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Optical network automation requires accurate physical layer models, not only for provisioning but also for real-time analysis. In 

particular, In-Phase (I) and Quadrature (Q) constellation analysis enables deep understanding of the characteristics of optical 

connections (lightpaths), e.g., their length. In this paper, we present methods for modeling lightpaths based on deep learning. 

Specifically, we propose using autoencoders (AE) and deep neural networks (DNN). Models are trained and composed in a 

sandbox domain with the information received from the network controller and sent to the node agent that uses them to compare 

the features extracted from the received signal and the expected features returned by the models. We investigate two different 

use cases for lightpath analysis focused on lightpath length and optical signal power. The results show a remarkable accuracy for 

the lightpath modelling and length prediction and a noticeable performance of the AEs for unsupervised IQ constellation features 

extraction and relevance analysis. © 2021 Optical Society of America

http://dx.doi.org/10.1364/JOCN.99.099999 

1. INTRODUCTION 

The new type of services enabled by 5G and beyond 

technologies require to be supported by a programmable 

autonomous optical network infrastructure [1, 2]. Such new 

types of services usually require high network performance in 

terms of bitrate and latency [3], which, together with their 

dynamicity, makes decentralization and softwarization 

essential features of that infrastructure. 

Monitoring and real-time data analytics are key enablers for 

the realization of network automation [4]. In particular, 

Artificial Intelligence (AI) and especially, Machine Learning 

(ML) -based algorithms have been extensively applied to 

optical communications to enhance their overall performance 

[5]. Applications include identifying and predicting optical 

transmission parameters to mitigate different physical layer 

impairments, including both linear interference (LI), e.g., 

Amplified spontaneous emission (ASE) noise, and nonlinear 

interference (NLI) noise caused by the Kerr effect. In fact, one 

of the most active fields of application in optical networks is 

for optical performance monitoring [6] and particularly 

interesting are those ML-based models that combine the 

characteristics of the physical system and real-time 

monitoring data to produce accurate estimation of NLI noise 

[7, 8]. Other approaches receiving large attention are those 

exploring deep learning (DL) techniques to extract 

information from complex, dense monitoring data inputs, 

without knowledge of the physical characteristics. E.g., in 

optical coherent systems with advanced Digital Signal 

Processing (DSP) techniques, the analysis of In-Phase and 

Quadrature (IQ) optical constellation diagrams as images can 

be performed by means of training convolutional neural 

networks to estimate the Quality of Transmission (QoT) of 

optical signals [9]. 

AI/ML/DL techniques usually require large data sets for 

training purposes. Although such data should come from 

experimental setups, much research is being carried out using 

accurate simulation environments based on analytical models 

(e.g., VPIphotonics [10] and GNPy [11]). Further, some ML 

applications use expected signals as reference, e.g., to detect 

degradations [12]. On the other hand, not only accurate ML 

models need to be trained, but also precise knowledge of input 

physical parameters is needed. Examples include the length of 

the optical connection (lightpath) from Transmitter (Tx) to 

Receiver (Rx) and the Tx launch power. Although some 

physical parameters might vary with time [13], considering 

them as inputs of ML models strongly increases the 

applicability of those models to real scenarios [14]. In this 

regard, a possible approach is to model individual network 

elements and concatenate them to create one model for the 

complete lightpath. Note that model concatenation is a 

common approach, which is part of other ML techniques, e.g., 
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autoencoders (AE) [15]; AEs are a type of deep neural 

networks (DNN) with two network components: the encoder 

and the decoder. 

In our previous work in [16], we proposed a method for IQ 

constellation analysis based on AEs. Our AE models run at 

the Rx site and generate compressed constellation data, 

lightpath metrics estimation, and additional metrics obtained 

after applying explainable AI techniques. Although AEs 

themselves require training, the encoder transforms the input 

in a reduced number of latent features in an unsupervised 

manner, so that the decoder is able to reconstruct the original 

input from the latent features space. 

In this paper, we propose a comprehensive solution for in-

operation lightpath analysis of IQ constellations. Specifically, 

the contribution of this paper is two-fold: 

• A novel network functional architecture is presented in 

Section 2. A sandbox domain is used to obtain DL models 

suited for the lightpath under analysis. Models include 

AEs, statistical distributions of IQ constellation points, 

and DNN-based lightpath metric predictors. The models 

are designed to run at the Rx site, and continuously 

analyze lightpath’s metrics to compress monitored 

constellation samples and detect potential anomalies. 

• A methodology for constellation analysis based on 

Gaussian Mixture Models (GMM) [17] (supervised) and 

AE-based (unsupervised) feature extraction is presented in 

Section 3. Moreover, a lightpath modelling approach 

consisting in concatenating DNN models emulating the 

performance of optical components, e.g., Reconfigurable 

Optical Add-Drop Multiplexers (ROADMs) and optical 

links including intermediate Optical Amplifiers (OA), is 

presented and used to generate expected constellations and 

synthetic constellation samples. 

Two different use cases of lightpath analysis using the 

proposed constellation analysis and lightpath modelling 

methodology are detailed in Section 4. Specifically, path 

length and power analysis using GMM-based and AE-based 

constellation analysis are proposed. The numerical evaluation 

of the different methods and algorithms is presented in 

Section 5. A simulation environment reproducing a realistic 

network deployment is used to generate synthetic IQ 

constellation samples for a wide range of lightpath 

configurations. Finally, Section 6 concludes the paper. 

2. AI-BASED CONSTELLATION ANALYSIS 

Fig. 1 overviews the considered network architecture and 

will be used for describing the main workflow; for the sake of 

simplicity, only the directly involved elements, like a 

lightpath, a node controller and a sandbox are detailed, 

whereas other components have been sketched -e.g., the 

Software Defined Networking (SDN)- or omitted to better 

highlight the key concepts involved in this work. Lightpath i 

is considered as the entity under analysis, which is represented 

as a sequence of optical components (Tx, ROADMs, links, 

and Rx) supporting that lightpath. Fig. 2 details the internal 

architecture of the sandbox domain and node agents. 

At set-up time, the SDN controller solves the Routing, 

Spectrum, and Transponder Assignment [19] before 

configuring the involved devices to establish the lightpath. 

Then, after the lightpath is provisioned, the sandbox domain 

receives the lightpath’s configuration from the SDN 

controller (labeled 1 in Fig. 1), including its route on the 

optical network and some metrics. This configuration is used 

in the sandbox domain to set up an accurate representation of 

that lightpath to be set in the Rx agent (2 in Fig. 1). Such 

representation is defined as a sequence of pre-trained DL-

based models that emulate the behavior of each individual 

optical component that the optical signal traverses. The role 

of the models is different depending on the physical element 

they characterize (Fig. 2a). For instance, the model for the Tx 

characterizes the output signal according to its specifications, 

whereas the models for intermediate elements (ROADMs and 

fiber links) propagate forward a set of features related to the 

signal’s constellation. Specifically, intermediate components 

introduce distortion on the constellation as a result of LI and 

NLI noise. Finally, the Rx model receives the constellation 

features and performs additional actions before returning the  
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Fig. 1. Reference network architecture.  Fig. 2. Details of sandbox (a) and node agent (b). 
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output of the model. Additionally, any relevant change 

affecting the lightpath during its life-time, e.g., path rerouting, 

needs to be notified to the sandbox, so as to adapt the 

lightpath’s representation and avoid misleading diagnosis due 

to mismatch between the physical lightpath and its models. 

Both constellation and lightpath analysis require from 

models that characterize the monitored lightpath. Thus, 

anomaly detection based on comparing observed features and 

expected ones coming from lightpath’s models can be carried 

out at the Rx. Note that this scheme highly reduces the amount 

of data to be sent to the centralized elements (3 in Fig. 1), as 

well as its computational demand for real-time data analysis 

purposes [18]. Once the lightpath is set-up and the lightpath 

models set in the Rx agent, they are used for analysis. With a 

predefined frequency, e.g., every 1s, the Rx samples the 

received constellation and gathers n IQ symbols. The sample 

is then processed by the constellation analysis block in the Rx 

agent [4] (Fig. 2b). The aim of this block is to extract a set of 

relevant constellation features that facilitates posterior 

analysis, as well as compressing constellation data to be used 

for multiple purposes, such as model training. These features 

are obtained by means of both supervised and unsupervised 

statistics and ML-based techniques (details are given in 

Section 3). Next, the lightpath analysis block processes the 

features extracted from the received constellation and 

analyzes key lightpath’s configuration metrics, such as length 

and/or power configuration. The result of this analysis 

produces a diagnostic report highlighting, e.g., whether some 

of the metrics does not follow the expected behavior. The 

diagnostic report is processed by the manager block that 

implements a set of rules and generates notifications to the 

SDN controller depending on the diagnosis (4 in Fig. 1). 

Following the above generic architecture, Fig. 3 illustrates 

two different use cases for lightpath analysis. The first use 

case is devoted to checking whether the real length of a given 

lightpath matches with the expected one (Fig. 3a). This 

analysis is based on the fact that both LI and NLI noise 

increase with path length and additionally, both affect the 

magnitude and shape of the dispersion of the symbols around 

the expected constellation points. Therefore, differences can 

be found by comparing the features of the observed 

constellation points, extracted with supervised techniques, 

and the expected ones. A model is used to detect any 

significant difference, as well as to estimate the real length.  

As an example, the received constellation of a 16QAM 

signal is represented in Fig. 3a, where a constellation point 

(3+3i) is zoomed in. External constellation points get more 

affected by the NLI noise since not only their shape becomes 

more dispersed around the central point as it happens in 

presence of LI noise, but they also become more elliptical, 

with eccentricity and direction of the axes that depend on the 

traveled distance [8]. Let us assume that the expected features 

characterize a distribution that is larger and more elliptical 

than the one observed. This will be detected by the length 

analysis module as an anomaly in path length, specifically as  
 

Supervised 
Feature 

Extraction

Distance 
Analysis

<Unexpected distance>

Observed
features

Expected
features

(a) (b)

Unsupervised 
Feature 

Extraction
time

m
et

ri
c

< Power anomaly> 

Relevance
Analysis

 

Fig. 3. Lightpath analysis use cases. 

a length shorter than expected. The reasons behind that 

anomaly can be multiple, e.g., inaccurate lightpath 

configuration, wrong sandbox domain model configuration, 

lack of synchronization between SDN controller and sandbox 

after a path rerouting, just to mention a few. Upon the 

notification of the length analysis module, the SDN controller 

can trigger the needed procedure to detect and isolate the 

actual reason for the detected anomaly. 

The second example explores a different approach to detect 

anomalies affecting the launch power at the Tx side (Fig. 3b). 

Instead of characterizing the gathered constellation through 

features with the distribution of the constellation points, this 

use case leverages AEs to compress constellation samples into 

a reduced set of latent space features in an unsupervised way. 

The analysis is performed in both forward and backward 

directions through the AEs to quantify relevance metrics at 

both the latent feature space and the input. This relevance can 

be tracked over time so as to detect any drift or shift directly 

related to a power anomaly (e.g., power drop) in the Tx. Note 

that an early detection of power anomaly can prevent 

degradations [13]. 

3. CONSTELLATION ANALYSIS AND MODELLING 

In this section, we present the main procedures for 

constellation analysis and lightpath modelling. In the 

following, we are going to consistently denote X={x1,…, xn} 

as an optical constellation sample consisting of n IQ symbols. 

Although each symbol xi ∈ X is typically represented as a 

complex number, for the sake of simplicity, it will be 

alternatively denoted as a tuple of real values <xi
I, xi

Q> with 

the in-phase xi
I and quadrature xi

Q components, respectively. 

Further, a constellation is defined by a set of constellation 

points P, each identified by its expected centroid <pj
I, pj

Q>. 

A. Supervised and Unsupervised Feature Extraction 

Fig. 4 illustrates the feature extraction procedure for a given 

16QAM optical constellation sample X. The procedure is used 

to summarize the optical constellation into a number of 

supervised and unsupervised features; it also produces 

goodness-of-fit (GoF) metrics that allow further evaluation of 

the quality and usefulness of the generated features. 

Let us first focus on the supervised feature extraction 

approach (Fig. 4a). The objective of this approach is to 

generate the set of features (also referred as processed sample) 

Y that summarizes X with a number of clear, unequivocal, and 

predefined characteristics. To this aim, we model the 

constellation points as bivariate Gaussian distributions. This  
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Fig. 4. Feature extraction. Supervised (a) and unsupervised (b). 

approach characterizes every constellation point p∈P with a 

two-component vector <µI
p, µQ

p> representing the mean 

position in the constellation and with a three-component 

vector <σI
p, σQ

p, σIQ
p>, which captures the variance and 

symmetric covariance terms that the symbols belonging to the 

constellation point p experienced around the expected mean. 

Aiming at allowing an accurate fitting of each of the 

constellation points, especially when LI and NLI noise are 

large and symbols are dispersed far from the expected 

centroid, we apply GMM fitting for multiple and joint bi-

variate Gaussian distribution estimation. GMM is initialized 

to find |P| different bi-variate Gaussian distributions whose 

expected centroids are the ones in P. An illustrative example 

is depicted in Fig. 4a, where the inset values in the table are 

the features Y computed from the sample and the level curves 

depict the bi-variate Gaussian distributions. 

It is worth noting that by forcing the constellation points to 

be modelled as Gaussian distributions and by selecting the 

expected centroids in P as initial points for GMM fitting, the 

obtained features are strongly conditioned. In order to 

estimate how accurate the GMM fitting is, i.e., how well they 

characterize the symbols dispersion around the expected 

mean, the lowest (worst) likelihood value ℒ (in logarithmic 

scale) [20] for one constellation point is returned as GoF 

metric. The ℒ metric might have different potential 

applications depending on the specific use case. 

In contrast, unsupervised feature extraction (Fig. 4b) aims 

at transforming input sample X into a latent sample Z that 

accurately represents the main characteristics of X without 

actually defining how to achieve such characterization (e.g., 

without imposing any statistical distribution). In this case, we 

use an AE with 2·n inputs for the I and Q components of every 

symbol in X, followed by a number of hidden layers, each with 

a number of hidden neurons. The last layer of the encoder 

component contains m outputs and is commonly known as 

latent feature space Z. The latent space is the input of the 

decoder component, which also contains a structure of hidden  
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Fig. 5. Lightpath example (a) and its proposed model (b). 

layers (not necessarily equal to those of the encoder) that lead 

to a final output layer with 2·n values, each corresponding to 

one of the initial encoder inputs. The AE is trained using the 

mean absolute error as loss function (typical for regression 

applications) so that the error between a given encoder input 

neuron and its related decoder output is minimized. In this 

way, the encoder component codes input sample X into latent 

sample Z, whereas the decoder reconstructs sample Z into the 

original feature space. Note that the reconstructed sample X* 

differs from the original one X; such a difference, that can be 

quantified in terms of relative mean square error (rMSE), is 

used as GoF metric (denoted ε) for unsupervised feature 

extraction. 

B. DNN-based Concatenation Modelling 

Fig. 5 illustrates the proposed approach to build DL-based 

lightpath models as a concatenation of DNN-based 

component models. As illustrated in the example in Fig. 5a, 

the signal crosses three ROADMs (A, B, C) and optical links 

with different length and number of spans. ROADMs are 

modelled with two Wavelength Selective Switches (WSS), 

and every intermediate ROADM, except the last one before 

the Rx (drop), includes a booster OA that compensates for 

WSSs insertion losses. Typically, the insertion losses in the 

last ROADM are compensated by DSP techniques at the 

digital coherent Rx. The optical links consist of fiber spans 

and inline OAs that compensate for the losses of the fiber 

spans. We assume that the pre-OA at ROADM’s input is a 

part of the link model (see the insets in Fig. 5a). 

The concatenation model abstracting the lightpath in Fig. 

5a is presented in Fig. 5b. In this case, the ROADMs and 

optical links in Fig. 5a are modeled using DNNs. The 

lightpath is modeled as an ordered sequence of: i) a Tx model, 

ii) an add ROADM model representing ROADM A, iii) a 240-

km link model representing fiber link A-B, iv) a transit 

ROADM model representing ROADM B, v) a 450-km link 
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model representing fiber link B-C, and finally vi) a drop 

ROADM model representing ROADM C. 

The Tx model includes a pseudo-random bit sequence 

(PRBS) generator used to generate the initial optical 

constellation following a Tx configuration. Such initial 

constellation can be generated using analytical equations, 

simulation, ML models, etc. Once the initial optical 

constellation is generated, a feature extraction block computes 

the supervised features Y as described in the previous section. 

Models for both ROADM and link components follow a 

similar architecture. Those models propagate feature set Y, 

modifying the mean and variance of each constellation point 

according to the LI and NLI noise that the physical element 

introduces. Aiming at reducing the complexity of the DNN 

models, a subset of relevant constellation points is selected as 

representative of the impact of noise during propagation, 

whereas the rest are generated as a function of the propagated 

points. Hence, we need to first select the reduced set of 

constellation points P*⊂ P. In particular, all the features in Y 

that belong to constellation point subset P*, denoted as Y(P*), 

are selected. Then, this reduced set of features is propagated 

through a DNN model specifically trained for the component 

that is represented. The structure of the DNN consists in 5·|P*| 

input and output features (i.e., μ and σ vectors of the selected 

constellation points), and a number of hidden layers with 

variable number of hidden neurons each. Since the final 

outcome of the model must include the whole set of features, 

a linear regression model mapping the characteristics of the 

non-selected constellation points, denoted as Y(P\P*), as a 

function of selected ones is used. This model is generic and 

can be shared between components of different types; it is 

defined by a matrix of linear coefficients β of size 5·|P\P*| × 

5·|P*| and an intercept vector β0 of length 5·|P\P*|. 

The proposed modelling approach can be also used as a 

lightweight optical system simulator. By generating random 

samples following the bi-variate Gaussian distributions 

defined by Y, synthetic constellation samples can be obtained. 

In Fig. 5b, such random sampling is performed to generate a 

synthetic optical constellation at the Rx side; however, 

random sampling can also be applied after any component 

model, thus generating intermediate constellations. It is worth 

noting that the time to generate the resulting optical 

constellation samples (at the Rx and intermediate points) is 

noticeably short, since it entails propagating values through a 

set of DNNs, i.e., only a very a limited number of simple 

calculations is required [21]. 

4. LIGHTPATH ANALYSIS USE CASES 

In this section, we detail the main algorithms to perform the 

two use cases of lightpath analysis sketched in Section 2. The 

proposed algorithms use the feature extraction and lightpath 

modelling procedures detailed in Section 3. Firstly, the 

algorithm to set up the lightpath models is presented. 

Algorithm 1. Lightpath models setup/update 
INPUT: R, DB, params OUTPUT: < sca, ae, pme, ℒthr> 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

L ← ∅; sca ← ∅; Yhist← ∅ 

for r∈R do 

l ← get(DB[‘component’], r.attributes) 

L ← append(L, l) 

add(DB[‘lightpaths’][R.id], L)  

for i = 1..params.nrep do 

for l∈L do 

if l.type == “tx” then  

b ← l.PBRS(params.n) 

X ← l.generateConstellation(b) 

Y ← GMMfitting(X) 

else Y ←l.propagate(Y) 

Yhist ← Yhist ⋃ Y 

for <Yi, Yj>∈ Yhist do 

val←computeChi2(Yi,Yj) (eq. (1)) 

if sca == ∅ or sca.thr<val then 

sca.ref ← <Yi, Yj> 

sca.thr ← val 

ae ← get(DB[‘AE’], R.tx.power) 

pme ← get(DB[‘predictor], R.tx.power) 

ℒthr ← get(DB[‘GoF’], R.tx.power) 

return < sca, ae, pme, ℒthr> 
 

A. Lightpath Models Setup/Update 

Upon lightpath provisioning or the modification of the 

attributes of an already in-operation one, e.g., because of re- 

routing, the models for lightpath analysis need to be loaded in 

the Rx agent (labeled 2 in Fig. 1). Algorithm 1 details such 

procedure, which runs in the sandbox domain and is triggered 

every time a notification is received from the SDN controller 

with the details of the established/modified lightpath (1 in Fig. 

1). The algorithm receives as inputs: i) the description of 

lightpath R, including its id and the sequence of nodes and 

links that composes the lightpath from Tx to Rx, each with its 

own configuration attributes; ii) the connection to the 

database of trained models (DB); and iii) a set of configuration 

parameters. The output of Algorithm 1 is the set of models 

and parameters needed for lightpath analysis at the Rx site. 

These output set includes: i) parameter ℒthr with the minimum 

threshold to consider constellations points as accurate 

Gaussian distributions, ii) the statistically-based constellation 

analysis (sca) model used for comparing monitored 

constellations with the expected one in terms of supervised 

features Y; iii) an AE-based (ae) model used for compressing 

and analyzing constellations using unsupervised features Z; 

and iv) the path metric estimation (pme) model used to predict 

the path length as a function of supervised features. 

After some initializations, the lightpath model L is built by 

selecting, for each of the components in R, the available 

component model in DB that better fits component’s attributes 

(lines 1-4 of Algorithm 1). After saving model L for further 

purposes (line 5), a number of random constellation samples 

are generated, propagated through L (see Fig. 5b) and saved 

in a temporary data set Yhist (lines 6-13). Yhist is processed in 

order to build the sca model. To this aim, the difference 

between the features of every pair <Yi, Yj> ∈ Yhist is computed 

by means of a statistical test based on the chi square test [20] 
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(lines 14-15). The proposed chi2-based statistic (chi2) is 

formally defined as: 

𝑐ℎ𝑖2(𝑌𝑖 , 𝑌𝑗) = ∑
(𝑌𝑖(𝑘) − 𝑌𝑗(𝑘))2

𝑚𝑖𝑛(𝑌𝑖(𝑘), 𝑌𝑗(𝑘))
𝑘=1..|𝑌𝑖|

 (1) 

In consequence, the sca model includes the pair of 

reference samples <Yi, Yj> that maximizes the value of chi2, 

as well as such maximum chi2 value that will be later used as 

threshold for acceptable difference between samples (lines 

16-18). Finally, ae and pme models and parameter ℒthr, are 

retrieved from the set of trained models and eventually 

returned jointly with sca (lines 19-22). Although pme can be 

designed in multiple ways, we consider it as a DNN model 

that predicts the lightpath length as a function of features Y. 

B. Lightpath Length Analysis 

Once the sandbox manager feeds the Rx agent with updated 

models, in-operation constellation analysis can be carried out.  

Algorithm 2 details the procedure used to detect mismatch 

between the received and the expected constellation in terms 

of the supervised features Y. Therefore, it requires to process 

the monitored constellation X jointly with models sca and 

pme, and parameter ℒthr. After some initializations (line 1 in 

Algorithm 2), the supervised features are computed and the 

logarithm of the likelihood is compared against ℒthr to detect 

whether observed features are unlike to follow a Gaussian 

distribution (lines 2-4). If so, a new message with the obtained 

likelihood is added to the diagnosis report (line 5). 

The analysis continues by computing the chi2 test between 

the observed features and the two reference samples stored in 

sca. The minimum of both values is compared against the 

threshold (lines 6-8), and, in case of threshold violation, an 

unexpected lightpath length is detected and pme is used to 

provide an estimation of the real length of the lightpath, which 

adds relevant information to the diagnosis report (lines 9-10). 

The procedure finishes by returning the diagnosis report, as 

well as the supervised feature sample Y, which can be 

eventually stored for further analysis (line 11). 

C. Power Anomaly Detection 

Finally, Algorithm 3 performs the analysis of the monitored 

constellation using the ae model. This analysis computes the 

relevance (importance) h of the ae model inputs and keeps 

track of them in time to detect any strong variation, like drift 

or shift. To that end, besides the monitored sample X and ae 

model, the algorithm receives the set of historical relevance 

measurements H of such a lightpath. First of all, forward 

analysis is performed (lines 1-6 in Algorithm 3). Specifically, 

the original sample X is transformed into the latent sample Z 

using the encoder and reconstructed into X* using the 

decoder. Then, the rMSE between original and reconstructed 

sample is compared against the maximum error computed 

during ae training to detect whether latent features Z are 

inaccurate. Similarly as for the previous use case, inaccurate 

features are diagnosed if reconstruction error is high. 

Regardless of the result of forward diagnosis, analysis  
 

Algorithm 2. [Rx] - Length Analysis 

INPUT: X, sca, pme, ℒthr; OUTPUT: Y, diagnosis 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

diagnosis ← ∅ 
Y ← GMMfitting(X) 

ℒ ← logLikelihood(X, Y) 

if ℒ > ℒthr then  

diagnosis.add(<‘Inaccurate Features’, ℒ>) 

testi←computeChi2(sca.Yi, Y) (eq. (1)) 

testj←computeChi2(sca.Yj, Y) (eq. (1)) 

if min(testi, testj) < sca.thr then 

diagnosis.add(<‘Unexpected Length, test>) 

diagnosis.add(<‘Estimated Length, pme(Y)>) 

return Y, diagnosis 

Algorithm 3. [Rx] - Importance analysis 
INPUT: X, H, ae; OUTPUT: Z, H, diagnosis 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

diagnosis ← ∅ 

Z ← ae.encoder.propagate(X) 

X*←ae.decoder.propagate(Z) 

ε←rMSE(X,X*) 

if ε > ae.εmax then 

diagnosis.add(< ‘Inaccurate Features’, ε>) 

h←relevanceBackpropagation(ae, X*) 

H←update(H,h) 

if detectVariation(H) then 

diagnosis.add(< ‘Power anomaly’, h>) 

return Z, H, diagnosis 
 

continues by applying relevance backpropagation techniques 

[22], using the ae model backwards (from X* to X) in order to 

compute the relevance of every input. By averaging the 

relevance of the inputs of the same constellation points, the 

relevance analysis vector h is computed, with one value for 

each constellation point in P (line 7). 

Once the relevance vector h is computed, historical set H is 

updated (line 8). Note that H consists in |P| time series with 

the temporal evolution of the relevance of each constellation 

point. Then, a procedure to detect variations in time series can 

be applied, e.g., the procedure presented in [23] to detect 

variations such as gradual drift and instantaneous shift. This 

variation analysis can either be applied to each of the time 

series independently or the aggregation (sum) of time series 

belonging to a group of constellation points, e.g., outer or 

inner constellation points. If, regardless of the type, some 

variation is detected, a power anomaly message is generated 

and added to the report jointly with the current measured 

relevance (lines 9-10). Finally, the diagnosis report and the 

historical relevance set H are returned, jointly with the latent 

sample Z (line 11). 

5. ILLUSTRATIVE NUMERICAL RESULTS 

In this section, we first introduce the simulation scenario 

and constellation data generated for numerical evaluation 

purposes. Then, the feature extraction procedure presented in 

Section 3.A is evaluated and next, the DNN-based 

concatenated model for lightpath modelling, presented in 

Section 3.B, as well as the setup algorithm in Section 4.A are 

validated. Finally, the lightpath analysis use cases introduced 

in Sections 4.B and 4.C are evaluated. 
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A. Simulation Scenario and Data Sets 

To evaluate the proposed methods for constellation and 

lightpath analysis, a MATLAB-based simulator of a coherent 

WDM system was developed to generate IQ constellations for 

a 16QAM@64GBd signal under different physical path 

characteristics. Assuming 100 GHz channel spacing and full 

spectrum occupancy, signal samples containing 2,048 

symbols and shaped by a root-raised cosine filter with a 0.06 

roll-off-factor are generated at the Tx side. Then, the signal is 

propagated through standard single mode fiber spans, 

characterized by optimal power of -1 dBm, attenuation factor 

of 0.21 dB/km, dispersion parameter of 16.8 ps/nm/km, and 

nonlinear parameter of 1.14 1/W/km. Spans are modeled by 

solving the nonlinear Schrödinger equation using the well-

known split-step Fourier method, whereas ideal inline optical 

amplification is modelled as erbium-doped fiber amplifiers 

with a noise figure of 4.5 dB, introducing linear noise. Finally, 

a DSP block is considered at the Rx able to perform ideal 

chromatic dispersion compensation and phase recovery. 

Fig. 6 shows the two different scenarios configured for 

constellation data generation. Under the single link scenario 

(Fig. 6a), a sequence of spans between Tx and Rx without 

intermediate ROADMs is configured. The first span has a 

variable length ranging from 40km to 80km and places an 

optical attenuator after the Tx to adjust the signal power 

according to the length of the first span, whereas the 

remaining spans have a fixed length of 80km. We considered 

up to 25 spans, so 3,000 constellation samples with a total 

length ranging from 80km to 2,000km were generated. 

Moreover, each sample belongs to one of the following 

configurations for the first span length and initial attenuation: 

i) optimal (80 km, 0 dB); ii) sub-optimal (60 km, -4 dB), iii) 

degradation (40 km, -8 dB). These different configurations 

have been devised to introduce power variations that result in 

small changes in the optical constellations without impacting 

lightpaths’ QoT. In contrast, intermediate ROADMs between 

Tx and Rx are considered under the multiple link scenario 

(Fig. 6b). The WSSs inside the ROADMs are based on 

commercially available ones and modelled as described in 

[24]. In this case, four different optical link configurations in 

terms of total length and number of spans are considered: 100-

km (2x50-km spans), 240-km (4x60-km spans), 400-km 

(5x80-km spans), and 560-km (7x80-km spans). By 

generating lightpaths with hop length (number of links in the 

lightpath’s route) in [1, 4] and combining links with different  
 

Tx … Rx
80 km

[40, 80] km
80 km

25

(a) Single link

[50, 80] km

…Tx Rx

(b) Multiple link

21

1 4
 

Fig. 6. Single link (a) and multiple link (b) lightpath scenarios. 

configurations, 3,000 signals with a total length between 

100km and 2,240km were generated. All generated data are 

openly available in [25]. In this work, we use a typical data 

split of 60%-20%-20% for training, testing, and validation 

purposes, respectively. 

The network architecture in Fig. 1 has been reproduced in 

a Python-based simulator implementing its main elements and 

functional blocks. For model training in the sandbox domain, 

we used sklearn and keras as main libraries for training and 

testing DNN models. The configuration of each DNN model 

and the selected data set for training, testing, and validation is 

specified in the following subsections. 

B. Feature Extraction Evaluation 

Let us first focus on evaluating the supervised feature 

extraction methodology based on GMM fitting. For this study, 

we used the data generated under the single link scenario with 

the optimal power configuration. Fig. 7 shows the evolution 

of the supervised features as a function of the total lightpath 

length. For the sake of simplicity, only one outer (-3+3i) and 

one inner (-1-1i) constellation points are selected. We observe 

that the average position of constellation points (Fig. 7a), 

which has been normalized to the expected centroid, slightly 

varies with length. Nonetheless, the selected outer 

constellation point shows some remarkable drift in the Q axis. 

Regarding variance terms (Fig. 7b), it is clear that they are 

strongly correlated with length in the whole range, whereas 

the covariance term (Fig. 7c) has a significant shift for long 

path lengths. We observe in the figures that clear and strong 

patterns between the supervised features and the length of the 

lightpath exist, which anticipates good accuracy of the length 

analysis procedures based on these supervised features. 

In addition to the previous results, Fig. 7d shows the 

likelihood GoF metric ℒ, which stays above -3.5 for all the  
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Fig. 7. Supervised feature extraction performance. 
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considered distances. Then, such value can be selected as ℒthr 

parameter for validation of feature extraction procedures. 

Moreover, the Henze-Zirkler multivariate normality test [26] 

was conducted for all the samples belonging to the selected 

dataset. We concluded that all 16 constellation points can be 

accurately modelled as Gaussian distributions for all the 

considered distances, since the obtained p-value of the test 

always exceeded the commonly accepted significance level of 

0.05. To better illustrate the valid fitting of constellation 

points as bi- variate Gaussian distributions, Fig. 8 zooms in 

the selected inner and outer constellation points of two 

samples belonging to different lightpath lengths (400km and 

1600km). The computed Gaussian distribution is plotted 

together with the samples, showing different level curves for 

different variance values. In view of the results, we can 

validate the proposed supervised feature extraction procedure 

for the characterization of constellation points. 

Let us now numerically evaluate the performance of the 

unsupervised feature extraction based on the AE model, 

which is part of the forward analysis. To this aim, we initially 

trained an AE model with data from the single link scenario 

and optimal power configurations. Fixing a symmetric 

encoder and decoder configuration, each with 4 hidden layers 

(1024, 256, 128, and 64 ReLU neurons), we trained different 

AEs for a size of latent space Z (m) ranging from 4 to 64 

features. The results in terms of reconstruction error ε for the 

testing samples are presented in Fig. 9a. For benchmarking 

purposes, Principal Component Analysis (PCA) [27] was 

conducted, where the training data set was used to compute 

the first m PCs that collect the maximum information from the 

original data. Testing data samples were next compressed and 

reconstructed with the selected PCs, thus emulating the 

encoding/decoding AE network components. Supported by 

the results, we can conclude that 32 latent features are enough 

to reach a negligible (< 2%) reconstruction error. Note that the 

same number of PCs doubles the error of that of the AEs. 

Fig. 9b plots the compression rate achieved as a function of 

the target reconstruction fidelity (defined as 1- ε). We observe 

that the AE clearly outperforms PCA. Note that 99% of 

reconstruction fidelity can be achieved with compressed 

samples, while reducing in 96% the size of original 

constellation samples. Such an extremely large compression 

rate is not achieved by PCA, which reaches a moderated 60% 

of compression rate for the same reconstruction fidelity. 

Finally, Fig. 9c plots the relation between unsupervised 

features and path length, similarly as for supervised features. 

For representation purposes, the 32 latent features have been 

projected into two dimensions by means of applying PCA to 

the latent space samples. The graph shows the position of the 

samples in the two-dimensional space obtained with PCA, 

whereas path length is coded by a color scale. We observe a 

clear relation between latent features and path length. 

However, this relation is not as strong as that of the supervised 

features, which validates the latter for path length analysis. 

C. Lightpath Modelling 

For lightpath modelling, we selected the number of 

constellation points to the minimum providing just enough 

information to capture the overall constellation 

characteristics; for 16QAM, specifically, two outer (-3+3i, 1-

3i) and two inner (1+1i and -1-1i) constellation points were 

selected. In addition, we considered that both DNN models 

for the optical fiber links and for ROADMs follow the same 

architecture characterized by: i) 20 input neurons (5 features 

per constellation point); ii) two hidden layers, each one with 

12 neurons and tanh activation function; and iii) one output  
 

-3+3i -1-1i400 km 1600 km-3+3i -1-1i

 

Fig. 8. Example of supervised feature extraction for two constellation points after 400km and 1,600 Km. 
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layer with 24 neurons to estimate the output features. These 

component models were trained during 5,000 epochs and 

tested with data from the multiple link data set. 

The overall absolute and relative errors for all link 

configurations, lightpath lengths, and selected constellation 

points are shown in Fig. 10, where average and maximum 

errors of features µ (Fig. 10a) and σ (Fig. 10b) are plotted. We 

observe negligible µ prediction errors (max error < 2%) 

independently of the link length. In contrast, σ max error is 

around 30% for low σ values although decreases when path 

length increases, becoming under 15%, which is, in general, a 

good enough performance to validate the models. For 

illustrative purposes, Fig. 10c plots the Gaussian distributions 

for the selected constellation points, obtained with the 

concatenation model and simulator for a 1,600-km lightpath 

(4 optical links of 400km). For the sake of clarity, we reduced 

the number of level curves and removed colors. It is worth 

noting that strong similarities between both cases are evident. 

The reconstruction of the features of the non-selected 

constellation points can be carried out by means of the 

proposed linear model with a reconstruction accuracy of 97%, 

which indicates the proper choice of the selected points. 

D. Length Analysis Use Case 

Let us now analyze the performance of Algorithm 2. 

Specifically, we focus on the performance of models sca and 

pme. To this aim, the features of the reference samples stored 

in sca model (model-based) are compared to those extracted 

from the validation samples of the multiple link data set 

(simulator-based). The comparison between model-based and 

simulator-based features was performed using the proposed 

chi2 test. We first compared the case when the simulation and 

model were configured with the same lightpath length and 

link configuration. For all the combinations, the maximum 

observed threshold for the chi2 test never exceeded 0.5 in 

logarithm scale. Therefore, we use such a threshold for 

unexpected length detection. 

Next, we compared different configurations of 4-link hop 

lightpaths to check whether the value of the chi2 test serves 

as a good indicator of misleading length. Fig. 11a reports the 

results, where we observe that the selected threshold of 0.5 

allows us to clearly distinguish all cases when simulation and 

model were configured differently (orange) from cases with 

the same length (green). Additionally, the impact of 

considering just slightly different scenarios in the simulation 

and concatenation model was tested. Specifically, a 4-link hop 

lightpath with 240-km links was configured in the simulation, 

whereas the model was configured with the same number of 

hops and link configuration except for only one of the hops, 

where a 400-km link was selected. The four different 

positions in the path for the 400-km link were evaluated; Fig. 

11b shows that all cases stayed above the 0.5 threshold, which 

implies that the small difference was correctly detected. Note 

that localization of the longer link can be done by performing 

the test in the intermediate links. Finally, Fig. 11c shows the 

result of applying the intermediate analysis when the 400 km 

is in the third fiber span. We observe that the link is localized 

as the chi2 test value exceeds the selected threshold when 

evaluating the features right after the third fiber span. 

The performance of pme was eventually evaluated. The 

structure of pme DNN was as follows: i) 20 input neurons (5  
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Fig. 10. Lightpath modelling performance. 
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Fig. 13. Constellation point -3+3i examples for power scenarios. Fig. 14. Power scenario discrimination with Y. 

 

features per selected constellation point); ii) two hidden 

layers, each one with 12 neurons and tanh activation function; 

and iii) one output layer with one single neuron that predicts 

lightpath length. The pme DNN model was trained with the 

single link data set and during 5000 epochs. Fig. 12 shows the 

average and maximum relative estimation error. Here, we 

observe average error below 5% regardless of lightpath length 

and maximum error under 10% for lightpaths longer than 

100km. These results validate pme as accurate real lightpath 

length estimation. 

E. Relevance Analysis 

Finally, we conducted a numerical study to evaluate the 

models involved in Algorithm 3. Specifically, we focused on 

illustrating how the ae model can discern between different 

power scenarios and on showing how the input relevance 

varies with power degradation. 

For power scenario discrimination, let us first inspect the 

examples of constellation point -3+3i for each scenario 

reproduced in Fig. 13. We observe clear differences on the 

Gaussian features Y among power scenarios. Fig. 14 shows 

each of the samples projected on the reduced two-dimensional 

PCA space from the Y space. We realize that the observed 

differences do not support an easy discrimination since the 

three classes are not separable. Nonetheless, as part of the 

forward analysis, the same projection can be performed using 

latent space samples Z computed with the ae model trained 

with all power configurations. This AE produces a 

reconstruction error under 2%, similar to the one in Section 

5.B for unsupervised feature extraction. Fig. 15 presents the 

obtained results where the three power scenarios are clearly 

distinguishable. In consequence, we conclude that the 

proposed AE-based model for constellation analysis allows 

for accurate discrimination of power configurations 

producing small changes in the received constellation. 

Regarding relevance analysis, let us compare two different 

ways to aggregate relevance of constellation points: i) 

quadrant-based, e.g., right-upper and left-bottom quadrants 

(Fig. 16a); and ii) energy-wise, i.e., inner and outer 

constellation points (Fig. 16b). In view of the figures, we 

conclude that energy-wise aggregation gives more 

information, since the relevance of inner constellation points 

clearly reduces when power degrades. Hence, relevance  
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Fig. 15. Power scenario discrimination with Z. 
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Fig. 16. Relevance vs power scenarios. 

Table 1. Input relevance variation due to power degradation. 

I/Q -3 -1 1 3 

3 7% -2% -4% -9% 

1 -4% -17% -12% 13% 

-1 -3% -9% 14% -4% 

-3 10% 5% -3% 22% 
 

analysis can be potentially used to early power anomalies 

detection, which could eventually lead to hard failures. 

The relative relevance variation per constellation point 

when moving from optimal to suboptimal scenario is detailed 

in Table 1. Increase/decrease of relevance in more than 5% 

above/below the reference optimal configuration is 

highlighted in green/red. In line with the conclusions from 

Fig. 16, we can easily verify that outer constellation points 

(mainly those in the corners) become more relevant, since 
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more NLI and LI noise is expected under sub-optimal power 

configuration, which makes the shape of outer points more 

elliptical than those with lower energy. Hence, the importance 

of the symbols on these outer constellation points in the latent 

space is higher, since the overall shape of the constellation is 

more complex. 

6. CONCLUDING REMARKS 

A comprehensive DL-based IQ constellations analysis for 

in-operation lightpath modelling and power analysis has been 

proposed. DL models propagating IQ constellations features 

were trained in a sandbox domain for modelling optical 

components, such as optical links, OAs, and ROADMs. Then, 

a target lightpath can be modelled by concatenating specific 

DL models, to reproduce the propagation of IQ constellations 

from Tx to Rx. Two methods for feature extraction were 

proposed, based on GMM (supervised) and on AE 

(unsupervised). By using those models at the node agent, real-

time analysis of the received optical signal can be carried out. 

In addition, constellation samples were compressed into a 

reduced set of latent space features, which remarkably 

reduces (more than 95%) the amount of data that needs to be 

sent to the centralized controller. 

Two illustrative use cases of lightpath performance 

analysis were investigated. First, lightpath length analysis 

showed noticeable low error for lightpaths longer than 

100km, clearly detecting slight differences in lightpath 

configurations. Next, different power profiles were studied, 

where extracted latent features from AE models showed 

accurate discrimination in terms of Tx power configurations. 

Finally, a relevance constellation analysis for the AE input 

parameters was carried out, providing clear understanding 

about which constellation points have larger relevance, which 

might be very useful for different analysis proposes. 
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