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Abstract 

Multilingual Machine Translation has been approached from different perspectives 

including the shared and the language-specific encoders-decoders. The shared one use 

a single encoder and decoder for all languages but the language-specific encoders-

decoders allocate encoder and decoder for each language. Both perspectives have their 

own benefits and drawbacks on translation quality and resource consumption aspect. To 

find a balance of these two factors, this project explores a new approach that is to share 

the encoders and decoders for language families.  

The new model was train and test on the TED2020 dataset with 21 chosen languages to 

form 4 language families. Comparison between the all-language shared baseline and our 

model shows a great improvement in BLEU score which can from 3 points to maximum 

10 points according to the family pairs.  

The new model also has a good performance of zero-shot translation, which outperforms 

that of the baseline model and the improvement follows the rule of growth concluded from 

the model training. 
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1. Introduction 

Machine translation, also called MT, is an important subfield of NLP (Natural Language 

Processing) which aims to translate one language to another using computer or 

computational resource. Nowadays many popular online translators such as google 

translate and some personal assistant applications such as Siri are based on 

technologies in this area. The development of MT helps the world become closer, the 

communications of people from different countries with different cultures and languages 

have been enhanced during recent years no matter in life, literature, or academic area. It 

now becomes an essential part of human life as it both reduces the time cost and labour 

cost. 

Deep learning is a subfield of machine learning which is essentially a network that 

contains 3 or more layers. Techniques for this field developed very fast in recent 20 years. 

As what we want for MT is to get a translation as close as human translation, and deep 

learning also attempts to mimic the human brain through a combination of data inputs, 

weights, and bias. Machine translation based on deep learning has also grown at a rapid 

pace in the last five years and now can get a relatively accurate result. 

The initial MT task was based on a translation system between two languages, 

researchers then discovered that the framework also could work on multiple languages. 

Therefore, a new system called multilingual neural machine translation appeared, which 

could deal with the problem of translation between several languages. This system was 

built based on the idea of sharing parameters between languages, it shares a common 

attention mechanism among all languages and also could learn a shared representations 

between languages according to the encoders and decoders. 

Multilingual Machine Translation has been approached from different perspectives 

including the shared and the language-specific encoders-decoders. The language-

specific encoders-decoders model, which is proposed by Firat et al[11], allocate one 

encoder and decoder for each language, this kind of model could maximize the 

performance for the languages, however, the parameters grows linearly with the number 

of languages, Johnson et al[10] shows that such models with large number of parameters 

are not required. Johnson et al[10] then proposed a model that all languages share the 

same embeddings, encoder, decoder, and attention mechanism, this kind of model has 

the maximum simplicity and the minimum parameter size, but the translation quality may 

decrease as the growing of language numbers. However, this kind of model have another 

benefit which the language-specific model not have is that it is capable of zero-shot 

translation, which is the translation between language pairs with no training data.  

1.1. Motivation 

The fully shared system has a single model for all languages, at the cost that the capacity 

of the model may limit the performance, however, the language-specific model grow 

linearly with the number of languages, which could be a hardware limitation. 

As the MNMT system could encode the text from different languages in a shared 

representation space, studies from Kudugunta et al[9] shows that languages from the 

same family may have a similar representation. Using this feature, this project explores 

an intermediate approach which is to share the encoder and decoder for language 
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families, which is the trade-off where the capacity is split between several models but the 

required resources grow much slower than linear, another benefit for this kind of model is 

that it could reduce noise from different alignments or vocabularies by sharing languages 

that are similar. 

1.2. Objective 

As mentioned before, this project aims to explore a linguistic-family-specific encoder-

decoder model. To do this, the following objectives should be achieved: 

• Create a dataset with chosen language pairs 

• Train an all-language-shard model as the baseline 

• Arrange the parameters and train a linguistic family model as target 

• Train two models which are the zero-shot version of the baseline and target 

• Analyse the evaluation result for all models 

1.3. Requirements and specification 

During the experiments, some requirement should be considered, the dataset and tools 

are shown below: 

• TED2020[15], which is the dataset where the chosen language data comes from. 

• Fairseq[6], which is a sequence modeling toolkit that allows researchers and 

developers to train custom models for translation, summarization, language 

modeling and other text generation tasks. 

• Pytorch, which is a Python package that provides two high-level features: tensor 

computation (like NumPy) with strong GPU acceleration and deep neural 

networks built on a tape-based autograd system 

• Anaconda, which is a distribution of the Python and R programming languages for 

scientific computing (data science, machine learning applications, large-scale data 

processing, predictive analytics, etc.), that aims to simplify package management 

and deployment. 

• Subword-nmt[5], which is a tool to segment text into subword units. 

• Moses[16], which is a free software, statistical machine translation engine that can 

be used to train statistical models of text translation from a source language to a 

target language. This project uses it to pre-process the text data. 

1.4. Outline 

Based on the purpose mentioned before, the thesis is divided into five chapters: 

• Chapter 2 is the state of art which shows the development status of NLP and brief 

description of techniques applied in the project. 

• Chapter 3 is the methodology used, it main explained the model architecture used 

in this project. 

• Chapter 4 is the implementation of the project, which shows the steps that should 

be done during the experiment. 
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• Chapter 5 shows the evaluation result using BLEU for the baseline and target 

model and analysis based on the result. 

• Chapter 6 make a conclusion about the project. 



   

 11 

 

2. State of the art 

2.1. Natural Language Processing 

Before artificial intelligence appears, the machine could process some structured data, 

but in fact, in our daily life, most of the data are unstructured, for example, the image, the 

audio, or the text. As the main carrier of natural language, the text contains the largest 

amount of information among these kinds of data. The machine could not understand the 

information directly, so we need to process the data, then NLP was born for this purpose. 

As the common way to process the raw text is at token level because tokens are building 

blocks of natural language, the piece of text will be separated into tokens. The predefined 

dictionary of the model will be built according to the tokens that appear in the corpus. 

NLP now is mainly divided into the following fields:  

• Text searching, which is used for search text among massive data. 

• Machine translation, which is to translate a language to another using computer. 

• Text classification, which is to assign categories to a sentence or documents, this 

technique now is widely used in emotion classification, language detection, topic 

labeling, and so on. 

• Information extraction, which is to extract the desired information from irregular 

text, such as Named Entity Recognition. 

• Speech recognition, which enables the recognition of person sounds and 

translation from speech to text. 

• Speech translation, which is capable to translate speech from one language to 

speech in another. 

NLP can use machine learning and deep learning methods, for these two methods the 

process steps are different. The step for the machine learning method is like figure 1, and 

that for the deep learning method is shown in figure 2. 

 

Figure 1: Machine Learning NLP steps 
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Figure 2: Deep Learning NLP steps 

No matter in which method data pre-processing is the first step, for each NLP task, this 

step could be a little different. The feature engineering step is very important in machine 

learning method, it could be morphological information such as Part-of-Speech Tagging 

(POS) or alignment information between parallel sentences, all of these aims to achieve a 

higher accuracy using machine learning algorithm. Text unlike traditional data is not a 

fixed set of independent features, but a sequence of elements where the order and the 

context where they appear affects the information they provide, so in deep learning 

algorithm, a model with nural networks such as CNN, RNN, and Transformer is built to 

process long-term dependecies, encoding information from the whole sequence. 

2.2. Neural Machine Translation 

Machine translation is one of the main tasks of NLP, the purpose is to translate one 

language to another using machines. Neural machine translation is a deep-learning-

based approach for MT. This kind of approach was first tried in the last century [1], but it 

only has made dramatic development in recent years due to poor hardware conditions at 

that time. Due to the neural network architecture it has, it can learn from a large amount 

of data and could quickly adapt to new contexts, this lead to its widespread use in many 

companies today. 

Nowadays, the NMT model is designed for the end-to-end translation task, which could 

directly process the source sequence and target sequence, learning from these data and 

finally generate the corresponding target sequence according to the input source 

sequence. This is implemented using an encoder-decoder architecture proposed by 

Sutskever[13]. A simple encoder-decoder model structure is shown in figure 3. The 

encoder part reads the input source sentence and encodes it into a fixed-length vector, 

the decoder part reads the output vector from the encoder and finally generates the target 

sentence. 

 

Figure 3: Encoder-Decoder Model Structure 
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As this kind of model could only memory short sentences, to fix this problem, the 

attention mechanism on NMT was first introduced by Bahdanau et al[14] in 2014. This 

mechanism will predict the next word by concentrating on a few relevant parts of the 

sequence. The encoder representations which are converted from raw text at the encoder 

side, the attentions and the previous generated word are used in decoder to generate a 

decoder representation which will be then used to generate the next target word. 

2.3. Multilingual Neural Machine Translation 

After the neural system could process machine translation, researchers find that this 

framework also could naturally incorporate with multiple languages. This task is so called 

multilingual NMT, which aims to translate multiple language pairs using one single model.  

The common model architecture used for MNMT was Encoder-Attention-Decoder which 

is based on the encoder-decoder architecture with an attention mechanism that we 

mentioned before. There are two classical approaches for MNMT, one is minimal 

parameter sharing proposed by Firat et al[11], another is a complete parameter sharing 

model proposed by Johnson et al[10]. 

The minimal parameter sharing model separate the embeddings, encoders and decoders 

for each language but share the same attention mechanism. The attention score is 

calculated according to the specific encoders and decoders. As for each language it has 

its specific encoder and decoder, this model could get a maximum performance of 

translation, but the parameters increase linearly according to the language numbers. Also, 

this kind of model is very flexible because special process on individual language is 

possible. 

The complete parameter sharing model is a model with all languages sharing the same 

encoder, decoder and attention mechanism. All data will be merged and at the input side 

every sentence will add a special tag which indicates the target language. This tag will 

help decoder generate the correct language although all languages share the same 

decoder parameters. Shatz[12] finds that training model with massive language pairs may 

help a poor-resource language get extra knowledge from the other languages. Johnson’s 

work also shows that this kind of model have improvement on low-resource translation, 

as for the zero-shot performance, which shows the performance of translation between 

language pairs with no training data, it also has a good result. 

2.4. BLEU 

BLEU, which is called bilingual evaluation understudy, is a common evaluation method 

for the neural machine translation task proposed by Papineni et al[3], it’s a score to 

compare the generation translation and the reference translation. 

To calculate the score, first we assume that the perfect match result in a score 1.0 and a 

perfect mismatch result in a score 0.0. We usually think the higher the BLEU score, the 

closer the machine translation is to a human translation. But in practice, human 

translation may have smaller score because the two for comparison may use different 

vocabulary and phrasing. 

The calculation is like: 
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Where Pn is the modified precision to calculate the sum of the clipped n-gram counts for 

all candidate sentences divided by the number of candidate n-grams, where the n-gram 

means n tokens that appear together in a sentence. N represent the number of n-grams, 

unigram, bigram, 3-gram and 4-gram are usually used, so N is usually 4. wn is the weight 

for each n-gram. BP is the brevity penalty which is to avoid the case that the model 

generates a half but correct translation leading to a perfect match, it can be calculated by: 

 

Where c is the length of the machine translation result and r is the length of the reference 

translation. Only the candidate translation length is the same as the reference length it 

could get a 1.0 BP score. 
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3. Methodology 

3.1. Project Implementation Steps 

The main purpose of the project is to explore an approach to find balance in language-

specific encoder-decoder model and all-language-sharing model. The flow of the 

experiment is the following: dataset choosing - data pre-processing - model training - 

model testing. 

As the most important part of the experiment, the model used in this project is based on 

the transformer architecture from fairseq tool, which is explained in the following part. 

3.2. Transformer 

This project build models based on the transformer architecture, which is a wide use 

model proposed by Vaswani et al[2].  

This kind of model is also based on the encoder-decoder architecture but make use of 

attention mechanism. It first converts the input tokens into word embeddings, which are 

real-value multidimensional vectors for each word that encode the word meanings. As the 

transformer cannot capture any relative information about the position of the words in the 

sentence, the position encoding is needed. It’s a vector that has the same dimension as 

the input embeddings so they can sum up. Then the encoder map the input sequence 

into a continuous representation, during this process, the attention mechanism will be 

used. 

The attention mechanism is the most important part of this model. The attention used in 

this model is so called scaled dot-product attention, the input was queries, keys of 

dimension dk and values of dimension dv. This model computes the output of matrix in 

this way: 

 

Where first compute the dot product of a set of queries with all keys, then divide the result 

by , finally apply a softmax function to obtain the weight of the value. 

Instead of performing a single attention function, transformer performed a multi-head 

attention which could help the model expand the ability to focus on the information of 

different representation on different positions. 

The decoder generates the output sequence one element at a time, and at each step the 

model is auto-regressive. After getting the encoder representation, the decoder generates 

the output sequence using the encoder representation and previous generated tokens as 

additional input to predict the next token until reaching the end of sentences.  

The model architecture is shown in figure 4. 
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Figure 4: Transformer Architecture  

The encoder part is at the left side which main has 6 identical layers, for each layer there 

are 2 sub-layers which are multi-head self-attention mechanisms and a position-wise fully 

connected feed-forward network. Between the sub-layers there is a residual connection 

which is followed by layer normalization. 

The decoder part is at the right side which is similar as the encoder parts, it also has 6 

identical layers, for each layer it also has the two sub-layers that also contained in the 

encoder part, beside that there is another sub-layer which performs multi-head attention 

which also pay attention to the representations generated by encoders. Finally, there is a 

linear transformation and softmax layer which can convert to decoder output to next 

target token probability. 

In this architecture, the multi-head attention is used in three parts. The first part is the 

self-attention layer in the encoder, in this layer, the query, key and value are from the 

same place where is the previous layer of the encoder. The second part is the self-

attention layer at the decoder which is similar as the one in encoder, to ensure the auto-

regressive, all values in the input of the softmax which correspond to illegal connections 

are masked out when calculate the scaled dot product attention. The last part is in the 

encoder, which is a cross-attention layer where the queries are from the previous layer of 

decoder but the keys and values are from the output of the encoder. 

The output of the decoder will be finally fed into a linear layer followed by a softmax layer. 

These two layers will help the target vector convert into the tokens. 



   

 17 

In our project, we also implemented beam search at the final part, it will allow the model 

search for predetermined number of best results, it could help the model backtrack some 

errors. 

3.3. Model architectures 

This project is based on the idea of fully-shared model and language-specific model, also 

called the complete parameter shared model and minimal parameter shared model that 

mentioned in section 2.3. Both of the models will use the architecture of transformer 

shown in previous section. 

The architecture of the fully-shared model is more or less the same as the transformer 

architecture shown in figure 4 because it only has one encoder and one decoder. As all 

language shared the encoder and decoder in this model, it is important to add a tag at the 

beginning of the source sentence to indicate the target language. 

The language-specific model proposed by Escolando[8] makes some modifications on 

the transformer architecture as it has multiple encoders and decoders. A simple example 

of this kind of model is shown as figure 5. 

 

Figure 5: Architecture for language-specific model 

Figure 5 shows a simple architecture of one source language and two target language, 

each language has its own encoder and decoder. To add new language pairs that contain 

new source or target language, the model could add its specific encoder and decoder, 

and also the corresponding cross-attention layer at the target decoder side. 

The linguistic-family-specific model architecture is based on the language-specific one, 

but it uses language family instead of single language. Also, for this model every encoder 

and decoder will be shared among several language that belongs to the same family, the 

tag that indicate the target language is needed in the source sentence. 
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4. Experiments 

4.1. Dataset 

As this project aims to test the performance of linguistic family shared encoder decoder 

model, the TED2020 dataset which contains totally 108 languages was chosen as the 

training database, we choose 21 languages and divide them into four families according 

to the distance calculated by Gamallo et al[4]. 

The four group and their languages are: 

A group Catalan, Spanish, French, Galician, Romanian, Italian, Portuguese 

B group Bosnian, Russian, Slovenian, Czech, Slovak, Polish, Croatian 

C group Danish, Dutch, German, English, Swedish 

D group Traditional Chinese, Simplified Chinese 

Table 4.1: Language groups according to the distance 

We could see that the languages of group A are mostly from the romance languages, 

Most languages from group B are from Slavic languages, most language from group C 

are from Germanic languages, and the last group D, it contains two languages, but they 

are totally the same language but write in a different way. 

TED2020 is a parallel corpus which means the training data have sentence pairs for 

source and target languages that are corresponding. As the project aims to explore the 

influence of sharing encoder and decoder of linguistic family, the training data are merged 

into translation scripts between language groups. The sentences numbers contained in 

each family pair are shown in table 4.2. 

language groups A B C D 

A - 6.3 M 5.7 M 3.97 M 

B 6.3 M - 4.3 M 2.5 M 

C 5.7 M 4.3 M - 2.34 M 

D 3.97 M 2.5 M 2.34 M - 

Table 4.2: Sentences number of family pairs 

The dataset sizes for languages are not balanced, table 4.3 shows the sentences number 

percentage for each language, for the all-language shared model each language should 

be considered as a part of total data, but for linguistic family model, each language could 

be considered as a part of its language family, it is important to note data from some 

languages are much smaller than others, such as Bosnian, Slovak and Galician, which 

will lead to a worse result compared with other languages, this will be analysed in detail in 

Chapter 4. 
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Language 
Family  shared family  shared family 

A 

ca 1% 3.20% it 6% 20% 

es 6% 20% pt 5% 15.68% 

fr 6% 20% ro 6% 18.86% 

gl 0.60% 2%    

B 

bs 0.20% 0.8% ru 8% 29.60% 

cs 4% 16% sk 2.20% 8.60% 

hr 4.40% 16.90% sl 1% 3.76% 

pl 6% 24%    

C 

da 1.60% 6.40% de 6.40% 25.70% 

en 7.80% 31.50% nl 6.60% 26.64% 

sv 2.30% 9.50%    

D zh_cn 8.60% 50% zh_tw 8.60% 50% 

Table 4.3: data proportion of each language for shared model and family model 

Another problem for the TED2020 dataset is that it doesn’t have the valid and test set 

which is necessary for training the model. To solve this problem, the test and valid 

dataset were built by random selecting from the training data and remove them in the 

training data. The size of these two datasets was depend on the size of language pair 

data, if the size is big enough, we choose 2000 sentence for test and 2000 sentence for 

validation, if not, the size is determined according to 60% (train data): 20% (validation 

data): 20% (test data).  

4.2. Data Pre-process 

As the data now is in raw text, before training the model, first thing is to pre-process the 

data. The process is the same among all the language we selected except Chinese. The 

common steps to pre-process the data are tokenization, cleaning, truecasing and finally 

convert the text file into binary format in order to feed in the training model. 

4.2.1. Tokenization 

Tokenization is the first step to pre-process the data. The purpose to do separate the 

words and punctuations to avoid ambiguity of the same word. For Chinese and other 

language, the difference in data pre-process is mainly in this step. 

Tokenization is to generate text with tokens according to the raw text sentences. Tokens 

are usually words and punctuations. For languages such as English this step is very easy 

because the words are already separated by space, the only thing should be done is to 

add the space between words and punctuations. But for languages such as Chinese, 

tokens cannot be generated directly because the words of Chinese are not separate. 

Before the token generation for Chinese the first thing is to do text segmentation. 
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Jieba1 is a popular tool to do text segmentation for Chinese. After installing it, it could be 

easy using by call just one line command. One text segmentation result is shown in table 

4.4. 

Text segmentation on Chinese using Jieba tool 

Raw Text 我来到北京清华大学 

Segmentation  我 来到 北京 清华大学 

Table 4.4: Text segmentation example on Chinese using Jieba tool 

4.2.2. Cleaning 

Cleaning is a step to set a threshold for the sentences, for this project the threshold was 

set to the default value 1-50, which limits the minimum and maximum number of tokens in 

one input sentences, it could ensure training sentences with a similar size. One thing 

should be aware of in this step is that we both clean the data for the source language 

side and target language side to ensure the correspondence of sentences. 

This step is only for the training data, for the valid and test data it will be skipped because 

we want to test the generalization capabilities of our models for actual data including very 

long sentences. 

4.2.3. Truecasing 

Truecasing is a step to convert the words in raw text to their probable case, this could 

transfer the words into lowercase and also check the correctness of some words and 

rectify them. But this should first train a small truecase model using the train data, and 

finally using this model both on train, valid and test set to finish the truecasing. This step 

helps the model reduce the data sparsity. 

Also, this step is not need for languages such as Chinese. 

4.2.4. BPE Generation 

The models usually could train with a limited number of vocabulary, however, the total 

vocabulary size of multiple language may be really large and some of rare word would be 

out of the limit vocabularies and the system would transfer it to a unknown token. This will 

lead to the decrease of the translation quality because the model couldn’t learn the exact 

word during training. 

To avoid this problem, our project will apply Byte Pair Encoding (BPE), which is evolution 

of tokenization which is first present by Sennrich et al in 2015[5]. The main purpose for 

this step is to reduce the vocabulary size while being able to represent the words in the 

sentences, even when are not seen during training. 

The algorithm of the BPE is first count frequency of the words that appears in one corpus, 

and then add a stop token at the end of each word, then split the word into characters 

and count all possible consecutive character pair of each word, so after that we will have 

a dictionary of all words in the corpus and their corresponding consecutive character 

 

1 https://github.com/fxsjy/jieba 
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pairs, then we count the frequency of the consecutive character pairs and merge the 

most frequent character pair. Next keep iterating the step mentioned before until the set 

token limit. 

To do this, we will use a tool called subword-nmt which is also proposed by Sennrich[5], 

the machine first learn a code from train data for each language, then apply it on both 

train, validation and test data. 

4.2.5. Preprocess 

This project experimented two kinds of model which are all language shared model and 

family shared model, that means the encoder and decoder will process multiple language, 

to ensure that the decoder knows which the target language is, a tag that indicates the 

target language is necessary to be added at the beginning of each sentence for source 

language files. 

Different models need different data, according to the model all language files are merge 

into larger files which is suitable for the encoder and decoder. 

The final step before training is to convert the text file into binary format in order to 

increase the reading efficiency as it is much faster to read binary data than reading 

sentences from disk, this can be done by using the preprocess tool of fairseq. The final 

formats for the data files are a bin file and an idx file with a dictionary for each encoder 

and decoder. As the dictionary size was set to a limit number and it could not contain all 

tokens in the corpus, some tokens out of the dictionary were replaced by unknown token 

<unk>. 

4.3. Train 

4.3.1. Model choosed 

The aim for this project is to compare the performance for an all-language shared model 

and a linguistic family shared model.  

The all-language shared model has only one encoder and one decoder, which could 

encode and decode all languages, so the model only needs one source file and one 

target file and it could translate all directions for the language pairs. Also, the model is 

smaller than the other one, which could both save training time and save the memory. 

The linguistic family model has the encoders and decoders according to the linguistic 

family. The data for this model are in family pairs, each encoder and decoder could only 

process the data of its specific linguistic family. One drawback to use the fairseq tool is 

that during training it will only read data from the first direction of one family pair no matter 

if there is data of another direction. At the encoder side tags were added to indicate the 

target language, so data for different direction shouldn’t be the same. This problem 

means that the model could not do bidirectional translation. Due to the multiple encoders 

and decoders, this model was about three times the size of the all-language shared one, 

which means that it needs more time to train. But when training and translating one 

language pair, as the model focus on just one encoder-decoder pair, these two models 

uses the same parameters. 
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4.3.2. Train parameters 

The train step will use the script from fairseq tool, the parameters description could be 

found in the fairseq documentation, the main things to change is the working and saving 

direction, the task and the language pair which shows the encoder-decoder pair. For the 

all-language-shared model the language pair should be set to src-tgt, for the linguistic 

family model this should be set to the family pairs. 

4.4. Evaluation 

For the project the final thing is to test the performance of the trained model. To do this, a 

script called generate from fairseq tool was used, which could compute the BLEU score 

to show the result. 

This process needs the dictionaries of each encoder and decoder that were generated in 

the data pre-process part. The models were trained with the merged file before, now for 

the evaluation step, data should be processed but not merged using the dictionaries and 

finally be feed into the model to generate BLEU score for each language pair. 

The evaluation result is shown in Chapter 5. 
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5. Evaluation Result 

The evaluation results are shown as BLEU score, which is compare the similarity 

between the machine translation result and human translation script. The comparison is 

mainly divided into two parts, the first parts is to compare the BLEU scores of the two 

models mentioned in 4.3.1 according to the family pairs, the second part is to compare 

the performance of zero-shot for these two models. 

5.1. BLEU scores comparisons 

5.1.1. Family A to B 

This part shows the result for language from A group translate to language from B group, 

the BLEU scores for each language pair are shown in table 5.1, the columns show the 

languages from family B and the rows show the languages from family A. 

  bs cs hr pl ru sk sl 

shared model 
ca 12.73 

15.15 
13.17 
16.97 

13.92 
17.75 

11.51 
15.21 

12.85 
16.83 

13.19 
16.15 

11.23 
14.20 family model 

shared model 
es 14.69 

17.41 
14.75 
19.26 

17.24 
21.84 

14.33 
19.63 

16.47 
21.96 

14.68 
18.79 

12.46 
15.47 family model 

shared model 
fr 13.09 

15.59 
14.18 
18.63 

16.31 
21.12 

12.66 
16.78 

15.16 
19.83 

14.51 
18.45 

12.09 
14.96 family model 

shared model 
gl 10.84 

13.62 
12.80 
16.54 

14.18 
18.31 

12.55 
16.36 

13.79 
18.05 

12.74 
16.58 

10.51 
13.64 family model 

shared model 
it 13.46 

15.99 
14.52 
18.39 

15.93 
19.95 

13.51 
17.89 

16.40 
21.18 

14.03 
17.99 

12.08 
14.84 family model 

shared model 
pt 14.33 

16.72 
14.12 
18.61 

15.93 
21.24 

13.11 
17.81 

14.61 
19.40 

13.99 
17.79 

12.2 
15.2 family model 

shared model 
ro 12.93 

15.20 
14.15 
18.69 

15.67 
19.98 

12.99 
17.23 

15.38 
20.19 

13.48 
17.59 

11.96 
14.68 family model 

Table 5.1: BLEU scores for family pair AB 

From the table it’s obvious that the results for the linguistic family model are overall better 

than that for the all-shared model. The average improvement of BLEU score for this 

family pair is about 3.8 and the average distance between these two families is 130 

according to Gamallo’s result in [4]. For the language pairs that both source and target 

have smaller dataset such as ca-bs and gl-bs, the improvement of BLUE is smaller than 3. 

For the language pairs that contain both larger source dataset and larger target dataset 

the improvement can reach to a maximum 5.5. Only Polish in language family B doesn’t 

comply to this, according to figure 5 Polish has the largest distance to other languages in 

its language family, this could be the reason cause this case. 

Although the size of dataset for language pairs are not balanced, the models still get 

results that are very close, which shows that the training the languages for the families 

can be mutually beneficial, especially for those languages with similar data size and 

smaller distance, such as Spanish, France and Italian, the result are much closer. 
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5.1.2. Family A to C 

This part shows the results of languages from family A translate to languages from family 

B, the scores are in table 5.2, the columns show the languages from family C and the 

rows show the languages from family A. 

  da de en nl sv 

shared model 
ca 19.61 

26.31 
17.10 
22.84 

27.76 
33.81 

18.07 
23.08 

19.09 
24.94 family model 

shared model 
es 22.44 

29.65 
20.06 
27.60 

37.01 
44.84 

23.27 
30.18 

21.95 
29.37  family model 

shared model 
fr 21.59 

27.63 
19.37 
26.07 

33.28 
39.44 

22.91 
28.60 

21.47 
27.54 family model 

shared model 
gl 18.51 

24.67 
17.68 
23.45 

30.86 
37.19 

20.32 
26.00 

18.77 
25.36 family model 

shared model 
it 20.41 

27.29 
18.52 
25.02 

32.87 
39.37 

21.71 
27.71 

20.95 
27.38 family model 

shared model 
pt 21.14 

28.06 
19.00 
26.61 

34.81 
43.22 

22.45 
29.24 

21.43 
28.62 family model 

shared model 
ro 19.93 

25.69 
18.65 
25.34 

30.57 
38.25 

19.71 
25.81 

18.97 
26.32 family model 

Table 5.2: BLEU scores for family pair AC 

In general, the results for this pair are much better than that for family pair AB, one result 

could be the language family C has only 5 languages which means in linguistic family 

model for each language the data proportion increase greater. Another factor is that 

distance between language pairs in this group is overall much closer than that in group 

AB, which could be the reason lead to a higher baseline BLEU score. 

The average BLEU score improvement for this family pair is about 6.6, according to 

Gamallo’s result, the average distance between these two families is 33.8, it shows that 

these two language families are closer than that of A and B, this could lead to a better 

BLEU score for the language pairs belongs to this family pair. The improvements of this 

family pair are much more balanced, almost all language pair has an improvement 

between 6 and 7. The language pairs for English get the best results, that is because 

English is the nearest language to family A in family C and it also has the largest dataset 

among all dataset for family C. The rest four languages are closer to each other, so their 

results appear more similarity.  
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5.1.3. Family pair A to D 

This part shows the results of languages from family A translate to languages from family 

D, the scores are in table 5.3, the columns show the languages from family D and the 

rows show the languages from family A. 
 

zh_cn zh_tw 
 

shared model family model shared model family model 

ca 10.4 17.96 9.34 16.02 

es 12.24 21.5 12.21 20.19 

fr 12.72 19.89 11.68 18.68 

gl 11.56 18.65 11.14 18.72 

it 12.83 20.81 10.97 18.25 

pt 13.05 21.37 12.4 20.69 

ro 11.72 19.95 10.57 18.06 

Table 5.3: BLEU scores for family pair AD 

Even though Chinese accounts for a large proportion of the data, the results for language 

pair AD show the lowest BLEU score among all family pairs that contain family A, that is 

because Chinese is a language totally different from languages of family A, so that the 

distance between these two families is very large. As the traditional Chinese and 

simplified Chinese are in fact the same language, they show a result that is very close. 

The result for simplified Chinese is a little better than that of traditional Chinese, this is 

because the traditional Chinese has some character that is also contained in simplified 

Chinese, but the rest so called traditional characters are not. 

The improvement of BLEU score for this family pair is also remarkable. The best result is 

shown as the language pair of Spanish and Chinese. The average improvement of this 

family pair is about 7.7, which is the highest among the family pairs contained family A. 

This means that to define a specific encoder and decoder for Chinese but not share 

embeddings with other language will notably benefit for the language pairs that contains 

Chinese. That is because it will use a family specific dictionary in such method. Chinese 

uses a different script with several thousand different characters, having whole dictionary 

to represent the language is beneficial, giving more representation capacity. 
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5.1.4. Family pair B to C 

This part shows the results of languages from family B translate to languages from family 

C, the scores are in table 5.4, the columns show the languages from family C and the 

rows show the languages from family B. 

  da de en nl sv 

shared model 
bs 17.51 

23.61 
16.59 
22.23 

28.86 
34.95 

18.91 
23.90 

19.76 
25.07 family model 

shared model 
cs 18.62 

24.21 
16.75 
22.84 

26.05 
32.64 

18.26 
24.33 

17.37 
24.15 family model 

shared model 
hr 20.60 

27.37 
18.13 
25.19 

30.52 
37.86 

19.63 
26.62 

20.14 
26.60 family model 

shared model 
pl 14.72 

19.47 
14.91 
20.02 

21.97 
26.80 

16.62 
21.75 

15.00 
20.21 family model 

shared model 
ru 15.99 

20.98 
14.91 
20.46 

24.91 
30.08 

17.08 
22.56 

16.32 
21.85 family model 

shared model 
sk 17.33 

23.90 
16.78 
23.5 

25.48 
32.03 

18.20 
23.86 

17.15 
23.29 family model 

shared model 
sl 15.13 

20.40 
11.11 
17.73 

20.02 
25.07 

14.85 
19.75 

15.04 
20.28 family model 

Table 5.4: BLEU scores for family pair BC 

The average improvement of BLEU score in this family pair is about 5.83, and the 

average distance between these two families is about 57.4 according to Gamallo’s result, 

it shows a distance closer than family pair AB but farer than family pair AC. The BLEU 

scores for this language pair are better than that of family pair AB but worse than family 

pair AC. This shows a relation between the distance of two language families and BLEU 

scores, higher BLEU scores may be obtained by closer language families. 

Some results for specific language pairs are the same as what we have discussed in 

previous part, but this time the languages from family B are shown in the encoder side.  

In this family pair, the language pairs that contain Polish and Russian show an 

improvement lower than 5.83 in average. The highest improvement of BLEU was 

appeared in language pairs contained Croatian.  
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5.1.5. Family pair B to D 

This part shows the results of languages from family B translate to languages from family 

D, the scores are in table 5.5, the columns show the languages from family D and the 

rows show the languages from family B. 
 

zh_cn zh_tw 
 

shared model family model shared model family model 

bs 11.1 18.6 9.15 16.01 

cs 11.17 18.98 9.7 17.14 

hr 11.36 19.21 10.80 17.85 

pl 10.37 16.82 8.89 15.19 

ru 10.59 16.83 10.46 15.83 

sk 9.69 17.47 9.4 16.89 

sl 8.55 13.41 7.17 11.35 

Table 5.5: BLEU scores for family pair BD 

The distance between family B and family D is also very large, so the BLEU scores for 

the baseline are very low compared to that of other family pairs. In this family pair, the 

BLEU score increases 6.65 in average. 

Due to the low BLEU score of this family pair, the differences language pairs are not 

remarkable. From the table we can see that the results for Bosnian-Chinese, Czech-

Chinese and Croatian-Chinese are closer than that of other language pairs no matter in 

the translation or the improvement which is about 7 points. Although Bosnian only 

contains a little part of data, it still can get the same result as the language with larger 

data size. This may because the Bosnian is very close to Croatian, and the training for 

Croatian also help the training for Bosnian. The same thing happens on the language 

pairs that contained Slovak, as it’s close to Czech, it also gets a great improvement of 7 

points. 

5.1.6. Family pair C to D 

This part shows the results of languages from family C translate to languages from family 

D, the scores are in table 5.6, the columns show the languages from family D and the 

rows show the languages from family C. 
 

zh_cn zh_tw 
 

shared model family model shared model family model 

da 11.34 21.43 9.49 18.5 

de 11.6 20.84 9.68 18.97 

en 15.99 25.28 15.03 23.98 

nl 12.32 20.6 11.25 19.33 

sv 11.62 21.41 10.83 19.69 

Table 5.6: BLEU scores for family pair CD 
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This family pair shows the highest improvement of BLEU score which can reach to 10. 

The average improvement of this pair is about 9. This increase is undoubtedly significant.  

As we have talked before, although the data size for some of the language pairs are 

small, it could also be helped by the language pair that contain its close language. In this 

family pair, the results for Danish-Chinese and Swedish-Chinese show this rule. 

5.2. Comparison of performance of zero-shot 

As mentioned before, zero-shot translation is to translate a language pair that have never 

been trained in the system. 

To test the performance of zero-shot of these two models, two other models which are 

the zero-shot version were trained. To do this, data for one language pair in each family 

pair was removed and keep the other data the same. 

After training, Only the language pairs that haven’t been trained were tested, The result 

was shown in table 5.7. 

 

family pair language pair shared family 

AB ro-ru 14.92 19.14 

AC it-de 18.09 24.25 

AD fr-zh_cn 12.52 19.76 

BC cs-nl 18.14 23.45 

BD pl-zh_tw 8.89 14.61 

CD sv-zh_tw 10.41 18.13 

Table 5.7: BLEU scores for zero-shot models 

From the table we can see that although these pairs have never appeared in the training 

data, it can still get a good result as the previous models that contain them. 

As we have discussed before, the linguistic family model outperforms the all-language-

shared model, and this is also reflected in the zero-shot performance. After calculating 

the improvement of BLEU scores, the increase follows the pattern of our previous 

calculations in 5.1. It’s obvious that the improvement for the language pairs that contains 

Chinese have higher values which also shows that to have specific encoder and decoder 

will help languages such as Chinese get a much better result. 

5.3. Comparison of consumption 

Usually in practice we do not simply consider the performance as the only decision 

criteria. The time consumption and memory consumption are also two important part to 

make the final decision. 

In terms of the time consumption, these models were trained for 32 days, the detail of this 

part is shown in table 5.8. 
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epoch number training days 
average time 

consumption for each 
epoch 

shared model 55 32 days 13.96 hours 

family model 41 32 days 18.73 hours 

Table 5.8: Time Consumption 

The average time consumption for each epoch is very long as the data size is very large. 

The time consumption of the linguistic family model is approximately 1.34 times as that of 

all-language-shared model. This is not a big difference if the dataset and the network are 

not too big. But if we need to get more accurate results a large amount of data is 

essential. In our project the data size is already a large number, and it seems that this 

time consumption is acceptable. 

As for the memory consumption part, the details are in table 5.9. 

 shared model family model 

Memory Consumption 1358.56M 2934.60M 

Table 5.9: Memory Consumption 

This table shows the size of network that we have trained, the linguistic family model is 

2.16 times as the all-language-shared model. This is because the shared model only has 

one encoder and one decoder which are multiple in the family model. If only consider the 

performance of translation, to allocate each language one encoder and decoder would be 

the best model, but that means the multiple encoders and decoders will result in a large 

consumption of memory, which is not allowed in the machine that we have used for 

training. Also, the size of model is a factor that could influence the time consumption. 
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6. Conclusions  

This project aims to develop a translation model with linguistic family shared encoder and 

decoder. To compare with this model, we use the model that only have one encoder and 

one decoder that shared for all selected languages as the baseline. 

The selected languages are divided into four language family according to the distance 

between them, the family A include Spanish, Catalan, French, Galician, Italian, 

Portuguese, and Romanian, the family B includes Bosnian, Croatian, Slovenian, Slovak, 

Polish, Czech and Russian, the family C includes Danish, Dutch, German, English and 

Swedish, the last family D includes only Chinese, but in traditional and simplified forms. 

The all-language-shared model train with the merged data, and the linguistic family model 

train with the family pair data. The result was shown as BLEU score, which compute the 

similarity between machine translation and human translation.  

In general, the model with language family specific encoder and decoder outperforms that 

of all-shared model. The improvement of BLEU score is from 3 points to 10 points 

according to the distance between language families. This may because having all 

languages in a single system may lead to some noise for each language pair training as 

languages from different families have different morphologies and alignments. To specify 

encoder and decoder for each language family could reduce this noise and result in a 

higher translation quality. Also, comparing the language families that only contains 

European languages, it is shown that the closer the families the better the translation 

performance, and there is also a correlation between the average distance between 

families according to Gamallo’s result and the improvement of BLEU score. 

It is worth noting that training with close language could help the training for some 

languages with few data.  

For the language pairs that contain Chinese, the improvement is the highest among all 

language pairs. This means that it is much better to use a specific encoder and decoder 

for Chinese than shared with other European languages as it doesn’t share the dictionary 

with other languages. 

As for the zero-shot performance, both models are capable of zero-shot translation. The 

result is similar as it has train the data directly, also the linguistic family model 

outperforms the all-language-shared model in this aspect. 

In summary, to share the encoder and decoder for language families is a good choice 

considering both translation quality and resource consumptions. Some future work could 

be delineating a more precise language family which the contained languages are closer. 

Also, we could explore how much languages in one family to train can get a better result. 
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Appendices  

Parameters to train the model 

--arch  interlingua_transformer 

--optimizer  adam 

--adam-betas  (0.9, 0.98) 

--clip-norm  0 

--lr-scheduler  inverse_sqrt 

--warmup-init-lr  1.00E-07 

--warmup-updates  4000 

--lr   0.001 

--min-lr  1.00E-09 

--dropout  0.1 

--weight-decay  0 

--criterion  label_smoothed_cross_entropy 

--label-smoothing  0.1 

--max-tokens  1000 

--update-freq  24 

--save-interval-updates  5000 

--task  interlingua_nodistance_translation 

--encoder_embed_dim  512 

--encoder_ffn_embed_dim  2048 

--encoder_attention_heads  8 

--encoder_layers  6 

--decoder_embed_dim  512 

--decoder_ffn_embed_dim  2048 

--decoder_attention_heads  8 

--decoder_layers  6 

 

 

 


