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Abstract: In this paper, the tuning of economic model predictive control (EMPC) applied to drinking
water transport networks (DWTNs) is addressed using multi-objective optimization approaches. The
tuning strategies are based on Pareto front calculations of the underlying multi-objective problem.
This feature represents an improvement with respect to the standard EMPC approach for weight
tuning based on trial and error. Different multi-objective optimization methods with corresponding
normalization approaches of the controller objectives are first studied to explore the dynamic nature
of the Pareto fronts. An automated decision-making strategy is proposed to select the preferred
controller parameters as a function of different disturbance values. The tuning requires an offline
training phase and an online application phase. During the offline phase, the controller parameters
are selected for different disturbances using the decision-making strategy. During the online phase,
two approaches are evaluated: (i) exploiting the controller parameters with the highest frequency in
the resulting histogram or (ii) using a regression model between the controller parameters and the
disturbances. The proposed tuning strategies are applied to a real-life simulation case study based on
the Barcelona DWTN. The simulation results show that the proposed tuning strategies outperform
the baseline results by exploiting the periodicity of the water demands profile.

Keywords: economic model predictive control; large-scale systems; drinking water network;
multi-objective optimization

1. Introduction

One of the main benefits and motivations for introducing advanced control systems
is a more economic operation of plants and processes. The most widespread solution
for achieving this goal is to use a two-layer hierarchy architecture for economic optimal
process management [1]. The first layer, often referred to as real-time optimization (RTO),
determines the economically optimal operation point by solving a steady-state economic
optimization of the system variables. This operation point is typically updated on a time
scale of hours or days. The RTO sends the results of its optimization as a set-point to
the second layer, usually referred to as the (advanced) control layer. This control layer
is designed to steer the plant’s state to the set-point while ensuring the satisfaction of
the operation is suitable according to the management policies in the presence of model
mismatches and disturbances. This process control layer often exploits Model Predictive
Control (MPC) because of its flexibility, performance, robustness, and its ability to directly
handle hard constraints on both inputs and states [2]. MPC has been extensively studied and
successfully applied in many real-life industrial applications; nowadays, it is a widespread
and established advanced control strategy [3,4]. The objective of the MPC-based advanced
control layer is usually to achieve asymptotic tracking of set-point changes, minimizing the
effect of the disturbances over the closed-loop system performance [5].
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While this two-layer approach has been demonstrated as a successful control technique
in many industrial applications, the hierarchical separation of economic analysis and
control is either inefficient or inappropriate due to the slow reaction to disturbances and the
mismatches between the models used in each layer. This fact has motivated the question of
improving the economic performance of the controlled systems by integrating the economic
optimization into the dynamic control layer [6], leading to what is known as Economic Model
Predictive Control (EMPC). EMPC is a variant of MPC that directly optimizes an economic
performance index instead of a tracking error [1]. This line of work is of particular interest
for critical infrastructure systems because the operation of the system is guided by the cost
of energy that varies along the day and the user demands that present periodic behavior.
For example, in [7,8], an EMPC has been used to reduce the energy consumed in drinking
water distribution networks, while in [9,10], the benefits of real-time optimization in the
management of energy grids have been demonstrated. Theoretical analysis of EMPC with
Lyapunov-based stability proofs can be found in, e.g., [1,11]. Other control approaches
also seek to improve performance, taking into account the economic perspective but using
alternative control strategies (see, e.g., [12]).

Different solutions have been proposed to enhance the economic performance of the
system, e.g.,

(i) by adding a steady-state target optimization layer between the RTO and the MPC [6],
(ii) by considering the dynamics of the system in the real-time optimization stage by

replacing the RTO by a Dynamic RTO (DRTO) [13], or
(iii) by moving economic information into the control layer, where the control problem is

posed as an optimization problem, similar to MPC [14,15].

As a result, the controller directly and dynamically optimizes the economic operating
cost of the process without reference to any steady state. However, the resulting opti-
mization problem typically involves multiple objectives that are typically combined in a
weighted sum, without considering this multi-objective nature. However, the tuning of these
controllers, i.e., selecting appropriate weights, is often non-trivial. This is especially the case
when the different objectives are incommensurable or price information is only inaccurately
known or fluctuates [16,17]. In the related literature, several MPC-tuning approaches have
been proposed for linear (see, e.g., [18–20]) and non-linear model predictive controllers
(see, e.g., [17,21,22]) in the case of standard tracking formulation. For the case of economic
formulation, recently, some methods have started to appear, e.g., [23], that propose the
use of evolutionary game theory in order to complement an MPC approach for finding a
management region where the weights are determined by using fitness functions. In [24], it
is proposed a formal procedure that tunes a tracking MPC scheme so that it is first-order
equivalent to a scheme based on EMPC.

In the current paper, several tuning methods for EMPC based on multi-objective
optimization tools are proposed and applied to a Drinking Water Transport Network
(DWTN). The proposed EMPC formulation seeks for the complementarity among the
proposed control objectives (terms into the multi-objective cost function) in such a way that
the operation of the critical infrastructure was not exclusively handled by the cost of the
electric energy but by other particular interests given by the managers of the related DWTN.
The proposed tuning methods are based on an offline learning and an online operation
phase. During the offline training phase, Pareto sets with trade-off solutions are computed
and preferred solutions and the corresponding Weighted Sum weights are selected. In
order to avoid the calculation of Pareto sets during the online operation phase of the controller,
two approaches are evaluated. The first and simplest is based on a histogram that helps
to find out the most selected weight combinations. The second is based on a regression
model between the measured disturbances and the weight combination. The proposed
methods are suitable for dealing with disturbances which are not only time-varying but
also periodic. Consequently, they allow to obtain sequences of tuning factors according to
measured disturbances. The first main objective is to explore the Pareto optimal solutions
for the EMPC strategy with its multiple objectives, and to choose a solution in line with
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the management objectives of the control problem. The second main objective behind the
Pareto front calculation is to look for a direct relation between the weights of the solution
points and the measured disturbances of the control problem in order to derive an adaptive
tuning strategy for the online EMPC implementation.

The main contributions of this work are twofold: (i) to highlight that the Pareto front
is not static as disturbances change the EMPC problem constantly (hence, it is necessary
to adjust the controller continuously) and (ii) to note that the tuning of the controller is
explicitly related to the disturbances.

The remainder of this paper is organized as follows. In Section 2, the general problem
statement of the EMPC for DWTN is presented and formulated. In Section 3, methods
to calculate the Pareto front of an EMPC controller in view of its different objectives are
presented. In Section 4, strategies to tune the EMPC’s weighting factors are discussed. In
Section 5, the case study is described and the main simulation results are presented and
discussed. Finally, in Section 6, the most relevant conclusions as well as further paths for
future research are drawn.

2. Problem Formulation
2.1. EMPC Applied to DWTN

Several control-oriented modeling approaches for DWTNs have been proposed in the
literature (see, e.g., [25,26]) depending on the layer (transport or distribution) considered.
The water transport network is in charge of transporting the water from the sources
(typically rivers) to the tanks that supply water to the water distribution network. On the
other hand, the water distribution network distributes water to the consumers from the
tanks. Since this paper is focused on water transport networks, a modeling approach that is
based on a flow model is considered that follows the principles introduced by the authors
of [7]. Following this approach, a DWTN can be represented as the interconnection of nx
tanks, nu actuators (pumps and valves), nd water demands, and nq intersection nodes. Thus,
this network can be generally described by the following discrete-time state-space form:

x(k + 1) = Ax(k) + Bu(k) + Bpd(k), (1a)

Eu(k) + Edd(k) = 0, (1b)

where x ∈ Rnx is the state vector of water stock volumes in m3; u ∈ Rnu is the vector of
manipulated flow rates in m3/s (control inputs); d ∈ Rnd is the vector of water-demand
flow rates in m3/s acting as measured disturbances; A, B and Bp are state-space system
matrices; and E and Ed are matrices of suitable dimensions describing the mass balances at
network nodes. Volumes x and manipulated flows u through network pumps and valves
are subject to physical constraints, where xmin ∈ Rnx and xmax ∈ Rnx denote the vectors
of minimum and maximum volume capacities in tanks, respectively, given in m3, while
umin ∈ Rnu and umax ∈ Rnu denote the vectors of minimum and maximum flow capacities
through the network actuators, respectively, given in m3/s.

Thus, at every point in time, the DWTN (1b) is controlled by an EMPC law obtained
as a solution of the following optimization problem:

min
x̃,ũ

J(x̃, ũ), (2a)

subject to

x(i + 1|k) = Ax(i|k) + Bu(i|k) + Bpd(i|k), i ∈ [0, N] ⊂ N, (2b)

u(i|k) ∈ U , i ∈ [0, N − 1] ⊂ N, (2c)

x(i|k) ∈ X , i ∈ [0, N] ⊂ N, (2d)
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where N denotes the prediction horizon used by the EMPC controller and

x̃ =
(

x0|k, x1|k, . . . , xN|k

)
, (3a)

ũ =
(

u0|k, u1|k, . . . , uN−1|k

)
, and (3b)

d̃ =
(

d0|k, d1|k, . . . , dN−1|k

)
(3c)

are the state, input and disturbance sequences over N, respectively.
The EMPC law belongs to the set U and it is obtained using the receding horizon

philosophy [2,3]. This technique consists of solving the optimization problem (2) from the
current time instant k to the future time instant k + N using as an initial condition x0|k
obtained from measurements (or state estimation) at time k and disturbance measurements
also at time k. Then, only the first value u0|k from the control sequence ũ is applied to the
system. At time k + 1, in order to compute u0|k+1, the optimization problem (2) is solved
again from k + 1 to k + 1 + N (i.e., with a shifted time window and updated initial states
x0|k+1 from measurements (or state estimation) at time k + 1). Then, the same procedure is
repeated for the next time instants.

2.2. Multi-Objective MPC of DWTN

According to [7], the objective function (2a) is defined through the following DWTN
management objectives:

1. To provide a reliable water supply in the most economic way, minimizing water
production and transport costs, written as

J1(k) = (α1 + α2(k))u(k)∆t, (4)

where u(k) is the manipulated variables vector at time k, α1 is a known vector related to
economic costs of water treatment and α2(k) is a known time-varying vector associated
with the economic cost of water flow rates related to pumping stations (the time
dependence is given by the electric pumping cost, which varies along the day).

2. To guarantee the availability of enough water in each reservoir to satisfy its underlying
demand, keeping a safety stock in order to face uncertainties and avoid stock-outs.
This objective is reached by minimizing

J2(k) = ε(k)>ε(k), (5)

where ε(k) is the amount of the soft constraint violation, which has been defined such
that when there is no violation, then ε = 0. When there is a violation, it is equal to the
absolute amount of it in m3, therefore, ε ≥ 0.

3. To operate the DWTN under smooth control actions. This is reached by minimizing

J3(k) = ∆u(k)>∆u(k), (6)

where ∆u(k) is the vector of control signal variations, defined as ∆u(k) , u(k)− u(k− 1).

Control-objective functions (4)–(6) lead to define the multi-objective performance
function

min
x̃,ũ
{J1(x̃, ũ), . . . , Jnj(x̃, ũ)}, (7)

subject to the constraints (2b)–(2d) that define the feasible decision space S and leading to
a multi-objective economic MPC (MOEMPC) problem.
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One standard way to solve this multi-objective problem is to reformulate (7) as a
weighted combination of several objectives Ji, i.e.,

J(k) = w1

Hu−1

∑
i=0

J1(i) + w2

Hp

∑
i=1

J2(i) + w3

Hu−1

∑
i=0

J3(i), (8)

where Hp and Hu are the prediction and control horizons, respectively. However, the
selection of an appropriate set of weights, i.e., the tuning of the controller, is generally not a
trivial task. Selecting different sets of weights allows trading off different terms and gener-
ates different, but mathematically equivalent, solutions. Multi-objective optimization aims
at finding optimal solutions in view of multiple and conflicting objectives and representing
Pareto optimal solutions. From such solutions, only one should be selected by the decision
maker (e.g., the control engineer) according to their preferences and the selected set of
weights is then implemented in the controller.

3. Pareto Front Calculation of Multi-Objective Optimization Problems

As mentioned, the EMPC described in the previous section can be regarded as a
multi-objective optimization (MOO) problem of the form

minimize
y∈Rn

{
F1(y), F2(y), . . . , Fnf(y)

}
(9a)

subject to

g(y) ≥ 0, (9b)

h(y) = 0. (9c)

Here, y represent the decision variables, which, for the MOEMPC, are the sequences
[x̃, ũ]. Each Fi(y) denotes an individual objective function, which are all grouped into
the cost vector F(y) = [F1(y), F2(y), . . . , Fnf(y)]

>. In the MOEMPC, these Fi correspond
to the functions Ji(x̃, ũ). The vector g = [g1(y), g2(y), . . . , gnineq(y)]

> and vector h =

[h1(y), h2(y),. . . ,hneq(y)]
> represent the inequality and equality constraints, respectively. In

the MOEMPC setting, these relate to the constraints (2b)–(2d). The feasible decision space is
S = {y : g(y) ≤ 0 and h(y) = 0} and its mapping into the cost space yields the feasible cost
space F = {F (†) : † ∈ S}. In MOO, typically no single optimal solution exists except a set
of optimal solutions following the Pareto optimality concept [27].

Definition 1. A point y∗ ∈ S is Pareto optimal if no other point exists y ∈ S, such that
Fi(y) ≤ Fi(y∗) for all i and Jj(y) < Jj(y∗) for at least one objective function j.

Moreover, the following additional concepts are introduced considering a mini-
mization framework: the minimizer yi∗ of the i-th cost function Fi(y), the utopia point
F∗ = [F∗1, . . . , F∗nf ]

>, which contains the minima of the individual objective functions
Fi(yi∗), and the individual minima cost vectors F(yi∗), which is the cost evaluated for the in-
dividual minimizer yi∗. The approximated nadir point FN = [FN

1 , . . . , FN
nf ]
> contains

the worst value for each objective obtained from the individual minima cost vectors
FN

i = max{Fi(y∗j )} with j = 1, . . . , nf. Using the individual minimizers Fa,i = F(yi∗)

as anchor points, the pay-off matrix Φ contains, in its i-th column, the vector Fa,i − F∗.
Alternatively, when using the pseudo-anchor points Fpa,i = [FN

1 , FN
2 , . . . , F(yi∗), FN

nf
]>, the

pay-off matrix Φ has, in its i-th column, the vector Fpa,i − F∗.
Finally, in order to obtain an approximation of the Pareto set, a scalarization approach

can be used [27]. The original MOO problem (2) is converted into a parametric single
optimization problem. By solving this problem for different values of the scalarization
parameters, a part of the Pareto front is obtained. Several scalarization methods exist in
the literature.
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3.1. Normalization

The first step when scalarizing the MOO problem is to normalize the different objective
functions in order to avoid scaling deficiencies. Then, the optimization is performed in
the normalized space. Normalization can be achieved by first shifting the objectives such
that the utopia point coincides with the origin and afterwards pre-multiplying them with a
matrix T, i.e.,

F(y) = T(F(y)− F∗). (10)

When considering only the shifting and scaling of the individual objectives, the matrix
T is diagonal with elements

[T]i,i =
1

FN
i − F∗i

, (11)

where FN and the F∗ are the approximated nadir point and the utopia point, respectively.
Alternatively, the objectives can be mapped to the corners of a unit hypercube by using a
matrix T as follows:

T = EΦ−1, (12)

with E a matrix containing zeros on the diagonal and ones on the off-diagonal.

3.2. (Normalized) Weighted Sum (WS)

The most widely scalarization method is based on formulating a Weighted Sum of
different terms as

min
y∈S

Fws(y) =
nf

∑
i=1

wiFi(y), (13)

where w is the vector of scalarization parameters or often called weights with ∑nf
i=1 wi = 1

and wi ≥ 0. In this paper, a Normalized Weighted Sum (NWS) approach is obtained
when the weighted sum scalarization approach is applied to a normalized multi-objective
optimization problem based on the pay-off matrix with pseudo-anchor points. To obtain an
approximation of the Pareto set, the weight parameters can be varied.

3.3. (Enhanced) Normalized Normal Constraint ((E)NNC)

(E)NNC reformulates the MOO problem in an alternative way, as [28,29]

min
y∈S

Fk(y) (14a)

subject to

(F(yn f ∗)− F(yi∗))>(Φw− F(y)) ≥ 0 i = 1, . . . , n f − 1 (14b)

with wi ≥ 0 and ∑m
i=1 wi = 1 as scalarization parameters. Here, indicate normalized

variables. The rationale is to minimize the single most important objective n f (14a), while
reducing the feasible cost space by adding n f − 1 hyperplanes (14b) that are orthogonal to
the plane through the (normalized) individual minima. The normalization can be achieved
using (10), resulting in the traditional NNC, or using the linear transformation (12) with
either the individual minimizers or the pseudo anchor-points as anchors points, yielding
Enhanced Normalized Normal Constraint (ENNC) and Enhanced Normalized Normal
Constraint with Pseudo-Anchor points (ENNCP), respectively. Again varying the weights
leads to an approximation of the Pareto set.
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4. Tuning Strategies for Multi-Objective EMPC

4.1. Decision-Making Strategy for Multi-Objective Optimization

As said before, a desicion-making (DM) algorithm is necessary to point out a solution
from the set of multiple solutions given by a Pareto front. The labor of the DM can be
automated by using a decision-making algorithm.

4.1.1. DM Based on a Management Point

In this section, a DM strategy, based on the minimum distance to a point over the
normalized design space, is proposed. The main idea is to define this management point
(MP) and calculate the minimum Euclidean distance from the MP and the solutions of the
Pareto front. The selected solution is calculated as

FMP = arg(min ‖Fi −MP‖2), i = 1 . . . n f , (15)

where Fi is the i-th point of the obtained Pareto front, and MP is the Management Point.

4.1.2. DM Procedure and Prioritization

In order to establish a prioritization scheme, an MP based on prioritization percentages
(PP) is defined as

MP = [MP1 MP2 . . . MPn f ]
>, (16)

where MPi is the i-th coordinate of the MP, defined as:

(100− PPi)FN
i

100
, (17)

being PPi the priority percentage of the objective function i (100 is the maximum priority
percentage), defined by the user as PP = [PP1 PP2 . . . PPn f ], and FN

i is the i-th
normalized nadir point. In Figure 1, a graphical explanation of the DM algorithm is
presented. The applied control action corresponds to the solution point, which is the one
who has the minimum distance to the management point defined previously.

 

f2

Pareto Front in Normalised−Space

f1
 

f 3

Pareto Front Points
Management Point
Solution Point
Euclidean Distance

Figure 1. DM strategy graphically explained.

Remark 1. The introduced DM strategy uses a posteriori articulation of preferences since a solution
point is selected after the calculation of Pareto-front points (see [30]).
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Remark 2. If this DM strategy is used in an online implementation, the calculation time must be
taken into account because the computational burden of calculating the Pareto front at each sample
time may be (too) high.

4.2. Tuning Strategy Proposals

In this section, two tuning strategies are presented. They are based on the previously
derived decision-making procedure. The aim is to avoid the online computation of the
Pareto front at each MPC iteration, while enabling that the selection of controller weights
can still be performed based on an accurate representation of the Pareto set. Hence,
the tuning is split up in an offline training phase and an online application phase. During
the training phase, Pareto fronts are computed for a number of different scenarios with
different disturbances (water demands). Each time, the preferred solution is also selected
based on the decision-making procedure. Two approaches are evaluated for selecting the
final weights for the online application: either the weights occurring most often in the
corresponding histogram of preferred weight sets are selected (see Histogram-Based Weights
Selection below), or a model is built to relate the preferred controller weights to the average
water demands d (see Model-Based Weights Selection below).

4.2.1. Histogram-Based Weights Selection

The idea behind the histogram-based weighting is to select the set of weights which
yields most often a desired solution as found by the decision-making procedure in the
training phase. In general, such a procedure consists of the following steps:

• Step 1. Calculate the number of water-demand combinations for the Pareto front for
the specified objective functions.

• Step 2. Select, for all Pareto fronts, the preferred solution according to the decision-
making procedure described above.

• Step 3. Make a histogram of the occurrence of the different sets of selected weights for
the Normalized Weighted Sum.

• Step 4. Select, in the histogram, the weights with the highest number of occurrences
and use the weights for implementation in the MPC.

• Step 5. Evaluate the controller in an online setting (without computing the entire
Pareto set in each iteration).

This strategy can be used as a starting point for an empirical tuning of MPC weights.

4.2.2. Model-Based Weights Selection

In this case, not a single set of weights is adopted but the weights for the MPC are
calculated dynamically on the basis of the average water demands. To be able to do so, a
regression model is needed. This leads to the following general procedure:

• Steps 1 to 3 are identical to the previous approach.
• Step 4. Calculate a regression model of the preferred set of weights as a function of

the average of water demands.
• Step 5. Evaluate the controller in an online setting, i.e., in each MPC, use the regression

model for the calculation of weights based on the water demand.

Figure 2 shows a flowchart of the proposed tuning strategy process. The output data
of the second process are represented by ωidx, which is the weighting combination index,
defined as the column of matrix W, that corresponds to the weighting combination used
in the solution point, J∗. It has been seen that there is a relation between ωidx and the
average demand, d̃, hence, a linear regression model can be calculated in order to modify
the weighting factors in function of the variations of d̃, i.e.,

ωidx = f (d̃), (18)

where f : R→ Z and d̃ ∈ R.
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Figure 2. Tuning Strategy Flowchart.

Remark 3. The use of any of the Pareto front calculation methods and the proposed DM strategy
constitutes an implicit MPC-tuning strategy.

5. Application Example

The case study considered in this paper has been previously presented in the literature
of the predictive control of large-scale systems [7,31]. In these references, details concerning
the control-oriented modelling and management criteria of the Barcelona DWTN are
explained and discussed in detail. In this paper, and for completeness, the most important
elements are highlighted.

5.1. Aggregate Model of the Barcelona DWTN

The Barcelona DWTN covers a territorial extension of 425 km2, with a total pipe length
of 4470 km. Every year, it supplies 237.7 hm3 of drinking water to a population of over
2.8 millions of inhabitants. The main sources of water are the Ter and Llobregat rivers, which
are regulated at their head by some dams with an overall capacity of 600 hm3. Currently,
there are four drinking water treatment plants (WTP): the Abrera and Sant Joan Despí plants,
which extract water from the Llobregat river; the Cardedeu plant, which extracts water from
the Ter river; and the Besòs plant, which treats the underground flows from the aquifer
of the Besòs river. There are also several underground sources (wells) that can provide
water through pumping stations. Those different water sources currently provide a flow of
around 7 m3/s. The most important sources in terms of capacity are the Sant Joan Despí
and Cardedeu plants. The maximum flow that can be taken from the first is about 5 m3/s,
while the maximum flow from the second is about 7 m3/s. The water price from each
source is different depending on water treatments and legal extraction canons [7].

The network has a centralized telecontrol system, organized in a two-level architecture.
At the upper level, a supervisory control system installed in the control center of AGBAR
(AGBAR: Aguas de Barcelona, S.A. is the company that manages the DWTN of Barcelona
city and its metropolitan area) is in charge of managing the whole network by taking
into account operational constraints and consumer demands. This upper level provides
the set-points for the lower-level control system. The lower level optimizes the pressure
profile to minimize losses due to leakage and to provide sufficient water pressure, e.g., for
high-rise buildings. This paper considers an aggregate version of the Barcelona DWTN,
shown in Figure 3, which is a representative version of the entire network presented in [7].
In the aggregate model, some water demand sectors are grouped in a single one with the
same total water demand. Similarly, some tanks are aggregated in a virtual single tank
with the volume equal to the sum of the individual volumes and the respective actuators
are considered as a single pumping station or valve. In Table 1, a brief summary of the
aggregate model is presented. The global behavior of such a model is similar to the one of
the complete network.

Table 1. Components of the aggregate model.

Type of Component Quantity

Water storing tanks 17
Pumping stations 26

Valves 35
Nodes 11

Sectors of consume 25
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Figure 3. Aggregate case of the Barcelona Drinking Water Network.

In the following section, simulation results are presented and discussed. The Pareto
front calculation methods introduced in Section 3 have been used to generate the Pareto
set of the MOO problems related to the case study and to illustrate its varying nature. The
proposed decision-making strategy has been evaluated using two Pareto front calculation
methods and key performance indicators (KPIs) that were introduced in order to compare
the obtained results. At the end of the section, a regression model obtained to test the
proposed tuning strategy is presented. Finally, a comparison between the results obtained
by using the tuning strategies is presented in Section 4.2, and two MPC implementations
with fixed weighting factors are discussed.

5.2. Pareto Front Generation for the DWTN Problem

The interesting feature about obtaining the Pareto front in this MPC problem is that, at
each iteration, the front changes as a function of the disturbances.

In order to calculate the Pareto front points, two solvers have been used. For the
methods involved with normal constraints (NNC and ENNC), anchor points have been
calculated using the TOMLAB/CPLEX solver, and, for the calculation front points (the case of
ENNCP), the TOMLAB/SNOPT solver has been deployed. As has been exposed previously,
the NWS optimization problems are convex, hence, in order to calculate Pareto front points
with this method, only the TOMLAB/CPLEX solver has been used.

5.3. Solver Errors

Mainly, due to the non-linear characteristic of the (E)NNC sub-problems, three types
of optimization errors have been observed

• Infeasibility problem errors;
• Resource limit errors, related to the maximum number of iterations; and
• Numerical errors, related to ill-conditioning issues.

The error rate, defined as 100(ne/np) (where ne is the number of solver errors and
np is the number of Pareto-front points), has been collected in the simulation in order to
check it and define some corrective configurations, such as, increase the maximum iteration
number, choose a knowledge-based starting point and activate the problem-scaling option.
In Figure 4, the error-rate evolution over time is presented, and a comparison between the
solver error rate before and after the corrective configurations.
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Remark 4. For the non-linear solver, each corrective configuration implies a longer calculation time.
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Figure 4. Rate of Solver Errors for the ENNC.

Regarding the Pareto-front calculation with ENNCP and to illustrate the evolution of
the Pareto front over time, Figure 5 shows the obtained points, with different perspectives,
for a 72 h simulation. The utopia plane has been drawn in light-gray color along with the
3D plots in order to show the whole design space. It is also clear that the Pareto set is
compatible with the proposed DM algorithm.
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Figure 5. Pareto front over the normalized design space calculated with the ENNCP method.
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5.4. Key Performance Indicators

To compare the results obtained from the different tuning strategies, the KPIs presented
next have been defined based on the DWTN objective functions introduced in Section 2.2.

Economic KPI: This performance indicator is related to the water production and
transport costs (4), and is defined as

KPIcost =
∆t
N

N

∑
k=1

(α1 + α2(k))u(k), (19)

where N is the number of samples considered in the evaluation (length of the simulation
scenario).

Safety KPI: This performance indicator is related to the volume-regulation strategy of
the tanks. It has been defined as

KPIsafety =
1
N

N

∑
k=1

ε(k), (20)

where ε(k) denotes the amount of the safety volume constraint violation at time k.
Smoothness KPI: This performance indicator is related to the smoothness of the

control movements, and is defined as

KPIsmoothness =
1

(N − 1)

N

∑
k=2

(∆u(k))2, (21)

where ∆u(k) is the incremental control movement applied at time k.

Remark 5. A reduction in the KPI values implies a better performance of the designed closed-loop
control scheme based on an EMP controller tuned by using the proposed approaches.

5.5. DM Strategy Simulations

Using the DM strategy stated in Section 4.1, six simulations have been performed
considering different Pareto front calculation methods and management point definitions
using the normalization with pseudo-anchor points. The results are presented, taking into
account that the nominal performance is achieved from the second day of simulation. The
selected baseline performance is the one with the best trade-off between the objectives, i.e.,
MP = [0, 0, 0]> (obtained from PP = [100, 100, 100]>).

5.5.1. DM Exploiting ENNCP

The obtained results are presented in Table 2. The idea behind the definition of priority
percentages is to establish a tuning approach from the DM algorithm point of view, more
specifically, a prioritization procedure. Results obtained with PP = [100, 75, 50]> show that the
prioritization of the economic objective J1 over the rest has been achieved, and is reflected
by the reduction in the economic KPI with respect to the baseline. In the results obtained
with PP = [50, 100, 75]>, where J2 was mainly prioritized, the defined MP carried out the
control problem to a zone where the management criteria was affected negatively, leading
to a notable increase in the KPIs in comparison with the baseline. Finally, results obtained
with PP = [75, 50, 100]> show a clear reduction in the variability of control actions, hence,
an increase in the other two KPIs.

Taking advantage of the DM scheme, results adding the constraint

n f

∑
i=1

PPi = 100 (22)

are also presented. The idea of the equality constraint (22) is to establish a clearly prioritized
selection of the solution point.
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Table 2. KPIs for the DM Strategy using the ENNCP Method.

Priority Percentages Economic KPI Safety KPI Smoothness KPI
Day 2 Day 3 Day 2 Day 3 Day 2 Day 3

[100 100 100] 34.3553 33.7995 3873.5 3888.2 0.0040 0.0042
[100 75 50] 34.0348 33.5804 3900.5 3878.1 0.1699 0.1549
[50 100 75] 39.6096 38.9024 4195.9 3931.9 0.0495 0.0538
[75 50 100] 38.1425 36.4246 3716.1 3678.3 0.0019 0.0006

The obtained results are presented in Table 3. Note that the use of condition (22)
clearly establishes the prioritization of the objective with the larger PP—in some cases, it
has even been seen that the prioritization was extreme and the selected solution was one of
the anchor points, in which the prioritized objective had its minimum cost but the others,
sometimes, had their worst value.

Table 3. KPIs for the DM Strategy (with condition (22)) using the ENNCP Method.

Priority Percentages Economic KPI Safety KPI Smoothness KPI
Day 2 Day 3 Day 2 Day 3 Day 2 Day 3

[100 100 100] 34.3553 33.7995 3873.5 3888.2 0.0040 0.0042
[50 30 20] 34.4205 33.7557 4853.6 4541.7 0.2184 0.2632
[20 50 30] 49.6496 48.7163 3360.7 3359.5 0.0186 0.0034
[30 20 50] 46.9891 43.6090 3658.0 2537.8 0.0003 0.0002

5.5.2. DM Exploiting NWS

In order to compare different approaches, the DM strategy has also been tested using
the NWS method. Results are presented in Tables 4 and 5. Note that the baseline value
is slightly different in this case, compared to the baseline obtained with the ENNCP
method. This is among others due to the use of different solvers. As said before, in
the ENNCP method, only the anchor points are calculated with CPLEX because they are
convex optimization problems. The rest of the points (63 of them) are solved with SNOPT.
In the case of simulations with the NWS method, all the Pareto front points have been
calculated with CPLEX because all the optimization problems are convex. Again, similar
results are observed.

Table 4. KPIs for the DM Strategy using the NWS Method.

Priority Percentages Economic KPI Safety KPI Smoothness KPI
Day 2 Day 3 Day 2 Day 3 Day 2 Day 3

[100 100 100] 34.3305 33.6452 3809.5 3822.2 0.0039 0.0035
[100 75 50] 34.0022 33.4155 3501.8 3371.0 0.0086 0.0092
[50 100 75] 42.7737 42.1820 4068.1 4000.4 0.0024 0.0018
[75 50 100] 35.0110 34.2817 3578.0 3827.3 0.0028 0.0026

In Table 5, results have been calculated using the condition (22). Concerning the
obtained results, note that the KPIs show the same tendency as those calculated in the
ENNCP simulations.

Table 5. KPIs for the DM Strategy (with condition (22)) using the NWS Method.

Priority Percentages Economic KPI Safety KPI Smoothness KPI
Day 2 Day 3 Day 2 Day 3 Day 2 Day 3

[100 100 100] 34.3305 33.6452 3809.5 3822.2 0.0039 0.0035
[50 30 20] 33.8902 33.1499 4704.4 4886.1 0.2069 0.2217
[20 50 30] 50.0738 48.7135 3309.9 3353.7 0.0032 0.0034
[30 20 50] 48.3035 49.6586 3402.5 2178.9 0.0002 0.0001
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5.6. Weight Variations and Measured Disturbances

In this section, the results from the method simulations for choosing MPC weighting
factors, as proposed in Section 4.2.1, are presented.

The histogram of the weight sets along a four day simulation scenario is presented in
Figure 6. The most used weight combination has been [w1, w2, w3]

> = [0.4, 0.1, 0.5]>.
It has been seen that there is a relation between the adopted weight values and the average
demand, d̃, hence, a regression model can be calculated in order to modify the weighting
factors in function of the variations of d̃. Figure 7 shows the temporal responses of the
weights, and the average demand, d̃, as well as a regression between the variables. The
correlation index is 0.83, meaning that there is a correlation between the variables, hence, a
representatively enough regression model can be calculated.
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Figure 6. Histogram of solution index.

5.7. Tuning Strategy

Four tuning strategies have been compared for a centralized predictive control scheme
over the aggregate model of the Barcelona DWTN. First of all, the original EMPC imple-
mentation, without normalization, is simulated. Then, an EMPC implementation with
normalization of the objective functions is introduced. Finally, the tuning strategies pro-
posed in Section 4.2 are applied. The KPIs calculated with the simulation of the first EMPC
implementation have been selected as the baseline performance. The weighting factors of
the first two EMPCs are [w1, w2, w3]

> = [1/3, 1/3, 1/3]>.

5.8. Results Discussion

Table 6 shows the obtained results for a three-day simulation, where only the key
performance indicators of days 2 and 3 have been considered in order to avoid transient
responses. Regarding the results, note that the two proposed EMPC-tuning strategies
outperform the performance of the equally weighted EMPCs. Moreover, the EMPC with
adaptive weighting combinations has shown the best performance, giving the lowest KPIs.
On the other hand, although the proposed tuning approaches are here applied to a DWTN,
the methodology is quite transversal and can be extrapolated to other large-scale flow-
based networks with multiple control objectives. For other case studies, several details and
procedures should be slightly modified but, in essence, the methodology remains quite
similar (e.g., more control objectives to be tuned, more complex models of the DWTNs,
among others).
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Figure 7. Disturbances, selected weights and regression models.

Table 6. Tuning Strategies Comparison.

Tuning Strategy Economic KPI Safety KPI Smoothness KPI
Day 2 Day 3 Day 2 Day 3 Day 2 Day 3

Original MPC 34.4477 34.5007 3921.7 3912.3 0.0105 0.0103
Normalised MPC 34.5643 34.6338 3837.6 3838.3 0.0026 0.0025
Histogram-Based

Weighting 34.1424 34.2004 3324.7 3337.2 0.0017 0.0017

Adaptive Weighting 33.4410 33.0017 3135.9 3023.0 0.0007 0.0006

Regarding the social dimension issue, the proposed approaches applied to the partic-
ular critical infrastructure considered here (the DWTN) positively affect aspects related
to the reduction in economic costs from the system’s managing company, which can be
reflected in lower fees for the customers since a better and closely optimal operation of
the system elements (from the energy efficiency viewpoint) would rise in lower electricity
consumption related to the treatment and transport of water. Aside of that, a suitable
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control policy would improve several resilience indicators, such as those reported by [32]
(particularly related to the case study) and others reported in [33,34].

6. Conclusions and Further Work

In this paper, economic model predictive controllers have been tuned using scalarization-
based multi-objective approaches. First, the dynamic nature of the underlying Pareto front
has been highlighted. Second, a strategy has been proposed which enables that the preferred
controller parameters reflecting the decision maker’s preferences are always adopted. The
strategy involves an offline training phase and an online application phase. During the
offline training phase, the controller parameters are selected for different disturbances
based on the decision maker’s preferences. During the online phase, two approaches
are evaluated: (i) exploiting the controller parameters with the highest frequency in the
histogram with selected parameter combinations or (ii) using a regression model between
the controller parameters and the disturbances. Afterwards, both approaches have been
tested for a real-life simulation case study related to the model predictive control of the
Barcelona drinking water network. For this case study, it has been observed that the
proposed tuning strategies give rise to an improved performance compared to the baseline
results. As future research, the proposed approach will be extended to the case of model
uncertainty (both in network model and demands). In addition, the aim is to look for
faster implicit MPC-tuning strategies by the use of goal programming techniques or by
the statement of only one ENNCP sub-problem as a function of the management point.
Those ideas could be investigated in order to avoid the calculation of the entire Pareto front,
ensuring that the applied control actions are in line with the management criteria.
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