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Abstract

The realization of nuclear fusion energy is nowadays based on the concept
of tritium breeding and the success of the ITER experiment. The latter
relies today on a static monitoring approach to fulfill the emission limits
imposed by the regulatory institutions. Artificial Intelligence applications for
fault diagnosis and process monitoring anticipate potential for the dynamic
management of tritium in complex plant systems. This paper explores the
dynamic tritium inventory management issue in complex systems, reviews
the diverse artificial intelligence techniques and discusses the most promising
approaches for ITER-like plant system match balance monitoring.

Keywords: Tritium, ITER, Artificial Intelligence, Machine Learning, Fault
Detection and Diagnosis

1. Introduction

Tritium match balance monitoring is fundamental for ITER licensing and
operation, as well as for future fusion commercial reactors. On the one hand,
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tritium is scarce and the fusion process needs to be self-sufficient [1]. On
the other hand, tritium is a hard to track component that is radioactive
and can permeate structural materials [2]. Its radioactivity nature makes
it necessary to ensure the emissions don’t overpass a certain limit. This is
why the local authorities (ASN/IRSN in France) require to assess the total
tritium inventory in the plant to guarantee that it is operating correctly.

The current strategy for tritium monitoring in ITER’s Tritium Plant
is conservatively based on a static procedure. This procedure consists of
a two-step approach in which any effluent in the tritium plant susceptible
to containing tritium traces must be derived to the Storage and Delivery
System to assess the total tritium inventory. A calorimetry test performs
this assessment and trapped tritium inventory both in the vacuum vessel
and in the rest of the plant can be accounted for. Thus, a halt in the plant is
needed, as it is well accepted that no plasma operation can take place while
the tritium inventory assessment procedure is in progress [3].

This conservative static approach is constrained by the limitations of the
current sensing monitoring solutions and the regulatory tritium emissions
limits [4]. In this strategy, the flexibility of the plant operation is reduced and
the tritium self-sufficiency, which is a key aspect to secure in a fusion reactor,
is difficult to provide due to the mandatory periodic shutdown procedures.
A dynamic monitoring approach could become an alternative to this scheme
and boost the performance in the operation of tritium plants. This new kind
of approach would need to rely on improvements in dynamic modeling, sensor
solutions, and process monitoring algorithms.

Dynamic modeling codes for tritium plant components are under devel-
opment [5, 6] to support tritium balance matching. Dynamic modeling is
particularly needed taking into account that in-vessel inventories remain un-
certain and mass balance cannot be directly accounted for. There is no con-
sensus among the scientific community concerning the models for trapped
inventories in the torus [3]. This lack of agreement can heavily delay the
achievement of the continuous and safe dynamic operation of a fusion power
plant. In this context, tritium processing models may imply extra data for
in-vessel assessments.

Tritium sensors are essential to perform tritium balance monitoring and
assess the amount of tritium throughout the plant. However, there is no
sensor solution able to provide a measurement accuracy over the 3-4 digits,
and a sensor technology that can cover the whole range of concentration in
which tritium can be found in a fusion reactor doesn’t exist [4].
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Special applications of artificial intelligence to process monitoring arise
as a possible contribution to the problem of tritium monitoring in fusion
power plants. This paper is designed to outline the research developed in the
SMART TC programme in which Inprocess and FUS ALIANZ collaborate
with the Technical University of Catalonia to focus on proposing an advanced
strategy for match balance dynamic monitoring in a tritium plant. Given the
complexity of the task, the research will take advantage of the available com-
putational capabilities and the advanced algorithmic approaches developed
in the last years, combining several decision-making units in a multi-agent
approach.

Artificial intelligence has already been proposed for the assistance in fault
diagnosis for industry [7, 8] and specifically in the nuclear field [9, 10]. Cases
of success such as that shown by Yang and Mou [11] extend the interest of
research in this field and manifests the promising derivations of their appli-
cations to new fields like tritium and fusion.

The document is organized as follows. Section 2 formalizes the tritium
monitoring goal and outlines the motivation and the needs of a new perspec-
tive of the monitoring issue. Section 3 performs a review of the techniques
prone to be used in a tritium monitoring environment from a fault diagnosis
perspective. Finally, Section 4 drives a discussion in terms of further chal-
lenges in dynamic monitoring and suggestions in the ongoing developments.

2. Problem statement

A fault can be defined as an event in a system that causes a variable or
property of the process to deviate from an allowed range [12]. Faults can be
related to a change in a process parameter, a change in a disturbance param-
eter, failure in actuators or failure in sensors. Fault detection and isolation
is a subfield in control engineering that studies how to find out, anticipate
and warn about deviations of the plant performance from acceptable limits,
even if the standard control strategy fails to this aim.

In tritium plants, faults can take the form of a gas chromatograph failing
to function, the occurrence of glovebox overpressure or transducers yielding
wrong values [13]. But a higher level fault to be taken care of is the tritium
inventory mismatch that can turn into potential emissions and thus break
the regulatory limits over the 0.1 % of the total inventory [14].

The main tool to manage the fault state of a process is the use of mea-
surements. Tritium concentration sensing solutions vary from a wide range
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of accuracy and applicability and different measurement techniques, such
as liquid scintillation counters, ionization chambers, proportional counters,
He-3 measurement with mass spectroscopy, RAMAN spectroscopy, gas chro-
matography and calorimetry [4]. Among them, calorimetry is one of the few
able to measure tritium at high concentrations by accounting for the tritium
decay heat, but it yields an accuracy of 2-3 digits only. Ionization chambers
and proportional counters are suitable only for gas-phase tritium. Ioniza-
tion chambers suffer from a trade-off between accuracy and time response,
depending on their volume and need tight re-calibration strategies. Propor-
tional counters are more sensitive to measurements but do not fit for online
purposes. For liquid samples, liquid scintillation counters are the main solu-
tion available. Scintillators are based on absorbing energy from the tritium
decay to convert its energy into photons and use a counter to measure the
activity of the sample. They can also be used for gases if bubbled along the
solvent sample [15].

The limitation of tritium sensors in terms of accuracy, response time and
sampling frequency, as well as the small order of magnitude of allowable
tritium balance mismatch, drove into the decision of a conservative static
tritium inventory assessment in the design of the operation strategy of the
ITER tritium plant [3]. In this monitoring approach, any process stream
liable to contain tritium traces needs to be processed and milked down of
tritium through the fourth column of the Isotopic Separation System. The
tritium ends up located in the Storage and Delivery System, where it is
present in a high concentration level that allows its measuring through in-
bed calorimetry tests [3]. Plasma operation cannot take place during the
inventory assessment procedure, which implies the periodic halt of the ex-
periments to fulfill the tritium accountancy needs.

A static monitoring strategy is not efficient and would make the indus-
trial production of electricity in future fusion reactors costly and harm its
feasibility. If an uninterrupted operation is desired for industrial operation,
an advanced dynamic monitoring approach is needed to allow the continuous
operation of the plant while guaranteeing a correct operating range. This
progress would represent a landmark in the history of fusion systems.

Such a dynamic approach can be conceived by taking advantage of both
dynamic simulation and artificial intelligence data treatment as follows. The
plant or system needs to be divided into several monitoring sections or mass
balance areas (MBA) to separate the problem into several assessment units.
A model of the plant or systems would work as a digital twin [16] that matches
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the inventories in the process and compares the measurements with those of
the modeled plant. Depending on that comparison, the simulation shall issue
an assessment or decision regarding the fault state of the system according
to a model-based monitoring approach (see Section 3).

In parallel with the model-based reasoning, a set of data-driven intelli-
gent units processes the data to complement the fault detection and diagnosis
decision. These units, based on state-of-the-art techniques must have been
previously trained with historical and simulation data and issue detection
and/or isolation diagnostics depending on the state of the sensor data avail-
able from the process.

Each time step, the online fault diagnosis system concludes the fault-
related global decision based on the assessment of the likelihood of each
data-driven and model-based units. The process of weighting the different
decisions is a critical point and must be studied further (see the discussion
in Section 4). A possible monitoring scheme is shown in Figure 1, where n
data-driven approaches issue fault-related decisions alongside a mathematical
model method to provide an improved plant assessment. The scheme shall
also isolate the origin of the fault in order to recommend the plant engineers
and operators the next action to solve or prevent the incoming fault.

Part of the difficulty in addressing tritium monitoring is caused by the
low precision of tritium sensors. When the data-driven units are provided
with a large enough data set for training, artificial intelligence can be used to
narrow the uncertainty generated by tritium in the tritium plant. This way,
the use of artificial intelligence together with sensor redundancy can help to
tighten the gap of accuracy and allow for a dynamic monitoring strategy.

3. Review of monitoring approaches

Fault diagnosis can use from simple traditional techniques such as She-
whart graphs to advanced methods such as deep artificial neural networks.
A broad classification separates data-driven methods, which derive models
purely based on historical data, and model-based methods, which generate
models that replicate the actual process based on first-principle mathematical
modeling.

Regarding data-driven techniques, some of them are supervised machine
learning techniques, meaning by this that they need labeled data (i.e. each
training example is known to belong to normal operating conditions or a
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Figure 1: Hybrid fault diagnosis architecture.

certain fault class) while others are unsupervised and able to find hidden
patterns that can be useful for fault detection purposes.

Fault diagnosis mainly involves two separated steps: detection and iso-
lation. Fault detection elaborates on detecting outlier data that imply non-
normal operation conditions, while fault isolation focuses on identifying the
precise location of the fault and the observed variables involved in it. This
section will review the most interesting techniques prone to be applied in
a tritium processing environment, some of them more suitable for isolation,
detection, or both.

3.1. Rigorous multivariate statistical approaches

The need for improvement in monitoring techniques regarding spatial
correlations (influence of the state of an observed variable in other variables)
led to the development of fault detection techniques based on multivariate
statistics. In this area, dimensionality reduction techniques such as principal
component analysis (PCA), Fisher discriminant analysis (FDA) and partial
least squares (PLS) were conceived.

PCA is a dimensionality reduction technique that projects the dataset
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into a lower dimension space while keeping the maximum degree of vari-
ance from the original dataset (see example in Figure 2). This is done by
performing an eigenvalue decomposition and projecting the data using the
eigenvectors corresponding to the higher eigenvalues, the principal compo-
nents. The principal components are orthogonal to each other and keep
most of the variance from the original data set [17].

Figure 2: Visualization of PCA dimensionality reduction from 3D to 2D. The PCA pro-
cedure finds the plane that minimizes the variability lost in the projection.

PCA is typically applied to the fault detection step, even though it can
be also applied to the fault isolation step performing the appropriate dis-
criminant analysis added as described so far.

FDA and PLS are also dimensionality reduction techniques. FDA per-
forms the projection in a way that the scatter between observation corre-
sponding to the same class (same fault) is minimized and the scatter be-
tween observations belonging to different classes is maximized, therefore di-
rectly serving as a fault isolation technique. PLS maximizes the covariance
between the observation matrix and the class matrix [18], i.e. maximizes
the scatter between data of the same class, by rotating the loading vectors
iteratively until the regression is improved enough.

PCA, PLS and FDA do not account for dynamic behavior by themselves.
In general, serial correlations (time-dependent) can be added by constructing
an augmented input data matrix that includes lagged copies of the observed
variables. The new matrix can be seen as a sliding window and the augmen-
tation is parameterized by the lag parameter k and the embedding dimension
M , such that the augmented matrix contains the vectors xi(t) , xi(t − k),
xi(t − 2k) and so on until xi(t − (1 −M)k) for all variables i = 1, 2, ...,m.
The augmentation parameter k shall be determined satisfying that the new
coordinates are as independent as possible but without losing information of
the system. This task can be systematically approached by minimizing the
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autocorrelation function (ACF) or the average mutual information (AMI)
[19]. On the other hand, the embedding dimension parameter M must com-
ply with including the periodic responses of the system. When applying the
data matrix augmentation approach to the methods outlined so far, their
dynamic variants DPCA, DFDA and DPLS are obtained.

3.2. Kernel approaches

In contrast with the aforementioned techniques where the algorithm needs
to generate a feature vector in order to perform the classification or clustering
task, kernel-based methods rely on applying a kernel function on raw data.

Kernels are similarity functions whose output is a measure of how far
two samples lie, i.e. how dissimilar they are. They help in building a cost
function that, if minimized, separates the observation space in several regions
representing each class, i.e. each fault class (see example in Figure 3). There
are various types of kernels, one of the most popular being the Gaussian
kernel or radial basis function (RBF) kernel [20],

k(x,xi) = exp
(
−‖x−x(i)‖2/2σ

)
where k(x,xi) is the similarity function for a test observation sample x and
a landmark vector xi. The landmark corresponds to a training sample i of
the same dimensions as x and σ is a hyperparameter related to the likelihood
of the two samples belonging to the same class in the basis of a Gaussian
distribution.

Figure 3: Example of two-dimensional classification using SVM. Source: Alisneaky, CC0
1.0.
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Support vector machines (SVM) are a widely used supervised technique
based on kernels. SVM learn weights for similarity functions applied to all
the training dataset by minimizing its cost function and doing a large margin
separation of the data depending on their classes. When using non-linear
kernels such as RBF, they can learn complex classification functions like the
one in Figure 3.

3.3. Tree-based methods

Decision trees take the input dataset X and transform it into a response
Y by breaking the input data into smaller subspaces, each one of them with
a “purer” meaning in terms of information. In smaller regions, very simple
local models can be fitted. The algorithm stops when further segmentation
cannot improve the output above a specific threshold. The tree approach
can then be seen as a set of IF-THEN statements where each conditional is
applied inside the non-overlapping subspaces, which end up being a set of
hyperrectangles.

When the output of a tree is discrete, it is called a classification tree, and
when it has a continuous output, a regression tree. Decision trees differ from
neural networks in that the latter has a fixed structure defined a priori by the
user, while the former progressively grows according to optimum results in
each region. On the other hand, the tree’s computational complexity heavily
increases with the dimensionality of the data.

The first automated decision tree was developed by [21] with the auto-
matic interaction detection (AID). It managed to predict a value by averag-
ing the input data at each partition and partitions were found by minimizing
least-square deviations. After Morgan’s success, many algorithms based on
his were developed such as the MAID-M that allowed multiple variables,
the THAID that could work for classification tasks, and the CHAID algo-
rithm that added features to restrict overfitting, a direct consequence of the
tree-based concepts [19]. Approaches still in use are the classification and
regression tree (CART) algorithm [22] and the C4.5 [23]. CART combines
classification and regression with a solution to overfitting, by programming
a trade-off between model complexity and generalization of the model. C4.5
algorithm differs from CART in that it can provide multiple partitions per
subspace, not only binary separation.

Between modern approaches arising from tree-based decision, random
forests were created by Breiman [24]. Random forests add split randomiza-
tion, which enhances the robustness of the model by averaging the behavior
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of different random trees. This feature also relates to resistance to overfitting
issues. In general, tree-based approaches present themselves as flexible tools
and have the potential of handling highly complex decision-making problems
like fault diagnosis.

3.4. Artificial neural networks

An artificial neural network (ANN) is a computational model inspired
by the connection between neurons in the human brain. The concept of
neural network lumps a wide group of structures. Some types are multilayer
perceptrons, radial basis function neural networks, Kohonen (self-organizing)
neural networks and deep learning neural networks [19].

A typical neural network consists of a series of layers formed by nodes
(see example in Figure 4). The input layer represents the data fed to the
system—for fault detection, mainly raw sensor measurements. Each of the
input elements is fed to all nodes of the next layer, part of the hidden layers.
The hidden layers nodes perform some calculations over the input values and
output them to the last layer, the output layer. This layer acts in a similar
way as the previous ones but its output will be the final result of the model
and the one visible for the user, usually binary values that determine the
membership of the input data to a certain class, e.g. a fault.

Figure 4: Minimal ANN representation. Source: Cburnett, CC BY-SA 3.0.

Any node in the hidden and output layers processes its input data in
a linear part, z[l] = W [l]a[l−1] + b[l] and a non-linear part or activation,
a[l] = g[l](z[l]). W [l] and b[l] are the trainable parameters of the network and
represent the weights and the bias, respectively, of a generic layer l (l ∈ [1, L]).
The activations are calculated applying a non-linear function to the linear
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values z[l]. Many non-linear functions can be applied and some popular ones
are the sigmoid g(z) = 1

1+ez
, the hyperbolic tangent, g(z) = ez−e−z

ez+e−z or the
rectified linear unit (ReLU) function, g(z) = max(0, z).

The parameters (weights and biases) of an ANN are trained using known
historical data to obtain a model able to predict the occurrence of faults upon
new inputs. Unsupervised applications of ANN derive in the so-called self-
organizing or Kohonen neural networks, which are able to train clustering
models working with unlabelled data and using an ANN architecture.

3.5. Other data-driven techniques

Other approaches for fault diagnosis systems apply system identification
and state-space representation to improve the effectiveness of data over dif-
ferent instants. One of the most used methods in this area is the canonical
variate analysis (CVA).

CVA is a subspace algorithm that, in particular, shares common features
with PCA, FDA and PLS and this makes it an interesting candidate for fault
diagnosis. CVA is a dimensionality reduction technique based on multivari-
ate statistical analysis but, in this case, it involves the selection of pairs input
variable-output variable that maximizes a correlation measure [25]. Subspace
algorithms assume that the augmented dynamic matrix (see Section 3.1) con-
tains all the dynamic information of the process, thus avoiding the need for a
priori parameterization of models analogous to state-space representations.

3.6. Model-based methods

Model-based fault diagnosis relies on mathematical models to assess de-
viations in the behavior of the actual plant. These deviations are called
residuals and can be obtained by several methods. Examples of them are
state estimation and parity relations [26]; but also through a direct compar-
ison between the simulated process and the actual plant. State-estimation
uses the concept of observer to reconstruct the internal state of the system
by measuring its outputs (sensor measurements) using the state space repre-
sentation.

On the other hand, parity relations are capable of generating equations
that only depend on the inputs and outputs of the system, thus managing to
detect deviations in the residuals upon faulty behavior with less knowledge
of the process.

Mathematical models, when available, are excellent tools to predict the
behavior of the system, and are useful for fault isolation since their results are
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easy to physically interpret unlike data-driven methods, which sometimes can
be seen as “black boxes”. But to be built, they need a lot of prior knowledge
that is not always affordable for complex systems. However, simple model-
based methods, even though not exact, can complement data-driven methods
in those tasks they perform worse.

4. Discussion

4.1. The training of data-driven approaches

The topics faced in this document arise a new question: how to train the
reasoning units since there is no data of highly intensive tritium processing
systems such as ITER? The following ideas suggest new ways of exploiting
data to this aim.

• Using the information available of failure in existing tritium systems
such as TSTA, JET, TPL and TLK, as it appears in the compilations by
Cadwallader [13] and Casey et al. [27]. However, the size of training sets
in machine learning and pattern recognition is important, especially for
complex and non-linear systems [28]. The available public literature
regarding tritium systems does not provide for the massive amount of
data that complex decision algorithms need.

• Simulation of tritium system faults through plant first-principle mod-
eling could complete this lack of knowledge. Examples of this are the
efforts made by Cristescu et al. [5] and the ongoing developments of
Nougués et al. [6] in order to obtain new fault data.

• Also, useful ways to provide for additional data is exploring the use of
other existing and well-known systems out of the tritium context as a
test bench to study the different dynamic monitoring approaches (see
Subsection 4.2 below).

• Transfer learning [29] can then be used as a tool to pre-train machine
learning models for new uses based on previous trained and functional
models.

12



4.2. The use of a test bench

Given the absence of large-scale tritium processes, actual historical data
to train the fault diagnosis systems cannot be directly obtained. One of
the possibilities to overcome this issue is to work on a system that does
have historical data and/or allows to generate extra data through simulation,
does already exist, and uses its learning process to pre-train the monitoring
systems for tritium processes. A candidate that fits these expectations is the
Tennessee-Eastman process.

The Tennesse Eastman process is a model of a chemical plant proposed
by Downs and Vogel [30] and meant as a tool for validation at the control
engineering field and to standardize the diverse results obtained along with
the scientific literature.

This model is based on an actual plant owned by the Eastman Chemical
Company and represents a complex, highly unstable system that is difficult
to predict because of its internal recycle streams and the influence of the
chemical reactions in the global pressure and temperature of the plant. This
model allows access to a high variety of sensors, actuators, and the possibility
to introduce disturbances and failures, making this model complete in terms
of control and fault analysis and with a great background in the available
literature, where efforts have been put into problems from classical control
engineering [31] to fault diagnosis [32].

In addition to its interest for validation of the strategy itself, the Ten-
nessee Eastman process can help set up a monitoring system such as that
envisaged for tritium processes. The TE represents a relatively small system
but complex enough to be of interest in the field of fault diagnosis.

4.3. Fusion of several data-driven and model-based decision units

As it can be seen from the review in Section 3, both model-based and
data-driven approaches have complementary qualities. Mathematical mod-
els are normally more effective than data-driven models when enough infor-
mation about the plant is available for its construction. However, in actual
highly complex processes, accurate mathematical models are time-expensive.
Data-driven techniques are powerful, relatively easy to implement, and more
effective in detecting specific failures for which they have been trained, but
they are less reliable in diagnosing unknown types of failure.

In the last years, a path of study has been initiated trying to combine
both methods to solve the monitoring problem [12, 33]. Some interesting
approaches use fuzzy logic in order to combine different techniques such as
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that of Ruiz et al. [34], where simulation, artificial neural network and fuzzy
logic based on IF-THEN rules are used. Fuzzy logic is reviewed by Chiang
et al. [35] as a general tool to compose hybrid fault diagnosis approaches.

On the other hand, the first steps have been taken on applying a hybrid
monitoring fault system using Bayesian networks as a generic tool for the
integration of various fault diagnosis techniques [36, 37]. This approach has
not been applied to the monitoring of tritium in nuclear fusion and represents
a promising path in future work.

5. Conclusions

The present document has stated the basis of the tritium monitoring
problem in large tritium plants from the point of view of fault detection and
isolation. The focus has been put on the need for a dynamic monitoring
strategy to give nuclear fusion power plants the possibility to be feasible
and how this goal is hard given the constraints of tritium sensing technology
and emissions regulation. A review of advanced fault diagnosis techniques
has been made in order to give a background for further challenges in the
field. Such challenges are outlined in terms of training data management
and collection, availability of models and hybrid approaches that can extract
the best features for a global fault diagnosis approach. Further related work
consists in how to address the correcting actions to be able to return to
the normal operation of the plant in the event of the detection of a fault,
therefore, avoiding a shutdown and reducing the impact of the correction in
the normal operation of the complete system.
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