
Generic Web Decision Maker System

A DegreeThesis

Submitted to the Faculty of the

Escola Tècnicad'Enginyeria de Telecomunicació de Barcelona

UniversitatPolitècnica de Catalunya

by

Isaac Ollé Gatell

In partial fulfilment

of the requirements for the degree in

Telecomunications Engineering In Telemeatics mention

ENGINEERING

Advisor: Marcel Fernandez

Barcelona, May 2021

Abstract

This thesis consist basically to make a web application where there is a data source connected,

which feeds the application, through 2 protocols and is observed the different behaviours. A user

can see this data, combine data, and put some conditions to the system. The system will notify

the user if the conditions are passing or don’t.

This project is build from the floor, so there is an integral building of a web application, frontend,

backend, data base and data source. Also is focused on that it should work with all data sources

that pass some conditions, generic system.

1

Resum

Aquesta tesis consisteix bàsicament en construir una aplicació web la qual rep informació d’un

extractor de dades, a través de 2 protocols i es comparen com es comporten els protocols.

L’usuari veu aquesta informació rebuda per pantalla, i l’aplicació permet que la combini i que hi

posi les condicions que ell vulgui. El sistema avisarà a l’usuari quan aquestes condicions s’estan

complint o no.

És un projecte creat des de zero i integral que conté totes les parts d’una aplicació web, frontend,

backend, base de dades i extractor de dades. També s’ha tingut en compte que aquest projecte

funcioni sempre que l’extractor compleixi algunes condicions, per tant podem dir que es un

sistema genèric.

2

Resumen

Esta tesis consiste básicamente en construir una aplicación web la cual recibe información de una

fuente de datos, a través de 2 protocoles y se compara como se comportan estos. El usuario ve

esta información recibida por pantalla, y la aplicación permite que el usuario la combine y que

ponga las condiciones que él/ella quiera . El sistema avisará al usuario cuando estas condiciones

se están cumpliendo o no.

Es un proyecto creado des de cero e integral que contiene todas las partes de una aplicación

web, frontend, backend, base d datos y extractor de datos. También se ha tenido en cuenta que

este proyecto funcione siempre que el extractor cumpla algunas condiciones, por lo que tanto se

puede decir que es un sistema genérico.

3

I would like to dedicate this thesis mainly to my tutor Marcel Fernàndez, for guide me to found a

really thesis theme that I really enjoyed developing, and give my tips and advises to focus on what

is really important, what project consist to, and not to work out of scope.

Last but not least, I’m really thankful to my brother Martí Ollé who helped me in some of the

blocking points of the thesis.

4

Acknowledgements

The mainly person who has helped to develop this project is Marcel Fernandez, basically when

the thesis was in a blocking point, he told which web pages can be found the solution, or a better

explanation about the problem.

5

Revision history and approval record

Revision Date Purpose

0 10/01/2022 Document creation

1 22/01/2022 Document revision

2 22/01/2022 Document modification

3 22/01/2022 Document delivery

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Isaac Ollé Gatell Isaac.olle@estudiantat.upc.edu

Marcel Fernandez Marcel.fernandez@upc.edu

Written by: Reviewed and approved by:

Date 24/05/2021 Date 22/01/2022

Name Isaac Ollé Gatell Name Marcel Fernandez

Position Project Author Position Project Supervisor

6

Table of contents

Abstract..1

Resum..2

Resumen..3

Acknowledgements..5

Revision history and approval record...6

Table of contents...7

List of Figures...9

List of Tables:...11

1. Introduction...13

a. Statement of purpose(objectives)..13

b. Requirments and specifications..13

c. Methods and Procedures...14

d. Work plan with tasks, milestones and Gantt diagram..14

e. Description of the deviations..17

2. State of the art of the technology used or applied in this thesis:...18

3. Methodology / project development:..19

3.1. Configuration project on your local environment..19

3.2. Overview..20

3.3. Data Source Simulator..22

3.4. Database...24

3.5. HTTP Backend...26

3.5.1 Configuration Files..26

3.5.2 Scheduling and CRON..27

3.5.3 Business Logic..28

3.5.4 JPA Repositories..30

3.6. HTTP Frontend..31

3.6.1 Items Object..32

3.6.2 Components ...33

 3.7. WebSocketBackend...35

3.7.1 Business Logic..35

3.7.2 Configuration Class..37

7

3.7.3 Controller...37

3.7.4 Frontend..38

4. Results..40

5. Budget..43

6. Conclusions and future development:...44

Bibliography:..46

Appendices (optional):...48

Helping Figures...48

Demo..54

Glossary..60

8

List of Figures

3.1. First and Final system idea. Pàg.210

3.2. Autowired Intance Problem Scheme. Pàg.21

3.3. Set of Data Base Tables and the Actions Allowed. Pàg.25

3.4. Queries Management. Pàg.27

3.5. GeneralDto Scheme. Pàg.28

3.6. Frontend Architecture. Pàg.30

3.7. Frontend Object Compared to Backend Object. Pàg.31

3.8. Item Properties Scheme. Pàg.32

3.9. NewColumn Dialog Explaining FormArray. Pàg.32

3.10. WebSocket Full Architecture. Pàg.33

4.1. General architecture view. Pàg.36

Appendice Figures

1 Backend dependencies. Pàg.47

2 Frontend dependencies. Pàg.47

3 Application properties. Pàg.20

4 Final Project Structure. Pàg.21

5 WebSocketControllerListenerClass. Pàg.23

6 WeakReference Example. Pàg.24

7 Release Listener Function. Pàg.24

8 UserService Inside and Outside Compile Scope. Pàg.25

9 Generate Random Value to Sent to Frontend and Store on Data Base. Pàg.25

10 Security Folder with CORS Configuration. Pàg.28

11 Frontend HttpInterceptor. Pàg.28

12 Scheduled with FixedRate. Pàg.29

13 CRON Example. Pàg.29

14 CRON Example in Application Properties. Pàg.29

9

15 All CRON Possibilities. Pàg.29

16 NewColumns Table. Pàg30

17 Decisions Table. Pàg.31

18 GeneralDto Properties. Pàg.32

19 Custom Query Example. Pàg.32

20 Manual Connection Example. Pàg.34

21. All Backend and Database Architecture. Pàg.34

22 Home Routing Component. Pàg.38

23 Navigate Function. Pàg.38

24 WebSocket Configuration Error. Pàg.40

25 Open Two Ports Throught Tomcat. Pàg.41

26 WebSocket Header Failing. Pàg.42

27 WebSecurityConfig. Pàg.42

28 WebSocketConfig. Pàg.43

29. Socket Object Sent to Frontend. Pàg.44

30 Client Observable Scheme. Pàg.45

31 Rxjs Subject. Pàg.45

32 Switching Protocols with Socket Message. Pàg.46

33 ApiData Dashboard table. Pàg.57

34 NewColumn Dialog. Pàg.57

35 NewColumn Dialog with Several Objects. Pàg.58

36 UserColumns Asynchronous Tab. Pàg.58

37 Decisions Dialog. Pàg.58

38 Decisions Dialog with Several set. Pàg.59

39 UserColumns Tab with Decisions Columns Filled. Pàg.59

40 NewDecisions Dialog with Ids. Pàg.60

41 ApiData Synchronous Tab. Pàg.60

10

42 ApiData Asynchronous Tab. Pàg.61

11

List of Tables:

1.1. Work Packages. Pàg.12-14

1.2. Milestones. Pàg.15

1.3. Gantt. Pàg.15

3.1. NewColumns database. Pàg.25

3.2. Decisions database table with value. Pàg.26

5.1. Costs Table. Pàg.51

5.2. Average year cost of a web application. Pàg.51

5.3. App maintenance and improvement. Pàg 52

12

1. Introduction

a. Statement of purpose(objectives)

The idea of this project is to build user a powerful tool to analyze data, and notify the user when

the data are passing certain conditions. The project not only consist in notifying the user, also it

can be used to take some actions were the conditions are the expected.

To do that the project is developed with a web architecture, frontend, backend, and data base

and a simulated data source. Make a good data source and good data extractor is out of scope,

because we are focusing on user functionalities.

Frontend part has been developed on Angular language, backend part on Kotlin language and

data base is SQL.

This project is focused on make it in a generic way, that should work independently the data

source kind of data, but the data source has to comply two premises, first of them is that the

data given has to be numeric, and our data base knows what is going to arrive through the data

source.

The system is designed to be able to work on real time and take decisions on real time son there

is no sense to storing old data on data base, so de table which stores the data source data has a

maximum of columns of 100, once fully database starts to rewrite over the oldest data.

There is two ways to build a tool like that, asynchronous way and synchronous way; the first one

is the tool that this projects consist of, the frontend part orders de new data to the data base,

and the synchronous way should be that the data base sends the new data once it has arrived.

Http protocol works asynchronous and WebSocket synchronous.

b. Requirements and specifications.

Project requirements:

- The project should be able to work on almost any system which needs to take

decisions.

- He decisions have to be displayed in some understandable way.

- The user has to be able to sum, subtract, multiply, and divide columns.

- The backend should have a good architecture as frontend.

- Relational database

Project specifications:

13

- The database tables will be created through the backend code to synchronize the

object get by the extractor and the object stored on the database.

- An angular frontend part will display the results with graphics.

- Hexagonal architecture will be the chosen architecture on the backend.

- The project will be carry out with MySQL a relational data base, that’s a design

decision because we don’t need efficiency on database, but we need robustness, to

make the project easier.

These were the requirements and specifications of the project at the beginning. The

requirements were fully completed. But the specifications actually changed a little.

First of all, the fact to create the database tables through the code, was considered work of a

good data extractor and that’s not about this project is.

Another thing is that hexagonal architecture just makes sense with backend with more than two

outputs/inputs. If the backend just have to connect to data base and frontend this will be

hexagonal always. So if the application connected to another API taking into account the

decisions, carry out actions regarding the decisions, then a hexagonal architecture would be a

good practice to develop the project. It is true that protecting the services with Interfaces would

be more accurate to a hexagonal architecture but this project is a little application and there is no

need to do this.

c. Methods and procedures, citing if this work is a continuation of another project or it

uses applications, algorithms, software or hardware previously developed by other

authors.

As is said before this project is build from nothing so there is no work done by others.

d. Work plan with tasks, milestones and a Gantt diagram.

Work Packages:

Project: Creation and HTTP Scenario WP ref: (WP1)

Major constituent: HTTP Protocol Sheet 1 of 5

Short description:

Make a system maker throught http protocol

Planned start date: 01/09/2021

Planned end date: 31/09/2021

Start event: 01/09/2021

14

End event: 31/09/2021

Internal task T1: Creation of the database, backend and

frontend

Internal task T2: Create the communication with them

Internal task T3: Make the logic on frontend and backend

Deliverables:

The communications

between backend

and database

Dates:

31/09/2021

Project: WebSocket Scenario WP ref: (WP2)

Major constituent: WebSocket Protocol Sheet 2 of 5

Short description:

Build the implamentation with WebSocket Protocol

Planned start date:01/10/2021

Planned end date: 10/01/2022

Start event: 01/10/2021

End event: 10/1/2022

Internal task T1: Create communications throught

WebScoket

Internal task T2: Make the logit to make decisions

Deliverables:

The table

Dates:

08/04/2021

Project: Comparisons and Put Together WP ref: (WP3)

Major constituent: HTTP vs. WebSocket Sheet 3 of 5

Short description:

Comparison between this 2 systems and real life applications.

Planned start date:01/11/2021

Planned end date:31/11/2021

Start event:10/1/2022

End event:20/1/2022

Internal task T1: Make a conclusion in which cases each

protocol is better.

Internal task T2: Look for real life applications which it’s

essential to use one of them.

Deliverables: Dates:

31/11/2021

15

Project: Write Final Report WP ref: (WP4)

Major constituent: Write Final report Sheet 4 of 4

Short description:

Write the conclusions

Planned start date:01/12/2021

Planned end date: 23/01/2022

Start event:18/02/2022

End event:23/02/2022

Internal task T1: write the conclusions Deliverables:

Project itself.

Dates:

15/05/2021

Table 1.1 Work Packages

Milestones

WP# Task# Short title Milestone / deliverable Date (week)

1 1 Creation FE, BE and DB Http 8

2 Create communications Http 8

3 Http logic Http 8

2 1 Create communications WebSocket 9

2 WebSocket Logic WebSocket 9

3 1 Comparison 1st release 10

2 Real life applications 1st release 10

4 1 Documentation 2nd release 11

Table 1.2. Milestones

Gantt

16

Figure 1.3 Gantt

e. Description of the deviations from the initial plan and incidences that may have

occurred.

There are several things that didn’t go as were expect at the beginning of the project.

First thing that was changes, was the database model. At the beginning I would like to work in a

non relational database MongoDB, on that moment the project should have create the database

tables through code so MongoDB presented a problem that SQL do not. This problem is that if

the table is created with the kotlin codes, a non relational data base have to create the

references as well, meanwhile on SQL all columns are referenced.

There are two things that changed because, were found a newer technology that makes it easier.

These kinds of things are the repositories and simulate the data source. At the beginning the

repositories should be all created manually, finally not all of them are, during the development

was found on internet the JPA tool repositories which make easier this work. This tool is

explained later.

The simulation changed because at the beginning it was a thread, but for make de code cleaner

and for the possibility to develop on the future a sync system. Thread presented some

inconveniency that @Scheduled and CRON tool does not.

Web socket protocol suffered a lot of mutations during his implementation and was the most

difficult part on the project, taking into account that there is just 4 month to develop all and not

all the problems had trivial solutions.

17

2. State of the art of the technology used or applied in this thesis:

Several technologies has been used to carry out this project:

- Visual Studio 2019: platform where frontend was developed, the best platform for

frontend developers, really helpful.

- IntelIJ version 2020.3: platform supporting the backend, very powerful, easy an

comfortable to develop. This project should work with others platforms like eclipse.

- Spring boot version 2.5.0: this is a tool that makes easy to create custom API rest.

This project is just using the basic spring boot tools to make an API Rest

- Gradle version 6.8.3: gradle is a library repository importing certain libraries; the

work on the backend can be quiet less. See the backend dependencies in the annex.

Figure 1.

- MySQL version 8.0.23: One of the latest MySQL versions there is a change from the

other versions that is affecting the project. Is the fact that from now MySQL does not

allow tables without Id column. MySQL Workbench 8.0. To manage the database

tables.

- Kotlin version 1.4.32: Backend language, the version before latest, there is no special

that this project uses from Kotlin newest versions.

- Angular 11.2.12: Frontend Language is very powerful; this language is the chosen

over react or view.js because is focused on integral applications like this project. By

now is a little project but if in the future there new implementations and

functionalities react or view.js presents failures.

- Rxjs library 7.1.0: Very important library to develop the project, gives a lot of tools

and mechanism to create .Net functionalities easy.

- Angular Materials 12.0.1: Angular library used to the frontend part, plenty of tools

used to make the user experience understandable.

18

3. Methodology / project development:

3.1 Configure project on your local environment

To configure this project on your local environment is needed to download the compress file and

decompress it on your computer.

The frontend set up is very simple, just open the Visual Studio code, then search the folder

download and look for the ‘tfg’ folder, open it, open a terminal and execute npm install. Make

sure that the dependencies got are the same as the Annex Figure 2

If does not then search for install it on npmjs.com. There should be all of them.

Configuring the backend part is simple too, before run it you need to install Gradle, at least the

version specified on Chapter 2 of this document, there is no guarantee about if it could work on

older Gradle versions. Add Gradle in settings/environment variables. Once installed execute on

terminal, first gradle build and then gradle bootRun or gradlew bootRun depending if its a

windows or a linux which is working.

The database is the only part which cannot be uploaded on the internet so, to be configured you

need to create it, if MySQL is not installed, download MySQL workbench, create a data base with

‘root’ user and ‘root’ password, and execute this 3 scripts:

- CREATE TABLE `apiinformation` (

 `id` bigint NOT NULL,

 ` atr1` double NOT NULL,

 `atr2` double NOT NULL,

 `atr3` double NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

- CREATE TABLE `decision` (

 `id` int NOT NULL AUTO_INCREMENT,

 `var1` varchar(45) NOT NULL,

 `type` varchar(45) NOT NULL,

 `var2` varchar(45) NOT NULL,

 `value` int DEFAULT NULL,

19

 PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=28 DEFAULT CHARSET=utf8

- CREATE TABLE `newcolumn` (

 `id` int NOT NULL AUTO_INCREMENT,

`col1` varchar(45) NOT NULL,

 `col2` varchar(45) DEFAULT NULL,

 `sign` varchar(45) NOT NULL,

 `name` varchar(45) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=29 DEFAULT CHARSET=utf8

This MSQL scripts creates the data base tables involved on the project. Then run MySQL through

terminal with command mysql start.

You can execute it on a MySQL online server if there is access on it.

In the annex Figure 3 there is the Application properties needed to run connect the backend with

database.

If, the configuration can’t be set correctly on the annex there is a little demo of how it works.

3.2 Overview

It’s highly recommended to see the demo on the Annex.

To explain how the project has been done, know how it works and understand the design

decisions, this document is going to explain first a general overview and then explain each

element of the project separately and deeply.

The project is a fully integrated web project with frontend, backend, and database created from

nothing. Frontend is developed with angular because is a very powerful tool, and focused on full

integrated applications like this project, meanwhile react or view.js are more useful on

applications which UI is the most part. On backend is used Kotlin, because is one of the most

moderns, powerful, completes languages on server part, another reason is because is over Java,

is easy to understand and is a good chance to learn Kotlin. Kotlin server used is the one that

JetBrains has that just translate Kotlin to Java. The database technology is MySQL because is a

relational data base. The problems related with non relational database will be explained later.

The top level schema on the project just differentiates 4 elements. This was the first architecture

idea, this design give a first view about in what consist this project.

20

Figure 3.1 First and Last System Idea

This was not exactly the way that this thesis was developed but it’s useful to create a first idea

about the general architecture.

As the image show, there are 4 elements there is a data source (external API, sensors, etc) that

provides data to a database, and that data base can be queried by a backend to process it and

show on the frontend the user requests. All the elements can communicate each other, but the

data generated in Data Source is stored in data base. Also is sent under WebSocket Protocol and

that means that goes directly to the Backend. So the final system idea would look like as the right

picture.

The data source part in this project is considered out of scope, so in this project it is mocked.

There are two premises to take into account. First is that the object sent by the data source is

known in our system. And the second one is that the system considerate that the object received

has numbers and not strings. It is because one of the project motivations is to make a system

able to take decisions on crypto currency, and although is a general system, it has been

implemented on that way, thinking in one day if the system is improved, it can be able to invest

on crypto currency itself.

The last thing to know before starting the deep analysis of the architecture is that this system is

build with an asynchronous and synchronous pattern. This means that frontend every X seconds

(10’ is good to test) asks to backend for the new data, this has inconveniences and advantages,

an inconvenience is that if you can’t estimate the time between 2 object generations or arrivals

from/by data source, maybe the system is asking too much to get nothing, a little example: If

there is a new Object on ‘apiinformation’ table every 2 minutes, if frontend is asking every 10’

just 1 of 12 request will return with a new value, that can make the system inefficient. So an

asynchronous system has to estimate how much time there is between object generations or

arrivals on DataSource.

21

Let’s divide the explanation in 2 parts, first of them the asynchronous there will be exposed the

asynchronous part of the project, Http protocol and then the synchronous, WebSocket Protocol.

3.3 Data Source Simulator

Even though data source is simulated, what this project does is to generate a random object

every X seconds and send it to the data base. On the test case this object is a three attribute

object (atr1, atr2, atr3), and it’s stored on a data base table with an id.

DataSoruce simulator contains a @Autowired of a WebSocketController class, this is because

when a RandomEntity is generated, this will be sent through WebSocket to the frontend, and it’s

a bean because just can exist one WebSocketController in memory, due to that the Controller

stores the socket sessions, and if simulator has a new Object () this won’t have the stored

sessions by Controller because there will be 2 WebSocketControllers in memory.

With this WebSocket @Autowired there were a hard problem.

This was that DataSourceSimulator was initializing WebSocketController as null, the @Autowired

annotation was not working. This means that WebSocketController object which receives the

connections and implements WebSocketHandler was not the same WebSocketController

declared on DataSourceSimulator, because the first one had the connections and the one inside

DataSource class does not.

Figure 3.2 Autowired Instance Problem

At the first moment we thought that this was an architecture problem that this class was having a

cyclic reference and to protect against this, it let WebSocketController as null, but this was not

the question.

One solution purposed was instance a Kotlin listeners on WebSocketController, this is a powerful

Kotlin tool through interfaces.

A class was created called WebSocketControllerListener implementing a custom interface called

DataSourceListener. This class had a primary constructor with a WebSocketSession array because

22

when it receives a RandomEntity just created, is needed a list of WebSocketSessions to send this

message. The interface implemented had a method called “onReleaseListener(entity:

RandomEntity)” which is implemented over ‘override’ in this class, also it receives the entity

created and the one that have to be sent.

Moreover, this class had a DataSourceSimulator object as property and it was also an

@Autowired. On the init method had 2 functions. The annex Figure 4 references at this Class.

The implementation was on DataSourceimulator. So let’s take a look on that.

First of all the DataSourceSimulator had a Weak Reference, see on annex Figure 5 how it is

implemented:

A weak reference is a reference that if there is some other reference on memory which same

typed this will be removed from memory. In other words there just can be one reference of this

class in memory.

The implementations of the two functions seen above are very simple:

- “this.dataSourceSimulator.addListener(this)” sets the listener WeakReference for the

“this” param which is a class that implements the WeakReference

“DataSourceListener” type as interface.

- Release() function gets the weakreference listener and triggers the

“onReleasedListeners(entity: RandomEntity)”, this means that all classes

implementing DataSourceListener will be triggered, in this case there will be just one

class due to the WeakReference. Annex Figure 6 shows the implamentation.

This function is called every time that DataSourceSimulator generates one value.

But the problem here was that @Autowired DataSourceSimulator was initialized as null also. And

this was not the final solution.

Finally, the problem root was that MainApplication file was not located on the right place and not

all files were compiling as it should do. And a result of it they were not initialized because the

compile was out of MainApplication file scope. The file was inside a “start” folder and relocating

to the main project folder all problems with @Autowired were solved.

See in the Annex an Example of out of compile Scope and in of compile scope.Figure 7

23

On the first image UserService would not work with @Autowired annotation and in the second

one yes.

The listener way would be solve the problem if the WebSocketControllerListener(..) class were

located in the right folder.

So knowing it the code was rollback relocating all classes to the right place and did the first

proposal for this functionality, declare a WebSocketController property to DataSourceSimulator

Class and when a value is generated then call the function

“webSocketController.sendMessage()”. Se the annex figure 9 the implamentation of

“generateOneRandomValue()”.

Because of this problem and other that will be explained after, during some weeks the project

was split in two different projects, the http protocol and WebSocket protocol.

On the other hand MySQL 8 requires an id for every table and regarding that it’s important to

store the time data when the object has been generated by the mock data source, the id and the

generation time are mixed. So the id corresponds to a time stamp that indicates the current date

in milliseconds. On frontend is important to print the time that sample has been generated.

The mechanism to generate the object every X seconds will be explained on the backend part.

To go deeper to the project, let’s start to explain the data base part.

3.4 DataBase

The data base part consists in a MySQL database, MySQL is a relational data base. This project

has been developed by this kind of database because they can be referenced by any column.

Considering that the objects received can have different attributes, with a non relational data

base it would be more complex regarding the index generation that a non relational data base

needs to access on his data. If the system were implemented with a non relational database

there should be three premises to take into account, the two explained before and knowing

which references the data base need to get the data from data base properly.

This project itself has three database tables. One table the most important stores X samples

about the data got through data source, this is done because if the data source is an external API,

backend can call it to get older data but in case that the data source are sensors and there is no

API storing data, the system have to save it in the local database. The system stores just X

samples because if the system has to make decisions in real time there is no sense to store data

24

from some time ago that don’t affect to the latest decisions. So when the table is full, it starts to

rewrite the oldest columns.

The second table, stores what combine of data user wants to get, if the user get attribute A:Int

and B:Int from the data source, the user can decide if to sum, multiply, divide, subtract A and B

values. So if the user, for example, wants to get A+B values on the NewColumns data base there

will be stored the first line, the other lines are for divide Atr3/Atr3 and for just return atr2 :

Table 3.1 NewColumns Database Table

Each line in this data table is a NewColumn Object.

“ASIGN” means that the attribute stays equals, this is done in this way because frontend needed

it, to have a good view and a understandable experience.

The name column is the name that the new column will have on frontend.

Frontend can create, delete, modify and get the values stored on the table NewColums.

Finally, the last table is the decisions table it, stores the information to make decisions on the

backend, it has a var1 and a var2 that will be the variables to compare a sign comparing equals

to, bigger than, smaller than and a value.

Var1 and var2 values are corresponding to a column names on the frontend which has to be

summed, multiplied etc. But if one of them has the value “value” , the system replace that column

for the number inside “value” column, comparing the other column with the value. So the

comparison will be between a number and a column. And you can set a decision: A:Int > 5.

Table 3.2 Decisions Database Table with Value

Value column is a nullable column that only will be full if one of the var1 or var2 columns has

“value” controlled by frontend. This last data base table corresponds to a CRUD service so the

user can create, read, update and delete decisions as he/she wants.

25

Figure 3.3 Set of Database Tables and Actions Allowed

3.5 HTTP Backend

3.5.1 Configuration Files

The third part of the project is backend; this is the most complex part on the project.

When de backend part was created, the first problem was the CORS policy. “Cross Origin

Resource Sharing” CORS was blocking the entire frontend request to backend. There were two

big problems caused by CORS. One of them was that the backend didn’t have a security and a

web configuration class, so these classes were added in following form:

When a request is received CORS check two things, first is that the request sender is a valid

sender, in this case WebConfig in AllowOigins has a ‘*’ it means that all origins are allowed, to

be more safety it should be the @IP where the frontend is allocated. The second thing checked is

that the request has a valid authorization, every request has to have on headers the backend

user and password, this was the second problem caused by CORS that not all request had

credentials and backend denied the access to Backend.

WebSecurityConfig defines the username and password for basic authentication, and tells that all

HttpRequest need it mandatory. But the “antMatcher(“/socket).permitAll()” means that all

request to the “/socket/” endpoint don’t need that. This is because web socket protocol doesn’t

support headers on the request.

It was solve to adding an interceptor on the frontend that catch every request, add on headers

the necessary authorization credentials and send it to Backend.

Figure 9 on annex contains the Http Interceptor.

If the request is sent and Backend responds with an error, interceptor catch it and shows on the

screen ‘Servei no disponible’ with a snackbar.

26

http://localhost:4200/

Once checked this two things, the connection should be safe. But on configure (http:

HttpSecurity) method there is a “.crsf().disabled()” it means that this application is now protected

against CRSF(Cross-site request forgery) attack. Considering that this Project does not have any

personal data and is a local Project we should not be worried about that.

3.5.2 Scheduling and CRON

Before start explaining the business logic on the backend, let’s take a look on the simulation of

data generation mechanism.

On Kotlin, Java there is a very useful and powerful tool called “@Schedule”, this tool can execute

whatever the developer wants every X seconds, minutes, hours, days even execute a function

every day at 15:00 or every 20th and 21th day of the month etc. Figure 10, 11, 12 and 13 in annex

shows 2 example of Schedule tool.

Knowing that the DataSimulatorClass generates a new Object ready to send, every X seconds and

store it in data base.

3.5.3 Business Logic

Once explain this kind of things, it’s the turn of the business logic itself. The backend architecture

is a Controller -> Service -> Repository architecture.

There is 3 controllers, one to get the Api mocked data, another that manage the CRUD decisions

systems and the third one receive the request related with the generation, deleting, modifying

and reading(getting) about NewColumns (user custom columns). Every controller has a Service,

which is the part that makes all the system logic.

ApiDataService is the simplest service, this just get the API Data, and sends it to the controller

which will send it to frontend when it asks for it, remember that this is an asynchronous solution.

Decision Service has 4 methods to modify, create, delete and get the data stored in decisions

table on data base.

The last service is the most complex class on the project. NewColumnService is the service in

charge of get the data from API, this service gets the data already summed or whatever and map

it to the correct Object to pass to frontend and checks if the data is passing or not the user

decisions stored on decisions table from database. And send it to the frontend. See Table3.1 on

Pàg 25 to remember how the NewColum data is stored in database.

Firstly, to calculate the user NewColumns Values we got the data from database and do a several

iterations and conditions to get the values summed, subtracted, etc. on the backend, later this

27

was known as a bad practice because the SQL language does it in a more efficient way, so it was

decided to change it and move the NewColumn Values calculation to the database queries. In

particular this way had an advantage, it was that angular Mat-table maps the elements by rows

and not by columns (explained accurately later), and the frontend did not to do as many works as

it does now, this mapping could be done on backend but in this case the frontend needs to do a

little map also so to avoid splitting the map was decided to do it all in the frontend. and But this

code was not removed at all because on the web socket part there is not able to build queries

with SQL language.

To calculate the user NewColumns (A+B), the service calls ApiDataRepository class, this class

builds custom queries with the corresponding sign and the columns involved. Let’s take a look on

that.

In NewColumnsService there is the function “getNewColumnsAndValues()” which gets the

information to generate the new columns.

This is how the information for generate new columns is stored in database, what the function

does is to call the “manageOperation()” function, this has several functions depending the sign of

the operation and this calls ManualRepository Class to build the queries, execute them and

receive the data already summed, subtracted, multiplied, divided or assigned from database.

Figure 3.4 Queries Management

This queries returns a list of values, then they are all mapped inside a MutableMap with key

corresponding to column name and values to all the array received. If the user wants X columns

the map will have X keys with its respective arrays.

Once the values are mapped to the MutableMap, then it’s turn to check if the decisions are

passing or not, this is done by “setDecisions()” function on NewColumnsService, this function has

two parameters, the first one is the mutable map with all the arrays made with

ManageOperation() inside and respective keys and the decisions stored in database.

See Table3.2 on Pàg 25 to remember how the Decisions data is stored in database.

28

Each row contains a primary key generated by the backend, and the 2 columns involved, and if in

some column field there is the value “value” that means that the comparison will be done with

the number on the value field. In the backen there is an entity called Decision which contains all

this properties.

Explained that, the setDecisions function iterates for all keys stored in the MutableMap and tries

to find which key is equal to the var1 and var2 field of the decisions parameter also passed. Once

the two columns of array are found then each value is compared between the 2 arrays and a

decision is set throught the “manageComparison()” function which takes 2 numbers and a sign

and determines if its true o false.

This is done for all the decisions passed as parameter. Finally all the decisions arrays with

booleans inside are mapped to a MutableMap with key as the decisionId and value as the

boolean decision array.

Once done, is called a method in RandomEntityRepository class which takes the ids, and the Id

are map inside a generalDto.

GeneralDto is an object which contains all the information that frontend needs. See the Figure 13

on the Annex to see al properties.

Contains a map with keys and the NewColumns added by the user, a map with keys and if the

decisions for every newColumn item inside are true o false and the Id. A schema for that,

considering that Val1, Val2, etc. are numbers, D1,D2 are booleans, and ids long type:

Figure 3.5 GeneralDto Scheme

Take into account that key1 in the listValueNames is the column name and key1 in the decisions

is the DecisionId in the database. Val1 are values which contains a Double object and D1 are

29

deicions which contains a boolean. The 3 columns are got seperately but there is one rull that the

position 0 of any column corresponds to position 0 of the other columns.

For example, if there is just one column called ‘test’ which is A+B, there will be one map inside

listValueNames which contains as key ‘test’ and the list the N objects (which are A+B values

summed),. If there is also one decision called ‘decisiontest’ which is A+B column > 3 then there

will be just one map inside decisions with key as DecisionId assigned by the backend, comparing

each item inside listValueNames item with the condicion proposed , and defining in the value list

if the decision is passed or not for each value. To summrize all GeneralDto cointains column

names and the values of the columns or the values of the decisions.

3.5.4 JPA Repositories

There is an interesting tool on spring boot, that has to be commented. This tool is the JPA

repositories, this is a very powerful tool that makes the queries to database so simple, and there

is no necessary to make repository implementations.

This tool consist on import on every repository the spring boot interface CrudRepository<Id type,

Object stored>, one done that you can just write the query method as:

- FindById(id:Int)

- DeleteByName(name:String)

- Save(Object)

- FindAll()

And more complex queries:

-FindByOrderByNameAsc(columnDataBaseName:String). “Asc to get it in a ascendant

way”

-DeleteByIdByName(id:Int, columnDataBaseName: String)

Id:Int in case that id type is Int but It can be Long, etc.

Just writing this to the interface repository, spring boot generates the query internally and sends

it to the data base, giving to the system the data ordered.

You also can make custom queries writing on the backend repository @Query (MSQL code to

order to database). Not all custom queries are allowed, just the ones which can be made by

words, this is why the project has manually connections to database, because the queries has

inside the ‘+’,’-‘,’*’,’/’ (summed, subtracted, multiplied, divided) operators that JPA doesn’t

30

support. That’s because there is a ManualRepository class which made the queries manually. The

a custom query and a manual query in the Figures 14 and 15 in annex.

 “This.connection()” method defines all the connection properties.

The connection to data base is on Application.properties file, that there is the credentials to make

queries.

3.6 All Backend and Database Architecture

In the project the ApiInformationTable is divided in two repositories, first one is JPA and the

second one the manual one. Manual repository just needs to access in Apiinformation table

because of the ‘+’,’-‘,’/’,’*’ operators.

Finally, the last project part is the frontend part. This document doesn’t explain every frontend

component, just the most important thing, and general comments.

3.6 HTTP Frontend

Before start, it’s important to take into account that the frontend component/module

architecture is done on that way basically to make the code understandable and easy to work on

it.

31

Figure 3.7 Frontend Architecture

3.6.1 Items Object

The most important component on the frontend is the dynamic dashboard table. This component

is a dynamic custom mat table which enters an array of Items[] and this carry out the tables with

the data printed (see it on Annex). It’s important to know how is done the map between the

GeneralDto in the Backend and items array in the frontend.

The problem is that mat-table works with rows, in other words there are 2 formulas to fill a table.

Imagine that there is an empty table, this has 2 parts the column names and the column values

that you have to fill it.

The first one consist in pass a column Name and an array with the column Values. This can be

done for the entire necessary column. Called column way.

The other one consist in firstly pass all the columns name, then an object with one value for the

first column, one value for the second column, one value for the third column … one value for the

N column. Then when an object has filled all its values to the table it pass to the second object in

the same way, so is needed a list with objects which inside has different properties. Called row

way.

If you check the GeneralDto on the backend it can be seen that it equals to the column way and It

has to be map to the row way, and that is what Items[] object on frontend is.

This was done in this way because the database gives to the backend the values in columns and

there is no way to avoid this. Usually it is done by a map function which relates the backend

properties with frontend properties automatically but in this case this doesn’t works because the

properties name depends on the user.

32

Figure 3.8 Frontend Object Compared to Backend Object

Red line represents an item on the frontend while at the blue object is a list of values in the

backend. Each item has values which are the listValueNames(val1, val2) map in properties which

its name is the key 1. Then the same for the decisions and finally the id.

See that a there is a vertical conversion to a horizontal conversion.

An item object with the above property would look like:

Figure 3.9 Item Properties Structure

This have to be clear because in the fronted Values are typed as any this is because the property

name has to be the name entered by the user and each column created will have a different

name. Decisions can be a defined Object because it will always be an Id number and a Boolean

Value.

3.6.2 Components

33

So, going from top level (Tabs) and finishing on bot level(Services), let’s explain the design.

Each tab is accessed by routing module that redirects to a different component depending the

path passed to the URL. See the annex Figure 16 with the Routing component.

Empty path means by default. To navigate through components is needed to instance a router

object and call the navigate function. See annex Figure 17 to see an example.

Asynchronous tabs in “ngOnInit()” ask the backend for the appropriate data to print. API Data

tab is pointing to api-data.service.ts, Decisions Tab is pointing to new-columns.service.ts to get

the correctly data to print on dashboard.

It’s easy to think that new-columns-dialog.component.ts and decisions-dialog.component.ts are

pointing on their respectively services (new-colum.service and decisions.service.ts) to send the

CRUD request to the backend, but it’s cleaner for the code to send the dialogs data to the parent

component and the parent component will be the one which sends the information to backend.

With this way all CRUD methods related with one dialog are on the same component. But there is

just one exception on this project and it’s that decisions-dialog.component.ts orders to backend

when a decision is deleted.

In other words, the user maybe added and removed some of the existing ones, and the frontend

should manage which were added and which were removed pointing to different endpoints. But

if the dialog tells at the moment that delete button is clicked that this decision is removed. The

frontend just have to manage creation decisions.

Moreover, there is two angular tools, used on the code that needs to be commented.

The first of them is FormArray tool, that tool has a FormGroup[] on his inside, and the user can

add or delete FormGroups as he/she wants, and it’s a dynamically behavior. That FormArray has

to be a array from a general FormGroup in this case called “decisionsFormGroup” and

NewColumnFormGroup respectively, this is the set of the all information about the decisions and

NewColumns created, deleted, updated, and when the dialog is submitted you submit all the

data inside the general FormGroup.

34

3.10 NewColumn Dialog Explaining FormArray

The second is the ForkJoin tool, that tool belongs to “rxjs” libray and allows to the developer to

activate several observables together ant this function will not continue until all the observables

are done. So this tool is used to be able to create several new columns or several new decisions

at the same time.

3.7 WebSocket Backend

3.7.1 Business Logic

Protocol WebSocket was chosen because can sent data bidirectional, but in this project the data

just will be sent from backend to frontend. The only data sent from frontend to backend is the

connection event.

Also remember that WebSocket is not just an alternative to https, this protocol is build above

http, the request and response are under http but offers some different features.

In this project the protocol web socket part is also called synchronous way because when a entity

is generated all goes sequentially until the frontend.

This part caused several problems, starting for the configuration, it made that the connection was

failing. See annex Figure 18 with an error example

When this part of the project was started, the most information found on the network was about

the ebWSocketBrokers, so it was tried to implement one, brokers are a powerful tool if you need

to manage some WebSocket endpoints and each endpoint has a determinate flow. But this was

not the project case so this were like overtaking the necessities that project needs.

Broker is a tool over STOMP protocol (Simple Text Orientated Protocol) over Http, the main

feature that broker has is to do as intermediate between 2 applications. In a few words imagine

that you as user wants to receive the data that 3 users are sending to the broker (broadcasting)

so tell to the broker that you are going to subscribe on it and broker opens a port to you to send

the arriving data from the other 3 users.

That was too much for this application that just needs one channel to the frontend.

Knowing that the search was about just one Websocket channel without STOMP protocol.

Then was tried the WebSocket configuration with SockJS(). SockJS tries to establish a connection

with a native WebSocket but if it is not able to then change the protocol for someone which front

accept. But this was discarded quickly because it was need a WebSocket configuration at 100%.

35

It was already thought that WebSocket protocol and Http protocol could not go into the same

backend port so it was tried to open a 2nd port in the backend. To do this is needed something

like the figure 19 in the annex.

The problem here was that TomcatEmbeddedServletContainerFactory it was suppose to be a

class inside this import:

implementation("org.springframework.boot:spring-boot-starter-tomcat:1.2.4.release")

But in my case this class was not detected by this Gradle import so it was decided to leave this

solution.

At that point, it was started a 2nd project with just the socket part, that idea was the first one

which worked with just the WebSocket part went well and it could be started the web socket

logic implementation. So in this moment we got 2 projects one at port 8080 and the other one in

the port 10101. This was a good partial solution because the implementation could be done.

But finally realized why there not could be the http connection and the WebSocket connection in

the same port, the thing is that Google Chrome does not shows the WebSocketErrors as it should

be but Microsoft Edge does. So for no reason, suddenly was tried to make the WebSocket

connection through Microsoft Edge and Edge Showed the error more specifcly. See the annex

Figure 20 with an example.

This was because the ws request went with headers and WebSocket request cannot contains

header, so what it was tried is to embed the credentials into the request in the following way:

Request: ws://username:password@localhost:10101/socket

This finally worked and the 2 projects could be put together as one project.

But in terms of security you are exposing the username and password to the net world, in this

application there is no problem because there is no important personal data but is not the best

practice. To avoid WebSocket request to pass the authentication it was added to

WebSecurityConfig see the sentence on the figure 21 on annex.

As it was explained before this disables CSRF adds a CORS and http basic authentication, but the

“antMatcher” excludes the entire request to the “/socket” endpoint to be authenticated. So at

this point the 2 projects could be put as one project.

The all scheme of the web socket part is:

36

Figure 3.11 WebSocket Full Architecture

3.7.2 Configuration Class

WebSocket Backend is quite simple compared to http backend, first of all there is a class which

configures the webSocket properties. This class is the webSocketConfig this class implements the

WebSocketConfigurer interface.

See the all class implamentation in Annex Figure 22.

This method implements addHandler, as parameters are passed a class which implements

WebSocketHandler interface and the path/endpoint that the handler will be listening to manage

the messages.

SetAllowedOrigins(*) is for receive the request not depending in their origin. WebSocketHandler

needs to be a bean because just can be a one WebSocketHandler because the sessions needs to

be stored for DataSourceSimulator as it was explained before. Pag.24

3.7.3 Controller

WebSocketController class implements WebSocketHandler which has 5 member methods:

“afterConnectionestablished()”, “handleMessage()”, “afterConnectionClosed()”,

“handleTransportError()”, “supportsPartialMessage()”.

“SupportsPartialMessage()” returns a Boolean depending if the WebSocket can afford segmented

messages or all of them have to be inside one package. In our case is false.

The other methods are event listeners activated when a connection is established, there is a

message entering, a remote socket has closed or controller is receiving errors.

When a connection message arrive, is launched the “afterConnectionEstablished()” method

which stores the session in a WebSocketSession array. When this connection is close

“afterConnectionClosed()” remove this session.

37

There is a function called “sendMessage(msg: RandomEntity)” which is called from DataSource

Simulator when a value is generated this send message to all sessions(in our case there will

always be just one session), but before that transforms the object to a Gson object then to a

string because WebSocket only supports BinaryMessage or TextMessages. This function is able to

take the decisions and new columns from database and manipulate it as is needed (summing,

multiplying, etc.) send the results to the frontend, this kind of data will be shown in the User

Columns Synchronous.

The data treated as a user wants are sent to frontend inside SocketNewColumnsAndDecisions

entity, this contains the following properties:

- ListNewColumns is an array list which contains as many Objects as newColumns created

by user. If the user wants two new columns (A+B) and (A-B), then the size of this array

will be 2. ValueName is an object with 2 string properties Value and Name, name

contains the column name and value its respective value.

- Decisions goes in the same way that listNewColumns but with the decisions objects.

- Id is the time when the entity is created in milliseconds

See annex figure 23 the SocketNewColumnsAndDecisions Class.

All are initialized but this are values the default vales in case that the new object is not initialized.

3.7.4 Frontend

Message connection is sent to the backend when the user clicks on the API Data Synchronous

tab, then the user starts to receive data create from DataSource.

The event connection is launched through a subscription object. A subscription object is an event

handler which is triggered when some event occurs. A subscription object has several

observables inside and each observable has an observer.

- The observer catches the data when this occurs. It has 3 methods, data event, error

event info and complete event similar to a close event

- The observable manage the info when observer tells which kind of event is

- The subscription is the part which manages the data in the angular component.

See an schema of how it works in the annex Figure 24

Do not confuse this with a subject, a subject is an observable and observer together, they do not

need to be defined.

38

See a subject schema on annex Figure 25

The connection message sends a Http request suggesting a protocol change and if the backend

approves that returns a 101 with switching protocols message.

See in the annex Figure 26 an example of a succeful connection message.

After that the connection will be under WebSocketProtocol, until the frontend changes the tab

and the connection is closed.

As a result that the web socket has a connection then backend can start to send data to the

frontend, once data is received to the frontend in this case this don’t need to be mapped

horizontally (as was explained in Http part) because the data already arrives in the correct way,

and it’s just necessary a little map to be able to add it into the Items[] array.

 To make the different observations about the time between the data is generated and is printed

to the frontend it was added a clock which indicates how much time pass and a difference

column which indicates the amount of difference of time between one object and the previous

one.

39

4. Results

The final architecture scheme has a look like this.

Figure 4.1 General architecture View

First of all, there are some things to clarify before start, first is that an arrow in just one direction

means that useful data just can go in this direction.

But let’s summarize all the architecture explained on the previous parts.

On the database side there are 3 tables, 1 for APIData arrived from DataSource, another one to

store the NewColumns that user wants to set and the last one the information needed to set the

custom user decisions.

To access in this database there are 4 repositories, the first of them is IDecisionsRepository which

can make a CRUD service to Decisions Table, INewColumnsRepository which can make a CRUD

service to NewColumn Tables. ApiInformtion table has two repositories able to access on data

inside, the Manual Repository which is used to launch the queries for sum, subtract, multiply or

divide columns and IApiDataRepository which is used just to get data from there.

On the service part there also 3 service, Decisions Service just make de necessary functions to

ability the CRUD service, as well as the NewColumnsService but this service also gets the values

from NewColumn table, Decisions table to calculate the new values wanted by user and it gives

the data calculated inside a MutableMap together with Id data, it can access to all 3 repositories.

And finally the ApiDataService which just take the data from ApiInformation table in database.

Finally there are 3 controllers which each one with its respective Service which are the doors to

the frontend. The controllers have a CORS policy which denies the request with no basic http

40

authorization header. This is sett in the WebConfig and WebSecurityConfig class. This 3

controllers has 3 service on the frontend which makes the request.

Then there are 4 tabs, each tab has a component and inside this component there is a dynamic

mat-table, dynamic mat-table means that giving a name columns and its respective values it will

create a different table depending on that values, also remember that mat-table needs a list of

values and the names in which column goes every property . APIData Asynchronous shows the

API data through Http protocol, UserColumns Asynchronous shows the new data expressed by

columns that user wants. The Synchronous tabs just make the same as asynchronous but through

web Socket Protocol. The two dialogs to create and modify NewColumns and Decisions are

located just in the asynchronous tabs, remember that decisions dialog has an special feature

(discontinuous line) which can delete decisions inside it and the dialog is the component that tells

to the service to send a DELETE request which the corresponding id. This was made in this way

because instead of this it should be the parent component that has to compare with the initial

decisions which were deleted, which were modified, which were created and the code goes a

little overloaded.

Then the DataSource part is a class on backend called DataSourceSimulator (previously called

ScheduledClass) that every X milliseconds create an object which is stored in database, and sent

to the frontend through WebSocketController class.

To send the message, it is parsed to a JSON object and then converted to a TextMessage because

is one of the typed objects supported by WebSocketMessage Interface. WebSocketController has

a configuration class which tells the enabled endpoints for the connection. This WebSocket

connection is not over STOMP and does not use a broker tool.

WebSocketController also manage the entering connections, launching one of the override

functions depending the event arrived.

WebSecurityConfig also allows to WebSocket connection message without authorization request,

because of the WebSocket protocol cannot contain headers in the request.

In frontend WebSocket connection is done when the user enters to the one of Synchronous tabs,

and when the user leaves is closed.

Synchronous side on web Socket does not need a very huge mapping as asynchronous side

because the object arrives as mat-table wants with names and properties.

41

The differences between protocols are that:

Http protocol is progressively slower when the number of new decisions and NewColumns

increase, the point that protocol crashes is when there is approximately 10 NewColumns and 10

decisions, this is because the front mapping is complex and on every request there is 100 object

to load. With memory cache work this could be improved.

If http protocol has a high rate of request/second and high object generation rate, the system is

overloaded and there is some duplicated data, the maximum request/second to make the system

work is approximately 1 request/second. This is because value data goes on the response

message and the channel is spending resource to send the request petitions which does not have

any substantial data.

WebSocket protocol does not have these problems because objects arrive one by one and can

support a lot of package rate. Taking a look at the system flooded generating 1 object to send

every millisecond, with a clock on frontend we got that sending in this rate the frontend got 1000

objects every 16.83sec. So doing some calculations:

1000
16.83

=59.41
paq
s

59.41∗0.001 s
milisecond

=0.05941 paq /milisecond

It’s important to express it in milliseconds because the generation rate is indicated in

milliseconds.

Also say that on the UserColumns Synchronous tab every object used to have a delay of 6 or 7

milliseconds from the generation to the frontend and on the APIData Synchronous tab used to be

0 or 1 milliseconds, this is basically due to the backend need to calculate the new values and

make database queries.

Moreover, another interesting behaviour is that if the system is flooded and the backend is

suddenly stopped, the frontend keeps showing new data some seconds later, this is because

WebSocketHandler has a buffer to store the messages if they cannot be sent, and this buffer is

not stopped or cleaned when the backend is stopped. I guess that the used buffer is on the

emissary side because the AngularWebSocket object has a function called

“this.amountBuffered()” which tells the user how much data is waiting on the buffer, and this

function is returning 0 all time.

42

5. Budget

Considering that the project doesn’t have a prototype itself. The cost of will be basically the

amount of hours dedicated to develop this tool. Is going to be considerate that the project is

submitted on the internet and their costs. As a junior developer, the amount of work done from

the beginning at now have the following cost

Table 5.1 Project costs

Regarding the web costs, this is the average cost for a web site including, first investment and

annually costs. Considering that if this web site someday arrives on the public internet, just

should paid the Domain, Certificate a Hosting and a maintenance.

Table 5.2 Average year cost of a web application

Supposing that there is one developer working 4 hours a day on improve the product, the

annually costs on that would be:

43

Work Hours Cost/
hour

Total Cost

Frontend 75 9 675

Backend 100 9 900

Bug Fixing 30 9 270

Architecture 75 9 675

Total 280 2520

Costs Price/hour Hours/year Total Price

Domain - - 12$

SSL Certificate - - 200$

Hosting - - 30$

Database 0.10 / Milion

queries

0$

Developer 12$ 240 12672$/year

Total 12914$/year =

850€/month

Table 5.3 App maintenance and improving cost

44

6. Conclusions and future development:

In this chapter, the results obtained are commented, and the way to get this results as well. No

the satisfaction with the results itself, but the knowledge acquired developing this app.

The results obtained on this projects are satisfactory, the project do all the things functionalities

expected at the beginning.

Another conclusion is that making a general architecture is complex, a lot of things has to be

taken in account about the others parts of the project. One of the things that make the project in

trouble was the mutability it has during his development. Is important to define the acceptance

criteria well before start developing and don’t change it, because change how thing works on one

site affects on all project scheme.

Is a good practise on frontend that the minimum components talks with the services, to get data

because in that way the data is controlled and not duplicated.

A very important thing when someone develops is to work in frontend independently from

backend and vice versa, for development speediness, understandability, elegancy, clean code,

comfort etc. Even is grateful be developing the frontend knowing that the backend is working

good and you can think of it as a mocked one.

Is more important to apply the good practises on backend and be strict on it than on frontend

which allows the developer more flexibility. It doesn’t mean not to follow the principles of good

architecture on frontend.

Future releases should include the following functionalities:

- Error management.

- Allow historical operations as average, variance of the last X samples

- Combined operations with more than 2 elements.

- Cache work to reduce the request size

- Charts Feature

- Improving the frontend mapping.

- Connection to a real API

45

Overall I’m very happy with the result I think that is a very useful tool in my personal project, and

it is the first step that sometimes is the most hard to do because there are a lot of new things and

now I can focus on improve the functionalities and not to work in project architecture.

Bibliography:

 [1] Maxim Shafirov (JetBrains), Roman Elizarov (JetBrains),William R. Cook (University of Texas at

Austin),Jeffrey van Gogh (Google) “Official Kotlin Documentation”

https://kotlinlang.org/docs/home.html. [Accessed during all project]

[2] “ Angular Material Official documentation” https://material.angular.io/components/categories.

[Accesses during all project]

[3] “Angular Cli Official Documentation” https://angular.io/cli. [Accessed during work package 1]

[4] “MySQL official documentation” https://dev.mysql.com/doc/mysql-getting-started/en/

[Accessed during work packages 1, 4]

[4] Ascari Romo, “Tareas con spring scheduler” https://windoctor7.github.io/Tareas-con-Spring-

Scheduler.html [accessed during work package 3]

 [5] Alberto C. Ríos, “Accessing Data with JPA” https://spring.io/guides/gs/accessing-data-jpa/

[Accessing during work package 4]

[6] Kristiyan Kostadinov, “FormArray” https://angular.io/api/forms/FormArray

[7] Brian Troncone Oficial Documentation of rxjs https://www.learnrxjs.io/, [Accessed during all

project]

[8] Brian Troncone “forkJoin” https://www.learnrxjs.io/learn-rxjs/operators/combination/forkjoin

[Accessed during work package 5]

[9] MDN Contributors “Cross-Origin Resource Sharing (CORS)” https://developer.mozilla.org/en-

US/docs/Web/HTTP/CORS [Accessed during work package 2]

46

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://www.learnrxjs.io/learn-rxjs/operators/combination/forkjoin
https://www.learnrxjs.io/
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io/team/AlbertoImpl
https://windoctor7.github.io/Tareas-con-Spring-Scheduler.html
https://windoctor7.github.io/Tareas-con-Spring-Scheduler.html
https://dev.mysql.com/doc/mysql-getting-started/en/
https://angular.io/cli
https://material.angular.io/components/categories
https://kotlinlang.org/docs/home.html

[10] ASFO “Usando HTTP Interceptors en Angular” https://asfo.medium.com/usando-http-

interceptors-en-angular-a665ebe6350b [Accessed during work package 2]

[11] Sandeep Jandhyala “10 Microservices Best Practices for the Optimal Architecture 1Design”

https://www.capitalone.com/tech/software-engineering/10-microservices-best-

practices/ [Accessed during all project]

[12] AngularNYC – Working with WebSockets in Angular apps – Yakov Fain

https://www.youtube.com/watch?v=mqFajN7kE4s&t=862s [Accesed during the webSocket part]

 [13] Spring docs https://docs.spring.io/spring-framework/docs/4.3.x/spring-framework-

reference/html/websocket.html

[14]Creating custom listeners in kotlin https://www.youtube.com/watch?v=_a3axw2LF0A

47

https://docs.spring.io/spring-framework/docs/4.3.x/spring-framework-reference/html/websocket.html
https://docs.spring.io/spring-framework/docs/4.3.x/spring-framework-reference/html/websocket.html
https://www.youtube.com/watch?v=mqFajN7kE4s&t=862s
https://asfo.medium.com/usando-http-interceptors-en-angular-a665ebe6350b
https://asfo.medium.com/usando-http-interceptors-en-angular-a665ebe6350b

Appendices (optional):

Helping Figures:

Figure 1 Backend Dependencies

48

Figure 2 Frontend Dependencies

Figure 3 Application Properties

Figure 4 WebSocketControllerListener Class

Figure 5 WeakReference Example Class

49

Figure 6 Release Listener Function

Figure 7 UserService Outside and Inside of Compiling Scope

Figure 8 Generate Random Value to Sent to Frontend and Store on Data Base

Figure 9 Frontend Http Interceptor

50

Figure 10 @Scheduled Example

Figure 11 CRON Example

The @Schedule decorator allows you to declare a CRON or a fixed rate, a variable initialized on

properties. “FixedRate” launches the function each X milliseconds.

Figure 12 CRON Property in Application Properties

Figure 13 GeneralDto Properties

Figure14 Custom Query Example

Figure 15 Manual Connection Example

51

Figure 16 Home Routing Component

Figure 17 Navigate Function

Figure 18 WebSocket Configuration Error

52

Figure 19 Open Two Ports Through Tomcat

Figure 20 WebSocketHeader Failing

Figure 21 WebSecurityConfig

53

Figure 22 WebSocketConfig

Figure 23 Socket Object Sent to Frontend

Figure 24 Client Observable Scheme

Figure 25 Rxjs Subject

54

Figure 26 Switching Protocols WebSocketMessage

Demo:

In this appendix is going to be include a little technical demo to see and understand what the

project does for an user.

This demo is done in local so the URL is http://localhost:4200. Let’s enter to this web page.

The first page showed is a tabs where inside the first tab there is this table:

Figure 27 Api Data dashboard table

This table is not modifiable, and indicates to the user all the data received by the data source,

with the data timestamp transformed to hh:mm:ss.

And the other button opens another dialog which allow to the user to create an Array of

NewColumns Objects (or just one object).

Figure 28 New Column Dialog

On the drop down there is a list with all the columns on APIData dashboard table, a user can

choose whatever he/she wants. On select type there is a drop down with Sum, Subtract, multiply,

division and assign. “Asign” type just take the column on the first select column drop down and

copy it. All this variables constitute a NewColumn Object.

A user can click on add variable to create more than one NewColumn Object and submit all with

Add Columns button together.

55

http://localhost:4200/

Figure 29 New Column Dialog with several objects.

Once submitted the dialog closes. The user will see the columns created on the other tab. User

Columns and

Figure 30 User Columns Tab

The user can delete each column with the trash button located next to column name.

And the other button opens the decision dialog, it allows to the user, that the system will notify

to the user if the decision is complied or doesn’t. Let’s take a look.

Figure 31 Decisions Dialog

The id field is read only, explained later why, the column one is a dropdown with all the

UserColumns dashboard column names, type comparison is ‘<’, ‘>’, ‘=’, and column two has the

column names as well.

56

For example if the user submits one decisions like {Column1: NewCol1, Type Comparison: ‘>,

Column 2: NewCol2}, then the system will calculate when the NewCol1 is bigger than NewCol2.

On Column 1 and Column 2 dropdowns there is a value called ‘value’, if a user choose this option,

the value field will be triggered, so the user have to write some number on it and the comparison

will be between the column chosen and the value chosen.

For example, a decision like {Column1: NewCol1, Type Comparison: ‘=’, Column 2: Value, Value:

5}, will tell to the user when NewCol1 is equals to 5.

Add condition allows to the user to submit more than one decision at the same time.

Figure 32 Decisions Dialog with Several Set.

Trash button is to delete decisions. Then if the user submits the dialog the decisions will be

created. And the dashboard will look like this.

Figure 33 UserColumns Tab with Decisions Columns Filled

Decisions columns has been filled of Mat-chips, green mat-chip means that the condition is

passing as true an red as false. Each mat-chip has a number, this is the decision id given by the

backend. So the user can reopen the dialog and will the de decisions created before with id.

57

Figure 34 New Decisions Dialog with Ids

A user can modify and delete decisions, but to translate it to the data base this dialog always

have to be submitted after a modify or delete, if don’t the changes will not apply.

The 3rd tab shows the same data as ApiDataSynchronous data but in this case the data is sent

through WebSocket Prototocol.

Figure 35 Api DataSynchronous Tab

And finally the 4th tab shows the same data as UserColumns Synchronous but also with web

socket protocol.

58

Figure 36 User Columns Synchronous Tab

Glossary

CRUD service: Create, Read, Update, Delete functionalities.

Apiinformation, ApiData: Is the same database table.

setNewValues(): is a method located on backend.

DecisionObject, NewColumn: Different programming objects used in several parts of the project.

59

	Abstract
	Resum
	Resumen
	Acknowledgements
	Revision history and approval record
	Table of contents
	List of Figures
	List of Tables:
	1. Introduction
	2. State of the art of the technology used or applied in this thesis:
	Several technologies has been used to carry out this project:

	3. Methodology / project development:
	4. Results
	5. Budget
	6. Conclusions and future development:
	Bibliography:
	[5] Alberto C. Ríos, “Accessing Data with JPA” https://spring.io/guides/gs/accessing-data-jpa/ [Accessing during work package 4]
	[7] Brian Troncone Oficial Documentation of rxjs https://www.learnrxjs.io/, [Accessed during all project]

	[10] ASFO “Usando HTTP Interceptors en Angular” https://asfo.medium.com/usando-http-interceptors-en-angular-a665ebe6350b [Accessed during work package 2]
	[11] Sandeep Jandhyala “10 Microservices Best Practices for the Optimal Architecture 1Design” https://www.capitalone.com/tech/software-engineering/10-microservices-best-practices/ [Accessed during all project]
	Appendices (optional):
	Glossary

