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Abstract

The mechanical response of IM7-8552 carbon epoxy was investigated for
transverse tension and transverse tension/in-plane shear loadings at static and
dynamic strain rates using transverse tension and off-axis tension specimens. The
dynamic tests were carried out on a split-Hopkinson tension bar at axial strain
rates from 113 s-1 to 300 s-1. With the already available off-axis and transverse
compression test data for IM7-8552, a comprehensive data set is available now,
which can be used for validation and calibration of numerical models. The
measured axial stress-strain response was simulated using a fully 3D transversely
isotropic elastic-viscoplastic constitutive model. The constitutive model represents
a viscoplastic extension of the transversely-isotropic plasticity model developed by
the authors [1]. An invariant based failure criterion is added to the model to be
able to predict the strength for a given orientation and strain rate accurately. The
strain rate dependency of the elastic and ultimate strength properties is
introduced in the model through scaling functions. A good correlation between
the measured and numerically predicted stress-strain response and failure of the
specimens was achieved for all specimen types and both strain rate regimes.

Keywords: Composites; Carbon-epoxy; Strain rate effects; Viscoplasticity;
Constitutive modeling

Introduction
Over the past years, the number of applications in which fiber reinforced polymer

matrix composites (FRPMCs) are used in primary aeronautical (e.g. Airbus A350

and Boeing 787) and automotive (e.g. BMW i-project) structures has significantly

increased. In both areas, composite structures may be subjected to high speed load-

ing events and the simulation of the dynamic material response is therefore relevant

for several loading scenarios, such as bird, tire and hail impact and crash.

Strain rate effects and non-linear stress-strain behavior should be captured by ad-

vanced composite material models to accurately predict the initiation and evolution

of damage. This requires not only appropriate material models but also new exper-

imental techniques for model identification and validation.

In the experimental part of this work the mechanical response of a UniDirec-

tional (UD) carbon-epoxy composite is investigated under transverse tension and
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combined transverse tension / in-plane shear loading at quasi-static and dynamic

strain rates. The presented test data complements static and dynamic experimental

results from earlier and recent studies for the same material system, namely [2],

where off-axis compression and transverse compression tests were performed, [3]

and [4], where the longitudinal compressive response was studied and [5], where the

effect of dynamic loading was investigated for the intralaminar fracture toughness

associated with fiber compressive failure.

In the numerical part of this work the available tension and compression tests are

simulated using a new fully 3D transversely isotropic elastic-viscoplastic constitutive

model, which is able to predict the experimentally observed nonlinearities under off-

axis loading prior to the onset of cracking [1]. The strain-rate dependency of the

plastic yields, the elastic response and the ultimate strength is accurately taken into

account.

It is understood that the mechanical behavior of a multidirectional laminate may

differ from the mechanical response of a UD laminate or ply. In particular crack

initiation and propagation in a multidirectional laminate strongly depends on the

fiber orientation, thickness and stacking sequence of the individual plies in the lam-

inate. The numerical model presented in this paper is used and has been validated

with experimental data from unidirectional laminates. Further work is required to

enhance and validate the herein presented model to also predict the mechanical

response of arbitrary multidirectional laminates under static and high strain rate

loading.

Experimental work
Material and specimens

Quasi-static and dynamic off-axis tension and transverse tension tests were car-

ried out, using the UD prepreg system IM7-8552. While being a high perfor-

mance prepreg material system often used for primary composite structures, this

toughened-epoxy composite exhibits considerable non-linear stress-strain behavior,

which is used here to verify the proposed constitutive material model. In accordance

with the specified heating cycle, a UD panel with a nominal thickness of 1.5 mm

was manufactured by curing a 12-ply prepreg layup in a hot press. From the manu-

factured panel, off-axis tension specimens with fiber orientation angles of θ = 15◦,

30◦ and 45◦ and transverse tension specimens (θ = 90◦) were cut on a water-cooled

diamond saw.

The nominal dimensions of the 15◦ off-axis specimens were 72 × 8 × 1.5 mm3

and 62 × 8 × 1.5 mm3 for all other specimens (Fig. 1a).

To attach the specimens to the split-Hopkinson tension bar system, slotted steel

adapters with an M12×1.25 outside thread were manufactured. The rectangular

composites specimens were then glued into the adapters using the structural adhe-

sive 3M Scotch-Weld DP490 (Fig. 1b).

The 12-ply UD laminate with a thickness of 1.5 mm was chosen to guarantee that

the ultimate load of the strongest specimen (high strain rate test of the 15◦ off-axis

tension specimen) can be transmitted through the bond in the adapters and that

failure occurs in the free gauge section of the specimen instead of the bond.

The dimension of the free specimen length L0 between the two adapters was chosen

to obtain a section where no fiber is attached to either of the two adapters. Thus
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for the 15◦ off-axis specimens L0 = 30 mm was used, while for all other specimens

L0 = 20 mm was found to be sufficient.

Figure 1 a rectangular composite specimen and b assembled specimen configuration.

Quasi-static and dynamic test setup

The quasi-static tests were performed on a standard electro-mechanical testing ma-

chine (Hegewald & Peschke Inspect Table 100). The adapters of the assembled

specimens were screwed into inserts, which in turn were connected to the test ma-

chine (Fig. 2). A constant displacement rate of 0.5 mm.min−1, which is in the range

of a typical test velocity recommended for quasi-static testing, was chosen and the

GOM ARAMIS-4M DIC system was used to measure the in-plane strain field of

the free specimen length.

Figure 2 Quasi-static test setup.

The high strain rate tests were carried out on a split-Hopkinson tension bar

(SHTB) system. The setup, illustrated in Fig. 3, is based on a concept proposed in

[6], using a U-shaped striker-bar. The bars consisted of �20 mm titanium loading-,

�16 mm incident- and �16 mm transmission-bars with lengths of 2.15, 3 and 1.8

m, respectively.

Rings of 2 mm thick silicon rubber, wrapped around the impact flange at the end

of the loading bar, were used for pulse shaping. The resulting ramp-shaped pulse
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Figure 3 Split-Hopkinson tension bar setup for dynamic tests (striker-bar acceleration system not
shown).

was ideally suited for the pre-dominantly linear stress-strain behavior expected for

the dynamic test, due to the relatively low plastic strains measured during the

quasi-static tests.

From a previous study [2] is was observed that, depending on the off-axis angle, the

strain rate acting in the fracture plane of the off-axis specimens can be significantly

higher than the strain rate applied in axial (loading) direction. For an accurate

comparison of the strain rate effect, the strain rates acting in the fracture plane

should be similar for all tested specimen types. In this work, the strain rate in

the loading direction was therefore increased with increasing off-axis angle in order

to capture the corresponding shift from an in-plane shear to a transverse tensile

material response. To reach a shear strain rate of 350 s−1 in the fracture plane of the

respective off-axis specimens, the axial strain rate for the 15◦, 30◦ and 45◦ off-axis

specimens was adjusted to approximately 110 s−1, 180 s−1 and 300 s−1, respectively.

For the transverse tension specimens, the axial strain rate is the governing value.

Due to the striker-bar velocity of the used split-Hopkinson tension bar system,

together with the chosen specimen geometry, the average attainable strain rate for

the 90◦ specimens was 271 s−1 and was therefore slightly lower.

For each specimen type and strain rate regime, three valid tests were performed.

To obtain the specimen strain field via DIC, the deformation of the specimen was

monitored by a Photron SA5 high speed camera. The chosen camera parameters

are listed in Table 1.

Table 1 Setup parameters of high speed camera

Specimen type Frames per second Resolution
[s−1] [pixel2]

15◦ 186.000 392 × 96
30◦ 186.000 256 × 112
45◦ 300.000 192 × 80
90◦ 300.000 192 × 80

Data reduction

For the quasi-static transverse and off-axis tension tests presented in this paper,

true axial stress σxx was calculated by dividing the load F , measured from the
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load-cell of the test machine, by the true cross-section As of the specimen. As was

determined from the initial cross-section As0, the initial specimen length ls0 and the

true specimen length ls by applying the volume consistency condition as described

in [7]. Similarly, true axial stress σxx was determined for the dynamic tests, following

classic split-Hopkinson pressure bar analysis (SHPBA) [8] as

σxx = AbEbεT /As (1)

where Ab, Eb and εT are the cross-section, Young’s modulus and the measured

elastic strain wave of the transmission bar.

The in-plane strain field {εxx, εyy, γxy}T in the load coordinate system was ob-

tained via DIC, averaging the respective strain components over an area of 5 ×
5 mm2 in the specimen centre. Engineering strain was determined from the DIC

measurements. The strain component in loading direction was further used for the

calculation of the axial specimen strain rate ε̇xx with respect to time:

ε̇xx = dεxx/dt (2)

The static and dynamic in-plane shear stress-strain curves from the respective off-

axis tension tests, required as input for the later described constitutive model, were

calculated by applying a standard coordinate transformation to the axial stress and

strain vector, measured in the load coordinate system as

τ12 = −σxx sinβ cosβ (3)

γ12 = −εxx sin 2β + εyy sin 2β + γxy cos 2β (4)

The transformation angle β consisted of the initial off-axis angle θ and the fiber

rotation angle dθ, which occurs due to the extension-shear coupling effect in the off-

axis specimens and which can be measured via DIC as well. For the off-axis tension

tests, the fibers in the UD laminate tend to rotate towards the loading direction

and therefore the transformation angle was obtained as

β = θ0 − dθ (5)

The shear strain rate γ̇12 was calculated analogous as the axial strain rate by

derivation of Eq. (4) with respect to time:

γ̇12 = dγ12/dt (6)

Experimental results

The axial stress-strain curves of the off-axis tension and transverse tension speci-

mens for both strain rate regimes are shown together with the predictions of the

numerical model in Section Results, Figs. 12 to 15. [1]

[1]It is noted that the experimental results of the off-axis and transverse tension tests

were first shown in [9]. Due to a later improved calibration of the split-Hopkinson
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All off-axis tension loaded specimens show non-linear stress-strain behavior at

quasi-static loading and a tendency to more linear stress-strain curves under dy-

namic loading. For the transverse tensile specimens, the stress-strain behavior is

linear at both strain rate regimes (see Fig. 15).

A pronounced strain rate effect on the axial strength was measured for all speci-

men configurations. The strengths increase by 38%, 28%, 30% and 27% for the 15◦,

30◦, 45◦ and 90◦ specimens, respectively, and therefore a similar strain rate effect

was found. The measured properties are summarised in Table 2.

Table 2 Quasi-static and high rate off-axis tension and transverse tension properties.

fiber Ultimate Shear Axial Shear
Angle Strength Angle Strain Rate Strain Rate
θ [◦] [MPa] dθ [◦] ε̇xx[s−1] γ̇12[s−1]

quasi-static 15[◦] mean 364 1.56 2.1·10−4 7.8·10−4

STDV 27.7 0.32 2.8·10−5 1.8·10−4

CV [%] 7.6 20.5 13.3 15.3
30[◦] mean 175 0.82 2.9·10−4 6.0·10−4

STDV 12.5 0.09 7.7·10−6 4.2·10−5

CV [%] 7.2 11.0 2.7 7.0
45[◦] mean 114 0.35 2.6·10−4 3.8·10−4

STDV 9.5 0.03 2.9·10−5 3.3·10−5

CV [%] 8.3 8.6 11.3 8.6
90[◦] mean 62 - 2.8·10−4 -

STDV 14.0 - 1.7·10−5 -
CV [%] 22.6 - 5.9 -

high rate 15[◦] mean 503 1.45 113 358
STDV 10.7 0.20 19 51

CV [%] 2.1 13.8 16.8 14.2
30[◦] mean 223 0.71 177 337

STDV 3.3 0.05 10 10
CV [%] 1.4 7.0 5.6 3.0

45[◦] mean 148 0.34 300 410
STDV 16.7 0.04 44 64

CV [%] 11.3 11.8 14.7 15.6
90[◦] mean 79 - 271 -

STDV 11.9 - 13 -
CV [%] 15.1 - 4.8 -

The quasi-static and dynamic in-plane shear behavior derived from the 15◦, 30◦,

45◦ off-axis specimens via Eqs. (3) and (4) can be seen for representative speci-

mens in Fig. 4. From the available static and dynamic experimental results it is

a reasonable approximation to define a master shear curve, which resembles the

in-plane shear response for combined in-plane shear and transverse tensile loading

for all off-axis angles tested in the current work. The overall shape of this master

shear stress-strain curve is therefore independent of the respective off-axis angle,

while the shear strength for the combined stress state is significantly affected by

the amount of transverse stress, also acting on the fracture plane. A similar behavior

was observed for the in-plane shear response reported in [2].

For the transverse tension specimens, pronounced scatter in the measured strength

was found for both strain rate regimes. Nevertheless, the calculated mean value for

quasi-static loading coincides well with the transverse strength listed in the HexPly

IM7-8552 material data sheet [10].

tension bar, the stresses had to be corrected and were about 5% lower than initially

presented in [9]. For completeness, the corrected data is used in this work for Table

2, Fig. 4 and Figs 12 to 21.
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Figure 4 In-plane shear behavior derived from off-axis tension tests (engineering stress-strain
curves shown).

Constitutive model

Hereafter, the constitutive model used for the prediction of the off-axis tensile and

compressive tests is briefly presented. This model represents a viscoplastic extension

of the transversely isotropic elastic-plastic model proposed by Vogler and co-workers

[1, 11]. The main objective is the prediction of the pressure dependent pre-failure

nonlinearities under off-axis loading conditions as they are observed in carbon epoxy

composites. The model predicts the non-linear behavior of the stress-strain curve,

where all non-linearity is considered to be due to plasticity. At ultimate load the

failure criterion described below is applied. It is noted that the model in its current

form does not contain a damage-evolution formulation, which is subject of future

development and for which additional static and high strain rate experimental data

is required. The material model proposed consists of an elastic-viscoplastic model,

assuming the additive decomposition of the total strain tensor at the a material

point, ε, into the elastic εe and the viscoplastic parts εvp,

ε = εe + εvp. (7)

The anisotropy is taken into account by structural tensors and not by symmetry

conditions based on a reference coordinate system. The structural tensor represents

the material symmetries of the respective anisotropy class as an intrinsic material’s

property and is used as additional argument in the constitutive equations. This

enables a coordinate system free representation of the anisotropic material laws as

isotropic tensor functions. Moreover, finite fiber rotations can be regarded easily.

The structural tensor A that represents the symmetry conditions of transversely

isotropic materials is defined by the dyadic product of the unit vector of the preferred
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(fiber) direction a,

A = a⊗ a. (8)

Following the previous work reported in [1], the structural tensor is used as an

additional argument in order to formulate the elastic free energy density, the yield

function and the plastic potential formulation. In the proposed elastic-viscoplastic

extension A is used in the formulation of the viscoplastic creep function and the

viscoplastic potential, which are analogous to the plastic yield function and the

plastic potential, respectively. However, the model should also take into account the

strain rate dependence of the elastic and strength properties observed in carbon-

epoxy composites [2, 12, 13, 14, 15, 16, 17, 18]. The elastic free energy density for

the proposed transversely isotropic model reads:

Ψ(ε, ε̇,A) :=
1

2
λ(ε̇)[tr(ε)]2 + µT (ε̇)tr(ε2) + α(ε̇)[aεa]tr(ε) +

+ 2[µL(ε̇)− µT (ε̇)](aε2a) +
1

2
β(ε̇)[aεa]2,

(9)

with the five elasticity constants λ(ε̇), µT (ε̇), µL(ε̇), α(ε̇), β(ε̇) as invariant coef-

ficients. The coefficients are called invariants, because their values are computed

outside of the user-material subroutine (before the simulation occurs), for a given

global strain-rate in the material, and these values do not change during the sim-

ulation. It means that only one strain rate can be used at a time. The conversion

into engineering constants and vice versa can be found in [1]. The stress tensor σ

and the elasticity tensor Ce can be obtained by computing the first and the second

derivatives of the free energy density with respect to the strain tensor, respectively

σ = ∂εΨ , Ce = ∂2
εεΨ. (10)

To formulate the transversely isotropic invariants used in the viscoplastic creep

function, a decomposition of the stress in viscoplasticity inducing stresses and elastic

reaction stresses is used:

σ = σreac + σvpind, (11)

where the elastic reaction and viscoplasticity inducing stresses are defined as [1]:

σreac =
1

2
(trσ − aσa)1− 1

2
(trσ − 3aσa)A,

σvpind = σ − σreac. (12)

The set of invariants used to formulate the viscoplastic creep surface reads:

I1 =
1

2
tr(σ2

vpind)− a(σ2
vpind)a,

I2 = aσ2
vpinda,

I3 = tr(σ)− aσvpinda. (13)
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Using the invariants defined in Eq. (13), the transversely isotropic viscoplastic

creep surface for UD composites reads [1]:

f(σ, ε̄vp,A) = α1I1 + α2I2 + α3I3 + α32I2
3 − 1 ≤ 0, (14)

where

α3 = αt
3 α32 = αt

32 if I3 > 0,

α3 = αc
3 α32 = αc

32 if I3 ≤ 0, (15)

and the equivalent viscoplastic strain defined as

ε̄vp =

√
1

2
(εvp)ij(εvp)ij . (16)

The proposed viscoplastic creep function results in 6 viscoplastic creep α-parameters

that have to be determined. Each one of these parameters and the corresponding in-

variants are related to the following loading states: transverse shear, in-plane shear,

uniaxial and biaxial transverse tension and uniaxial and biaxial transverse compres-

sion. Fig. 5 shows a schematic representation of the transversely isotropic f surface

in stress space. The points represented in the curves are the “trigger points” of the

viscoplastic creep surface, for a given strain rate, in which viscoplastic process is

controlled. That is, in each of these points, an initial yield stress and a hardening

curve giving the yield stress vs. the corresponding equivalent viscoplastic strain is

defined via tabulated data. Consequently, the viscoplastic creep surface parame-

ters α(... ) are a function not only of the strain rate [2] but also of the equivalent

viscoplastic strain, see [1].

Figure 5 Schematic representation of the yield surface for UD composites in stress space.

The strain rate dependency of the elastic and ultimate strength properties is

introduced in the present model by fitting the experimental data using suitable

scaling functions. Then, the material property for a given strain rate is the quasi-

static one multiplied by the scaling function. A simple function i.e. f(ε̇) = 1+
√
Kε̇,

where the rate dependency of the properties depends on an appropriate selection

of the parameter K was proposed by Wiegand [19].
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In the present work, the scaling function used by Koerber [20] is implemented

fi(ε̇) = 1 + (Kiε̇)
1
ni , (17)

where the subscript i refers to the property adjusted by the function.Considering

the experimental data from the available transverse and off-axis compression tests

for UD carbon-epoxy IM7-8552, backed up by data from the literature for similar

thermoset composites, Koerber [20] observed a different strain rate dependency for

the elastic and ultimate strength properties. In particular for the elastic moduli, a

threshold strain rate at about 100 s−1 appears to exist, after which the strain rate

dependency of the respective elastic properties significantly increased. For the ulti-

mate strengths, such a threshold was found to be not as pronounced and measurable

strain rate effects can already be observed at lower strain rates. To account for this

difference in the strain rate dependency of the elastic and ultimate strength proper-

ties, two scaling functions are used for the UD carbon-epoxy composite considered

in this paper. A function fe(ε̇) to describe the strain rate effect on the elastic and a

function fu(ε̇) to describe the strain rate effect on the ultimate strength properties.

The evolution of the viscoplastic strain is defined by using the following viscoplastic

flow:

ε̇vp = γ̇vp∂σg(σ,A) = γ̇vpng =
〈f(σ, ε̄vp,A)m〉

η
ng, (18)

where γ̇vp is a non-negative parameter, known as the consistency parameter, g(σ,A)

is the function of viscoplastic potential which defined the non-associated viscoplastic

flow direction ng, analogous to plasticity. The choice of a non-associated flow rule

for the plasticity model [1] allows the accurate prediction of the plastic Poisson

coefficients and of the volumetric plastic strains. The viscoplastic potential is defined

as

g(σ,A) = β1I1 + β2I2 + β3I2
3 − 1, (19)

where the viscoplastic potential parameters β(...) are determined to achieve a certain

Poisson coefficient [1, 21]. From the experimental data presented in [2] is observed

that the Poisson’s ratios are not affected by the strain rate, then it is not needed

a scaling function to take into account strain rate effects. Consequently, the vis-

coplastic potential parameters β(...) are equal to the plastic potential parameters,

which were already calibrated in [1] for the material used here.

The viscoplastic parameter γ̇vp plays a similar role to the plastic consistency

parameter used in plasticity, but in this case its definition is more general

γ̇vp =
〈Φ[f(σ, ε̄vp,A)]〉

η
, (20)

where Φ[f(σ, ε̄vp,A)] is the overstress function introduced by Perzyna [22], and η

is the viscosity parameter, which has the unit Ns/mm2. The overstress function can
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be defined in two ways,

Φ[f(σ, ε̄vp,A)] =

{
fm(σ, ε̄vp,A) Perzyna model,

f(σ, ε̄vp,A) Duvaut-Lyons model [23]
(21)

where m is a dimensionless exponent parameter to be defined accordingly to the

material type, which can be used to model the nonlinear strain rate dependent

behavior.

〈.〉 represent the Macaulay brackets such that:

〈Φ(f)〉 =

Φ(f) if Φ(f) ≥ 0,

0 if Φ(f) < 0.
(22)

The crucial difference with the rate independent case is that now stress states

outside of the yield locus are admissible. That is, the stresses can exceed the yield

surface depending on the loading velocity and are not supposed to remain on the

yield locus during plastic loading, whereby the viscosity parameter acts as delay

parameter. The discretized flow rule reads at t = tn+1

∆γn+1
vp

∆tn+1
=
〈fm(σ, ε̄vp,A)〉

η
, (23)

with

∆tn+1 = tn+1 − tn. (24)

The viscoplastic creep function f can be expressed as f(∆γn+1
vp ). Therefore the con-

sistency condition Eq. (23) can be solved for the variable ∆γn+1
vp with the Newton-

Raphson method, whereby the residual in a non-iterated step (k) reads:

Rn+1
vp |(k) := fm(∆γn+1

vp |(k))− η
∆γn+1

vp |(k)

∆tn+1
. (25)

The residual Eq. (25) is developed into Taylor series at the end of the time step

tn+1 and linearised:

Lin[Rn+1
vp |(k)] = fm− η

∆γn+1
vp |(k)

∆tn+1
+∆2γn+1

vp |(k)
∂(fm − η · [∆γn+1

vp |(k)/∆tn+1])

∂∆γn+1
vp |(k)

.

(26)

The root of the linearised residual reads:

∆2γn+1
vp |(k) = −

fm − η · [∆γn+1
vp |(k)/∆tn+1]

m · fm−1 · [∂f/∂∆γn+1
vp |(k)]− [η/∆tn+1]

(27)

With the root of the linearised residual, the consistency parameter ∆γn+1
vp can be

updated until the consistency condition Eq. (23) is fulfilled. Finally, the viscoplastic

strains εn+1
vp can be updated at the end of the current time step.
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Failure Criterion
To predict the failure in the composite, an Invariant based Quadratic failure Cri-

terion (IQC) based on the work of Vogler and co-workers [11, 24] has been imple-

mented in the model. The IQC proposes a criterion for transverse and longitudinal

failure. In order to predict matrix-dominated failure mechanisms, a formulation

based on the transversely isotropic yield function is proposed. The failure condition

formulation is:

rmatrix(σ,A) = κ1I1 + κ2I2 + κ3I3 + κ32I2
3 − 1, (28)

where

κ3 = κt3 κ32 = κt32 if I3 > 0,

κ3 = κc3 κ32 = κc32 if I3 ≤ 0. (29)

The κ-parameters are obtained the same way as the α-parameters used in Eq. (14)

but using the ultimate strengths values instead of the yield strengths.

The longitudinal failure criterion predicts fiber-dominated failure mechanism,

which is expected to be a brittle behavior, and it is formulated as

rfiber(σ,A) =
aσa

X
− 1 (30)

where X is either the fiber tensile ultimate strength (XT ) or the fiber compressive

ultimate strength (XC) depending on the loading conditions. The aσa is the pro-

jection of the stress state onto the preferred direction, which is the fiber direction.

When r = max[rmatrix, rfiber] reaches a value of zero (i.e. rmatrix(σ,A) = 0 or

rfiber(σ,A) = 0), it means that one of the failure conditions is fulfilled and then,

the material fails completely. These two failure conditions allow the model to predict

the ultimate strength in the composite and also to differentiate which component-

dominated failure mechanism happens first.

The IQC is tested with the parameters given in Table 3. The transverse shear

strength is assumed identical to the transverse tensile strength for the same reasons

as evoked by Camanho et al. in [24].

On Fig. 6 can be seen the experimental failure surfaces for both quasi-static and

dynamic compression and tensile tests (blue and pink crosses)t. Also shown in

that figure are the failure surfaces predicted by the IQC, both quasi-static and

dynamic loadings. They were plotted assuming values of the scale function of

fu(quasi-static) = 1.0 and fu(dynamic) = 1.4 accordingly to the experimental

results (see subsection Calibration of the scaling functions).

Red and yellow crosses indicate the simulated failure points using one specimen-

sized single element and confirm the proper functioning of the criterion in the finite

elements code by matching the IQC surfaces. The tiny variation between the plotted

IQC surfaces and the simulated points is due to the use of the scaling functions
(
for

the 15◦ tensile test as an example, the strain rates led to fu(4·10−4s−1) = 1.0146 for

the quasi-static tests, fu(122s−1) = 1.3427, for the dynamic tests
)

which modifies
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the strength parameters in each case (different loading speeds) while the surfaces

are computed for one value of fu each.

In the Section Results are shown the failure points simulated on stress-strain

diagrams using another mesh. But it can already be foreseen that there will be

an underestimation of the strength for the compression tests for 45◦, 60◦ and 75◦

specimens because of the shape of the IQC surface.

Table 3 IM7-8552 material properties used to compute the failure envelopes using the IQC.

Property Value Reference

XT 2323.5 MPa [25]
XC -1017.5 MPa [25]
YT 62.3 MPa [26]
YBT 37.8 MPa [1]
YC -253.7 MPa [2]
YBC -600.0 MPa [1]
SL 89.6 MPa [25]
ST 62.3 MPa [26]
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Criterion and experimental measured failure surfaces

Figure 6 Failure surfaces and points, experimental and simulated (true stress used for
experimental data points).

The IQC uses the same formulation as the yield criterion for the matrix failure

which lead to similar shaped yield and failure surface. In the Section Results are

shown the failure points simulated on stress-strain diagrams the further described

meshes.

Material data and calibration of the viscoplastic parameters
Hereafter, the material data preparation using the test data and the calibration of

the viscoplastic model parameters are briefly discussed.
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Nonlinear behavior and hardening curves

The material model can represent hardening behavior in 6 stress states, as already

explained above. The in-plane shear behavior is obtained using the off-axis tensile

and off-axis compression tests. The conversion from the measured axial stress-strain

curves into the shear stress-shear strain curves, while accounting for the fiber ro-

tations is described in detail in [2, 21]. Considering the 15◦, 30◦ and 45◦ off-axis

compression tests, the corresponding shear curves are nearly congruent, which is

described by [2] postulating a master shear curve or representative shear curve. As

shown in Fig. 4, such a master shear curve or representative shear curve can also be

obtained from the 15◦, 30◦ and 45◦ off-axis tension tests. However, the representa-

tive shear curve for tensile loading is lower than the representative shear curve for

compressive loading. The reason for this is the influence of hydrostatic pressure on

the yielding behavior. All off-axis tests are superimposed with hydrostatic pressure

and, thus, the conversion into shear stress-shear strain curves does not represent

a pure in-plane shear stress state. Since such a pure in-plane shear stress state is

not obtained in the experiments, the in-plane shear stress state is assumed to be

a mean value of the representative shear curves obtained from the off-axis tensile

and from the off-axis compression tests. Fig. 7 shows shear curves, obtained from

the representative quasi-static off-axis tension and compression tests, as well as the

assumed in-plane shear behavior for pure shear loading.

γ12 [%]
0 1 2 3 4 5 6 7 8 9 10

τ 12
 [M

Pa
]

0

20

40
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80

100

120

140

master shear curve (off-axis tension)

master shear curve (off-axis compression)

assumed pure in-plane shear curve

Figure 7 Quasi-static in-plane shear behavior, deduced from off-axis tensile and off-axis
compression tests (engineering stress-strain curves shown).

The transverse compression hardening curve was directly obtained from the trans-

verse compression test [2]. The transverse shear hardening curve is assumed to be

similar to the in-plane shear behavior [21], because the transverse shear behavior

is not very sensitive in the off-axis and transverse compression and tension tests.

For a more detailed examination, the transverse shear behavior could be calibrated

using 3 point bending tests with a relatively low span length.
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Under uniaxial transverse tension, approximately linear elastic behavior until frac-

ture is generally observed in the material tests. However, nonlinearity in transverse

tension must be defined in order to trigger the nonlinear behavior for combined

shear-tensile stress states (15◦, 30◦, 45◦ off-axis tests). That is, although nonlinear

behavior is negligible under pure uniaxial tension, a hypothetic tensile hardening

curve (see Fig. 8) is required. For this purpose, a tensile hardening curve is derived

using a data reduction procedure for the plasticity model proposed by [27]. The hy-

pothetical transverse tensile hardening curve is schematised in Fig. 8. That Figure

must only be considered as an ideal representation of the axial behavior, for which

the failure during the tests occurs too early to observe a proper hardening. In the

proposed model, biaxial hardening curves can also be represented, but they are not

sensitive in the off-axis compression and off-axis tensile tests, since the triaxiality is

relatively low in these tests. It is important to note that the model requires only the

quasi-static hardening data, and that this data is used regardless of the strain-rate.

It is via the viscoplastic formulation only that the plastic yield will depend on the

strain rate.

σtot          [MPa] 

εtot [%]  
ε+⊥fail 

hypothetic tensile

hardening

linear range

E22 = 8930 MPa

R+⊥ 

1 2

50

σY0 

0

Figure 8 Nonlinear stress-strain curve for transverse tension.

Calibration of viscoplasticity parameter m and η

The calibration of the two viscoplastic parameters m and η of the Perzyna type

overstress model introduced in Eq. (18) is briefly discussed. For the current material

IM7-8552, just two strain rate regimes are tested. Consequently, the parameter m is

set to m = 1 and an approximately linear dependency of the viscoplastic yield stress

on the logarithmic strain rate can be modelled using the parameter η. Although such

a linear dependency from the logarithmic strain rate for carbon-epoxy is reported

by [28], it cannot be assumed for arbitrary matrix materials. Thermoplastics for

instance, or thermoplastic toughened resins exhibit a nonlinear dependency on the

logarithmic strain rate [21]. To account for this nonlinear dependency, the parameter
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m of the viscoplastic model can be used. Therefore, test data for at least 3 strain

rate regimes are required for a calibration of the parameter m.

To calibrate the remaining viscoplastic parameter η, the axial stress-strain curves

from the 45◦ off-axis compression tests are used. These tests were performed at two

different strain rates, at quasi-static rate (0.0004 s-1) and at an axial strain rate of

approximate 280 s-1. The calibration is done with a simple approximation of η using

a single element test and finally checked using a fine mesh, whereby the parameter

η=4.0E-4 Ns/mm2 gives the best approximation. It is assumed that the viscosity is

independent from the hydrostatic pressure and, hence, the strain rate dependency

on the yielding behavior is similar both in tension and in compression.

Calibration of the scaling functions

The parameters used in the scaling functions, to fit the strain rate dependency of

the elastic and ultimate strength properties with the experimental data are the

following [20],

fe(ε̇) = 1 + (Keε̇)
1
ne , Ke = 1.60× 10−4 , ne = 2,

fu(ε̇) = 1 + (Kuε̇)
1

nu , Ku = 1.13× 10−4 , nu = 4.

Elastic properties

The elastic properties used in the numerical model are taken from the literature

([21]) and they are presented in Table 4.

Table 4 IM7-8552 elastic properties used by the model.

Property Value

E1 171420 MPa
E2 8930 MPa
G12 5100 MPa
ν12 0.01667
ν23 0.34

Results
Meshes and boundary conditions

Fig. 9 shows the mesh and the boundary conditions used for the compression

simulations. The simulation are done with the finite element commercial software

ABAQUS/Explicit, where the material behavior is implemented as a VUMAT. For

the tensile loading simulations, the mesh is different because the specimen dimen-

sions are different, but the boundary conditions are similar (with the displacement

imposed in the opposite direction). Three-dimensional, eight-node C3D8R solid el-

ements with reduced integration are used throughout the model. It appear that for

the simulations using a fine or medium mesh or even a single element mesh provide

very close results. This assessment can be observed in Fig. 10 for the 45◦ off-axis

compression simulation (and is generalised for the other loading scenarios). For that

reason, the prediction results presented here-after have been obtained via simula-

tion on a medium mesh for the quasi-static loads and a fine mesh for the dynamic

loads (see Fig. 11). As the material model is an homogenised model at the laminate

level, it can be applied to a single specimen-sized element, or to a more refined
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mesh. Here, only two elements are used in the thickness to assess that the material

response is more or less the same in the thickness, and the simulations prove that

assumption to be true. Furthermore, using only one element in the thickness has

a negligible effect on the prediction and can reduce the computation duration if

needed.

Z

Y

X

X

Y

Z

Figure 9 Medium mesh and boundary conditions for a compression simulation.

It is noted that in [2] the experimental data was presented with engineering

stresses. For a correct comparison with the axial stress-strain curves predicted by

the model and for which true stress is used, the experimental stress-strain curves

from [2] are shown with true stress as well. For the conversion from engineering

to true stress, again the volume consistency condition was used. The method used

to read the axial stress and strain in the specimen in the simulation is the same

for all the specimens. The axial true strain, computed using the value of the axial

displacement of the free extremity of the specimen reads

εaxial,true = Log
(

1 +
∆l

l0

)
= Log

( l
l0

)
. (31)

The axial stress is then computed by reading the sum of the reaction forces at the

end of the specimen and using the value of the axial technical strain and the initial

section as follows

σaxial,true =
P

A0

(
1 +

l

l0

)
, (32)
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Figure 10 Comparison of the axial stress/strain prediction using different meshes during dynamic
and quasi-static simulations.
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Figure 11 Medium and fine meshes used for the compression simulations

with

P =
∑

Reaction Forces. (33)

In Eq. 32, the hypothesis of incompressibility of the material is applied to estimate

the current cross section using the axial deformation value. This condition reads

A = A0
l0
l

= A0

(
1 +

∆l

l0

)−1

(34)
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In the following figures, black color is used for the experimental curves while red

color is used for the simulation curves. The blue crosses correspond to the failure

points obtained using the IQC.

Tension results

The Figs. 12 to 15 show the measured and simulated static and dynamic axial

stress-strain curves under 15◦, 30◦, 45◦ off-axis tension and 90◦ transverse tension.

For the 15◦ specimen type, the comparison between experiment and simulation is

quite good. Considering the experimental data of the dynamic 30◦, 45◦ and 90◦

off-axis and transverse tensile tests shown in Figs. 13, 14 and 15, it can be seen

that with a higher strain rate the initial slope increases too. It means that viscous

effects are also observed in the elastic range and this is well taken into account by

the model via scaling functions.

The stress-strain curves become more linear under dynamic loading (See Figs. 12-

15). The present model provides strain-stress curves which match the experimental

ones accurately. The viscous effects noticed in both, elastic and plastic range are

correctly predicted for the four orientations, validating the model for tensile simu-

lations.

The model predicts ultimate strength using the IQC [11, 24]. The measured axial

strength increases by 38%, 28% and 30% for the 15◦, 30◦ and 45◦ off-axis specimen

type, respectively under dynamic loading. This tendency is well taken into account

by the scaling function. However, the quality of the failure prediction in terms of

stress level is not accurate enough and the experimental variability is important

here. On the following curves can be observed the quality of the failure prediction

in term of the stress level at failure. The IQC only predict here the ultimate failure

of the element, when one element reaches the criterion, the simulation is stopped

(deleting the element lead to the same brutal interruption because when one element

is removed, the others remaining fail in the next step). By doing so, the damage

propagation is not allowed so the final failure of the specimen can be a bit untimely.

Compression results

The Figs. 16 to 21 show the measured and predicted axial stress-strain curves for

15◦, 30◦, 45◦, 60◦, 75◦ off-axis compression and 90◦ transverse compression under

quasi-static and dynamic loading. Generally, a good prediction of the nonlinear

behavior has been achieved for both, quasi-static and dynamic loading case. For

compression loading as for the tensile loading, the viscous effects are well taken

into account by the presented model and the scaling functions, allowing a correct

prediction of the stress-strain behavior.

It is to be noted that the prediction for the quasi-static cases are very accurate.

Dynamic curves are generally good but are too steep where they should tend to be

flat (e.g. 15◦, 30◦ and 45◦). The IQC provides good predictions in term of stress

levels at ultimate failure.

Summary and conclusion
The viscoplastic behavior of the IM7-8552 carbon-epoxy was investigated using off-

axis and transverse tension and compression tests under quasi-static (0.0004 s-1) and
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Figure 12 True stress – true strain curves for the tensile tests and simulations, 15 degree.
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Figure 13 True stress – true strain curves for the tensile tests and simulations, 30 degree.

dynamic (113 s-1 – 300 s-1) loading. The available off-axis and transverse tension and

compression test data was simulated using a fully 3D transversely isotropic elastic-

viscoplastic constitutive model, able to predict nonlinearities under off-axis loading

conditions prior to the onset of cracking. A representative in-plane shear curve for

pure shear loading was deduced from the available off-axis tension and compression

test data and the influence of triaxiality on the in-plane shear characterization was
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Figure 14 True stress – true strain curves for the tensile tests and simulations, 45 degree.
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Figure 15 True stress – true strain curves for the tensile tests and simulations, 90 degree.

discussed. The calibration of the parameter η of the presented viscoplastic model

was shown, assuming an approximated linear dependency of the yield stress on the

logarithmic strain rate, since experimental data was available from only two strain

rate regimes. The strain rate dependency of the elastic moduli and the ultimate

strength properties was introduced in the proposed model by fitting the available

experimental data with suitable scaling functions. For the prediction of failure, an
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Figure 16 True stress – true strain curves for the compression tests and simulations, 15 degree.
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Figure 17 True stress – true strain curves for the compression tests and simulations, 30 degree.

Invariant based Quadratic failure Criterion (IQC) based on the work of Vogler and

co-workers [11, 24] was implemented. The model provides good predictions of the

stress-strain state, regardless of the size of the finite elements, meaning that using
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Figure 18 True stress – true strain curves for the compression tests and simulations, 45 degree.
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Figure 19 True stress – true strain curves for the compression tests and simulations, 60 degree.

a single element provides excellent quality results in a very short time. It therefore

makes it a very efficient model for stress-strain predictions at the ply scale. The

correlation between experimental data and the stress-strain response predicted by
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Figure 20 True stress – true strain curves for the compression tests and simulations, 75 degree.
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Figure 21 True stress – true strain curves for the compression tests and simulations, 90 degree.

the constitutive model was well achieved for all specimen types and for both strain

rate regimes. A shift from nonlinear to predominantly linear stress-strain response

was observed for the dynamic off-axis tensile tests. However, the importance of
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assuming a nonlinear hardening curve for transverse tension beyond the point of

failure in order to predict combined in-plane shear – transverse tensile stress states

was discussed. The failure observed in the experiments presented here is caused by

matrix failure. An good prediction of the stress level at failure was achieved for

both tension and compression simulations.
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Figures

Figure 1 a rectangular composite specimen and b assembled specimen configuration.

Figure 2 Quasi-static test setup.

Figure 3 Split-Hopkinson tension bar setup for dynamic tests (striker-bar acceleration system not
shown).

Figure 4 In-plane shear behavior derived from off-axis tension tests (engineering stress-strain
curves shown).
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Figure 5 Schematic representation of the yield surface for UD composites in stress space.

Figure 6 Criterion and experimental measured failure surfaces. Failure surfaces and points,
experimental and simulated (true stress used for experimental data points).

Figure 7 Quasi-static in-plane shear behavior, deduced from off-axis tensile and off-axis
compression tests (engineering stress-strain curves shown).

Figure 8 Nonlinear stress-strain curve for transverse tension.

Figure 9 Medium and fine meshes used for the compression simulations.

Figure 10 IM7 8552 off-axis tension 45 degree True stress–true strain curves, comparison of the
meshes.

Figure 11 Medium mesh and boundary conditions for a compression simulation.

Figure 12 IM7 8552 off-axis tension 15 degree True stress–true strain curves for the tensile tests
and simulations, 15 degree.

Figure 13 IM7 8552 off-axis tension 30 degree True stress–true strain curves for the tensile tests
and simulations, 30 degree.

Figure 14 IM7 8552 off-axis tension 45 degree True stress–true strain curves for the tensile tests
and simulations, 45 degree.

Figure 15 IM7 8552 off-axis tension 90 degree True stress–true strain curves for the tensile tests
and simulations, 90 degree.

Figure 16 IM7 8552 off-axis compression 15 degree True stress–true strain curves for the
compression tests and simulations, 15 degree.

Figure 17 IM7 8552 off-axis compression 30 degree True stress–true strain curves for the
compression tests and simulations, 30 degree.

Figure 18 IM7 8552 off-axis compression 45 degree True stress–true strain curves for the
compression tests and simulations, 45 degree.

Figure 19 IM7 8552 off-axis compression 60 degree True stress–true strain curves for the
compression tests and simulations, 60 degree.

Figure 20 IM7 8552 off-axis compression 75 degree True stress–true strain curves for the
compression tests and simulations, 75 degree.
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Figure 21 IM7 8552 off-axis compression 90 degree True stress–true strain curves for the
compression tests and simulations, 90 degree.


