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This paper presents a new approach for mitigating the unphysical delay in the RANS to

LES transition, often referred to as the Grey Area, which is a common issue for hybrid

RANS-LES turbulence models such as Delayed-Detached Eddy Simulation (DDES). An ex-

isting methodology designed for improving the LES performance in complex flows is adapted

and tested. This is based on reducing the numerical diffusion in critical areas for permitting a

more accurate development of turbulence. The new formulation comprises both a 2D sensitive

velocity gradient model and an alternative definition of the subgrid length scale, which are

tested both individually and in tandem, and compared with the other formulations commonly

used for addressing the Grey Area. Four test cases are examined, a flat plate, two variants

of the incompressible backward facing step and an open jet compressible case; all of which

are selected to expose the adverse impact of numerical diffusion which we seek to address.

Furthermore, the proposed changes are implemented in two different codes for the purpose of

cross-validation. Encouraging results are observed and examined via detailed analysis, sup-

porting the suitability of the new approach as a candidate for addressing the Grey Area issue

in flows of this kind.

Nomenclature

Csgs = Subgrid scale constant in LES models

Dsgs (ū) = Differential operator used in LES models
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D2D
sgs (ū) = Dsgs (ū) sensitive to 2D flows

G = Gradient velocity tensor

h = Step height of the Backward Facing Step

J = Jacobian tensor of the transformation from the physical space to the computational space

l = rn projected into the plane defined by ω

p̄ = Kinematic pressure filtered by a LES filter

PA = First invariant of a second order tensor, A

QA = Second invariant of a second order tensor, A

RA = Third invariant of a second order tensor, A

Re = Reynolds number

Reτ = Friction Reynolds number

rms = Root mean square

sgs = Sub-grid scale

rn = Distance from the center of the cell to one vertex

S = Rate-of-strain tensor

S̃ = Traceless part of S

Umax = Centerline velocity at the channel inflow

Ub = Bulk velocity at the channel inflow

u = Velocity vector

ū = Filtered by a LES filter

Uo = Center-line velocity at the Backward Facing Step inflow

Ujet = Center-line velocity at the Jet inflow

y+ = distance normal to the wall in wall units

β = Aspect ratio in a rectangular cell, ∆x/∆y

∆ = Subgrid length scale scalar

∆ = Subgrid length scale tensor

∆max = ∆ based on the max dimension in a structured cell

∆lsq = Least-square ∆

∆SLA = Shear layer adapted ∆

∆̃ω = ∆ based on the largest cell dimension in the ω plane

ν = Kinematic viscosity

νt = Turbulent kinematic viscosity
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νsgs = Subgrid scale kinematic viscosity

τ = Kinematic subgrid stress tensor

ω = Vorticity vector

I. Introduction

During the last decades, numerical simulations have become an essential tool for every-day understanding and

prediction of the flow behavior in industrial applications. Reynolds-Averaged Navier-Stokes (RANS) models have

been, and continue to be, widely used due to their cost-effective nature. However, these methodologies do not perform

well when unsteady data is required or when complex flow motions are involved. For covering such a purpose, other

techniques such as Large Eddy Simulation (LES) are recommeneded. Unfortunately, its routine use usually requires a

heavy amount of computational resources, so its use remains relatively scarce; limited to industrial sectors and research

cases where extra accuracy requirements justify the additional expense. In this regard, a set of hybrid RANS-LES

methodologies were specifically designed for circumventing the issues mentioned above. They were basically based on

simulating the unsteady flow away from the wall using LES approaches, while managing the boundary layers close to

the wall by means of RANS models.

In this context, DDES [1] is one of the most widely used hybrid models, due to its proven success in a range of

applications where RANS becomes unreliable, such as massive flow separation. In contrast to the original version

of Detached Eddy Simulation (DES) [2], the DDES non-zonal approach does not rely only on the mesh for defining

the RANS and LES regions, but also on the flow field, by means of the shielding function, fd. However, while some

important weaknesses of the initial DES version where resolved, some others remain open. First, the flow separation

due to adverse pressure gradient depends mainly on the underlying RANS model, with associated weaknesses and

case dependency. The delayed development of the flow instabilities due the overly dissipative nature of RANS also

contributes to the appearance of unphysical results. This is a numerical issue and is known colloquially as the Grey

Area (GA) problem. The second problem concerns the balance of use of RANS and LES within the boundary layer. In

general, a shielding function is introduced to the scheme to ensure that the attached boundary layer is modelled using

RANS. Where this shielding is insufficient, the standard DES schemes tend to activate the LES model in a region which

is insufficiently finely resolved by the grid, which in turn triggers an unphysical boundary layer physics and often flow

separation. Recent studies [3–6] have focussed on the modification of DES-based schemes to improve this shielding.

Menter [5] proposed the SBES (Stress Blended Eddy Simulation) method which adds a novel formulation to further

protect the RANS boundary layer. Deck and Renard [6] also proposed a robust strategy for the RANS shielding of

attached boundary layers in a hybrid RANS-LES methods that was demonstrated on a set of test cases. The present

paper is focused on mitigating the first problem, diminishing the unphysical delay in the RANS to LES transition,
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improving the accuracy of the resolved instabilities in such areas. The second problem has not been studied in detail, as

all the methodologies compared in the paper presented similar properties close to the wall, indicating an acceptable

performance of the standard shielding function [1]. However, these studies are clearly recommended for more complex

flow configurations than those considered in this paper.

A good example of previous efforts to overcome the GA is the extensive work presented by Mockett et al. [7] where

two different strategies were described. First, reducing the eddy-viscosity,

νsgs =
(
Csgs∆

)2 Dsgs (ū) , (1)

in transition areas by either diminishing the Subgrid Length Scale (SLS), ∆, or the differential operators, Dsgs (ū), or

both. Second, introducing artificial oscillations for triggering turbulence in the region of interest. Even though both

strategies deal with the delay problem, the first one is preferable as it is consistent with the non-zonal DES ideology.

A number of other SLS definitions have been proposed by the DES community over the period since its

inception (∆max). For instance, Chauvet et al. [8] introduced the concept of attributing a flow kinematic sensitivity to

the SLS. In particular, they made ∆ dependent on the vorticity vector. The formulation was subsequently generalized for

unstructured meshes by Deck [9]. While results were promising in some cases this formulation led to unnecessarily

small length scale in the near wall region, reducing the stability of RANS. Extending this idea further, Mockett et al. [7],

proposed a new solution based on the flow kinematics,

∆̃ω =
1
√

3
max

n,m=1,...,8
| ln − lm |. (2)

Where l is the distance from the center of the cell to one vertex rn (n=1,. . . ,8 for hexahedral cell), projected into the

plane defined by the vorticity vector, ω. In addition, various alternative differential operators were considered based on

other LES models, aside from the classical Smagorinsky [10] (SMG). In particular, the σ − LES [11] was selected as a

good candidate for its ability to switch off in 2D flow regions. When both strategies (∆̃ω and σ − LES) were combined

(also called σ − DES), significant improvements were obtained with respect to the original DDES [1] at comparable

computational cost [12, 13],

In addition, Shur et al. [14] proposed another SLS in combination with the SMG model,

∆SLA = ∆̃ωFKH (〈VT M〉), (3)

where the ∆̃ω was modified to switch off in 2D flow regions through a blending function, FKH (〈VT M〉). This strategy

is known as the Shear Layer Adapted (SLA) approach. The Vortex Tilting Measure (VT M) coefficient is used as an
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indicator of 2D flow regions,

VT M =
| (Sω) × ω |
ω2

√
−QS̃

. (4)

Where the traceless part S̃ of the rate-of-strain tensor, S = 1/2
(
∇ū + ∇ūT

)
, is used. For incompressible flows,

S̃ = S as the velocity field is divergence free. The second invariant of a second-order tensor A is defined as

QA = 1/2(tr2(A) − tr(A2)). The ∆SLA was successfully applied to several flow configurations [13, 15], reducing the

delay of the flow instabilities in the shear layer.

The objective of this paper, which is aligned with the σ − DES strategy, consists of exploring a recently developed

LES strategy for mitigating the GA phenomenon. The hypothesis is that this numerical issue can be mitigated via

the appropriate choice of SLS and Dsgs (ū) strategies. In this regard, the improvements suggested here are inherited

from Trias et al. [16, 17], who developed a new family of LES models, S3PQR, and a new kinematic-sensitive SLS,

∆lsq, based on the velocity gradient. They are explained in detail in the numerical approach in section II. While both

approaches, S3PQR and ∆lsq, were originally designed and tested for LES applications, preliminar studies [18, 19]

showed how they can be successfully applied to address the GA issue in DDES simulations.

In this paper, the performance of the new approach is compared to the existingmethodologies described above (SMG+

∆SLA [14] and the σ − DES [12]). ∆vol, a classic SLS for LES applications, has not been considered in the comparison

due to its poor performance observed in previous works in the presence of anisotropic meshes (see [14, 17]). Four

different flow configurations are considered: (i) the zero pressure gradient flat plate for studying the possible influence

of the new approaches on the shielding function; (ii) the experimental results obtained by Vogel and Eaton [20]

for an incompressible Backward Facing Step (BFS) at Reh = 28000 (based on inflow bulk velocity, Ub, and the

step edge, h) and Expansion Ratio, E R = 5/4, a ratio of the outflow vs the input heights; (iii) the Direct Numerical

Simulation (DNS) results of a BFS at Reτ = 395 (based on the inlet conditions) and E R = 2 [21], where the growth of the

Kelvin-Helmholtz instabilities in a shear layer is studied in detail and (iv) a compressible subsonic jet at ReD = 1.1× 106

and M = 0.9 [22, 23]. All these simulations have been carried out using two CFD codes, OpenFOAM and NOISEtte

[24].

The rest of the paper is arranged as follows. In the next section, the new strategies proposed for mitigating the

GA issue are defined. The cases used for studying the GA mitigation capabilities of the standard and new strategies are

described in section III, as well as a short description of the two codes used in this work. The behavior of the new

approach is compared with the standard mitigation techniques in section IV, using the cases and codes mentioned above.

Finally, the main conclusions of this work are outlined.
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II. Mathematical Methodologies
In the following section, we present a couple of new methodologies for mitigating the GA issue based on the

reduction of the νsgs (see Eq. 1) in critical areas, either by altering ∆ or Dsgs (ū). The impact of such coefficients on the

GA issue can be understood analyzing the DDES equations, as follows

∂t ū + (ū · ∇) ū = −∇p̄ + ν∇2 ū − ∇ · τ, ∇ · ū = 0, (5)

where the subgrid stress tensor, τ, is modeled giving rise to a non-linear coupling with the filtered velocity itself, i.e. to

solve the closure problem via the Bousinesq hypothesis, as follows

τ(ū) = −νsgs

(
∇ū + ∇ūT

)
= −2νsgsS. (6)

In a DDES model, νsgs is modeled using different RANS (for instance the Spalart-Allmaras [1] model), and is tuned to

reduce to LES away from the wall, where the LES assumptions are applicable. Noting that νsgs is defined by Eq. 1, the

direct dependence of both ∆ and Dsgs (ū) is readily apparent.

Therefore, considering that GA is generally a result of an excessive diffusion coming from the turbulence model νsgs,

a reduction of ∆2 or Dsgs (ū) in critical areas can be expected to bring a significant improvement to the overall simulation.

In this context, techniques initially developed for improving the LES performance in complex flow configurations are

introduced, exploring how they can contribute to address the GA issue in DDES simulations.

A. Subgrid Length Scales

The idea of considering the maximum meaningful scale of each control volume was explored by different authors,

such as Mockett et al. [7], who developed ∆̃ω (Eq. 2). As a preview of ideas, we can analyse its performance for the

following 2D simplified flow

∆ =
©­­­«
∆x

∆y

ª®®®¬ =
©­­­«
β

β−1

ª®®®¬ , G =
©­­­«
∂1u1 ∂2u1

∂1u2 ∂2u2

ª®®®¬ =
©­­­«

0 1

1 − 2ω 0

ª®®®¬ , (7)

where ∆ is a diagonal matrix which represents the dimensions of the rectangular cell, the parameter β defines the

aspect ratio (∆x/∆y = β2) and G is the gradient velocity tensor. Results are displayed in figure 1, for a range of

simple flow conditions ranging from pure shear (ω = 0) to pure rotation (ω = 1). Even though turbulence is a clearly

3D phenomenon, this 2D analysis helps to understand the most essential properties of each SLS. The ∆SLA has not

been included in this study as it sets to zero in 2D flows. Notice that the size of the control volume remains equal to

unity (Eq. 7); therefore, ∆vol = 1, regardless of the value of β (where ∆x is equal to β and ∆y is β−1). The effect of β
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Pure shear
ω=0

Simple shear
ω=0.5

Pure rotation
ω=1

A

B

∆

  ∆vol

  ∆
~

ω    with β=5,1/5
  ∆lsq with β=1/5

  ∆lsq with β=5

Fig. 1 Comparison between ∆̃ω and ∆lsq for the simple 2D flow defined in Eq. 7 with different values of
β = 1/5, 1/2, 2, 5, 10

into the cell’s shape can be observed in figure 2. In a 2D motion ∆̃ω =
√(

β2 + β−2) /3 only depends on the β ratio,

but is not sensitive to either the flow behaviour or the volume rotation (the same results are obtained with β = 5 and

β = 1/5). In the context of LES, Trias et al. [17] proposed a new SLS,

∆lsq =

√
JGTG : JGTG
GTG : GTG

, J =

©­­­­­­­«
J x
ii

J
y
ii

J z
ii

ª®®®®®®®¬
,J l

ii =
1∑

j!=i ‖Gl
i j ‖
, (8)

where J is the Jacobian of the transformation from the physical space to the computational space, which in a Cartesian

structured and uniform mesh J becomes diag(∆x,∆y,∆z). The components of the gradient tensor, G, in a specific

direction, l, are represented by Gl
i j . It is worth to point out that G is actually being computed in any LES or DES code.

This computationally inexpensive new SLS can be applied to structured or unstructured meshes, presenting a good

resilience to spatial anisotropies. Its performance in a 2D flow is also presented in figure 1. In contrast to ∆̃ω , ∆lsq adapts

to the flow behaviour and the cell orientation, providing completely different values in the simple shear (ω = 0.5) case.

In that situation, the spatial length scale is reduced to β−1 = ∆y, priorising the direction with the highest gradient value

(usually normal to the wall). This implies that, ∆lsq could lead to erroneous results in the case of inconsistent refinement.

However, it is usually not the case when Low-Re RANS models are used, as the refinement should be good enough to

ensure a correct capture or the flow behaviour at the highest gradient regions (leading to meshes around ∆y+ ≈ 1). The

issues arise when High-Re RANS models are applied, since they employ wall functions in the near wall region and so

extreme mesh refinement is no longer needed. In this situation, the use of ∆SLA is apparently more appropriate, as the ∆

would be deactivated in 2D flow region.
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∆x
1

∆x
2

J = ∆ =

(
5 0
0 0.2

)
︸                                                         ︷︷                                                         ︸

β=5
∆x

1

∆x
2

J = ∆ =

(
0.2 0
0 5

)

︸                                   ︷︷                                   ︸
β=5−1=0.2

Fig. 2 An example showing how the cell’s shape is affected by the β coefficient (5, 1/5). The cell volume is
constant and equal to 1.

B. Turbulence Models

The possibility of considering other LES models in DDES applications was first studied by Mockett et al. [7]. The

σ − LES model was proposed as a good candidate, due to its ability for switching off in 2D flow configurations and thus

reducing the damping of shear layer instabilities. The same idea is shared at the core of the ∆SLA, which was proposed

by Shur et al. [14] as another Grey Area Mitigation (GAM) technique. These developments can be understood by the

following reasoning:

νsgs = (Cm∆SLA)
2 Dsgs (ū)

=
(
Cm∆̃ω

)2
(FKH (〈VT M〉)2Dsgs (ū))

=
(
Cm∆̃ω

)2 D2D
sgs (ū) . (9)

where ∆SLA is read as ∆̃ω coupled with an ex professo designed D2D
sgs (ū), providing 2D flow sensitivity to the differential

opperator, Dsgs (ū). The fact that FKH (〈VT M〉) is a dimensionless function, helps and sustains the arguments raised

above. However, we should also mention that modifying ∆ has a direct impact in both the RANS and LES areas, whereas

it is not the case for D2D
sgs (ū).

The present paper aims to study the effect of using D2D
sgs (ū) in the GA; applying LES models directly inherited from

LES. In particular, we employ the familiy of LES models developed by Trias et al. [16],

DS3PQR
sgs (ū) = Pp

GGT Q−(p+1)
GGT R(p+5/2)/3

GGT , (10)

where PA = tr(A), QA = 1/2(tr2(A)− tr(A2)) and RA = det(A) are the first, second and third invariants of a second-order

tensor A, respectively. In this case, A is equal to GGT and G refers to the gradient of the resolved velocity field, G ≡ ∇ū.

GGT is proportional to the gradient model [25] given by the leading term of the Taylor series expansion of the kinematic

subgrid stress tensor τ (ū) =
(
∆2/12

)
GGT + O

(
∆4) . In addition to the deactivation in 2D flows for p > −5/2, these
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models also present a proper near-wall behavior [11]. In this paper, p is set to zero to ensure the deactivation of the

model in the 2D flow regions, thus removing dependency on the P invariant, leading to the S3QR model. Other p values

could be explored, but no significant improvements are expected.

We employ a similar modification of the DDES approach to overcome negative influence on the shielding function

to that proposed by Mockett et al. [7] and applied to the WALE and σ models. This approach considers the substitution

of the velocity gradient invariant in the Spalart-Allmaras (SA) [26] RANS model S∗SA =
√
Ωi jΩi j with the following

S∗sgs−DDES = S∗SA − fdpos(lSA − lLES)(S∗SA − BsgsDsgs), (11)

where the operator pos(a) = 0 if a ≤ 0 and pos(a) = 1 otherwise, Bsgs = C2
sgs/C

2
SMG (Csgs is the constant of corresponding

SGS model), lSA is wall-distance, lLES = CDESΨ∆sgs. CDES = 0.65 (for SA-based DES models) is the model constant

calibrated to perform as the Smagorinsky model in case of homogeneous isotropic turbulence, Ψ is introduced to

compensate the unwanted activity of low-Re terms in those areas where the DDES is having a LES-like behaviour [1].

Additionally, Cd1 coefficient from fd is set to 10 to improve the shielding capabilities when alternative subgrid scale

models are applied, such as σ and/or S3QR (following the recommendations of the paper [27]).

III. Simulation Set-up
A set of four different flow configurations has been used to test the above-mentioned techniques, considering both

incompressible and compressible flows. Moreover, the performance of the new SLS and differential operators has been

tested with two different CFD codes, OpenFOAM and NOISEtte.

A. Cases

All cases used here are well-known in the DES community for assessing the impact of GA mitigation methods. They

present free shear layer regions in simple geometrical configurations, where the impact of the model on the anticipated

development of instabilities can be easily studied.

• Zero pressure gradient flat plate

The turbulent subsonic (M∞ = 0.1) flow over the flat plate is considered. Two Reynolds numbers characterizing

the flow are examined: Re = 2 · 104 and Re = 106. The computational domain for both cases is a rectangle

with the sizes Lx = 5 in the streamwise and Ly = 1 in the wall-normal directions. The precomputed profiles of

streamwise velocity u and modified turbulent viscosity ν̃ with particular boundary layer thicknesses were imposed

at the input boundary (at x = 0): δ0.99 = 0.5 and δ0.99 = 0.2 for Re = 2 · 104 and Re = 106, respectively. The

fine meshes that were built for these simulations follow the WMLES recommendations (based on the δ0.99 of

boundary layer at the inflow): ∆x = δ0.99/10, ∆z = δ0.99/20, ∆+
y,1 ≤ 1, ∆max

y < ∆x . Only one cell in the span-wise
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direction was considered for the simulations.

• BFS: Vogel & Eaton (BFS-VE )

This BFS configuration resembles the experimental study carried out by Vogel and Eaton [20] at Reh = 28000 and

ER equal to 5/4. The fluid is incompressible and the Reτ at the inflow is around 2500. The computational domain,

mesh and boundary conditions can be found in work by Spalart et al. [1]. This configuration is a reference case in

the DDES literature for studying the RANS to LES transition downstream of the step-edge. Hereafter, this case is

named BFS-VE .

• Instabilities’ growth at the shear layer (BFS-DNS )

As well as considering fluctuation intensity as a means for evaluating model capabilities in the RANS to

LES transition region, in this case we may also use a BFS case to study the growth of these instabilities along the

shear layer. The case reported by Pont-Vílchez et al. [21] covers both of these aspects in an incompressible BFS at

Reτ = 395 and E R = 2.0. Emphasis was placed downstream of the step-edge, where the shear layer instabilties

appear. In the present work, the dimensions of the computational domain have been reduced respect to the reference

DNS case, in order to resemble the BFS-VE domain. These are 24h × 2h × 2h, in the stream-wise, wall-normal

and span-wise directions, respectively. The inflow is located at 4h from the expansion. The origin of coordinates

is placed at the step-edge. In order to assess the mesh resilience capabilities for different GAM approaches, three

meshes has been selected. They propose different refinement levels in the stream-wise direction (free shear layer

area) just downstream the step-edge, x1 = [0, h]. In these meshes, a length equal to 8, 16 and 32 wall-units for the

first grid cell after the step-edge is used, respectively. The rest of mesh parameters are kept constant. These are:

the Poisson growth ratio equal to 1.1, the number of cells per x1x2-plane equal to 11800 and the number of planes

in the periodic direction equal to 60. Regarding the boundary conditions, a turbulent channel flow at Reτ = 395 is

set at the inflow. Hereafter, this case is named BFS-DNS .

• Round unheated compressible jet

The immersed jet exiting from a conical nozzle at Mjet = 0.9 and ReD = 1.1 × 106 based on the jet diameter D

and jet exit velocity Ujet is considered. The resulting flow dynamics are similar to cases studied experimentally by

several authors in the literature [28–32]. The computational domain, mesh and boundary conditions can be obtained

from the study carried out by Shur et al. [33]. Afterwards this case was used in different investigations [14, 34]. It

is considered to be a reference configuration for assessing the RANS to LES transition capabilities of different

SLS and Dsgs (ū) in compressible flows. The simulation of the jet follows a two-stages approach when nozzle and

jet-plume computation is performed using RANS at the first stage, while only the jet-plume region is considered

at the second stage, with profiles from the first stage imposed at the nozzle exit boundary surface. These profiles

of gas-dynamic and turbulence model variables were provided by M. Shur and M. Strelets from Peter the Great

St. Petersburg Polytechnic University. The structured (hexahedral) Grid 3 from the papers [33] is used for
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computations of the jet case. It has 160 cells in the azimuthal direction and contains 8.87M nodes in total.

B. Codes

Both codes employ a time integration implicit second-order scheme, doing several iteration stages per time step to

achieve the desired degree of convergence. The Courant number has been kept below unity in the LES zone to ensure a

proper triggering of turbulence. Both codes use the hybrid convective scheme suggested by Spalart et al. [35], switching

from Symmetry-Preserving to Upwind-based depending on the flow behavior. Where the upwind dissipation vanishes

in LES areas, whereas it is activated in RANS and some critical zones to guarantee system stability. particularities of

each code are described hereafter.

• OpenFOAM-v1706

This well-known open-source CFD code is based on an unstructured collocated finite-volume approach. The

hybrid convective scheme used in this case is a blending of a second-order central difference in the LES region and

a second-order upwind-biased scheme in the RANS and irrotational area. Considering broad usage of OpenFOAM

in the CFD community, the authors have considered adding some extra details about the solvers used in the

above-mentioned simulations. The BFS cases have been solved with the PisoFoam solver, which is recommended

for transient CFD flow simulations such as LES and DDES. SonicFoam has been selected for the compressible

flow simulations of the jet after providing the best results for transonic flows in transient simulations. Oficial

versions of the solvers have been used in all simulations.

• NOISEtte

The numerical algorithm realized in the research code NOISEtte [24] is based on quasi-1D vertex-centered

EBR (Edge-Based Reconstruction) schemes [36, 37]. These schemes combine the advantages of structured

and unstructured methods and provide a reasonable balance between accuracy and computational costs in

scale-resolving simulation. On arbitrary unstructured meshes, the EBR schemes are theoretically of maximum

second-order depending on the type of mesh elements and duals. Regarding the convective scheme, NOISEtte

used a 4th order centered and 5th order upwind schemes in the LES and RANS areas, respectively.

IV. Results and Discusions
The results provided here have been obtained employing the GAM techniques shown in table 1. They have been

grouped by case, which are defined in subsection III.A.

A. Zero pressure gradient flat plate

A preliminary study is carried out to evaluate the possible effect of the GAM on the shielding function, fd, for

DDES. The following computations were carried out using the NOISEtte research code.

11



Table 1 GAM techniques considered in this paper. The new approach is marked with (∗).

SLS Dsgs (ū)

∆SLA SMG

(∗) ∆lsq
SMG
S3PQR

∆̃ω
SMG
σ

1 2 3 4

3.74

3.76

3.78

3.8
Re=2 104

x

 SA RANS     
    
     
 

1 2 3 4

2.22

2.24

2.26

2.28

x

 SA RANS
 
 
 
 
 
 

Re=106

Fig. 3 Turbulent boundary layer over the zero gradient flat plate: the friction coefficient distributions, Cf , over
the wall for Re = 2 · 104 (left) and Re = 106 (right) using different GAM approaches.

Figure 3 shows the Cf distributions in the stream-wise direction calculated using all the GAM approaches considered

in the present paper. The SA RANS and original DDES formulation (with ∆max + SMG) results in the figure are

provided from Spalart et al. [1] as reference. It can be seen from the graphs that using either ∆SLA or ∆lsq with the SMG

model leads to slight underestimation of the Cf for both Reynolds numbers tested (note the y-axis scale is different in

each case). However, it is noted that in both cases the gradient is similar to the standard ∆max + SMG solution and does

not exceed 1% error for Re = 2 · 104 (even lower for Re = 106). Regarding the other models tested (variants of ∆̃ω

and S3QR), figure 3 indicates an improved correlation with the reference RANS solution. The modest improvement is

anticipated, due to th re-calibration of the empirical constant Cd1 (used for calculating the fd function) presented by

Mockett et al. [27], whereas the original value of this constant has been retained in the other models. In conclusion,

the data presented above indicates that the different techniques considered in the paper do not lead to any noticeable

drawbacks in the shielding function.

B. BFS: Vogel & Eaton (BFS-VE )

The triggering of oscillations in the free shear layer appears to be linked to an improved resolution of the flow

dynamics in the LES region. In this regard, the influence of different GAM strategies into such oscillations downstream

the step-edge are studied by means of rms(u′) (figure 4). While there is no experimental or high-quality numerical data

providing the correct level of oscillations in such area, it can be observed using both codes how the new SLS, ∆lsq,

triggers slightly higher fluctuations than the standard strategies for mitigating the GA. Especially at the free shear layer
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Fig. 4 BFS-VE : Backward Facing Step from Vogel and Eaton [20] (Reτ = 2500, E R = 5/4). Different
combinations of Subgrid Length Scales and Differential Operators, plotted for both codes: (top) OpenFOAM
and (bottom) NOISEtte . (left) wall normal profiles of the streamwise component of fluctuating velocity, rms(u′),
and (right) evolution of the same quantity along the horizontal line, x2 = 0, directly downstream of the step
corner.

area, close to the step edge. The fact that ∆̃ω + SMG is clearly not aligned with the rest of SLS is caused by the delay in

the RANS to LES transition, leading to energetic oscillations downstream of the flow. The differences observed in

figure 4 between the SLS strategies at the free shear layer area can be explained by drawing a comparison between

earlier results for homogeneous flows, shown in figure 1 and the ∆ distribution downstream the step-edge in figure 5. As

expected, ∆max returns the highest ∆ values, translating to higher dissipation in the shear layer, so contributing to an

excessive delay of the flow instabilities in such regions. A probe of that are the studies carried out by Shur et al. [14]

and Guseva et al. [15]. An important reduction of ∆ is shown in figure 5 when using ∆̃ω , as a 2D flow behaviour in the

x1x2 plane downstream of the step-edge is detected (GA region), ignoring ∆x3 and getting closer to the diagonal value

in this plane; ∆̃ω−2D =
√
(∆x2

1 + ∆x2
2)/3. It is worth noting here that ∆̃ω will never provide values lower than the lowest

2D diagonal of the cell,

∆̃ωmin = min
i!=j

(√
(∆x2

i + ∆x2
j )/3

)
. (12)
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Subgrid Length Scale formulations tested, as defined in section II. Values are plotted for (left) the full domain
downstream of the step corner and (right) a zoom of the region near the step. Resulst from OpenFOAM .

In this case, ∆̃ω and ∆̃ω−2D do not completely collapse, due to the undesirable numerical oscillations present at the

very beginning of the step-edge (rms values in figure 5, left, at x1/h = 0 are not 0). Therefore, these oscillations

lead to ∆ values which are representative of 3D structures, i.e. ∆̃ω−3D =
√
(∆x2

1 + ∆x2
2 + ∆x2

3)/3 rather than 2D,

∆̃ω−2D (figure 5), affecting also the ∆SLA natural behaviour, as it is not deactivated close to the step-edge. The reason

why these fluctuations are catalogued as undesirable is because they cannot have a physical origin, as these would

be easily dumped for the high dissipation present in the RANS area. The proper physical oscillations would have a

progressive rise through the shear layer, similar to the one shown by the DNS data (figure 7). Considering the impact of

these unwanted numerical oscillations in the overall simulation, a special test has been carried out in the next case in

order to understand their possible origin. The authors think that they could be induced by the high aspect ratios at the

step-edge (∆x/∆y ∼ 32), which is supported by the fact that these oscillations have only been observed in the results

obtained with OpenFOAM (figure 4).

In contrast to ∆̃ω , for which the minimum value is proportional to the Euclidean norm as described in Eq. 12,

the ∆lsq formulation permits to take values of ∆x2 directly, i.e. significantly smaller than the Euclidean norm in the

vicinity of the wall. This interesting property was noted previously in section II and in figure 1 for “Simple Shear”

dynamics. This feature is thus highly relevant to the BFS, and many other configurations exhibiting similar separation

and subsequent development of instabilties in the shear layer. The small ∆ values lead to a strong reduction of the

eddy-viscosity, generally unlocking the KH instabilities and improving the quality of the simulation in the LES region.

However, while we can observe in figure 5 how ∆lsq follows a similar trend as ∆x2 distribution, there is a clear offset,

mainly produced by the initial oscillations at the step-edge. It explains why the transition from “Simple Shear” to “Pure

Rotation” cannot be completely appreciated in figure 5 (both terms are defined in figure 1). It is important noting here

that ∆lsq still presents the lowest values of ∆, which explains the good behaviour of the oscillations observed in figure 4.
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Fig. 6 Skin friction coefficient Cf distribution over the lower wall considering various SLS in combination with
different Dsgs (ū). Experimental data, E xp., has been obtained from Vogel and Eaton [20].

Regarding the results obtained with other differential operators, we can note that combining ∆̃ω with a 2D-sensitive

formulation, such as σ, results in a significant improvement in the free shear layer area (figure 4). This is in good

agreement with the observations carried out by previous authors [12, 13]. This is not the case for ∆lsq + S3QR, which

presents almost no difference in comparison with ∆lsq + SMG. Figure 4 also demonstrates that very similar trends

are observed in both codes, OpenFOAM and NOISEtte, which is clearly a good indication of the reliability and code

independence of the new approach.

Figure 6 presents the skin friction coefficient Cf = τw/
(
0.5ρ0U2

max

)
(here Umax is the centerline velocity at the

channel inflow) distributions over the lower wall downstream the step. It is seen that the results using all the considered

approaches correspond well to each other and to the experimental values. The flow aerodynamics including reattachment

point location is captured precisely. A slight deviation can be distinguished only at the region downstream x/h ≥ 8

where the flow is simulated in the WMLES regime where the DDES approach does not provide appropriate accuracy.

While the BFS-VE case is an important reference for hybrid methods, the lack of detailed reference data in the free

shear layer region reduces the scope for a more detailed analysis of model performance. For this reason, a comparison

with DNS data has been performed in the next section, using another BFS configuration [21]. In particular, it enables a

detailed examination of the intriguing oscillations which appear just after the step-edge in the OpenFOAM . They are

anticipated to be due to the high cell aspect ratio in this area, ∆x1/∆x2 ∼ 32, but their relation is not clear. As such, a

set of meshes with different aspect ratios and refinements downstream the step-edge are tested in the BFS-DNS case.

C. Instabilities’ growth at the shear layer (BFS-DNS )

As identified in the previous section, the motivations for considering this case; 1) to investigate performance of the

new approach in free shear layer region and 2) to assess their sensitivity to high aspect ratio cells in this region. For

this purpose, three meshes with slightly different x1 refinements in the shear layer area have been considered (keeping

constant ∆x2), with the following cell aspect ratio at the step edge, ∆x1/∆x2 = 32, 16 and 8. The performance of the new
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approaches in such meshes is presented in figure 7, demonstrating the influence of the the cell aspect ratio in the rms(u′)

distribution. In addition to observing that stronger fluctuations are triggered by ∆lsq compared to the other candidates,

we can also appreciate the good alignment with the DNS dataset. This supports the hypothesis that ∆lsq contributes

to an improved definition of the KH-instabilities in the shear layer region. Furthermore, it seems that the observed

oscillations just after the step-edge are strongly mitigated when the cell aspect ratio in this region is reduced. Other

interesting interpretations can be made from figure 7, such as the strong mesh resilience presented by ∆lsq and ∆SLA in

comparison to ∆̃ω . The poor performance of ∆̃ω observed in figure 7 (left) is attributed to the cell’s stream-wise size (at

x1/h ∼ 1) and the strong dependence of ∆̃ω on this value. This is not true for other definitions of SLS; namely, ∆SLA is

significantly reduced for (quasi-)2D flows (like in this case) whereas ∆lsq has a very small dependence of ∆x1 at the

beginning of the shear layer where the flow resembles the idealized simple shear configuration (see figure 1). Of course,

at more downstream locations, shear-layer instabilities start to develop leading to more complex flow configurations

where ∆x1 will play a relevant role in the calculation of ∆lsq. This process can be viewed as a natural transition from

simple-shear-like configuration towards a more pure-rotation-like (KH vortices), where both ∆lsq length-scale and ∆̃ω

have a similar behavior (see figure 1). Finally, it also seems that while there appears at first glance to be some ’benefit’

of these unphysical oscillations in the development of turbulence downstream of the step, this is likely to be fortuitous,

since the tests for AR = 32 never entirely recover the DNS levels of rms(u′). The subsequent analysis considers only

the mesh with ∆x1/∆x2 = 16. The rms distributions along the stream-wise direction are presented in figure 8. In

addition to a significant improvement of ∆lsq + SMG in comparison to ∆̃ω + SMG and ∆SLA + SMG at the shear layer,

all SLS behave similarly downstream of the step-edge (x1 > 2) for both codes. A general misalignment is seen at x1 = 8,

which is attributed to the lack of mesh resolution in this region. The positive effect of using a 2D sensitive differential

operators, such as σ, in combination with ∆̃ω is demonstrated once again in the free shear layer area (figure 8, right). In

a similar way to in the previous case, there was almost no sensitivity of ∆lsq to the Dsgs (ū) used, as as observed in the

BFS-VE case, similar results are obtained with both codes, OpenFOAM and NOISEtte.

The same conclusions can be obtained in figure 9 with the view map (plane-x1x3) of the QG isosurfaces in the shear

layer area, showing the turbulence generated in such region, just after the step edge x2 = 0. These images clearly show

how the level of turbulence is significantly higher in ∆lsq + (SMG, S3QR) than in the other strategies, which is in good

agreement with the other observations commented before.

Finally, a study of the instabilities’ growth at the shear layer is provided, where we can observe how it behaves

with different GAM. The same methodology described in Pont-Vílchez et al. [21] is used. A schematic view of the

instabilities’s growth is shown in figure 10. First, a set of 2-point correlations of u′2 along the stream-wise direction

downstream of the step-edge (figure 11) has been used for calculating the size of the instabilities in the stream-wise

direction, ∆δ1. Unfortunately, the RANS flow coming from the inflow, makes this technique unusable for estimating ∆δ2,
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Fig. 8 BFS-DNS : Backward Facing Step from Pont-Vílchez et al. [21] (Reτ = 395, E R = 2.0). Different
combinations of Subgrid Length Scales and Differential Operators, plotted for both codes: (top) OpenFOAM
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Fig. 9 View map (plane-x1z3) of the QG isosurfaces, QG(H/Ub)
2 = 10, for the following GAM strategies:

∆̃ω − SMG (top-left), ∆lsq − SMG (top-right), ∆SLA − SMG (bottom-left), ∆lsq − S3QR (bottom-right). The
dimensionless velocity field in x2 direction is plotted in the isosurfaces.
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Fig. 10 Schematic view of the Kelvin-Helmholtz vortices in a shear layer, where ∆δ1 and ∆δ2 represent a
estimation of the vortex size in the stream-wise and normal direction, respectively.

so another approach has been used [21, 38],

∆δ2 = ∆U1/(∂ 〈u1〉 /∂x2)max. (13)

In figure 8 we can see how the rms profiles are highly influenced by the SLS along the shear layer. However, this is

not so significant in the ∆δ1 distribution (figure 11, top). The best alignment is shown by ∆lsq and ∆SLA at x1 ∈ [0, 0.8h].

It can also be observed how this initial correlation with DNS data is considerably reduced downstream, exhibiting

a shallower slope in comparison to ∆̃ω and the DNS. The coarsening of the mesh in such region can explain this

deterioration. While the results for ∆̃ω appear to indicate a slope gradient in closer accordance to the reference data, this

is likely associated to the overestimation observed in 0.4 ≤ x1 ≤ 0.7.

Regarding ∆δ2, it seems to be quite sensitive to the SLS (figure 11, bottom). This was an expected behaviour as the

terms used for estimating ∆δ2 ( Eq.13), indirectly depends on other terms which are highly influenced by SLS, such as

rms(u′). Hence, figure 11 (bottom) clearly demonstrates once again how diffusion introduced by ∆SLA and ∆̃ω is too

high to ensure the correct development of the KH instabilties along the shear layer.

Figure 12 presents the skin friction coefficient Cf = τw/
(
0.5ρ0U2

max
)
distributions over both the upper and lower

walls downstream the step. As for the BFS-VE case, the results using all the considered approaches correspond well to

each other. It could be concluded that shielding property of the DDES approach with the new proposed techniques

remains the same as the original DDES model or the DDES with shear-layer adapted length scale [14]. The perceptible

difference in the upper-wall between the DDES results and the reference DNS data can be attributed to the insufficiency

of the DDES approach for dealing with such configurations where the shear layer’s resolved turbulence interfere with

the WMLES area at the upper wall.
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Fig. 12 Skin friction coefficient Cf distribution over the upper (left) and lower (right) wall considering various
SLS in combination with different Dsgs (ū). A DNS [21] has been used as reference data.

D. Round unheated compressible jet

The jet plume region characteristics obtained using different approaches realized in both codes (NOISEtte and

OpenFOAM ) are presented on the figures 13-17. In terms of the correspondence with the reference data, the first

observation is that all approaches evaluated in this paper capture the jet dynamics reasonably well, with the exception of

one model. The limited capability for GA mitigation of the ∆̃ω length scale in the jet case is expected and was already

reported in previous studies [7, 14, 22].

Figures 13 and 14 present a comparison of the averaged stream-wise velocity and its rms distributions, correspondingly,

over the jet centerline. All the approaches (except ∆̃ω + SMG) allow to predict the length of the jet core region more or

less correctly. The results obtained using the NOISEtte research code are notably more consistent than the OpenFOAM

ones. This behaviour could be due to the numerical scheme employed for convective fluxes and its dissipation properties.

NOISEtte uses the higher accuracy EBR scheme which exploits extended stencils to achieve higher resolution which

results in less dissipation from the numerical scheme. Both less dissipation and higher accuracy (in terms of absolute

value of the numerical error) lead to an earlier RANS-to-LES transition in the shear layer, avoiding sudden exposure-like

wakes or numerical instabilities. This observation is supported by figure 14, where the rms levels of stream-wise velocity

in the results obtained with OpenFOAM start to grow permanently, in the region 2x/D till 3.5x/D and are noticeably

overestimated by the region 5 < x/D < 10, in contrast to the corresponding distributions obtained using the NOISEtte.

A faster RANS-to-LES transition also facilitates more “physical” evolution of the shear layer downstream which is

developed more smoothly. After reducing a maximum between 10 < x/D < 12, the centerline distributions of rms(u′)

obtained by all the considered GA mitigation approaches and both codes are close to each other and to the experimental

values.

A more in-depth evaluation of performance is now considered by analyzing the distributions of various characteristics

along the lip line downstream of the nozzle edge; presented in the figures 15-17. The averaged subgrid length scale

normalized by its maximum, ∆max, local value and turbulent to molecular viscosity ratio are shown on the figures 15 and

16, correspondingly. By analyzing these plots the following features can be revealed. First of all, none of the considered
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Fig. 13 Average of the stream-wise velocity over the jet center line starting from the jet nozzle exit.

subgrid scales (∆̃ω , ∆SLA and ∆lsq) does reach ∆max value. It is observed in the early shear layer region that is highly

desirable to provide the faster RANS-to-LES transition. As for the areas far downstream the nozzle exit, ∆sgs values are

lower than ∆max because of the anisotropy of the mesh used in the simulations along the lip line. It does not lead to any

drawbacks: the ∆sgs distributions behave like O(∆max) remaining much higher than ∆min. Note that the realization of

static scales ∆min and ∆max slightly differs in the codes. The OpenFOAM inherits the classical realization: the projection

of the cell to the Cartesian axes. As for the NOISEtte , vertex-centered ∆min and ∆max values are calculated as the

minimum and maximum height of the hexahedrons incident to the node, correspondingly. So these values (and another

∆sgs relative to ∆max) differ from each other, especially in the areas where gridlines are not parallel to the axes.

Another obvious property is that the ∆lsq values and, accordingly, turbulent viscosity levels are significantly

lower than those provided by ∆̃ω and ∆SLA length scales. In the very early shear layer region (see the right plots of

figure 15), at x/D . 0.1, the ∆SLA length scale drops to very low values with strong growth till x/D ≈ 0.3 (due to

impact of FKH (〈VTM〉) function). The ∆lsq is proportional to ∆min before x/D = 0.2 − 0.3. After x/D = 0.3 both

length scales (∆SLA and ∆lsq) have the same increasing trend up to x/D ≈ 0.9. In the developed shear layers regions,
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Fig. 14 Average of the stream-wise velocity root-mean square over the jet center line starting from the jet
nozzle exit.

with resolved 3D turbulence, the ∆ distributions behave like O(∆max) with slight deviation in the approximate region

0.4∆max < ∆ < 0.7∆max. The turbulent viscosity levels presented on the figure 16 mostly follow the corresponding

subgrid length scale values’ trends. The distributions of stream-wise velocity rms values are presented on the figure 17.

Overall, all the considered approaches result in a good correlation with the reference data and with each other. It is

being observed for both codes, NOISEtte and OpenFOAM, too. The only noticeable discrepancy can be revealed in

the early shear layer region at 0 < x/D < 2: the peak values of rms(u′) from the OpenFOAM simulations are higher

than the NOISEtte ones. It can be attributed to the behaviour of the numerical scheme for convective fluxes (as already

mentioned above in this subsection): low dissipativity and higher accuracy of the numerical scheme facilitate earlier

RANS-to-LES transition. This is why the values of turbulent viscosity from the simulations carried out by NOISEtte

are higher than OpenFOAM ones (see the results using alternative SGS model on the figure 16): shear layer evolution

becomes smoother, decreasing the observed amount of unphysical oscillations.

This slight delay results in a notably more intense “numerical” transition downstream, that is manifested in higher
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Fig. 15 Average of the subgrid length scales over the lip line starting from the jet nozzle exit (left) and its zoom
view near the edge (right).

levels velocity rms distributions in this part of the shear layer. It is seen from the figure 17 (right) that ∆SLA provides

faster development of the separated flow apparently due to the lower levels of turbulent viscosity. As also pointed out in

the previous subsections (IV.B and IV.C) two peaks of stream-wise velocity rms are observed in the early shear layer

region (see right subfigures of figure 17): the first lays at x/D ≈ 0.05 in the NOISEtte distributions and at x/D ≈ 0.15 in

the OpenFOAM ones; the second – in the region 0.3 < x/D < 0.7, depending on the method and the code used. The first

peak, driven by RANS-to-LES “numerical” transition, has an unphysical nature, likely related to the mesh anisotropy in

this region, while the second is attributed to the resolved turbulence in the shear layer. There are three peaks in the

rms(u′) distributions obtained using OpenFOAM when σ or S3QR model is used instead of SMG (see right top plot of

the figure 17). This fact can be explained by unphysical oscillations appearing in this region due to slightly delayed

RANS-to-LES transition with mesh underesolution to provide it correctly when alternative LES models are applied.

The usage of alternative LES subgrid model, σ in combination with ∆̃ω and S3QR in combination with ∆lsq,

perceptibly addresses the GA problem by ensuring much lower dissipation in the very early shear layer regions. It is
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Fig. 16 Average of the turbulent to molecular viscosity ratio over the lip line starting from the jet nozzle exit
(left) and its zoom view near the edge (right).

seen from figures 13, 14 and 17 that the results obtained using ∆̃ω + σ and ∆lsq+S3QR are in close agreement with

those provided by ∆SLA or ∆lsq +SMG both in the jet core region (x/D ≈ 7 − 8) and downstream it. It happens in spite

of the fact that turbulence viscosity distributions vary from each other quite strongly (see figure 16). Whiere the σ

model increases turbulent viscosity, in comparison to the results using SMG, S3PQR model yields reduced levels (see

figure 16). In general, the incorporation of an alternative LES model enhances the simulation of the jet and does not

lead to any crucial drawbacks.

V. Conclusions
The main aim of this work was to address, or at least partly mitigate, the Grey Area issue present in DDES models

by means of techniques initially developed for LES turbulence models. In both applications there is an inherent need

to reduce νsgs in critical regions, where flow does not strictly behave in a fully turbulent manner. For this reason, we

decided to compare some recently developed Grea Area Mitigation techniques, such as ∆SLA + SMG and ∆̃ω + σ, with
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Fig. 17 Average of root mean square of the stream-wise velocity over the lip line starting from the jet nozzle
exit (left) and its zoom view near the edge (right).

two new approaches initially designed for LES models (∆lsq and S3QR), in order to assess their ability to move from

RANS to LES in areas where the flow presents a complex behaviour such as free shear layers.

The new approaches have been demonstrated to behave in a similar, and in some cases superior, manner to those

techniques previously proposed to address those issues, such as ∆SLA + SMG and ∆̃ω + σ. This conclusion has been

supported by applying the new approach to four different cases (considering incompressible and compressible flows),

each computed with two different codes. As well as demonstrating improved performance, the new approaches are

grounded in well-established physical LES modelling assumptions, whereas the standard GAM techniques incorporate a

certain degree of tuning and blending which renders the model more empirical.

It is also worth mentioning that the beneficial influence of ∆lsq is considerably more impactful than that obtained

when using a differential operator sensitised to 2D flows, such as S3QR; the effect of these models is only noticed when

the SLS is too difussive, such as for ∆̃ω . In contrast, when ∆lsq is used, the substitution of SMG with S3QR resulted in

only minor differences.
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For the considered test cases, the present study revealed no distinguishable impact of the proposed techniques on the

shielding property of the DDES blending function. However, it should be noted that the present work did not examine in

detail the impact of the new approach, up on the near wall RANS region. In those cases with free inflow condition,

where the νsgs is set to around 4 times the molecular kinematic viscosity (classical inflow for Spalart-Allmaras RANS

models). This can be the case of any bluff-body, such as circular cylinders or airfoil profiles. Nevertheless, without

careful additional testing, beyond the scope of the present work, the shielding capability of the present formulation can

not be confirmed.
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