
Prediction model for Forex
based on neural networks

Bachelor Thesis

Degree in computer science

Specialization in Computing

Sergi Mestres Canales
Director: Enrique Romero Merino

GEP Tutor: Joan Sarda

26th April 2022

Resum
El mercat de divises o Forex és un dels mercats més grans del món,
amb milions de transaccions per dia per valor de trilions de dollars.
Poder anticipar els moviments del mercat pot ser una activitat molt
lucrativa sempre que s’avaluï correctament el risc de cada transacció.

L’objectiu d’aquest treball és trobar una manera de predir el mercat
de divises usant xarxes neuronals, ja que les xarxes neuronals han de-
mostrat ser en múltiples ocasions una eina de predicció molt potent.

Així doncs, el treball consistirà a desenvolupar un sistema per experi-
mentar amb models de predicció i avaluar les seves capacitats predic-
tives.

Resumen
El mercado de divisas o Forex es uno de los mercados más grandes del
mundo, con millones de transacciones por día por valor de trillones de
dólares. Poder anticipar los movimientos del mercado puede ser una
actividad muy lucrativa siempre que se evalúe correctamente el riesgo
de cada transacción.

El objetivo de este trabajo es encontrar una forma de predecir el mer-
cado de divisas usando redes neuronales, ya que las redes neuronales
han demostrado ser en múltiples ocasiones una herramienta de predic-
ción muy potente.

Así pues, el trabajo consistirá en desarrollar un sistema para experi-
mentar con modelos de predicción y evaluar sus capacidades predicti-
vas.

Abstract
The forex market is one of the largest markets in the world, with mil-
lions of transactions per day with trillions of dollars in value. Being
able to anticipate market movements can be a very lucrative activity as
long as the risk of each transaction is properly assessed.

The aim of this project is to find a way to predict the forex market
using neural networks, as neural networks have repeatedly proved to
be a very powerful prediction tool.

Thus, the project will consist of developing a system for experimenting
with prediction models and evaluating their predictive capabilities.

Contents

List of Figures

List of Tables

List of Listings

1 Context And Scope 1
1.1 Context . 1

1.1.1 Introduction . 1
1.1.2 Problem to be solved 4
1.1.3 Stakeholders . 4

1.2 Justification . 6
1.2.1 Previous Studies 6
1.2.2 Justification . 6

1.3 Scope . 7
1.3.1 Objectives and sub-objectives 7
1.3.2 Requirements . 7
1.3.3 Potential obstacles and risks 7

1.4 Methodology and Rigor 8
1.4.1 Methodology . 8
1.4.2 Validation . 8

2 Project Planning 10
2.1 Task definition . 10

2.1.1 Project management 10
2.1.2 Research . 11
2.1.3 Development . 11
2.1.4 Experiment and analysis 11
2.1.5 Document and Present 12

2.2 Resources . 12
2.2.1 Human Resources 12
2.2.2 Hardware Resources 12
2.2.3 Software Resources 13
2.2.4 Material Resources 13

2.3 Risk management: alternative plans 13

CONTENTS

2.4 Gantt chart and Task table 14
2.5 Changes to initial planification 16

2.5.1 Final task workload 16
2.5.2 Final gantt chart 16

3 Budget and Sustainability 19
3.1 Budget . 19

3.1.1 Personnel costs per activity 19
3.1.2 Generic costs . 20
3.1.3 Other costs . 22
3.1.4 Total cost . 22
3.1.5 Management control 23

3.2 Sustainability . 24
3.2.1 Economic dimension 24
3.2.2 Environmental dimension 25
3.2.3 Social dimension 25

4 Research 27
4.1 Data source . 27

4.1.1 Available options 27
4.1.2 Final decisions 27

4.2 Programming Language 28
4.3 Neural Network library 28

4.3.1 Available options 28
4.3.2 Final decisions 28

4.4 Neural Network architecture 28
4.5 Programming environment 29

4.5.1 Available options 29
4.5.2 Final decisions 29

5 Development 30
5.1 Preprocessor notebook 30

5.1.1 Initialization . 30
5.1.2 Processing . 31
5.1.3 Visual validation 32
5.1.4 Saving . 32

5.2 Neural Network notebook 34
5.2.1 Initialization . 34
5.2.2 Data preparation 35
5.2.3 Model generation 37
5.2.4 Model training 39
5.2.5 Prediction generation 41
5.2.6 Result generation 42

6 Experiment and analysis 46
6.1 Forex experiments . 47

CONTENTS

6.1.1 n20_hl1_fma100 48
6.1.2 n20_hl1_fma500 50
6.1.3 n20_hl2_fma100 52
6.1.4 n20_hl2_fma500 54
6.1.5 n100_hl1_fma100 56
6.1.6 n100_hl1_fma500 58
6.1.7 n100_hl2_fma100 60
6.1.8 n100_hl2_fma500 62

6.2 Household power consumption experiments 64
6.2.1 n20_hl1_fma100_h 64
6.2.2 n100_hl2_fma100_h 66

7 Conclusions 68
7.1 Project Development . 68
7.2 Project Goal . 68

7.2.1 Functional neural network 69
7.2.2 Forex prediction model 69

7.3 Alternatives . 73
7.3.1 Higher timeframes 73
7.3.2 Different market 73

8 Technical skills 74
8.1 CCO1.3 . 74
8.2 CCO2.1 . 74
8.3 CCO2.2 . 74
8.4 CCO2.4 . 75

Bibliography 76

List of Figures

1.1 Representation of neural network 2
1.2 EUR/USD chart on M5 period 3
1.3 Candlestick format . 4
1.4 EUR/USD chart on M5 with two MA indicators 5
1.5 Trello board . 9

2.1 Gantt chart . 16
2.2 Final Gantt chart . 18

5.1 First verification plot . 33
5.2 Second verification plot 33

6.1 Forex experiment n20_hl1_fma100 loss 48
6.2 Forex experiment n20_hl1_fma100 results 49
6.3 Forex experiment n20_hl1_fma500 loss 50
6.4 Forex experiment n20_hl1_fma500 results 51
6.5 Forex experiment n20_hl2_fma100 loss 52
6.6 Forex experiment n20_hl2_fma100 results 53
6.7 Forex experiment n20_hl2_fma500 loss 54
6.8 Forex experiment n20_hl2_fma500 results 55
6.9 Forex experiment n100_hl1_fma100 loss 56
6.10 Forex experiment n100_hl1_fma100 results 57
6.11 Forex experiment n100_hl1_fma500 loss 58
6.12 Forex experiment n100_hl1_fma500 results 59
6.13 Forex experiment n100_hl2_fma100 loss 60
6.14 Forex experiment n100_hl2_fma100 results 61
6.15 Forex experiment n100_hl2_fma500 loss 62
6.16 Forex experiment n100_hl2_fma500 results 63
6.17 House experiment n20_hl1_fma100_h loss 64
6.18 House experiment n20_hl1_fma100_h results 65
6.19 House experiment n100_hl2_fma100_h loss 66
6.20 House experiment n100_hl2_fma100_h results 67

7.1 Upward chart comparison 70
7.2 Downward chart comparison 71
7.3 Ranging chart comparison 72

List of Tables

2.1 Estimated task workload 15
2.2 Final task workload . 17

3.1 Salaries for the different roles involved in the project . . 20
3.2 Estimated task workload and corresponding cost 21
3.3 Generic cost of the project 22
3.4 Incidental costs . 23
3.5 Total cost . 23

List of Listings

5.1.1 Pre-processor initialization block 30
5.1.2 Pre-processor processing block 31
5.1.3 Pre-processor verification block 32
5.1.4 Pre-processor saving block 32
5.2.1 NN initialization block 35
5.2.2 NN preparation block . 37
5.2.3 Example experiments file 38
5.2.4 NN model generation block 39
5.2.5 NN model training block 41
5.2.6 NN prediction generation block 42
5.2.7 NN result generation block 45

1 | Context And Scope

1.1 Context

This is a Bachelor Thesis of the Computer Engineering Degree, special-
izing in Computing, done in the Facultat d’Informàtica de Barcelona of
the Universitat Politècnica de Catalunya directed by Enrique Romero
Merino.

1.1.1 Introduction

Neural Networks

Neural networks are computing systems inspired by the biological neural
networks that constitute animal brains. Neural networks are able to
learn from data in order to make predictions when new data is presented.
Although neural networks can generate very good predictions, they can
also perform very poorly. In order to be able to make good predictions it’s
important to be careful when performing the training, as you could end
with a trained neural network that is very good at predicting the training
data but very bad at predicting new data, that’s what is called over-
fitting. It is also very important to have good quality data and formatted
correctly in order to make it easy for the neural network to learn from
it, neural networks are very powerful tools, but they are not magical, if
you use bad data in they will struggle to make good predictions.

A neural network is constituted of one input layer, one or more hidden
layers and one output layer, each layer has one or more neurons, you can
see a representation of a neural network on figure 1.1. Each neuron can
has many inputs and produces a single output that can be sent to many
neurons. Neurons have an activation value which is the weighed sum of all
the connections that input to it, neurons also have an activation function
used to produce the output from the weighted sum. Each connection has
a weight value that determines how much of the input it receives will be
used.[2]

There are many different types of neural networks, and each one suits
best different kinds of problems. Part of this project will be doing some

1

1.1 Context

Figure 1.1: Representation of neural network basic structure. [2]

research on neural networks to determine which may work best for this
problem.

FOREX

The Foreign Exchange Market (FOREX) is one of the most important
and liquid markets, as It’s where currencies are traded. In 2019 the EUR
currency had an average daily turnover of over 2 trillion dollars [5], that
is, if we added the value of all the transactions that involved EUR in a
single day, we would get that value. Inside this market the most traded
pair is the EUR/USD, as it involves the two major currencies in the
world. As EUR/USD it’s the most traded pair it will be the main focus
on this project.

Market Data

In order to understand the markets we first need to understand how the
data is formatted, so I will explain how to interpret market data. The
most common way to represent market data is by using candlesticks, this
candlesticks give price action information about a certain period of time,

2

1.1 Context

for example, I we looked at a chart of EUR/USD with M5 period each
candlestick would give us information about a period of 5 minutes, on
figure 1.2 is an example of a EUR/USD chart on M5 period. The most

Figure 1.2: EUR/USD chart on M5 period. [Own screenshot]

common periods to use are M1, M5 and M15 for short-term trading also
known as daytrading, M30, H1 and H2 for mid-term trading also known
as swing trading and finally H4, D1 and W1 for long-term trading also
known as investing. M stand for Minute, H for Hour, D for Day and W
for Week. On this project I will use data from M1 period, as my goal is
two generate predictions for daytrading.

Japanese Candlestick

The japanese candlestick, candlestick or for short, is the main form of
representing data in the markets, it gives us information about what
happened in a certain period of time. The candlestick is very useful as
it gives us the High, Low, Open and Close price, all this in a visual
form as you can see on figure 1.3. High and Low are the maximum
and minimum prices reached during that period, Open and Close are
the prices at the beginning and end of the period. Normally a green
candlestick represents a closing price higher than an opening price and a
red candlestick represents the opposite. There are a lot of theories about
candlestick patterns, but that it’s not in the scope of this project.

3

1.1 Context

Figure 1.3: Candlestick format with legend. [3]

Indicators

Indicators are a way to represent a certain characteristic of the market
easily, this indicators are plotted on the charts to help visualize and
understand what is going on. The most used and simplest indicator is
the Moving Average, it is basically plotting a point for each candlestick
that represents the average of past close prices within a certain period,
then all points are connected to form a line representing how the average
is moving, you can see and example of a two moving averages on figure
1.4. There are many different indicators, some may be useful, other may
be completely useless, many people believe that indicators serve no use
as they are all lagging, meaning they only give useful information once
the event has finished. For this project I will be using only the Moving
Average indicator.

1.1.2 Problem to be solved

One of the most difficult problems but at the same time most rewarding
in monetary terms is being able to predict market movements. If you are
able to make better than random predictions in a high liquidity market,
the potential for profit is very high. So this projects aims to find a way to
make reliable and precise predictions for the Foreign Exchange Market,
and in order to make that predictions we are going to employ Neural
Networks as they have the ability to learn from data and adapt.

1.1.3 Stakeholders

This project could be of use to the following statements:

• Individuals: Any individual that has any interest in the markets
and making predictions could find this work useful.

4

1.1 Context

Figure 1.4: EUR/USD chart on M5 period with two Moving Average
indicators, red for period 20 and orange for period 50. [Own screen-
shot]

• Companies: Companies interested in developing systems for au-
tomated trading could find this work really useful.

• Banks: Banks use their capital to generate more capital and of-
ten they do so using the market, this tool could complement their
systems for prediction and risk management.

• Hedge Funds: Hedge Funds are alternative instruments of invest-
ing, most of them base their growth on predicting the market, so
they would find this work really useful.

• Myself: I’m really interested in this project as it’s my final project
and I will graduate after it’s successful completion. But also, I’m
interested in using the results of this project to create an automated
system capable of trading on it’s own, as this was the reason behind
choosing this project.

5

1.2 Justification

1.2 Justification

1.2.1 Previous Studies

Trying to make predictions about the market is not a new thing, many
individuals and companies are trying it every day. Using neural networks
to make predictions about the market isn’t either a new thing, thou it’s
more limited to big companies with huge budgets for research. As only
big companies tend to develop this prediction models based on Neural
Networks, it all remains very occult. The companies that succeed in
developing such a prediction model don’t share their research with the
public.

1.2.2 Justification

I developed an interest for markets over the last years. I find them
fascinating and puzzling, and also see them as a challenge. My first
attempt at making some predictions was feeding a neural network with a
lot of data from the market to predict the next close price, it was a failure.
At that moment I didn’t have any profound knowledge or understanding
of the markets, so I decided to study them and return when I had gained
enough knowledge.

Over the last year I’ve developed a lot of automatic systems based on
what I learned so far. Many of these systems performed very poorly,
others did very good under some circumstances but failed in the long
run. But recently I’ve found a system that could take advantage of
neural networks, as I’ve been using it for some time and has proven
quite successful. The problem of coding this system is that it needs to
adapt to the market, and I found that very hard with traditional coding
approach. I’m convinced that if done right, a neural network would be
very well suited for this task.

This project, if successful, will generate a trained model, ready to make
predictions. These predictions will be very fast to make compared to
doing extensive calculations of probabilities on the market data, meaning
that I could try to find parameters in my strategies efficiently as each run
would be very fast, that it’s not possible if for each candlestick you have
to performs calculations that last more than milliseconds. Also there is
a huge reduction in the energy waste for each prediction, meaning that
using this would have a lot less impact on the environment.

Also, making predictions using a neural network is very powerful, as
the neural network has the capacity to learn complex behaviours that
would be very hard to model mathematically and would be even harder
to discover. The neural network has the potential to learn something
from the market that no one has realised or only few people know.

6

1.3 Scope

1.3 Scope

1.3.1 Objectives and sub-objectives

As said before, the objective of this project is to develop a prediction
model for the EUR/USD pair using Neural Networks. In order to do so
I divided the project in sub-objectives:

• Raw data: The first sub-objective is to obtain raw data, needed
for the training, although it has to be pre-processed first.

• Pre-processed data: The next step is obtaining pre-processed
data ready for training, I will need to program a pre-processor in
order to do so.

• Working neural network: Then, I need to have a working neural
network, once I finish coding it, I can begin using the pre-processed
data for training.

• Trained model: After all the necessary training has been done I
finally have a trained model, ready to make predictions.

• Evaluation: With the trained model, I can finally do and evalua-
tion and determine whether it is really useful or not.

1.3.2 Requirements

This are the requirements to ensure the quality of this project:

• Good data: It’s a must too have good data in order to achieve a
model capable of making good predictions.

• Good Programming practices: In order to develop and main-
tain the code it’s crucial to adhere to good programming practices.

• Validation: In order to prevent over-fitting it’s necessary to use a
model validation technique such as cross-validation.

1.3.3 Potential obstacles and risks

• Deadline: There is a deadline to be met for this project, this
may result in drastic changes to the project to met this deadline.
This would potentially generate bad results and not of the quality
I expected.

• Bugs in libraries: Some of the software I decide to use may have
some bugs that generate errors on the code and hinder the progress
of the project.

7

1.4 Methodology and Rigor

• Bad training data: It may happen that the data chosen its not
of the quality I expected, meaning it has a lot of gaps or bad infor-
mation.

• Very long training times: Sometimes training neural networks
takes a long time, depending on the number of hidden layers and
neurons per layer it may go from minutes to days.

• Computer break: It is very improbable, but it may happen that
the computer I use for this project breaks due to internal failure or
external damage. This would hinder the project as there would be
some time I would be unable to advance.

1.4 Methodology and Rigor

1.4.1 Methodology

I’ve decided to use the Kanban methodology, this methodology consists
of cards that represent a task, this cards are then assigned to different
state columns. This are the columns I will be using:

• To do

• In progress

• Testing

• Completed

I really like this methodology because I find it very easy and intuitive to
use. Also, it’s very visual, so you get an idea of how the project is going
in a second.

For this project I will be using Trello, since it has a very accessible
web platform, and I’m already familiar with it. On Trello you generate
columns and then assign cards to this columns, representing their state.
When the state of some task changes, you simply drag it from a column
to another to represent that change. Also, you can add notes and images
to each card to better understand the task. On figure 1.5 there is an
example of how a Trello board would look like.

1.4.2 Validation

In order to keep track of the project and have a way to revert changes
if something goes wrong, I will be using Git. Finished and working code
will be on the master branch, while code being developed with be in
the dev branch. The git repository will be private and shared with my
director Enrique Romero Merino.

8

1.4 Methodology and Rigor

Figure 1.5: Trello board with three columns and some cards for each
column. [18]

9

2 | Project Planning

This project has a workload of 540 hours, distributed from September
20th 2021 to January 24th 2022, assuming that the next available oral
defense date is chosen. There are a total of 126 days between those two
dates, that means an average dedication of ∼4 hours per day.

2.1 Task definition

For the sake of clarity I’ve divided the tasks into five categories:

2.1.1 Project management

First of all, there is there project management, necessary for the correct
development of the project.

• Context and scope: Give a general idea about the project, define
the problem to be solved, justify why its a good idea to solve this
project using this alternative and expose the sub-objectives.

• Project planning: Plan the project taking account of the time
available and the tasks that need to be performed.

• Budget and sustainability: Give and approximation of the cost
and environmental impact of this project.

• Final project definition Compile a final document with all previ-
ous three parts, correcting and improving based on the tutor feed-
back.

• Meetings: Regular meetings with the director to discuss the progress
of the project, solve any issue it may arise and decide how to pro-
ceed.

10

2.1 Task definition

2.1.2 Research

After the project management part has been completed, except for the
meetings, I begin with the research. It’s the first part of the actual
project as it’s needed for everything else.

• Software: Analyse the available software solutions to build neural
networks, this includes the language and the libraries.

• Neural Network: Research neural networks to gain enough knowl-
edge to work with them and find the one(s) that best suit this
project.

• Language: If a unknown language it’s chosen it should be studied.

• Library: Study how the chosen library works and how to use it to
build the desired neural network.

• Data source: Investigate the different data sources available and
decide which is the best in terms of quality and quantity.

• Market: It is necessary to have a robust knowledge of how the
markets work and the usual ways to represent data. I’ve already
done that so I can skip this task, but it is nonetheless a primordial
task.

2.1.3 Development

Once the research has been done and there is a clear understanding of
everything needed for the project I begin with the development of the
code needed for the project, I need to develop a pre-processor and a
neural network to be able to experiment.

• Pre-processor: Develop the needed code to perform pre-procsesing
on the data and prepare it for the neural network.

• Neural Network: Code the Neural Network according to the
previous research done.

• Testing and debugging: Test the code to see if it runs without
errors, debug it and get it ready for experimenting.

2.1.4 Experiment and analysis

Once I have the pre-processor and neural network ready I can begin
experimenting.

• Collect data: Retrieve the necessary raw data from the decided
data source.

11

2.2 Resources

• Experiment: Use the data and the pre-processors to experiment
with the neural network, adjusting the different parameters. Neural
networks have a strong trial and error factor.

• Analysis: Once satisfied with the neural network performance,
analyse it’s results, determining the viability to use the generated
model in the real market.

2.1.5 Document and Present

Once I finish experimenting, analysing and I am satisfied with the re-
sults, I need to document everything. To do so, I first collect all the
information, and then I write the documentation.

And finally I have to prepare for the oral presentation, so I should craft a
slide presentation and prepare for the possible questions the the tribunal
may ask.

2.2 Resources

All projects need enough resources in order to progress adequately and
produce good results. I will state all the resources needed divided into
four categories:

2.2.1 Human Resources

This project has three human resources involved, this are:

• Researcher/Developer: Responsible of doing the research and
carry the development of the project.

• Director: The director has the role of guiding the student in
charge of the project, helping him solve any problem that may
arise.

• GEP Tutor: The GEP tutor is in charge of providing feedback and
guide the student on the project management done at the begin-
ning, before starting the actual research and development, ensuring
that the project is clearly defined and contextualized.

2.2.2 Hardware Resources

For this project I will need one computer, in this case I will be using a
Laptop with the following specifications:

• Model: Lenovo ideapad 330

• CPU: i7-8750H CPU @ 2.20GHz

12

2.3 Risk management: alternative plans

• Ram: 16GB DDR4 DIMM

• GPU: GTX 1050

• Storage: 256GB SSD / 1TB HDD

This project will make heavy use of the CPU and GPU, primarily the
latter, as it will be used to perform the training of the neural network.
Most libraries support training using the GPU and it’s usually a lot more
efficient than the CPU.

2.2.3 Software Resources

A lot of software is involved in this project, each software performs a
different specific task. This is the software I will need:

• Overleaf: For generating all the documentation using latex.

• Gmail: For communicating via email to the Tutor and Director
when needed.

• Google Hangouts: Used to carry out the meetings.

• Github: Used to store the project.

• Programming language: I will need a programming language to
develop the Neural Network such a Python.

• Code library: The libraries I will be using to create the Neural
Network such as TensorFlow.

• Visual Studio Code: I will also need an IDE to carry out the
coding. For this, I will be using Visual Studio Code, as is the IDE
I use the most.

• The internet: Internet access will be very import as it’s going be
the base for almost everything else.

2.2.4 Material Resources

Very little material resource will be needed, only a pencil, an eraser, a
notebook and a calculator will be needed in order to sketch ideas.

2.3 Risk management: alternative plans

Every project has potential risk and obstacles, and they should be anal-
ysed ahead to be prepared in case they appeared. Next we have a list of
the potential problems and their plan:

• Deadline: It may happen that the deadline of the project cannot
be met due to a bad estimation of the needed time for each task,

13

2.4 Gantt chart and Task table

so if during the project it seems as though there is not enough time
to finish something as planned, I should re-plan that part of the
project and its dependence’s accordingly. This would affect T3, T4
and T5 with an estimated impact of 20 hours.

• Bug in library: Sometimes libraries of code have bugs in it, gen-
erating wrong results. Our software choices should take stability in
account to avoid this, but if a bug was found I should use another
version of the same library. If another version doesn’t solve the
problem, I should change the library used for a similar one. This
would affect T3 with and estimated impact of 5 hours.

• Bad training data: If the data used happens to be of bad quality,
meaning it has a lot of gaps in it or misinformation, then I should
chose another data source. This would affect T4 with an estimated
impact of 5 hours.

• Very long training times: Training neural networks tends to be
a lengthy task, depending on the number of neurons it can go from
minutes to even days. So, if the network I built has a training time
too long making experimentation in the planned time unfeasible,
I should rebuild the neural network making it more light, that is,
reducing the number of neurons per layer or reducing the number
of layers. If I had access to more computers with better GPUs, I
could use them speed up the training. This would affect T4 with
and estimated impact of 20 hours.

• Computer break: Although its very improbable, the computer
I will use for the development and experimenting could break. In
that case I should find a new computer to use capable of performing
the needed task, luckily I have access to another computer if that
happened. This would affect T2, T3, T4 and T5 with an estimated
impact of 5 hours.

2.4 Gantt chart and Task table

14

2.4 Gantt chart and Task table

Id Name Hours

T1 Project Management 85
T1.1 Context and Scope 25
T1.2 Project Planning 10
T1.3 Budget and sustainability 10
T1.4 Final project definition 20
T1.5 Meetings 20
T2 Research 60
T2.1 Neural Network 20
T2.2 Data source 10
T2.3 Software 10
T2.4 Language 10
T2.5 Library 10
T3 Development 110
T3.1 Pre-processor 40
T3.2 Neural Network 50
T3.3 Testing and debugging 20
T4 Experiment and analysis 160
T4.1 Collect data 30
T4.2 Experiment 80
T4.3 Analysis 50
T5 Document and Present 125
T5.1 Collect the data obtained 20
T5.2 Craft documentation 80
T5.3 Prepare oral defense 25

Total 540

Table 2.1: Estimated task workload. [Own calculations]

15

2.5 Changes to initial planification

Figure 2.1: Gantt chart. [Own creation]

2.5 Changes to initial planification

Unfortunately, due to personal issues the time available for the project
was less than I expected, so I decided to do the defense on April instead of
January to be able to finish the project with the quality and completeness
I envisioned.

2.5.1 Final task workload

I underestimated the time I would need for the Development phase, Task
T3.2 and T3.3 took more time than expected, T3.2 was completed with
70 hours approximately, and T3.3 with 30 hours. On Table 2.2 you can
see the final workload.

2.5.2 Final gantt chart

On Figure 2.2 is the final gantt chart with the planification I followed in
order to defend by April.

16

2.5 Changes to initial planification

Id Name Hours

T1 Project Management 85
T1.1 Context and Scope 25
T1.2 Project Planning 10
T1.3 Budget and sustainability 10
T1.4 Final project definition 20
T1.5 Meetings 20
T2 Research 60
T2.1 Neural Network 20
T2.2 Data source 10
T2.3 Software 10
T2.4 Language 10
T2.5 Library 10
T3 Development 140
T3.1 Pre-processor 40
T3.2 Neural Network 70
T3.3 Testing and debugging 30
T4 Experiment and analysis 160
T4.1 Collect data 30
T4.2 Experiment 80
T4.3 Analysis 50
T5 Document and Present 125
T5.1 Collect the data obtained 20
T5.2 Craft documentation 80
T5.3 Prepare oral defense 25

Total 570

Table 2.2: Final task workload. [Own calculations]

17

2.5 Changes to initial planification

Figure 2.2: Final Gantt chart. [Own creation]

18

3 | Budget and Sustainability

Here I will describe the budget needed for the project, divided into costs
per task, generic costs and other costs. Moreover, I will define manage-
ment control mechanism in order to control the possible deviation that
may appear in the project due to any problem that may arise. And
finally, I will give some words regarding the sustainability of the project.

3.1 Budget

3.1.1 Personnel costs per activity

In this section I will estate all the tasks and their corresponding assignee,
with cost estimations for each task derived from an estimation of each
personnel salary. This project has five types of personnel involved, this
are:

• Project Manager: The project manager is the one responsible for
the planning, guidance, and supervision of the correct development
of the project. The director, GEP Tutor and me will be involved
in this role.

• Programmer: Is the one in charge of coding everything. I will
play this role.

• Tester: The Tester is there to test the code and find any bugs or
problems it may have, to ensure it runs well when experimenting.
I will also do this role.

• Researcher: The researcher has to do the necessary research in
order to have a clear understanding of everything needed for the
project. I will be the researcher.

• Technical writer: Once the experimenting has been done and the
results are ready, everything needs to be documented, and that’s
what the technical writer is in charge of. I will be documenting the
project.

Following, there is a table displaying the salary and price per hour for
each role, assuming that a year has 1750 working hours.

19

3.1 Budget

Role Annual Salary
(e)

Total includ-
ing SS (e)

Price per
hour (e)

Assignee

Project Manager 39.004 50.705,2 28,97 GEPT, T, S
Programmer 26.198 34.057,4 19,46 S
Tester 20.592 26.769,6 15,29 S
Researcher 35.259 45.836,7 26,19 S
Technical Writer 26.263 34.141,9 19,50 S

Table 3.1: Salaries for the different roles involved in the project.
GEPT: GEP Tutor, T: Tutor, S: Student. Data source: [6]

With this information I will compute the cost for each task, based on the
number of hours assigned to that task. On Table 3.2 I detailed all the
costs per task, this is known as CPA.

3.1.2 Generic costs

Amortization

I have to take into account the amortization of the resources used in
this project, basically the laptop I will be using. It’s estimated that the
project will have a total workload of 540h. I’ve had this laptop for 5
years so the formula would be:

Amr (e) = Price * (1/5 years) * (1/126 days) * (1/4 hours) * Hours used

That gives an amortization of 214.28e.

Electric cost

Electricity cost is at 0,253e/kWh. This cost is only applied while the lap-
top is in use, so that’s 540h of electricity use. My laptop consumes 135W,
so 135W during 540h is 72kWh. With 72kWh at a price of 0,253e/kWh
means an electric cost of 18.22e.

Internet cost

The internet rate cost is 60e/month. So the internet cost will be 540h *
(1day/24h) * (1month/30day) * (60e/month) = 45e

Water cost

The water cost in my area is about 30e/month per person, so the water
cost is 540h * (1day/24h) * (1month/30day) * (30e/month) = 22.5e.

20

3.1 Budget

Id Name Total
Hours

Hours Cost
(e)

Project
Manager

Programmer Tester Researcher Technical
Writer

T1 Project Management 85 85 20 20 20 20 4.071,25
T1.1 Context and Scope 25 25 0 0 0 0 724.25
T1.2 Project Planning 10 10 0 0 0 0 289.7
T1.3 Budget and sustainability 10 10 0 0 0 0 289.7
T1.4 Final project definition 20 20 0 0 0 0 579.4
T1.5 Meetings 20 20 20 20 20 20 2188.2
T2 Research 60 0 0 0 60 0 1571.4
T2.1 Neural Network 20 0 0 0 20 0 523.8
T2.2 Data source 10 0 0 0 10 0 261.9
T2.3 Software 10 0 0 0 10 0 261.9
T2.4 Language 10 0 0 0 10 0 261.9
T2.5 Library 10 0 0 0 10 0 261.9
T3 Development 110 0 90 20 0 0 2057.2
T3.1 Pre-processor 40 0 40 0 0 0 778.4
T3.2 Neural Network 50 0 50 0 0 0 973
T3.3 Testing and debugging 20 0 0 20 0 0 305.8
T4 Experiment and analysis 160 0 0 0 160 0 4190.4
T4.1 Collect data 30 0 0 0 30 0 785.7
T4.2 Experiment 80 0 0 0 80 0 2095.2
T4.3 Analysis 50 0 0 0 50 0 1309.5
T5 Document and Present 125 25 0 0 0 100 2674.25
T5.1 Collect the data obtained 20 0 0 0 0 20 390
T5.2 Craft documentation 80 0 0 0 0 80 1560
T5.3 Prepare oral defense 25 25 0 0 0 0 724.25

CPA cost 540 110 110 40 240 120 14564.5

Table 3.2: Estimated task workload and corresponding cost. [Own cal-
culations]

21

3.1 Budget

Work space

The development of the project will take place at my parents house. My
area has a cost of 12e/m2 approximately and my room has 8m2 so that
would mean 96e/month. I have to add the use of other rooms in the
house, so that would be a plus of 150eapproximately. Summing all I
have a work space cost of 246e/month. The project lasts 5 months so
that would be a total of 246e/month * 5month = 1230e.

Generic cost of the project

On the following table we can see all the generic costs and their total
sum. The generic cost is known as CG cost.

Concept Cost (e)

Amortization 214.28
Electric cost 18.22
Internet cost 45
Water cost 22.5
Work space 1230
CG cost 1530

Table 3.3: Generic cost of the project [Own calculations]

3.1.3 Other costs

Contingencies

During the project obstacles may arise that eat part of the budget, so
it’s necessary to add a contingencies margin of 15%. The total cost of
the project is 16094.2e(CPA + CG), so the contingency margin will be
of 2414.13e.

Incidental costs

I also need to be prepared in case any of the risks described on the
previous chapter happen. In order to calculate the each cost I make an
estimation of the cost if that incident happened and it’s probability, then
I multiply both to get the cost. Everything is detailed on table 3.4.

3.1.4 Total cost

The total cost is computed on Table 3.5.

22

3.1 Budget

Incident Estimated Cost (e) Risk (%) Cost (e)

Deadline (20h) 400 20 80
Bug in library (5h) 100 5 5
Bad training data (5h) 100 15 15
Very long training times (20h) 400 15 60
Computer break (5h) 100 5 5
Total 165

Table 3.4: Incidental costs [Own calculations]

Activity Cost (e)

CPA cost 14564.5
CG cost 1530
Contingency 2414.13
Incidental cost 165
Total cost 18673.63

Table 3.5: Total cost [Own calculations]

3.1.5 Management control

I need a mechanism to model the possible budget deviations, as they will
help visualize the deviation that may occur. If a deviation is negative,
meaning that it’s using more money that estimated, I will have to use
the contingencies budget. Here all the necessary models are detailed:

Human resources deviation

Refers to the deviation in budget that may occur due to any of the
personnel working less or more than the estimation. It’s calculated as
follows:

Human resources deviation =∑
i∈pit

(est_cost_per_houri−real_cost_per_houri)×total_real_hoursi

where pit refers to personnel involved in task.

Amortization deviation

Refers to the deviation that may occur due to not using the laptop as
much as estimated or alot more. It’s calculated as follows:

Amortization deviation =∑
i∈hr

(est_usage_hoursi − real_usage_hoursi)× price_per_houri

23

3.2 Sustainability

where hr refers to all hardware resources.

Total cost deviation

Joins all the deviations in the different tasks, not taking incidents and
contingencies into account.

Total cost deviation = est_general_cost− real_general_cost

3.2 Sustainability

3.2.1 Economic dimension

Regarding PPP: Reflection on the cost you have estimated for
the completion of the project

If find that the estimation is realistic and could be carried out in real life.
Also it’s cost is small compared to the potential profit from the project,
so I conclude that the cost is well adjusted.

Regarding Useful Life: How are currently solved economic is-
sues (costs...) related to the problem that you want to address
(state of the art)?

There are few studies that are public regarding this problem, so any com-
pany or business that would like to take advantage of market predictions
would find it very difficult to do so as they would have to develop a pro-
prietary solution. With this project there would be no need to develop
a proprietary solution, as they could directly contract a service devel-
oped by me that would provide them with useful predictions based on
the models developed on this project.

How will your solution improve economic issues (costs ...) with
respect other existing solutions?

Being able to make predictions using a neural network is very efficient
once trained, so there would be little cost in making the predictions. Any
company or business that wanted predictions and currently have a pro-
prietary method or a service contracted that has a lot of cost could reduce
that cost. Moreover, any company that need to buy or sell anything to
the market could optimize their orders using the results of this project,
because, even though this project it’s focused on the Forex market, it’s
results could easily be translated to other markets, there would only be
a need for a new model very similar to the one developed in this project.

24

3.2 Sustainability

3.2.2 Environmental dimension

Regarding PPP: Have you estimated the environmental impact
of the project?

I have not estimated the environmental impact of the project. Never-
theless, I have to say that the impact generated from this project will
probably very low as I will only use my laptop and I will not generate
any material waste. There will be some mild electricity consumption
when experimenting and training the neural network. The electricity
consumption could be very heavy if I developed a huge neural network
that needed a lot of training, but this will not be the case here.

Regarding PPP: Did you plan to minimize its impact, for ex-
ample, by reusing resources?

I did not plan to minimize it’s impact intentionally but using a light
neural network instead of a huge one will minimize the impact.

Regarding Useful Life: How is currently solved the problem
that you want to address (state of the art)?

It is solved by doing extensive calculations and predictions based on
probability and statics by companies with big budgets for research. It
is also solved using neural networks, as many companies claim to do so,
but their models are not accessible to public.

How will your solution improve the environment with respect
other existing solutions?

As stated on the economic dimension part, using neural network models
is very efficient once trained, so the environment impact derived from
those predictions would be greatly reduced.

3.2.3 Social dimension

Regarding PPP: What do you think you will achieve -in terms
of personal growth- from doing this project?

From this work I will gain a more profound understating of neural net-
works and how to work with them, especially in how to use them to
predict a future event. I will also grow my understanding of the markets
and how efficient they really are. It will also help me improve in my
project management skills and programming skills in general.

25

3.2 Sustainability

Regarding Useful Life: How is currently solved the problem
that you want to address (state of the art)?

As said before, it’s solved by doing extensive computation using proba-
bility and statistics.

How will your solution improve the quality of life (social dimen-
sion) with respect other existing solutions?

The project aims to produce a model capable of generating predictions,
and that will prevent unnecessary work from people wanting to achieve
something similar, so that resources could be allocated somewhere else.

Regarding Useful Life: Is there a real need for the project?

It could be discuss whether trying to make profit of the market is a ethic
thing to do or not, but there will always be individuals and companies
interested in doing so, so providing a efficient way to predict the market
is needed in order to reduce the cost and impact it would be caused
by using less efficient methods. Also there is a personal need that will
impact society, as this project, if successful, will be the backbone for the
funding of other projects I have in mind, such as companies that provide
to society, so in a sense that makes the project very needed.

26

4 | Research

The first part of the project consists on doing research on different aspects
and deciding which tool, sources or technologies to use. This part is
crucial as the correct development of the whole project resides on the
quality of decisions made on this phase.

4.1 Data source

I needed to find a data source to use, from where I would download the
raw data I would use to train and validate the model.

4.1.1 Available options

Here are three options I found:

1. histdata.com: A web page offering free forex historical data, lim-
ited to one year of data per dowload. Data needs to be merged. [8]

2. eatradingacademy.com: A site that has a tool to download his-
torical forex data with different formats and time-frames easily,
limited to 200000 bars per dowload. Data needs to be merged. [4]

3. Metatrader 5: A trading software offering the possibility to down-
load the data visualized, and as many bars as you wanted as long
as they where provided, and the data provided dates back to 1980.
No need to merge data. [13]

4.1.2 Final decisions

My final decision was to use Metatrader 5 for three main reasons, first
that the data didn’t need to be merged so I would spend less time on
pre-processing, secondly because it is very easy to use and the data comes
well formatted, and lastly because I already knew the software and knew
it provided accurate and quality data.

27

4.4 Neural Network architecture

4.2 Programming Language

The programming language to use was a clear choice, I would use Python [14]
as it’s the most used language in the machine learning community, with
lots of libraries and examples.

4.3 Neural Network library

Then I had to decide wich python library/ies I would use in order to
create the model and train it.

4.3.1 Available options

There were two main options to consider:

1. Pytorch An open-source machine learning framework based on
the Torch library, claiming to accelerate the process of going from
research to production. [15]

2. Tensorflow & Keras Tensorflow [17] is an open-source library
for developing machine learning models and automated learning in
general. Keras [10] is a library made for python to easily develop
neural networks on top of Tensorflow, Microsoft Cognitive Toolkit
or Theano.

4.3.2 Final decisions

I decided to use the Tensorflow & Keras mix as as I already had some
experience with it so I could spend less time on learning, and also because
Google collab has native support for it.

4.4 Neural Network architecture

For the architecture of the neural network I decided to use LSTM lay-
ers as they are really good at finding relationships on timeseries data.
LSTM [9, 11, 12] stands for long short-term memory as their goal is to
find relationships on timeseries data on the short and long term. The
final neural network should have three parts as follows:

1. Input layer First there is an input layer with shape = (n_timesteps_data,
n_features), this input layer also has a dropout layer that can be
adjusted.

2. Hidden layer/s The output of the input layer is passed on to the
first layer of the hidden layers. The number of hidden layers can
be adjusted and goes from 1-Inf. The hidden layers produce an

28

4.5 Programming environment

output shape of (n_neurons) on the final layer and have a shape
of (n_timesteps_data, n_neurons) on intermediary layers. There
is also a dropout layer at the end that can be adjusted.

3. Output layer Finally the output from the hidden layers is passed
onto the output layer, this layer is in charge of producing a single
value so it has an output shape of (1) with a linear activation in
order to be able to generate any value.

4.5 Programming environment

I needed to choose an environment that made developing a neural network
easy and efficient.

4.5.1 Available options

I found two good candidates:

1. Visual Studio Code & Anaconda Visual studio code [19] is
and IDE with support for python syntax and Jupiter notebooks,
it makes developing code easy and enjoyable. Anaconda [1] is an
environment creation software designed to make it easy to start
working without having to configure all the libraries.

2. Google Colab A free tool provided by google that functions as
an online IDE for Jupyter notebooks, is synchronized with Google
drive, executes the code on the cloud and comes with all the needed
libraries preinstalled. It’s designed to be used by machine learning
researchers, and the executions have access to GPU’s to speed up
the training times. [7]

4.5.2 Final decisions

Because of the easy of use and the ability to run on the cloud without
occupying my computer I decided to use Google Colab. Also, running
the code on Google Colab tend to be faster than on a local machine since
it has access to a lot of fast GPU’s. Because of the fact that Google
Colab already stores a copy on the cloud, I’m not going to use GitHub.

29

5 | Development

I splited the development phase in two parts, one for the pre-processor
and another one for the neural network. At the end I developed two pre-
processors and two neural networks but they are essentially the same. I
did this because the director advised me to test with other data since
the results I was getting were not good. Using the new data proved that
the model was correctly implemented and the bad results where due to
the fact that the forex market seems to be nearly equivalent to a random
walk, I will go on detail about this on the conclusions chapter 7.

From now on I will refer to the moving average as being the average of
a sliding window with a certain size known as period, I will use MA for
short. I will also refer to the future moving average being the MA that
is x steps ahead, x being the period of the MA, I will use FMA for short.

5.1 Preprocessor notebook

The pre-processor was fairly easy to write since I didn’t need to do much
cleaning, I only needed to parse the data, generate extra columns for the
moving averages and save to a CSV file. To manipulate the data I used
pandas and numpy since they are efficient and easy to use.

Since I developed in Jupiter notebook I will go block by block detailing
how the pre-proccesor works.

5.1.1 Initialization

The first block corresponds to the initialization, where I import the
needed libraries. Listing 5.1.1.

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import os

Listing 5.1.1: First block of the pre-processor

30

5.1 Preprocessor notebook

5.1.2 Processing

The next block is in charge of reading the raw data file, renaming columns
to a more readable format and generating the new moving average columns.
The MA and FMA columns are generated on the fly using a list of pe-
riods, so a new MA with period x is generated for each entry on the
list. At the end, rows with empty values on MA or FMA columns are
discarded, and finally the resulting data frame is printed for verification.
Block on listing 5.1.2.

1 col_names = [covers
2 '<DATE>',
3 '<TIME>',
4 '<OPEN>',
5 '<HIGH>',
6 '<LOW>',
7 '<CLOSE>',
8 '<TICKVOL>',
9 '<VOL>',

10 '<SPREAD>']
11 raw_data = "drive/MyDrive/TFG/Data/Raw/EURUSD_M1.csv"
12 df = pd.read_csv(raw_data, sep='\t')
13 df = df.rename(columns={
14 "<DATE>": "date",
15 "<TIME>": "time",
16 "<OPEN>": "open",
17 "<HIGH>": "high",
18 "<LOW>": "low",
19 "<CLOSE>": "close",
20 "<TICKVOL>": "tickvol",
21 "<VOL>": "vol",
22 "<SPREAD>": "spread"})
23

24 periods = [20, 50, 100, 200, 500, 1000]
25 for period in periods:
26 ma_name = f"ma{period}"
27 fma_name = f"fma{period}"
28 df[ma_name] = df['close'].rolling(period).mean()
29 ma = df[ma_name].values
30 fma = np.zeros((len(ma)))
31 fma[0:-period] = ma[period:]
32 df[fma_name] = fma
33

34 df = df.iloc[max(periods):-max(periods)]
35 print(df)

Listing 5.1.2: Second block of the pre-processor

31

5.1 Preprocessor notebook

5.1.3 Visual validation

This block generates two plots in order to visually validate the data
generated on the previous block, both of the plots show the close price
and all the MAs. The first plot allows use to see how de MAs behave as
its only the last 1000 steps (Figure 5.1), whereas the second plot covers
all the steps (Figure 5.2). The code also saves the plots in a .svg in order
to use them later. Block on listing 5.1.3.

1 plt.close('all')
2 plt.figure(figsize=(16.18,10))
3 plt.title('Last 1000 steps')
4 plt.plot(df['close'].values[-1000:], label='close')
5 for period in periods:
6 ma_name = f"ma{period}"
7 plt.plot(df[ma_name].values[-1000:], label=ma_name)
8 plt.legend()
9 plt.savefig('last_1000.svg', bbox_inches='tight')

10

11 plt.figure(figsize=(16.18,10))
12 plt.title('Whole dataset')
13 plt.plot(df['close'], label='close')
14 for period in periods:
15 ma_name = f"ma{period}"
16 plt.plot(df[ma_name], label=ma_name)
17 plt.legend()
18 plt.savefig('whole_dataset.svg', bbox_inches='tight')
19

20 plt.show()

Listing 5.1.3: Third block of the pre-processor

5.1.4 Saving

The last block is in charge of saving the dataset to a .csv, it also creates
the needed folder if it doesn’t exist. Listing 5.1.4.

1 if not os.path.exists('drive/MyDrive/TFG/Data/Pre'):
2 os.makedirs('drive/MyDrive/TFG/Data/Pre')
3 df.to_csv('drive/MyDrive/TFG/Data/Pre/pre_EURUSD_M1.csv')

Listing 5.1.4: Fourth and last block of the pre-processor

32

5.1 Preprocessor notebook

Figure 5.1: First verification plot showing the last 1000 steps of close
price and MAs

Figure 5.2: Second verification plot showing the whole dataset of close
price and MAs

33

5.2 Neural Network notebook

5.2 Neural Network notebook

The neural network was quite more laborious than the pre-processor. I
did the neural network development in two parts. The first was develop-
ing a neural network that worked correctly, meaning it could train and
produce a model, regardless of the quality of the predictions; this part
also included developing all the code needed to read and prepare the
data for the neural network; the code is stored at "NN_TFG.ipynb".
The second part was developing a testing environment around this, in
the sense of having a way to specify experiments and execute them;
this code is stored at "NN_TFG_v2.ipynb". There is also a file called
"NN_TFG_v2_House.ipynb" for testing with the alternate dataset, its
essentially the same code as in "NN_TFG_v2.ipynb" but I preferred to
have the code in a new notebook.

On the following subsections I will detail all the blocks of the final version.

5.2.1 Initialization

Here the initialization is quite more extensive, as it covers both the im-
portation of all the needed libraries, and the implementation of custom a
function for getting the data in batches as needed for the neural network.
Block on listing 5.2.1.

1 # Initialitzation
2

3 import keras, math, os, json
4 import pandas as pd
5 import numpy as np
6 import tensorflow as tf
7 from tensorflow.keras.callbacks import EarlyStopping
8 from matplotlib import pyplot as plt
9 from sklearn.preprocessing import StandardScaler

10 from keras.layers import LSTM, Bidirectional, Dense, Input, Dropout
11 from keras.losses import MeanSquaredError
12 from keras.models import load_model
13 from tensorflow.keras.optimizers import Adam
14 from joblib import dump, load
15 import keras.backend as kb
16

17 def get_bacthes(batch_size,
18 start_idx,
19 test_per,
20 n_timesteps_data,
21 sequence_stride,
22 data,
23 targets):
24 first_idx = start_idx + n_timesteps_data
25 n_rows = np.size(data, axis=0)
26 n_features = np.size(data, axis=1)

34

5.2 Neural Network notebook

27 sample_range = list(range(first_idx, n_rows, sequence_stride))
28

29 max_batch_size = len(sample_range)
30 if batch_size > max_batch_size:
31 batch_size = max_batch_size
32

33 train_batch_size = int(batch_size * (1-test_per))
34 test_batch_size = batch_size - train_batch_size
35

36 train_idx = sample_range[0:train_batch_size]
37 test_idx =

sample_range[train_batch_size:train_batch_size+test_batch_size]↪→

38

39 x_train = np.zeros((len(train_idx), n_timesteps_data, n_features))
40 y_train = {}
41 for key in targets.keys():
42 y_train[key] = np.zeros((len(train_idx), 1))
43 for i, i_train in enumerate(train_idx):
44 x_train[i] =

np.copy(data[i_train-(n_timesteps_data-1):i_train+1])↪→

45 for key in targets.keys():
46 y_train[key][i] = targets[key][i_train]
47

48 x_test = np.zeros((len(test_idx), n_timesteps_data, n_features))
49 y_test = {}
50 for key in targets.keys():
51 y_test[key] = np.zeros((len(test_idx), 1))
52 for i, i_test in enumerate(test_idx):
53 x_test[i] = np.copy(data[i_test-(n_timesteps_data-1):i_test+1])
54 for key in targets.keys():
55 y_test[key][i] = targets[key][i_test]
56

57 return x_train, y_train, x_test, y_test, first_idx

Listing 5.2.1: Initialization block of the neural network notebook

5.2.2 Data preparation

On this block is where the preprocessed data is readed and then prepared
for the neural network. After reading the preprocessed data I get the close
price list, from that list I get a diff list, that is, the list of the differences
between adjacent values, and I also add a 0 at the beginning so that it
has the same size as the list of close; this list is stored at data_diff.
Then I create needed folders if they don’t exist, and proceed to generate
the targets and target_scalers dictionary. The targets dictionary is
generated using the fma columns of the dataset, and the target_scalers
is created using the StandardScaler() object from sklearn library.

Once I have the data_diff and targets ready, I use the custom function
get_batches to get the data in a format ready for the neural network,

35

5.2 Neural Network notebook

since what we have now is data_diff with shape (length(data_diff),
feature) but we want data in the shape of (batch, n_timesteps,
feature). This function also splits the data for training and testing,
generating x_train, y_train for train and x_test, y_test for validating.
Block on listing 5.2.2.

1 # Data prepatation
2

3 plt.close('all')
4 #Read preprocessed data
5 df_train = pd.read_csv("drive/MyDrive/TFG/Data/pre_data_1m.csv",
6 sep = ',',
7 parse_dates=False)
8

9 #Clean nulls if present
10 if df_train['close'].isnull().any():
11 print("There are null values, setting them to 0")
12 df_train = df_train.fillna(0)
13

14 #Get close price and compute diffs
15 data = df_train[['close']].values
16 print(f"Data shape: {np.shape(data)}")
17 data_diff = np.concatenate([[[0]], np.diff(data, axis=0)])
18 print(f"Data diff shape: {np.shape(data_diff)}")
19

20 #Create needed folders
21 tfg_path = "drive/MyDrive/TFG"
22

23 experiments_path = tfg_path + "/Experiments"
24 if not os.path.exists(experiments_path):
25 os.makedirs(experiments_path)
26

27 scalers_path = tfg_path + "/Scalers"
28 if not os.path.exists(scalers_path):
29 os.makedirs(scalers_path)
30

31 #Prepare targets and target_scalers dict
32 periods = [20, 50, 100, 200, 500, 1000]
33 targets = {}
34 target_scalers = {}
35 for period in periods:
36 col_name = f"fma{period}"
37 if col_name in df_train.columns:
38 fma = df_train[[col_name]].values
39 target = fma - data
40 target_name = f"{col_name}_diff"
41

42 target_scaler = StandardScaler()
43 target_re = target.reshape(-1, 1)
44 target_scaler.fit(target_re)
45 target = target_scaler.transform(target_re)
46 scaler_path = os.path.join(scalers_path, f"{target_name}/")
47 if not os.path.exists(scaler_path):
48 os.makedirs(scaler_path)

36

5.2 Neural Network notebook

49 dump(target_scaler, scaler_path +"/target_scaler.bin")
50 target_scalers[target_name] = target_scaler
51

52 targets[target_name] = target
53

54 print(targets.keys())
55

56 #Transform data to the format used by NN
57 bacth_size = 4000000
58 start_idx = 0
59 n_timesteps_data = 200
60 test_per = 0.2
61 stride = 100
62 x_train, y_train, x_test, y_test, _ = get_bacthes(bacth_size,
63 start_idx,
64 test_per,
65 n_timesteps_data,
66 stride,
67 data_diff,
68 targets)
69

70 n_features = np.size(x_train, axis=2)
71 print(f"n_features:{n_features}")

Listing 5.2.2: Data preparation block of the neural network notebook

5.2.3 Model generation

This block is in charge of reading the experiments.json file and creating
the corresponding model for each configuration. The parameters that
can be set are:

• name: The name of the experiment

• hidden_layer: Number of hidden_layers, minimum 1

• neurons: Neurons per hidden_layer

• lr: Learning rate

• input_drop: Dropout to be applied to the input

• lstm_out_drop: Dropout to be applied to the last LSTM layer
output

• target: Which target to be predicted, can be any from the targets
dictionary

On listing 5.2.3 there is an example of a possible experiments.json. Block
on listing 5.2.4.

37

5.2 Neural Network notebook

1 [
2 {
3 "name": "n20_hl1_fma100",
4 "neurons": 20,
5 "hidden_layers": 1,
6 "lr": 0.001,
7 "input_drop": 0,
8 "lstm_out_drop": 0.2,
9 "target": "fma100_diff"

10 },
11 {
12 "name": "n100_hl1_fma100",
13 "neurons": 100,
14 "hidden_layers": 1,
15 "lr": 0.001,
16 "input_drop": 0,
17 "lstm_out_drop": 0.2,
18 "target": "fma100_diff"
19 }
20]

Listing 5.2.3: An example of a experiments.json file

1 # Model generation
2

3 experiments_json_path = os.path.join(experiments_path,
"experiments.json")↪→

4

5 #Read the config
6 with open(experiments_json_path) as json_file:
7 experiments = json.load(json_file)
8 print(experiments)
9

10 for config in experiments:
11 #Read all parameters
12 name = config.get('name', 'Test')
13 config['name'] = name
14 hidden_layers = config.get('hidden_layers', 2)
15 config['hidden_layers'] = hidden_layers
16 neurons = config.get('neurons', 20)
17 config['neurons'] = neurons
18 lr = config.get('lr', 0.001)
19 config['lr'] = lr
20 input_drop = config.get('input_drop', 0)
21 config['input_drop'] = input_drop
22 lstm_out_drop = config.get('lstm_out_drop', 0.2)
23 config['lstm_out_drop'] = lstm_out_drop
24 target = config.get('target', list(targets)[-1])

38

5.2 Neural Network notebook

25 config['target'] = target
26

27 model_path = experiments_path+f"/{name}/Model"
28 if not os.path.exists(model_path):
29 os.makedirs(model_path)
30

31 #Write this config to the own experiment path
32 config_json = json.dumps(config, indent=4)
33 config_path = os.path.join(experiments_path, f"{name}/config.json")
34 with open(config_path, 'w') as outfile:
35 outfile.write(config_json)
36

37 #Generate, compile and save model
38 kb.clear_session()
39

40 input = Input(shape=(n_timesteps_data, n_features))
41 drop_input = Dropout(input_drop)(input)
42

43 if hidden_layers == 1:
44 lstm_out = LSTM(neurons, return_sequences=False)(drop_input)
45 else:
46 lstm_prev = LSTM(neurons, return_sequences=True)(drop_input)
47 for i in range(1,hidden_layers):
48 if i == hidden_layers-1:
49 lstm_out = LSTM(neurons, return_sequences=False)(lstm_prev)
50 else:
51 lstm_prev = LSTM(neurons, return_sequences=True)(lstm_prev)
52 drop_lstm_out = Dropout(lstm_out_drop)(lstm_out)
53

54 output_change = Dense(1)(drop_lstm_out)
55

56 model = tf.keras.Model(inputs=input, outputs=output_change)
57 model.summary()
58

59 model.compile(loss=MeanSquaredError(),
optimizer=Adam(learning_rate=lr))↪→

60 model.save(model_path+f"/model.h5")

Listing 5.2.4: Model generation block of the neural network notebook

5.2.4 Model training

On this block is where the models get trained one by one. The code checks
whether a training was already performed in order to avoid training an
already trained model. The block also generates a plot with the training
loss, a train_info.json with the training information and a history.bin
with the object returned by the fit function. Block on listing 5.2.5.

1 # Model training
2

3 for dir in os.listdir(experiments_path):

39

5.2 Neural Network notebook

4 full_dir = os.path.join(experiments_path, dir)
5 if os.path.isdir(full_dir):
6 with open(full_dir + '/config.json') as json_file:
7 config = json.load(json_file)
8

9 #Prepare paths
10 model_path = os.path.join(full_dir, 'Model/')
11 original_model = os.path.join(model_path, 'model.h5')
12 fitted_weights = os.path.join(model_path, 'weights.h5')
13

14 target = config.get('target')
15 name = config.get('name')
16 if os.path.exists(original_model) and target is not None:
17 #Fit the model if no fitting present
18 history_path = os.path.join(model_path, 'history.bin')
19 if not os.path.exists(fitted_weights) \
20 or not os.path.exists(history_path):
21

22 #Clear keras sesssion, load the original model and prepare
the callbacks↪→

23 kb.clear_session()
24 model = load_model(original_model)
25 model_checkpoint_callback =

tf.keras.callbacks.ModelCheckpoint(↪→

26 filepath=fitted_weights,
27 save_weights_only=True,
28 monitor='val_loss',
29 mode='min',
30 save_best_only=True)
31 early_callback = EarlyStopping(monitor='val_loss',
32 patience=10,
33 mode='min',
34 restore_best_weights=True)
35 callbacks = [model_checkpoint_callback, early_callback]
36

37 #Fit the model
38 history = model.fit(x_train,
39 y_train[target],
40 validation_data=(x_test, y_test[target]),
41 batch_size=32,
42 shuffle=True,
43 epochs=100,
44 verbose=1,
45 callbacks=callbacks)
46

47 dump(history, history_path)
48 del model
49

50 #Generate train info report if not present
51 train_info_path = os.path.join(model_path, 'train_info.json')
52 history = load(history_path)
53 if not os.path.exists(train_info_path):
54 val_loss = history.history['val_loss']
55 loss = history.history['loss']

40

5.2 Neural Network notebook

56

57 train_info = {
58 'min_val_loss': min(val_loss),
59 'final_loss': loss[np.argmin(val_loss)],
60 'min_loss': min(loss),
61 'epochs': len(loss),
62 'history': history.history
63 }
64

65 train_info_json = json.dumps(train_info, indent=4)
66 with open(train_info_path, 'w') as outfile:
67 outfile.write(train_info_json)
68

69 plt.figure()
70 plt.plot(history.history['loss'], label='Train')
71 plt.plot(history.history['val_loss'], label='Test')
72 plt.title(f"Model loss of {name}")
73 plt.ylabel('Loss')
74 plt.xlabel('Epoch')
75 plt.legend()
76 plt.savefig(os.path.join(model_path, f"model_loss_{name}.png"),

bbox_inches='tight')↪→

77 plt.savefig(os.path.join(model_path, f"model_loss_{name}.svg"),
bbox_inches='tight')↪→

Listing 5.2.5: Model training block of the neural network notebook

5.2.5 Prediction generation

This block is in charge of generating predictions for all the models, to do
so it uses the custom function get_batches but with a strive of 1 in order
to generate all the data that will be passed to the predict() function of the
model. It only generates predictions if no predictions for that model are
present to avoid unnecessary computation. The predictions are stored
inside predictions.bin, the targets are stored in targets.bin. Block on
listing 5.2.6.

1 #Prediction generation
2

3 plt.close('all')
4

5 for dir in os.listdir(experiments_path):
6 full_dir = os.path.join(experiments_path, dir)
7 if os.path.isdir(full_dir):
8 with open(full_dir + '/config.json') as json_file:
9 config = json.load(json_file)

10

11 #Prepate paths
12 original_model = os.path.join(full_dir, 'Model/model.h5')
13 fitted_weights = os.path.join(full_dir, 'Model/weights.h5')

41

5.2 Neural Network notebook

14 results_path = os.path.join(full_dir, 'Results/')
15 predictions_path = os.path.join(results_path, 'predictions.bin')
16

17 #Get data for generating predictions, no strive used
18 x, y, _, _, first_idx = get_bacthes(40000000,
19 0,
20 0,
21 n_timesteps_data,
22 1,
23 data_diff,
24 targets)
25

26 target = config.get('target')
27 if os.path.exists(original_model) \
28 and os.path.exists(fitted_weights) \
29 and not os.path.exists(predictions_path) \
30 and target is not None:
31

32 #Load the model and the trained weigths
33 model = keras.models.load_model(original_model)
34 model.load_weights(fitted_weights)
35

36 #Generate predictions
37 pred = model.predict(x)
38

39 #Save pred and y[target]
40 if not os.path.exists(results_path):
41 os.makedirs(results_path)
42 dump(pred, predictions_path)
43 dump(y[target], os.path.join(results_path, 'targets.bin'))

Listing 5.2.6: Prediction generation block of the neural network note-
book

5.2.6 Result generation

This last block is used to generate the results that will be used to help
me analyse and evaluate the model, that is, a collection of plots showing
the predictions made at different index. First I specify a list with all
the index I want to use, then for each one four plots are generated and
stored, all plots show unscaled data. Next are the files for each plot:

• diff_nt_(name)_(idx): This plot show the prediction alone
with no transformations.

• diff_t_(name)_(idx): Same as the previous plot but with the
target value also ploted.

• pred_(name)_(idx): This plot shows the data, the target FMA
and the transformed prediction.

42

5.2 Neural Network notebook

• recap_(name)_(idx): This plot is a recap of all the three pre-
vious plots in a single image for convenience.

Block on listing 5.2.7.

1 #Result generation
2

3 plt.close('all')
4

5 for dir in os.listdir(experiments_path):
6 full_dir = os.path.join(experiments_path, dir)
7 if os.path.isdir(full_dir):
8 with open(full_dir + '/config.json') as json_file:
9 config = json.load(json_file)

10

11 #Prepate paths
12 results_path = os.path.join(full_dir, 'Results/')
13 predictions_path = os.path.join(results_path, 'predictions.bin')
14 targets_path = os.path.join(results_path, 'targets.bin')
15

16 target = config.get('target')
17 name = config.get('name')
18 if os.path.exists(predictions_path) \
19 and os.path.exists(targets_path) \
20 and target is not None:
21

22 #Prepare data
23 predictions = load(predictions_path)
24 y = load(targets_path)
25 target_scaler = target_scalers[target]
26 pred_unscaled =

np.ravel(target_scaler.inverse_transform(predictions))↪→

27 y_unscaled = np.ravel(target_scaler.inverse_transform(y))
28

29 interval = 200
30 start_idxs = [-1000, -5000, -10000, -15000, -20000]
31

32 #Generate figures for each index in start_idxs with interval
33 for i, idx in enumerate(start_idxs):
34 res_path = os.path.join(results_path, f"Res_{idx}")
35 if not os.path.exists(res_path):
36 os.makedirs(res_path)
37 #Big plot with all the results
38 fig = plt.figure(figsize=(20, 10))
39 fig.suptitle(f"Prediction results of {name} at index {idx}",

fontsize=16)↪→

40

41 ax0 = plt.subplot2grid((2, 3), (0, 0))
42 ax0.set_title('Difference without target')
43 ax0.plot(pred_unscaled[idx:idx+interval], '--b',

label='Prediction')↪→

44 ax0.set_xlabel('Step')
45 ax0.set_ylabel('FMA - Data')
46 ax0.legend()

43

5.2 Neural Network notebook

47

48 ax1 = plt.subplot2grid((2, 3), (1, 0))
49 ax1.set_title('Difference with target')
50 ax1.plot(pred_unscaled[idx:idx+interval], '--b',

label='Prediction')↪→

51 ax1.plot(y_unscaled[idx:idx+interval], '-g', label='Target')
52 ax1.set_xlabel('Step')
53 ax1.set_ylabel('FMA - Data')
54 ax1.legend()
55

56 data_used = np.copy(np.ravel(data[first_idx:]))
57 pred_fma = np.add(data_used, pred_unscaled)
58 real_fma = np.add(data_used, y_unscaled)
59

60 ax2 = plt.subplot2grid((2, 3), (0, 1), colspan=2, rowspan=2)
61 ax2.set_title('Prediction')
62 ax2.plot(pred_fma[idx:idx+interval], '--b',

label='Prediction')↪→

63 ax2.plot(real_fma[idx:idx+interval], '-g',
label='Target(FMA)')↪→

64 ax2.plot(data_used[idx:idx+interval], '-y', label='Close
Price')↪→

65 ax2.set_xlabel('Step')
66 ax2.set_ylabel('Data')
67 ax2.legend()
68

69 svg_path = os.path.join(res_path,
f"recap_({name})_({idx}).svg")↪→

70 png_path = os.path.join(res_path,
f"recap_({name})_({idx}).png")↪→

71 fig.savefig(svg_path, bbox_inches='tight')
72 fig.savefig(png_path, dpi=300, bbox_inches='tight')
73

74 #Individual plots
75 #Diff without target
76 fig = plt.figure()
77 fig.suptitle(f"Diff without target of {name} at index {idx}")
78

79 plt.plot(pred_unscaled[idx:idx+interval], '--b',
label='Prediction')↪→

80 plt.xlabel('Step')
81 plt.ylabel('FMA - Data')
82 plt.legend()
83

84 svg_path = os.path.join(res_path,
f"diff_nt_({name})_({idx}).svg")↪→

85 png_path = os.path.join(res_path,
f"diff_nt_({name})_({idx}).png")↪→

86 fig.savefig(svg_path, bbox_inches='tight')
87 fig.savefig(png_path, dpi=300, bbox_inches='tight')
88

89 #Diff with target
90 fig = plt.figure()
91 fig.suptitle(f"Diff with target of {name} at index {idx}")

44

5.2 Neural Network notebook

92

93 plt.plot(pred_unscaled[idx:idx+interval], '--b',
label='Prediction')↪→

94 plt.plot(y_unscaled[idx:idx+interval], '-g', label='Target')
95 plt.xlabel('Step')
96 plt.ylabel('FMA - Data')
97 plt.legend()
98

99 svg_path = os.path.join(res_path,
f"diff_t_({name})_({idx}).svg")↪→

100 png_path = os.path.join(res_path,
f"diff_t_({name})_({idx}).png")↪→

101 fig.savefig(svg_path, bbox_inches='tight')
102 fig.savefig(png_path, dpi=300, bbox_inches='tight')
103

104 #Prediction
105 fig = plt.figure()
106 fig.suptitle(f"Prediction of {name} at index {idx}")
107

108 plt.plot(pred_fma[idx:idx+interval], '--b',
label='Prediction')↪→

109 plt.plot(real_fma[idx:idx+interval], '-g',
label='Target(FMA)')↪→

110 plt.plot(data_used[idx:idx+interval], '-y', label='Close
Price')↪→

111 plt.xlabel('Step')
112 plt.ylabel('Data')
113 plt.legend()
114

115 svg_path = os.path.join(res_path,
f"pred_({name})_({idx}).svg")↪→

116 png_path = os.path.join(res_path,
f"pred_({name})_({idx}).png")↪→

117 fig.savefig(svg_path, bbox_inches='tight')
118 fig.savefig(png_path, dpi=300, bbox_inches='tight')
119

120 plt.show()

Listing 5.2.7: Result generation block of the neural network notebook

45

6 | Experiment and analysis

On this chapter I will detail all the experiments I performed and the
results I gathered. The chapter will be divided in two sections, one for
the main forex experiments and another one for the household power
consumption experiments that I did in order to verify that there were
no implementation issues on the code. Each section will be divided in
subsections, one for each experiment. This subsection will be further
divided in three parts:

• Parameters: List of the parameters used for the experiment

• Training: A comment on how the training went with a plot of the
loss during training.

• Results: A comment on the results gathered and three plots to
visualize the experiment results.

For each experiment I generated plots at 5 different indexs but I will only
display at index = -5000 here, on the project files you can find the rest
of the results under the Results folder inside an experiment folder.

The training of the models was performed using the MeanSquaredError()
from keras as the loss function and Adam() from keras as the optimizer.
As I’m using Adam, which is an adaptive moment estimation optimizer,
I will stick with the recommended lr of 0.001 as changing it has little
impact when using an adaptive optimizer. When training the model I
set a callback to monitor the validation loss in order to stop when there
have been 10 epochs with no improvement, also I set a callback to save
the weights with the minimum validation loss. Using this two callbacks
I prevent saving an overfitted model and wasting computation time on
training a model that is already overfitting. All experiments have a
dropout of 0.2 on the last LSTM layer to prevent overfitting.

The name of the experiments makes reference to the parameters being
tested on that experiment, so experiment n20_hl1_fma100 mean that
I’m will experiment using 20 neurons, 1 hidden layer and fma100 as
target. The parameters I experimented with are the number of neurons,
the number of hidden layers and the target, I thought that increasing
the complexity could yield better results, that’s why I tried different

46

6.1 Forex experiments

combinations of neurons and hidden layers, as for the target, as I thought
that depending on the length of the FMA it could be easier or harder to
predict. The rest of the parameters where meant to be experimented after
finding a good enough model in order to fine tune it, but as I couldn’t
get any good model there was no reason to experiment with them.

Each experiment took around 30 to 60 minutes to train, depending on
the complexity of the neural network (number of neurons and number of
hidden layers). A part from the experiment shown here, I did a lot more
training’s during the development phase to ensure everything worked
as expected. I also did some experiments during the first part of the
development when I didn’t had a framework for experimentation, and al-
though I didn’t save the results they wouldn’t contribute anything useful
either. The prediction generation for the whole dataset took around 6-12
minutes for each experiment as it has to make 800000+ predictions each
time.

In order to speed up the training a strive of 100 is used, that means that
if I have 800898 rows as in the forex dataset, I generate 8007 batches
with 200 timesteps, and each batch is 100 timesteps apart, so I end up
with data the shape of (8007, 200, 1), although this is split in two part
for training and validation. The batches have 200 timesteps in hopes of
finding really long term relationships if present.

6.1 Forex experiments

For the main forex experiments I tried 8 different configurations, and
although I would have liked to do more experimentation, the results I
was getting didn’t justify exploring further and wasting more time and
energy. On the conclusions chapter 7 I will detail some alternatives that
could be explored in the hopes of finding better results, unfortunately
this alternatives fall out the scope of the project and exploring them
could lead to the project being too long and unable to be finished on
time.

47

6.1 Forex experiments

6.1.1 n20_hl1_fma100

• Parameters:

– neurons: 20
– hidden_layers: 1
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma100_diff

• Training: As we can see on figure 6.1 the training loss is nearly
flat, meaning that the training process was unable to find a set of
weights for the neural network that improves the prediction loss
over a random set of weights. On the conclusions chapter 7 I will
explain why I think this is happening. Furthermore, on the next
section 6.2, I detail the experiments I did on another dataset to
verify there was no coding or implementation issue.

Figure 6.1: Model loss history for experiment n20_hl1_fma100.

• Results: On the first plot you can see how the predictions made
are really small and although the the shape has some correlation
with the shape of the target value, the predictions always stay below
zero making the predictions useless. If the predictions always stay
below zero for all the dataset that means that no real prediction
value is achieved as it’s always predicting the FMA to be below the
data, and that’s not the case, in reality the FMA tends to be 50%
of the time above the data and 50% of the time below. With that
in mind we see that the predictions will be correct about 50% of
the time, which is no better than random guessing. Result plots
on Figure 6.2

48

6.1 Forex experiments

Figure 6.2: 200 adjacent predictions for experiment n20_hl1_fma100,
starting at index=-5000.

49

6.1 Forex experiments

6.1.2 n20_hl1_fma500

• Parameters:

– neurons: 20
– hidden_layers: 1
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma500_diff

• Training: No improvements over the previous experiment. Loss
history on Figure 6.3.

Figure 6.3: Model loss history for experiment n20_hl1_fma500.

• Results: No improvements over the previous experiment. Result
plots on Figure 6.4.

50

6.1 Forex experiments

Figure 6.4: 200 adjacent predictions for experiment n20_hl1_fma500,
starting at index=-5000.

51

6.1 Forex experiments

6.1.3 n20_hl2_fma100

• Parameters:

– neurons: 20
– hidden_layers: 2
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma100_diff

• Training: No improvements over the previous experiments. Loss
history on Figure 6.5.

Figure 6.5: Model loss history for experiment n20_hl2_fma100.

• Results: No improvements over the previous experiments. Result
plots on Figure 6.6.

52

6.1 Forex experiments

Figure 6.6: 200 adjacent predictions for experiment n20_hl2_fma100,
starting at index=-5000.

53

6.1 Forex experiments

6.1.4 n20_hl2_fma500

• Parameters:

– neurons: 20
– hidden_layers: 2
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma500_diff

• Training: No improvements over the previous experiments. Loss
history on Figure 6.7

Figure 6.7: Model loss history for experiment n20_hl2_fma500.

• Results: No improvements over the previous experiments. Result
plots on Figure 6.8

54

6.1 Forex experiments

Figure 6.8: 200 adjacent predictions for experiment n20_hl2_fma500,
starting at index=-5000.

55

6.1 Forex experiments

6.1.5 n100_hl1_fma100

• Parameters:

– neurons: 100
– hidden_layers: 1
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma100_diff

• Training: No improvements over the previous experiments. Loss
history on Figure 6.9

Figure 6.9: Model loss history for experiment n100_hl1_fma100.

• Results: No improvements over the previous experiments. Result
plots on Figure 6.10

56

6.1 Forex experiments

Figure 6.10: 200 adjacent predictions for experiment
n100_hl1_fma100, starting at index=-5000.

57

6.1 Forex experiments

6.1.6 n100_hl1_fma500

• Parameters:

– neurons: 100
– hidden_layers: 1
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma500_diff

• Training: No improvements over the previous experiments. Loss
history on Figure 6.11

Figure 6.11: Model loss history for experiment n100_hl1_fma500.

• Results: No improvements over the previous experiments. Result
plots on Figure 6.12

58

6.1 Forex experiments

Figure 6.12: 200 adjacent predictions for experiment
n100_hl1_fma500, starting at index=-5000.

59

6.1 Forex experiments

6.1.7 n100_hl2_fma100

• Parameters:

– neurons: 100
– hidden_layers: 2
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma100_diff

• Training: No improvements over the previous experiments. Loss
history on Figure 6.13

Figure 6.13: Model loss history for experiment n100_hl2_fma100.

• Results: No improvements over the previous experiments. Result
plots on Figure 6.14

60

6.1 Forex experiments

Figure 6.14: 200 adjacent predictions for experiment
n100_hl2_fma100, starting at index=-5000.

61

6.1 Forex experiments

6.1.8 n100_hl2_fma500

• Parameters:

– neurons: 100
– hidden_layers: 2
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma500_diff

• Training: No improvements over the previous experiments. Loss
history on Figure 6.15

Figure 6.15: Model loss history for experiment n100_hl2_fma500.

• Results: No improvements over the previous experiments. Result
plots on Figure 6.16

62

6.1 Forex experiments

Figure 6.16: 200 adjacent predictions for experiment
n100_hl2_fma500, starting at index=-5000.

63

6.2 Household power consumption experiments

6.2 Household power consumption experiments

6.2.1 n20_hl1_fma100_h

• Parameters:

– neurons: 20
– hidden_layers: 1
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma100_diff

• Training: As we can see on figure 6.17 the training loss is not flat
as in the forex experiments, meaning that there are no implemen-
tation issues and that this implementation and architecture is able
to train given the appropriate data. Here the loss decreases in the
usual curve we see when training a neural network and stagnates
at around 0.65 with a minimum of 0.65743 in validation loss and
0.59294 loss at the same epoch.

Figure 6.17: Model loss history for experiment n20_hl1_fma100_h.

• Results: Here the results are meaningful and give us information
on whether the FMA will be above or below the current value, and
although the prediction line is not able to follow the Target(FMA)
perfectly, is good enough to make useful predictions about the fu-
ture. On the last plot you can clearly see that when the FMA is
above the data line the prediction is also above, and when the FMA
is below the data, so is the prediction. At around step 75 and 125
you can see how it turns around correctly. Plots at 6.18

64

6.2 Household power consumption experiments

Figure 6.18: 200 adjacent predictions for experiment
n20_hl1_fma100_h, starting at index=-5000.

65

6.2 Household power consumption experiments

6.2.2 n100_hl2_fma100_h

• Parameters:

– neurons: 100
– hidden_layers: 2
– lr: 0.001
– input_drop: 0
– lstm_out_drop: 0.2
– target: fma100_diff

• Training: As I increased the neurons and added a hidden layer
the model overffits faster but it also produces a model with a lower
validation loss of 0.63946 and a loss of 0.58767. Plot at 6.19

Figure 6.19: Model loss history for experiment n100_hl2_fma100_h.

• Results: The results are very similar to the previous experiment.
Plots at 6.20

66

6.2 Household power consumption experiments

Figure 6.20: 200 adjacent predictions for experiment
n100_hl2_fma100_h, starting at index=-5000.

67

7 | Conclusions

In this last chapter I will go over everything I did on this project and the
results I gathered. I will also provide my view on different alternatives
that could be explored in the hopes of finding better results.

7.1 Project Development

The development of the project was carried without any major obstacles,
a part from the fact that I was unable to dedicate the time needed during
the first part of the project forcing me to choose the April defense. Al-
though this wasn’t because of bad planing or the project itself, but rather
because of personal issues, the major one being that I started working
for a startup. A part from that, I dint find problems that hindered the
project in any major way.

The research was carried nicely and took the time estimated.

The development took a little bit more than expected as I also developed
the experimentation framework that I didn’t had in mind when start-
ing the project. Also the testing and debugging part took longer than
expected.

The experimentation part took less than expected as the model wasn’t
generating the expected results, and with the findings I will describe on
next section 7.2, there was no reason to continue investing resources on
more experimentation.

And finally the documentation was carried as expected, and even though
there was some learning involved, as I never used latex before on this
level, I have to say I’m very satisfied with how the final document looks,
and I feel as though learning to use latex properly was a very good
investment.

7.2 Project Goal

The goal of this project was to generate a model using neural networks
capable of predicting the forex market on a low timeframe (1 minute

68

7.2 Project Goal

bars). This could be further divided in two sub-objectives, the first would
be developing a functional neural network, and the second one would be
using said neural network to predict the forex market, I will go over both
sub-objectives on the following subsections.

7.2.1 Functional neural network

The first part of the goal was accomplished successfully, I developed a
functional neural network for timeseries prediction that could successfully
train given the appropriate data. I learned a lot about neural networks
and their implementation using python during this project, and even
though the model couldn’t provide the results I wanted I feel as though
the learning was a success on its own.

7.2.2 Forex prediction model

Unfortunately I was unable to succeed in the second part of the goal, the
model was unable to generate any useful prediction at all, but from my
analysis I found that it was not because the model was not good enough
or that I needed more data, it had nothing to do with that, the most
likely reason behind the model being unable to generate useful prediction
is due to the nature of the data. I found that the forex movements
on low timeframes resemble the movements of a random walk, that is,
a timeseries where each new step has no correlation whatsoever with
previous steps, or what is the same, it’s a temporal analogue for a coin
toss where if you land heads you draw a line going up and if you land
tails you draw a line down, meaning each new step is entirely random,
there’s always and equal chance of the value going up or down.

On Figures 7.1,7.2,7.3 you can see three comparisons between a random
walk chart and a forex chart, Forex charts are taken from the EUR/USD
pair with 1 minute bars. As you can see all charts look very similar, you
couldn’t tell if it was random walk or forex just by looking at the chart,
also each comparison shows one of the three different states of a market,
upward trend, downward trend and ranging, so what looks like trends
can also be a product of randomness. If we tried to train any model with
enough data from a random walk we would end up up with the same
results as in the forex experiments, a training that is unable to improve
because any modification to the weights may be good for some parts but
equally bad for some others, there is no room for improvement training
on random data. To generate the random walk data I used a free plugin
for Metatrader 5 called Random Walk Chart[16].

Although I think the forex market on low timeframes is not entirely
random, the imperfections that could provide and edge over a 50%-50%
prediction are so minuscule that finding them constantly may be nearly
impossible, and it would probably require a very specialized model. And

69

7.2 Project Goal

Figure 7.1: Upward trend chart comparison between a random walk
chart and a EUR/USD forex chart. Random chart above, forex chart
below. [Own screenshot]

even with a very specialized model that could find this imperfections,
most of the time the movements would be random and no profitable
trading could be done. It would be interesting to develop a model to try
and find this momentary imperfections if any and quantify the rate of
manifestation.

70

7.2 Project Goal

Figure 7.2: Downward trend chart comparison between a random walk
chart and a EUR/USD forex chart. Random chart above, forex chart
below. [Own screenshot]

71

7.2 Project Goal

Figure 7.3: Ranging chart comparison between a random walk chart
and a EUR/USD forex chart. Random chart above, forex chart below.
[Own screenshot]

72

7.3 Alternatives

7.3 Alternatives

Here I will describe some alternatives that could be explored in the hopes
of finding a way to predict the market.

7.3.1 Higher timeframes

As said before, this project was aimed at generating a model that could
predict the EUR/USD forex pair on a low timeframe (1 minute bars), one
alternative would be using higher timeframes such as 1H to 4H bars, that
way the data used would have less noise coming from the sheer amount of
transactions that happen on the forex market. Using higher timeframes
could lead to finding macroeconomic patterns that manifest on the long
run.

7.3.2 Different market

I decided to use the forex market because it has lot of liquidity and the
volume per day is huge, meaning that there are very low spreads and
that very big orders can be filled easily, and that’s very important if
you want to develop a trading strategy that can scale on the amount
traded. But there are also other markets, and although the may not be
as liquid as the forex market, it could be far easier to find patterns as
the numbers of participants is smaller and the patterns that emerge from
human behaviour have more weight and prevalence.

The next market to try that comes to my mind would be the stock market,
the place where company stocks are traded, a very known and regulated
market used worldwide in daytrading and swingtrading strategies.

There is also the cryptocurrency market, although I would be very careful
exploring the cryptocurrency market as its very unregulated and has a
lot of huge fluctuations, that means there is a lot of risk but also a lot of
potential profit.

73

8 | Technical skills

8.1 CCO1.3

Define, evaluate and select hardware and software development and pro-
duction platforms for the development of computer applications and ser-
vices of varying complexity. [Quite]

The project involved studding available options for the development of
the the preproccesor and neural network, such as the libraries that where
going to be employed or the IDE that was going to be used.

8.2 CCO2.1

Demonstrate knowledge of the fundamentals, paradigms and techniques
of intelligent systems, and analyze, design and build computer systems,
services and applications that use these techniques in any field of appli-
cation. [Quite]

The project involved developing prediction models and analyzing them,
it also involved developing an intelligent experimentation framework.

8.3 CCO2.2

Ability to acquire, obtain, formalize and represent human knowledge in a
computable way for solving problems through a computer system in any
field of application, particularly in those related to aspects of comput-
ing, perception and performance in smart environments or environments.
[Quite]

The project involved using the knowledge I have in programming, data
analysis and prediction model generation to develop a whole system for
experimenting with prediction models and analyze its results.

74

8.4 CCO2.4

8.4 CCO2.4

Demonstrate knowledge and develop computer learning techniques; design
and implement applications and systems that use them, including those
dedicated to the automatic extraction of information and knowledge from
large volumes of data. [In depth]

On this project I developed neural networks that were trained using
timeseries data with a huge dataset of more than 800000 rows, this neural
networks aimed at extracting valuable future information about the forex
market.

75

Bibliography

[1] Anaconda. url: https://www.anaconda.com/ (visited on 10/29/2021).

[2] Artificial neural network. url: https : / / en . wikipedia . org /
wiki/Artificial_neural_network (visited on 10/18/2021).

[3] Candlestick. url: https://www.definedge.com/candlestick-
patterns/ (visited on 10/18/2021).

[4] EA Trading Academy data. url: https://eatradingacademy.
com/software/forex-historical-data/ (visited on 10/25/2021).

[5] Forex average daily turnover. url: https://www.statista.com/
statistics/1204111/euro-activity-trading-day-global-
currency-market/ (visited on 09/27/2021).

[6] Glassdoor. url: https://www.glassdoor.es/index.html (visited
on 10/11/2021).

[7] Google colab. url: https://colab.research.google.com/ (vis-
ited on 10/29/2021).

[8] HistData.com. url: https://histdata.com/ (visited on 10/25/2021).

[9] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Mem-
ory”. In: Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.
1162/neco.1997.9.8.1735. url: https://www.researchgate.
net/profile/Sepp-Hochreiter/publication/13853244_Long_
Short-term_Memory/links/5700e75608aea6b7746a0624/Long-
Short-term-Memory.pdf.

[10] Keras. url: https://keras.io/ (visited on 10/27/2021).

[11] LSTM Keras. url: https://keras.io/api/layers/recurrent_
layers/lstm/ (visited on 10/27/2021).

[12] LSTM Wikipedia. url: https://en.wikipedia.org/wiki/Long_
short-term_memory (visited on 10/27/2021).

[13] Metatrader 5. url: https://www.metatrader5.com/es (visited
on 10/25/2021).

[14] Python. url: https://www.python.org/ (visited on 10/27/2021).

[15] Pytorch. url: https://pytorch.org/ (visited on 10/27/2021).

76

https://www.anaconda.com/
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://www.definedge.com/candlestick-patterns/
https://www.definedge.com/candlestick-patterns/
https://eatradingacademy.com/software/forex-historical-data/
https://eatradingacademy.com/software/forex-historical-data/
https://www.statista.com/statistics/1204111/euro-activity-trading-day-global-currency-market/
https://www.statista.com/statistics/1204111/euro-activity-trading-day-global-currency-market/
https://www.statista.com/statistics/1204111/euro-activity-trading-day-global-currency-market/
https://www.glassdoor.es/index.html
https://colab.research.google.com/
https://histdata.com/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.researchgate.net/profile/Sepp-Hochreiter/publication/13853244_Long_Short-term_Memory/links/5700e75608aea6b7746a0624/Long-Short-term-Memory.pdf
https://www.researchgate.net/profile/Sepp-Hochreiter/publication/13853244_Long_Short-term_Memory/links/5700e75608aea6b7746a0624/Long-Short-term-Memory.pdf
https://www.researchgate.net/profile/Sepp-Hochreiter/publication/13853244_Long_Short-term_Memory/links/5700e75608aea6b7746a0624/Long-Short-term-Memory.pdf
https://www.researchgate.net/profile/Sepp-Hochreiter/publication/13853244_Long_Short-term_Memory/links/5700e75608aea6b7746a0624/Long-Short-term-Memory.pdf
https://keras.io/
https://keras.io/api/layers/recurrent_layers/lstm/
https://keras.io/api/layers/recurrent_layers/lstm/
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://www.metatrader5.com/es
https://www.python.org/
https://pytorch.org/

BIBLIOGRAPHY

[16] Random walk generator. url: https : / / www . mql5 . com / es /
market/product/42166 (visited on 10/17/2021).

[17] Tensorflow. url: https : / / www . tensorflow . org/ (visited on
10/27/2021).

[18] Trello. url: https://trello.com/es (visited on 10/18/2021).

[19] Visual Study Code. url: https://code.visualstudio.com/ (vis-
ited on 10/29/2021).

77

https://www.mql5.com/es/market/product/42166
https://www.mql5.com/es/market/product/42166
https://www.tensorflow.org/
https://trello.com/es
https://code.visualstudio.com/

	List of Figures
	List of Tables
	List of Listings
	Context And Scope
	Context
	Introduction
	Problem to be solved
	Stakeholders

	Justification
	Previous Studies
	Justification

	Scope
	Objectives and sub-objectives
	Requirements
	Potential obstacles and risks

	Methodology and Rigor
	Methodology
	Validation

	Project Planning
	Task definition
	Project management
	Research
	Development
	Experiment and analysis
	Document and Present

	Resources
	Human Resources
	Hardware Resources
	Software Resources
	Material Resources

	Risk management: alternative plans
	Gantt chart and Task table
	Changes to initial planification
	Final task workload
	Final gantt chart

	Budget and Sustainability
	Budget
	Personnel costs per activity
	Generic costs
	Other costs
	Total cost
	Management control

	Sustainability
	Economic dimension
	Environmental dimension
	Social dimension

	Research
	Data source
	Available options
	Final decisions

	Programming Language
	Neural Network library
	Available options
	Final decisions

	Neural Network architecture
	Programming environment
	Available options
	Final decisions

	Development
	Preprocessor notebook
	Initialization
	Processing
	Visual validation
	Saving

	Neural Network notebook
	Initialization
	Data preparation
	Model generation
	Model training
	Prediction generation
	Result generation

	Experiment and analysis
	Forex experiments
	n20_hl1_fma100
	n20_hl1_fma500
	n20_hl2_fma100
	n20_hl2_fma500
	n100_hl1_fma100
	n100_hl1_fma500
	n100_hl2_fma100
	n100_hl2_fma500

	Household power consumption experiments
	n20_hl1_fma100_h
	n100_hl2_fma100_h

	Conclusions
	Project Development
	Project Goal
	Functional neural network
	Forex prediction model

	Alternatives
	Higher timeframes
	Different market

	Technical skills
	CCO1.3
	CCO2.1
	CCO2.2
	CCO2.4

	Bibliography

