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Neuronal coupling benefits the encoding of weak
periodic signals in symbolic spike patterns

Maria Masoliver1, Cristina Masoller1,∗

Abstract

The biophysical mechanisms by which an input signal elicits a neuronal response

are well known (sufficiently large inputs change the membrane potential of the

neuron and generate electrical pulses, known as action potentials or spikes),

yet, a good understanding of how neurons use these spikes to encode the signal

information remains elusive. Recent theoretical studies have focused on how

neurons encode a weak periodic signal (that by itself is unable to generate

spikes) in a noisy environment, where stochastic electrical fluctuations that do

not encode any information occur. Analyzing spike sequences generated by

individual neurons and by two coupled neurons (that were simulated with the

stochastic FitzHugh-Nagumo model), it has been found that the relative timing

of the spikes can encode the signal information. Using a symbolic method

to analyze the spike sequence, preferred and infrequent spike patterns were

detected, whose probabilities vary with both, the amplitude and the frequency

of the signal. To investigate if this encoding mechanism is plausible also for

neuronal ensembles, here we analyze the activity of a group of neurons, when

they all perceive a weak periodic signal. We find that, as in the case of one

or two coupled neurons, the probabilities of the spike patterns, now computed

from the spike sequences of all the neurons, depend on the signal’s amplitude

and period, and thus, the patterns’ probabilities encode the information of the
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signal. We also find that the resonances with the period of the signal or with the

noise level are more pronounced when a group of neurons perceive the signal, in

comparison with when only one or two coupled neurons perceive it. Neuronal

coupling is beneficial for signal encoding as a group of neurons is able to encode a

small-amplitude signal, which could not be encoded when it is perceived by just

one or two coupled neurons. Interestingly, we find that for a group of neurons,

just a few connections with one another can significantly improve the encoding

of small-amplitude signals. Our findings indicate that information encoding in

preferred and infrequent spike patterns is a plausible mechanism that can be

employed by neuronal populations to encode weak periodic inputs, exploiting

the presence of neural noise.

Keywords: neural coding, excitability, spike train variability, neuronal noise,

FitzHugh-Nagumo model, time series analysis, symbolic analysis, ordinal

analysis

1. Introduction

A mechanical input such as tapping someone’s knee elicits a stretch reflex

as a response. The biophysical mechanism is known, the muscle stretches as a

consequence of the tapping to the tendon, which triggers the generation of spikes

by a sensory neuron, which in turn triggers the generation of spikes by a motor

neuron, leading to muscle contraction and causing the lower leg to bounce back

[1, 2, 3]. On the other hand, the signal encoding mechanism is also known, the

frequency at which the sensory neuron fires encodes the information about how

fast the muscle is stretching [4]. In turn, the firing rate of the motor neuron

encodes the information about the muscle force when it contracts [5]. This

is an example of a neural circuit (two neurons interconnected by a synapse),

which uses the firing rate code as a coding scheme for an external input. Yet,

neurons encode information of different types of signals using different encoding

mechanisms, which are not yet fully understood. Neurons can represent external

or internal inputs in the timing of the individual spikes, in the relative timing
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of the spikes of two or more neurons, in the individual firing rate, in the average

firing rate of a population of neurons, in the spike arrival times, among other

coding schemes [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 3, 17, 18].

Understanding the neural code is crucial, not only to gain knowledge of the

operation of the central nervous system, but also, to advance artificial intelli-

gence systems based on neural networks that use spike-processing operations for

classification, pattern recognition, logic operations, etc. [19, 20, 21, 22].

Efforts have focused on understanding the role, on neural coding, of neural

noise (stochastic electrical fluctuations that do not encode any information [23])

and spike temporal correlations, in particular, for encoding and processing weak

sensory signals. By analyzing the coefficient of variation of the inter-spike inter-

val (ISI) distribution (the standard deviation of the ISI distribution divided by

the mean), the well-known phenomena of stochastic resonance and coherence

resonance have been found. While stochastic resonance [24, 25] refers to the en-

hancement of weak signal detection, coherence resonance [26, 27, 28, 29, 30, 31]

refers to the regularization of the spike train, for an optimal level of noise. On

the other hand, ISI correlations lasting several ISIs have been studied by using

the lagged serial correlation coefficient, which measures linear relations between

sequential interspike intervals [32, 33, 34, 35, 36, 37].

An alternative technique, known as ordinal analysis [38, 39] has also been

used to detect nonlinear ISI correlations. In general terms, ordinal analysis

transforms a time series into a sequence of symbols, known as ordinal patterns,

considering the temporal order relations among the data points in the time se-

ries. A main advantage of the ordinal symbolic approach is that it provides

a straightforward way to quantify how much information is contained in a se-

quence of spikes (i.e., to apply Information Theory to the study of the neural

code [40, 41]): by counting the number of times each ordinal pattern appears in

the spike sequence, the probabilities of the different patterns can be estimated,

providing a quantification of the information content. Ordinal analysis has been

widely used to investigate biomedical signals, for example, to quantify direction-

ality of coupling in cardio-respiratory data [42], to characterize neuronal spike
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trains [43, 44, 45], to distinguish healthy subjects from patients suffering from

congestive heart failure [46], to classify neurophysiological data [47, 48, 49, 50],

etc.

In order to understand how a single neuron can encode a weak periodic input

signal (that by itself is unable to generate spikes) in the presence of neural noise,

Aparicio Reinoso et al. [51] have applied ordinal analysis to spike sequences

simulated with the stochastic FitzHugh-Nagumo (FHN) model [52, 53]. It was

found that the periodic signal induces temporal order in the form of more and

less expressed ordinal patterns. The probabilities of the patterns encode the

signal information, as they depend on both, the amplitude and the period of

the signal. In a follow up study [54], the role of a second neuron that does

not perceive the weak signal was analyzed. It was found that the signal is

still encoded in the form of preferred and infrequent ordinal patterns, whose

probabilities again depend on the period and amplitude of the signal.

An open question is whether this encoding mechanism can be employed by a

population of neurons. To answer this question, here we use the stochastic FHN

model to simulate the activity of a group of neurons, when they all perceive a

periodic signal that is weak enough such that by itself (in the absence of noise) it

is unable to generate spikes. Thus, as in previous studies, the neuronal ensemble

encodes the signal in spikes sequences which are generated due to the interplay

of the signal and the noise. Our main findings can be summarized as follows:

(i) the ensemble is able to encode lower amplitude signals, in comparison with

the signal amplitude that can be encoded by a single neuron or by two coupled

neurons; (ii) the noise-induced and period-induced resonances (some ordinal

patterns probabilities are minimum or maximum for particular values of the

noise strength or signal period) observed in one [51] or two coupled neuron

[54] become more pronounced for the neuronal ensemble and (iii) just a few

connections among the neurons can significantly improve the signal encoding.

This paper is organized as follows. Section 2 presents the model equations,

Sec. 3 presents the ordinal analysis method, Sec. 4 presents the results and Sec. 5

presents the conclusions.
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2. Model

The FitzHugh-Nagumo model is one of the simplest (and yet quite realistic)

models that describe excitable systems [52, 53, 55]. The equations describing

the dynamics of an ensemble of coupled neurons are:

εu̇i = ui −
u3i
3
− vi + a0 cos(2πt/T ) +

σ

ki

N∑
j

aij(uj − ui) +
√

2Dξi(t), i 6= j

v̇i = ui + a.

(1)

Here N refers to the number of neurons, v is known as the inhibitor variable

and u is known as the activator variable that represents the evolution of the

membrane potential: in the excitable regime, if there is no external perturbation

or it is not strong enough to overcome the threshold, the membrane potential is

held at the resting potential (i.e., stable fixed point) whereas when there is an

external perturbation strong enough to overcome the threshold, the membrane

potential performs a spike (i.e., an action potential). Typical parameters in the

excitable regime are a = 1.05 and ε = 0.01.

The parameters a0 and T represent the amplitude and period of an external

sinusoidal input, and are chosen such that the signal is sub-threshold: without

noise the neurons do not fire spikes. Dξi(t) represents an stochastic term of

strength D, which is taken as Gaussian distributed, uncorrelated temporally

and across the neuronal ensemble: 〈ξi(t)ξj(t′)〉 = δijδ(t − t′) with 〈ξi(t)〉 = 0

and 〈ξ2i (t)〉 = 1.

The neurons are mutually coupled with gap-junction connections, charac-

terized by symmetric links (aij = aji = 1 if neurons i and j are connected,

else aij = aji = 0). The coupling strength of each link is σ; to keep the total

coupling strength uniform for all neurons, it is normalized by number of con-

nections, ki =
∑

j aij . Regarding the coupling topology, we focus on all-to-all

coupling (in this case ki = N −1 for all i), but we also consider random connec-

tions. This allows us to analyze the influence of the number of links, as neurons

i and j are connected with probability p that is varied between 0 and 1. It will
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be interesting, for future work, to investigate more realistic topologies with, for

example, modular or hierarchical structures.

The model equations are simulated, from random initial conditions, using

the Euler-Maruyama method with an integration step of dt = 10−3. For each

set of parameters, the voltage-like variable of each neuron ui is analyzed and

the sequence of inter-spike-intervals (ISIs) is computed, {Iji; Iji = (tj+1 − tj)i}

with tj defined by the condition ui(tj) = 0, considering only the ascensions.

3. Ordinal analysis

The ordinal method [38] is used to analyze each ISI sequence. From the

sequence {I1, . . . Ii, . . . IN} (for clarity, the subindex that labels the neuron is

removed) symbols known as ordinal patterns are obtained by comparing D

consecutive ISIs, based on their temporal relation. For example, if we set D = 2,

the total number of possible ordinal patterns is two: 01, for I1 < I2 and 10, for

I1 > I2, while if we set D = 3, we have 3! = 6 possible ordinal patterns: 012

(I3 > I2 > I1), 021 (I2 > I3 > I1), 102 (I3 > I1 > I2), 120 (I2 > I1 > I3), 201

(I1 > I3 > I2) and 210 (I1 > I2 > I3). The number of possible ordinal patterns

(i.e., the number of possible temporal relations) is determined by the number

of permutations, D!.

Using the function defined in [46] the sequence of ordinal patterns is com-

puted. In order to determine if there are some preferred/infrequent patterns

in the ISI sequences, ordinal patterns probabilities are calculated, taking to-

gether all the ISI sequences. The ordinal probabilities are estimated as pi =

Ci/M , where Ci refers to the number of times the i−th pattern appears and

M =
∑D!

i=1 Ci is the total number of ordinal patterns. If ordinal patterns are

equi-probable it does not exist a preferred order relation among the timing of

spikes. Yet, if there are preferred/infrequent ordinal patterns, a non-uniform

probability distribution is obtained. In order to distinguish between these two

cases (uniform vs. non-uniform ordinal distribution) a binomial test is used: if

all the ordinal patterns are within the interval [p− 3σp, p+ 3σp] with p = 1/D!
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and σp =
√
p(1− p)/M the ordinal probabilities are consistent with the uni-

form distribution with 99.74% confidence level; else, some patterns are over or

less expressed than others, and there is some degree of temporal order in the

timing of the spikes.

A large number of spikes are needed to precisely estimate the ordinal prob-

abilities (the data requirements for a single neuron were analyzed in [51], see

Fig. 6). As long simulations are computationally demanding, here we limit to

consider ensembles of up to 50 neurons. We have analyzed the role of the num-

ber of neurons, and we expect that our findings will hold for larger ensembles.

The simulations are done for a time long enough to obtain a total number of

105 spikes. As in [51, 54], we use D = 3. This choice is motivated by the fact

that only short ISI correlations are expected since the spikes are noise-induced

(the signal by itself does not induce spikes).

4. Results

The neuronal ensemble displays different dynamical regimes, depending on

the coupling strengh, the signal amplitud and period, the noise strength, and

the coupling topology. Figures 1 and 2 display several examples of the dynamics

of a group of 50 neurons under different conditions: Fig. 1 shows the activity

of an individual neuron (the voltage-like variable of neuron 1), while Fig. 2

displays the raster plot of the ensemble. In panels 1(a) and 2(a) the neurons are

uncoupled and no signal is applied, therefore, random spiking activity occurs

due to the noise. In panels 1(b) and 2(b) the neurons are mutually coupled,

still no signal is applied. Now we see synchronized spiking activity superposed

with random spikes. When the periodic signal is applied, we see in panels 1(c)-

(f) and 2(c)-(f) that the neurons either fire regular and synchronized spikes, or

there is more irregular firing, depending on the period of the signal.

In the following we analyze the influence of the different parameters. To

stress the role of the number of neurons, we compare the results obtained for

50 neurons with those obtained for only two coupled neurons.
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Fig. 1: Spiking activity of a neuron when no signal is applied (a0 = 0) and the neuron (a)

is uncoupled (σ = 0), (b) is coupled to a group of 50 neurons (all to all coupling, σ = 0.05).

Activity of the neuron when it is coupled and a sinusoidal signal of amplitude a0 = 0.1 and

period (c) T = 10, (d) T = 20, (e) T = 40 is applied. The noise level is D = 2.5 · 10−6.

Fig. 2: Raster plots displaying the spiking activity of the group of 50 neurons for the same

parameters as in Fig. 1
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We begin by characterizing the role of the signal amplitude, presented in

Fig. 3 that displays probabilities of the six ordinal patterns as a function of a0

for N = 50 [Fig. 3 (a)] and for N = 2 [Fig. 3 (b)]. Here a0 is kept within the

range of values for which, in the absence of noise, the neurons do not fire spikes.

We note that, if the signal amplitude is small enough, as expected, the ordinal

probabilities are within the blue region that indicates values that are consistent

with equal probabilities, with 99.74% confidence level (this region is calculated

as explained in Sec. 3).

As the signal amplitude increases we note that, while for the two coupled

neurons, ordinal probabilities gradually increase (or decrease), for the ensemble

of 50 neurons their variation is more pronounced. Interestingly, the same cod-

ification (i.e., same ordinal patterns probabilities) is obtained for N = 2 and

larger a0. This is shown in Fig. 4, where we analyze the effect of the signal

period (T is kept within the range of values for which, in the absence of noise,

the neurons only display sub-threshold oscillations): comparing Figs. 4 (a) and

4 (d), or Figs. 4 (c) and 4 (f), we see that for two neurons and larger signal

amplitudes we find a very similar set of ordinal probabilities as for 50 neurons

and lower a0. We see that the variation of the ordinal probabilities with the

period is very similar for a0 = 0.025, N = 50 and a0 = 0.05, N = 2 [in Figs. 4

(a) and 4 (d), respectively] and for a0 = 0.05, N = 50 and a0 = 0.1, N = 2 [Figs.

4 (c) and4 (f), respectively]. Therefore, these results suggest that 50 neurons

encode a weak signal in a very similar way as 2 neurons encode a stronger signal.

Regarding how the encoding of the signal depends on its period, in Fig. 4

we verify that the probabilities of the patterns expressed in the spike sequences

depend on the period of the signal (consistent with the observations in [51, 54]).

Comparing the left and right columns of Fig. 4, we note that neuronal coupling

is beneficial for signal encoding because for N = 50 (left column) the ordinal

probabilities take higher or lower values, and the resonances with the period

become more pronounced, as compared to N = 2 (right column).

Interestingly, for N = 50 and a0 = 0.1 the probabilities are nearly constant

in the interval 10 ≤ T ≤ 15 and patterns 012 and 210 have very low or zero
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Fig. 3: Probabilities of the ordinal patterns as a function of the signal amplitude, a0, for (a)

an ensemble of 50 neurons, all-to-all coupled, and for (b) two mutually coupled neurons. The

parameters are: T = 10, D = 2.5 · 10−6 and σ = 0.05.

probability. The corresponding neuronal activity for T = 10 was displayed in

Figs. 1(c) and 2(c). We see an alternation of long and short intervals between

spikes, while three consecutive increasing or decreasing intervals do not occur

(which would be represented by patterns 012 and 210 respectively).

In Ref. [51] it was shown that the ordinal patterns displayed a noise-induce

resonance, as 012 and 210 reached minimum values when the noise intensity was

such that the mean ISI, 〈ISI〉, was approximately equal to half the signal period.

In Ref. [54] it was demonstrated that this encoding mechanism persisted when

the neuron was coupled to a second neuron that did not perceive the signal.

Here, we show in Fig. 5(a) that the mechanism is robust and the resonance

is more pronounced when the signal is perceived by a group of 50 neurons:

ordinal patterns 012 and 210 are not expressed (have zero probability) when

D = 5·10−6, and for this noise strength, 〈ISI〉 = T/2. For comparison Fig. 5(b)

shows the ordinal probabilities as a function of D for N = 2. Ordinal patterns

012 and 210 are minimum for almost the same noise strength (D = 8 · 10−6)

which gives 〈ISI〉 = T/2. Yet, the minimum is less pronounced, as compared

to the group of 50 neurons.

So far we have seen that for 50 neurons the encoding of the signal is, in
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Fig. 4: Probabilities of the ordinal patterns as a function of the signal period, T , for (a,b)

a0 = 0.025, (c,d) a0 = 0.05 and (e,f) a0 = 0.1 with N = 50 (a,c,e) and N = 2 (b,d,f). In

panels (e) and (f) we consider T ≥ 8 because for T < 8 the signal by itself triggers spikes.

Other parameters are: D = 2.5 · 10−6 and σ = 0.05.
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Fig. 5: Probabilities of the ordinal patterns as a function of the noise strength, D, for (a) 50

neurons and for (b) two neurons. Other parameters are: a0 = 0.05, T = 10, and σ = 0.05.

general, improved in comparison with that of only two neurons. Yet, how is the

variation of the ordinal probabilities with the network size? Next, we fix the

period and the amplitude of the signal and we characterize the influence of i)

the number of neurons, N , when they are all-to-all coupled; ii) the number of

links (from zero links to all-to-all coupling, randomly adding links) and iii) the

strength of the coupling, σ, in the all-to-all configuration, from 0 (uncoupled

neurons) to the same coupling strength considered in steps i) and ii). We keep

the coupling level low enough such that, without signal and noise, there are no

spikes. We note that the starting and final points in the three steps are the

same: from the uncoupled neurons to 50 all-to-all coupled neurons.

Figure 6 presents the results: panels (a, b) display the ordinal probabilities

as a function of N ; (c, d) as a function of the percentage of total links; and (e,

f) as a function of the coupling strength. To investigate if these parameters can

play different roles for weak or strong signals, we consider two signal amplitudes:

a0 = 0.05 in panels (a, c, e) and a0 = 0.1 in panels (b, d, f).

In Fig. 6(a) we note that for a0 = 0.05 the probabilities gradually vary,

increasing or decreasing, as N increases up to N = 10. With further increase

of N they remain nearly constant. The signal is encoded (the probabilities are

not in the blue region) but, at least for these parameters, the encoding only
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slightly improves when increasing N . In contrast, for a0 = 0.1 [Fig. 6(b)] we

observe that the encoding is significantly improved, compared to Fig. 6(a), as

the probabilities of the ordinal patterns 012 and 210 gradually decrease to zero.

An interesting observation is that above a certain number of neurons (which

depends on the parameters) the probabilities saturate and remain stable with

further increase of N .

In Fig. 6(c) and 6(d) we note that for the lower signal amplitude, the

probabilities vary gradually when increasing the number of links, and with just

few links (∼ 10 %) they take the most extreme values, i.e., the encoding is

optimal. In contrast, for the higher signal amplitude the probabilities increase

or decrease fast, and then saturate. Next, in Fig. 6(e) and 6(f) we evaluate the

effect of the coupling strength. We notice that increasing σ tends to improve

the encoding of the signal (the ordinal probabilities tend to higher or lower

values), and the effect is more pronounced if the signal amplitude is high. We

also note a saturation effect, as for the high signal amplitude, patterns 012 and

210 have zero probability for coupling strengths above σ = 0.02. In order to

understand the effect of the coupling strength, Fig. 7 displays the spiking activity

of the neurons for different values of σ. Here we see that when the neurons are

uncopled (σ = 0) their spiking activity is partially synchronized due to the

periodic signal that is perceived by all the neurons. As σ increases, the spikes

gradually become even more synchronized. A similar behavior is found (not

shown) when the number of existing links increases, keeping σ constant. For

future work, it will be interesting to investigate the synchronization transition

using synchronization measures based on the ordinal probabilities [50].

5. Conclusions and discussion

We have analyzed a plausible neuronal mechanism for encoding a weak pe-

riodic signal exploiting neural noise. We have simulated the dynamics of a

neuronal ensemble using the stochastic FitzHugh-Nagumo model with mutual

gap-junction type of coupling, and a sinusoidal signal that is perceived by all
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the neurons. We applied the ordinal symbolic method to the spike sequences

generated by all the neurons. Considering the variation of the ordinal prob-

abilities with the amplitude of the signal, we have found that a group of 50

neurons encodes a weak amplitude signal in a similar way (similar probabilities)

as two neurons encode a signal of stronger amplitude. We confirmed the results

reported in Refs. [51, 54]: the ordinal probabilities depend on the period and

the amplitude of the signal and thus, they encode the signal information. We

have found that the probabilities have resonances with the period or with the

noise level, which become more pronounced for the neuronal ensemble. Regard-

ing the influence of the number of neurons, N , we have found that increasing

N enhances the signal encoding, but above a certain N (which depends on the

parameters), the ordinal probabilities saturate and remain nearly constant. We

have also investigated the role of the number of links and found that signal

encoding can be enhanced by just a few links. We have also found a gradual

similar effect when increasing the coupling strength.

In sum, our work concludes that the neuronal ensemble improves signal

encoding, in comparison with single or two coupled neurons. We have studied

an homogeneous group of neurons as a first step to understand the ensemble

coding mechanism. Yet, in real biological organisms signal coding is performed

by nonidentical neurons, and for this reason it will be important to understand

the effects of heterogeneous parameters.

The ensemble encoding mechanism proposed here can also allow to encode

aperiodic signals, whose amplitude and/or period vary in time. If the ordinal

probabilities are determined from the spikes of a single neuron, the encoding

mechanim is very slow, because a large number of spikes are needed to estimate

the ordinal probabilities; in contrast, when the signal is perceived by a large

group of neurons and the ordinal probabilities are determined from the spikes

of all the neurons, then signal encoding can be fast, because just a few spikes

per neuron can be sufficient to estimate the probabilities of the different spike

patterns.

As future work, it will also be interesting to study how a weak signal that
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is perceived by just one neuron (or by a subset of neurons) propagates on the

whole ensemble, which would give information of how the signal is transmitted.

As well, we intent to study how an ensemble of neurons may encode two weak

signals. A recent experimental study [17] of how neurons encode simultaneous

auditory stimuli has found that some neurons fluctuate between firing rates

observed for each individual sound. It would be interesting to compare with our

synthetic model, to contribute to advance the understanding of how neuronal

systems process information of multiple simultaneous stimuli.
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Fig. 6: Probabilities of the ordinal patterns as a function of the number of neurons, N (a,

b), of the percentage of links (c, d), and of the coupling strength (e, f) for a0 = 0.05 and

a0 = 0.1, respectively. In panels (a, b, e, f) the neurons are all-to-all coupled, in panels (c, d)

the coupling topology is random (starting from uncoupled neurons, links are randomly added

until the neurons are all-to-all coupled). In panels (c, d, e, f) N = 50, in all the panels:

D = 2.5 · 10−6 and T = 10.
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Fig. 7: Raster plots displaying the spiking activity of the group of 50 neurons all-to-all coupled

over time for (a) σ = 0, (b) σ = 0.01, (c) σ = 0.015 and (d) σ = 0.03. In all the panels:

D = 2.5 · 10−6, T = 10 and a0 = 0.1.
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