, (3)

where the inequality comes from Jensen’s inequality and the
convexity of the log(1 + ex) function, and ρ depends on the
expectation of the logarithm of a Chi-square r.v. as follows

ρ = eEh[log(|h|2)] = e−χ, (4)

with χ ≈ 0.577 being the Euler-Mascheroni constant [15].
Our goal is to find an approximation of the CDF of the

ergodic capacity for the case of parallel blockings elements.
To that end, we derive the CDF of the lower bound of the rate,
FR(r), through the CDF FD(d). According to (3), we have
that D and R are related through the function v(·) as follows:

R = v(D) = log
(
1 + γρe−α log(D)

)
(5)

D = v−1(R) =

(
γρ

eR − 1

) 1
α

. (6)

Given that v(D) is monotonically decreasing, we have that:

FR(r) = 1− FD

(
v−1(r)

)
= 1− FD

((
γρ

er − 1

) 1
α

)
. (7)

Note that FR(·) is upper bounded by FR(·) since

FR(r) = P(R ≤ r) ≤ P(R ≤ r) = FR(r). (8)

Accordingly, we can guarantee that users will achieve at least
a rate r with a probability 1−FR(r) greater than 1−FR(r).

IV. DISTRIBUTION OF THE DISTANCE TO THE CLOSEST
VISIBLE BS

The objective of this section is to obtain the CDF FD(d).
After a brief introduction of the notation, we consider the cases
of no blockages [1], independent blockages, and correlated
blockages in subsections IV-A, IV-B, and IV-C, respectively.

Let B (O, d) denote a ball in R2 of radius d centered at the
origin O and P the number of BSs (in LOS or NLOS) falling
inside the ball. Let us also define the event Tp as in [1]:

Tp = {there are P = p BSs in B (O, d)} . (9)

Since the BSs follow the PPP ΨBS, then P ∼ P
(
λBSπd

2
)
,

being P(χ) a Poisson distribution of parameter χ [1].

A. Blockage Free Scenario

In the absence of blockages, all the BSs are in LOS.
Therefore, P (D > d) = P (T0), i.e., the probability that zero
BSs fall within B (O, d), which leads to [1], [12]:

FD(d) = P (D ≤ d) = 1− P (T0) = 1− e−λBSπd
2

. (10)

B. Scenario with Blockages: Independent Case

When considering blockages, the user can only connect to
the closest BS in LOS. Following [1], let us define the event

Z = {no BS in B (O, d) is visible to O} . (11)

Since a BS can be in NLOS, the probability that the distance
to the closest visible BS D is greater than d is

P (D > d) = P (Z) =

∞∑
p=0

P (Z|Tp)P (Tp) . (12)

Assuming independence of the blockages in the different links,
we have that

P (Z|Tp) = (P (Z|T1))
p
. (13)

Despite this simplification, obtaining P (Z|T1) is not straight-
forward since the event T1 only gives information about the
occurrence of a BS falling within B (O, d), but not about its
position. Taking X and Φ as the distance and the azimuth of
the only BS within the ball with respect to O, we have that:

P (Z|T1) = Ex,ϕ [P (Z|T1, X = x,Φ = ϕ)] , (14)

that is, to obtain this probability, we need to average with
respect to all the possible positions of the BS inside the
ball. Now, unlike [1], the average on ϕ can not be omitted
when the blocking elements are parallel as in urban scenarios,
which makes the derivation quite more challenging due to
the lack of circular symmetry. To derive the expression for
P (Z|T1, X = x,Φ = ϕ), we first assume that blockages have
a given length l and that the BS is located at an azimuth ϕ
and a distance x with respect to the reference user, as depicted
in Figure 2. In the figure, the parallel lines (in blue, with
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Fig. 2: Blocking region S1 (l, x, ϕ) of a single link.

centers in red) are examples of blockages that effectively block
this link 1. The shadowed parallelogram S1 (l, x, ϕ), called
blocking region, is the region where the center of a blocking
object should lie to block the link. As seen in [1], [6], the
area of this parallelogram is AS1 (l, x, ϕ) = x · l|sin (ϕ)|.
Accordingly, the number of blockages of length l blocking link
1, between this BS and the reference user, is denoted by K1l ,
where K1l ∼ P (λblAS1

(l, x, ϕ)), with λbl = λbfL(l)dl and
E [K1l ] = λblAS1

(l, x, ϕ) [1], [5]. Consequently, the mean
number of blockages with any length, denoted by K1, is

E [K1] =

∫
l

E [K1l ] = λbE [L]x|sin (ϕ)|, (15)

which yields us to:

P (Z|T1, X = x,Φ = ϕ) = 1− e−E[K1]. (16)

The consideration of the uniformity of the positions of the
BS within B (O, d) implies that fX(x) = 2x

d2 with x ∈ [0, d]
and fΦ(ϕ) =

1
2π with ϕ ∈ [0, 2π] [1]. Therefore,

P (Z|T1) = Ex,ϕ [P (Z|T1, X = x,Φ = ϕ)]

(a)
= 1− 4

πd2

∫ π
2

0

∫ d

0

xe−λbE[L]x sin (ϕ)dxdϕ

(b)
≈ 1− 4

π(λbE [L] d)
2
mn

(
n+ mπ

2

) × (17)(mπ

2
+ ne−λbE[L]d(n+mπ

2 ) −
(
n+

mπ

2

)
e−λbE[L]dn

)
,

where (a) comes from the symmetry of |sin (ϕ)| and (b)
from the linear approximation of sin (ϕ) for ϕ ∈

[
0, π

2

]
with sin (ϕ) ≈ mϕ + n with m = 96π−24

4π4−3π2 = 0.7710 and
n = 8−mπ2

4π = 0.0311 (m and n are obtained through the
minimization of the square error of this approximation).

Finally, using (12), the upper bound of FD(d) can be
obtained assuming independence among the blockages as

FD(d) = 1− P (D > d) = 1− e−λBSπd
2(1−P(Z|T1)), (18)

where P (Z|T1) is given by (17) and the formulation of
P (D > d) in [1] (included for convenience in Appendix A).

C. Scenario with Blockages: Correlated Case

In this subsection, following [3], only the correlation be-
tween the reference link (namely link 1) and the i-th link (for
i ≥ 2) is considered, one by one, while the correlation among
more than two links at the same time is not taken into account.

We compute first P (D > d) = P (Z), which is the proba-
bility that either the closest visible BS, located at x, is outside
B (O, d) or that there is no visible BS. The latter is equivalent

to the fact that the reference user is blocked and out of
coverage from any BS. With this in mind, P (D > d) is:

EΨBS

 ∑
X∈ΨBS\X∈B(O,d)

1 (closest visible BS is at X)

+ P (D = ∞)

(a)
= λBS

∫
R2\B(O,d)

Ex [1 (closest visible BS is at x)] dx + P (D = ∞)

= λBS

∫
R2\B(O,d)

Px [closest visible BS is at x] dx + P (D = ∞) ,

(19)

where (a) comes from applying the Campbell-Mecke theorem,
where Px [·] is the Palm probability [3], [16], i.e., the proba-
bility conditioned on the fact that there is a BS at x ∈ ΨBS.
Note that the probability that the reference user has not any
visible BS is taken into account through P (D = ∞).

Developing (19) and considering the event:

Jx = {no visible BS is closer than x} , (20)

we have that:

Px[closest visible BS is at x] = Px(Jx|LOSx)Px(LOSx).(21)

Then, the focus is put on the term Px (Jx|LOSx). The occur-
rence of Jx means that all the BSs different from the BS at x
that are in LOS (i.e., non-blocked), are further from the origin
than the one in x (i.e., all the BSs closer than ∥x∥ from the
origin have to be non visible). Therefore, Px (Jx|LOSx)

≈ exp

(
−λBS

∫ 2π

0

∫ x

0

Px (LOSx ∧ LOSt
∣∣x, ϕ, t, ω)

Px
(
LOSx

∣∣x, ϕ) tdtdω

)
, (22)

where the approximation accounts for the fact that only the
correlation between pairs of links is considered. The full de-
velopment, extracted from [3], can be followed in Appendix B.

If we rename

g(x, ϕ) = Px (Jx|LOSx)Px (LOSx)x, (23)

considering that FD(0) = 0, and replacing x = (x, ϕ) in polar
coordinates and g(x, ϕ) in (19), we have that:

FD(d) ≈ λBS

∫ 2π

0

∫ d

0

g(x, ϕ)dxdϕ. (24)

To obtain a closed-form expression for g(x, ϕ), we need to
compute Px (LOSx

∣∣x, ϕ) and Px (LOSx ∧ LOSt
∣∣x, ϕ, t, ω), as

it was done in [3] for the random orientation assumption.
While Px (LOSx

∣∣x, ϕ) = exp (−λbE [L]x sinϕ), the compu-
tation of Px (LOSx ∧ LOSt

∣∣x, ϕ, t, ω) is not straightforward.
This probability is equivalent to the probability that no points
representing the centers of blocking elements fall within the
union of the blocking regions of the two links considered at
the same time, S1 ∪ S2(l, x, ϕ, t, ω), of area AS1∪S2(l,x,ϕ,t,ω).

1) Upper bound of the area: As a first approxima-
tion, by upper bounding the area AS1∪S2(l,x,ϕ,t,ω) ≤
AS1

+ AS2
= l (x|sinϕ|+ t|sinω|), we have that
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Fig. 3: Representation of a vertical cut of the ball B (O, d) in
R3 and its associated disk of radius c in R2.

Px (LOSx ∧ LOSt
∣∣x, ϕ, t, ω) ≥ e−λbE[L](x sinϕ+t|sinω|) [3].

Together with Px (LOSx
∣∣x, ϕ), an upper bound on g(x, ϕ) is

g(x, ϕ) = exp

(
−4λBS

∫ π
2

0

∫ x

0

te−λbE[L]t sinωdtdω

)
×

e−λbE[L]x sinϕx. (25)

Plugging this result, instead of g(x, ϕ), in (24), we obtain the
same upper bound of FD(d) given in (18) for independent
blockings. This is because the bound considered for the area
AS1∪S2

takes into account the overlapping area twice.
2) Exact formulation for the area: Different from [3], we

derive the exact formulation for AS1∪S2(l,x,ϕ,t,ω) (see Ap-
pendix C), to compute Px (LOSx ∧ LOSt

∣∣x, ϕ, t, ω). Plugging
it and Px (LOSx

∣∣x, ϕ) in (22) and in (23) respectively, we
derive an exact expression for g(x, ϕ) for 0 ≤ ϕ ≤ π

2 . Given
the symmetry of the functions, the closed form expression
for g (x, ϕ) for other values of ϕ greater than π

2 can be
obtained following the same considerations. Finally, similarly
to subsubsection IV-C1, we obtain the lower bound of FD(d)
by replacing g (x, ϕ) in (24).

V. INCLUSION OF THE HEIGHT

In this section, we present the methodology to extend
the previous derivations to account for the heights of the
blockages, user, and BSs (denoted by hb, HU, and HBS,
respectively) as shown in Figure 3. For in-street users, this
extension is not needed as users would be lower than all
the buildings, which implies that any building in the line
connecting a user and a BS would block the transmission.

In order to obtain the LOS probabilities, a so-called scaling
factor η needs to be considered as in [1], [4], which accounts
for the fraction of buildings that effectively block the link
when considering the heights. If we denote by c the projection
of the distance d onto the 2-dimensional plane, it holds that

c(d) =

√
d2 − (HBS −HU)

2. Consequently, the minimum
value for d will be dmin = HBS −HU.

In Section IV, we have obtained the probability that a BS
falls within a ball based on different assumptions. In this case,
the same concept applies, although this ball B (O, d) is in R3

as seen in the vertical cut of Figure 3. However, since these
points have a fixed height HBS, ΨBS is indeed a PPP in R2.
Then, the formulation of the probability that m points fall
within the ball B (O, d) in R3 is equivalent to the probability
of m points falling within its associated disk in R2 of radius
c(d), that is, the ball B (O, c(d)) in red in Figure 3. Then, the
procedure is the same as the one followed in Section IV.

Fig. 4: Empirical FD(d) and comparison with the derived
analytical bounds and the case of no blockages.

Fig. 5: Empirical FR(r) and comparison with the derived
analytical bound.

VI. RESULTS

A. Validation of the Analytical Bounds of the CDFs

In this section, we validate the obtained analytical ex-
pressions by comparing them with empirical results over
generated layouts with blockages and BSs following a PPP
distribution according to Section II. The simulation parameters
are: λBS = 1 · 10−4 BSs/m2, λb = 1.9 · 10−3 blockings/m2,
and L being uniformly distributed between 0m and 57m.

Figure 4 shows the different derived analytical bounds and
approximations for the CDF of D, FD(d). The approximation
of FD(d) with g(x, ϕ) acts as a lower bound because of the
approximation of the correlation by pairs of links. Note that,
for lower values of d, the empirical results are close to the
approximation where the one-by-one correlation is considered,
while for greater values of d, it is closer to the upper bound
derived based on the independence assumption.

On the other hand, we take the approximation of the
CDF of the distance with g (x, ϕ) to approximate FR(r).
The analytical expression and empirical simulations can be
compared in Figure 5 for PU = 33dBm, σ2 = −104 dBm,
Lref = 25.6 dB, and α = 4. We see that this analytical
expression follows quite accurately the empirical curve.

B. Model Assessment

To assess the validity of our model, we present in Fig-
ure 6 the average rate obtained by numerical simulations
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Fig. 6: Comparison of the average rates (both analytical and
empirical results) for different layouts.

for an actual building layout in Chicago [14] and synthetic
layouts generated as described in Section II, and also the rate
computed from the derived bounds. To evaluate rate versus
λb in the Chicago deployment, we randomly take subsets of
buildings and count each building as two pairs of parallel lines.
For the results to be comparable, an empirical correction factor
of 1.7 was still required for the density of the lines in our
synthetic model, as having two orientations for the blockings
in the actual layout instead of one increases the blockage
probability. Also, note that modeling the length of the blocking
elements as a uniform r.v. prevents having high length values,
although this happens in reality with low probability. In any
case, after applying the constant correction factor, the results
are very adjusted for all the blocking densities.

VII. CONCLUSIONS

In this work, we have obtained an approximation of the CDF
of the distance to the closest visible BS in urban scenarios.
Modeling the blockages as parallel line segments, we have
provided bounds of this CDF for independent and correlated
blockages and the ergodic capacity. We have also presented a
method to consider the height of the obstacles and compared
the synthetic system model with a real layout of buildings.

Future work could extend the analytical derivation to other
building models more sophisticated than those based on line
segments in order to represent reality more accurately. Also,
the rate analysis could incorporate effects produced by hu-
man blocking and atmospheric effects. Finally, heterogeneous
networks with different tiers of BSs could be considered.

APPENDIX
A. Derivation of P (D > d)

From the definition of Tp in (9) and that P ∼ P
(
λBSπd

2
)
:

P (D > d) = P (Z) =
∞∑
p=0

P (Z|Tp)P (Tp)

=
∞∑
p=0

P (Z|T1)
p

(
λBSπd

2
)p

p!
e−λBSπd

2

(a)
= e−λBSπd

2(1−P(Z|T1)), (26)

where the lower bounds on P (D > d), P (Z), and P (Z|Tp)
come from the independence assumption and (a) comes from
the fact that

∑∞
p=0 = yp

p! = ey [1].

B. Derivation of Px (Jx|LOSx)

Regarding the definition of Jx in (20), we have that:
Px (Jx|LOSx) =

= Px

( ∧
t∈ΨBS

BS in t is closer than x but in NLOS
∣∣∣LOSx

)

= Px

( ∧
t∈ΨBS

∥t∥ ≤ ∥x∥ ∧ NLOSt

∣∣∣LOSx

)
(a)
≈ Px

( ∏
t∈ΨBS

1 (∥t∥ ≤ ∥x∥)1 (NLOSt)
∣∣∣LOSx

)

= Px

 ∏
t∈ΨBS∩B(O,∥x∥)

1 (NLOSt)
∣∣∣LOSx


(b)
= exp

(
−λBS

∫
B(O,∥x∥)

(
1− Px (NLOSt

∣∣LOSx
))

dt

)
(c)
= exp

(
−λBS

∫ 2π

0

∫ x

0

Px (LOSt
∣∣LOSx, x, ϕ, t, ω

)
tdtdω

)
(d)
= exp

(
−λBS

∫ 2π

0

∫ x

0

Px (LOSx ∧ LOSt
∣∣x, ϕ, t, ω)

Px
(
LOSx

∣∣x, ϕ) tdtdω

)
,

(27)

where (a) is an approximation given that only the correlation
between the reference link and another link is considered in
a one-by-one basis, (b) comes from the probability generating
functional (PGFL) of a PPP (see (15) in [16], [17] and Defi-
nition 2.4. in [18]), (c) comes from the definitions x = (x, ϕ)
and t = (t, ω) in polar coordinates, and (d) comes from Bayes’
formula for the conditional probability [3].

C. Derivation of AS1∪S2(l,x,ϕ,t,ω)

Consider one user and two BSs, that is, two links. Similar to
Figure 2, Figure 7 depicts the regions S1 and S2 representing
the geometric locus of the centers of the line segments that
block link 1 (reference link) and link 2, respectively. Note
that, as we are not considering heights, both links are in the
same plane. The variables x and ϕ represent the length and
azimuth of link 1, while t and ω do it for link 2. Finally, s is
an auxiliary variable whose value is defined in relation to t.

As we are interested in the probability of having both links
in LOS, no blockings elements must have a center within the
union of S1 and S2. To derive a closed form expression for
AS1∪S2(l,x,ϕ,t,ω), we consider first the case 0 ≤ ϕ ≤ π

2 . In
such case, whenever π ≤ ω ≤ 2π, there is no overlapping
between the blocking regions S1 and S2, leading to

AS1∪S2(l,x,ϕ,t,ω) = AS1
+AS2

= l (x|sinϕ|+ t|sinω|) . (28)

The difficulty arises when the overlapping is not null, which
happens for 0 ≤ ω ≤ π. In Figure 7 four different margins of
values for both t and ω are considered:
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Fig. 7: Blocking regions S1, S2 for a given length l, distance
x, azimuth ϕ, and different distances t and azimuths ω.

• for ω ≤ ϕ and s = l sinϕ
sin (ϕ−ω) ≤ t we have that

AS1∪S2(l,x,ϕ,t,ω) = lx sinϕ+ lt sinω − l2 sinϕ sinω
2 sin (ϕ−ω) ,

• for ω ≤ ϕ and s = l sinϕ
sin (ϕ−ω) ≥ t we have that

AS1∪S2(l,x,ϕ,t,ω) = lx sinϕ+ t2 sinω sin (ϕ−ω)
2 sinϕ ,

• for ϕ ≤ ω ≤ π and s = l sinϕ
sin (ω−ϕ) ≥ t we have that

AS1∪S2(l,x,ϕ,t,ω) = lx sinϕ+ t2 sinω sin (ω−ϕ)
2 sinϕ ,

• for ϕ ≤ ω ≤ π and s = l sinϕ
sin (ω−ϕ) ≤ t we have that

AS1∪S2(l,x,ϕ,t,ω) = lx sinϕ+ lt sinω − l2 sinϕ sinω
2 sin (ω−ϕ) .

To sum up the formulation for 0 ≤ ϕ ≤ π
2 , also including

the case for π ≤ ω ≤ 2π where there is no overlapping, is the
following:

AS1∪S2(l,x,ϕ,t,ω) = (29)

lx sinϕ+ lt sinω − l2 sinϕ sinω
2|sin (ϕ−ω)|

for 0 ≤ ω ≤ π, 0 ≤ l ≤ t |sin (ϕ−ω)|
sinϕ ;

lx sinϕ+ t2 sinω|sin (ϕ−ω)|
2 sinϕ

for 0 ≤ ω ≤ π, t |sin (ϕ−ω)|
sinϕ ≤ l ≤ ∞;

l (x sinϕ+ t|sinω|) for π ≤ ω ≤ 2π.

Consequently, for 0 ≤ ϕ ≤ π
2 , we have that

E [K1,2|x, ϕ, t, ω] = λbE [L] (x sinϕ+ t|sinω|) whenever
π ≤ ω ≤ 2π. For other values of 0 ≤ ω ≤ π, let us
define the function a := a(ϕ, t, ω) = t |sin (ϕ−ω)|

sinϕ for notation
purposes. As it is highlighted in (29), for those values of
the azimuth ω, the expression for the area depends on l
being smaller or greater than a. At this point, to obtain a
closed form expression for E [K1,2|x, ϕ, t, ω] for these values
of azimuths and distances to the BSs, the statistics of L need
to be considered. In this case, we assume L ∼ U [Lmin, Lmax],
with U denoting a uniform distribution between Lmin and
Lmax. Therefore, if 0 ≤ ϕ ≤ π

2 and 0 ≤ ω ≤ π, we will
have different expressions for E [K1,2|x, ϕ, t, ω], depending on
whether 0 ≤ a ≤ Lmin, Lmin ≤ a ≤ Lmax, or Lmax ≤ a.

Gathering all the expressions for 0 ≤ ϕ ≤ π
2 , we

obtain (30), and with that Px (LOSx ∧ LOSt
∣∣x, ϕ, t, ω) =

exp (−E [K1,2|x, ϕ, t, ω]).

E [K1,2|x, ϕ, t, ω] = (30)

λb

(
E [L]x sinϕ+ t2 sinω|sin (ϕ−ω)|

2 sinϕ

)
for 0 ≤ ω ≤ π, 0 ≤ a ≤ Lmin;

λb

(
E [L]x sinϕ+ a2−Lmin

2

2(Lmax−Lmin)
t sinω

− a3−Lmin
3

6(Lmax−Lmin)
sinϕ sinω
|sin (ϕ−ω)| +

Lmax−a
Lmax−Lmin

t2 sinω|sin (ϕ−ω)|
2 sinϕ

)
for 0 ≤ ω ≤ π, Lmin ≤ a ≤ Lmax;

λb

(
E [L]x sinϕ+ E [L] t sinω − Lmax

3−Lmin
3

6(Lmax−Lmin)
sinϕ sinω
|sin (ϕ−ω)|

)
for 0 ≤ ω ≤ π, Lmax ≤ a;

λbE [L] (x sinϕ+ t|sinω|) for π ≤ ω ≤ 2π.
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