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Abstract: Structural health monitoring (SHM) in an electric arc furnace is performed in several
ways. It depends on the kind of element or variable to monitor. For instance, the lining of these
furnaces is made of refractory materials that can be worn out over time. Therefore, monitoring the
temperatures on the walls and the cooling elements of the furnace is essential for correct structural
monitoring. In this work, a multivariate time series temperature prediction was performed through
a deep learning approach. To take advantage of data from the last 5 years while not neglecting the
initial parts of the sequence in the oldest years, an attention mechanism was used to model time
series forecasting using deep learning. The attention mechanism was built on the foundation of the
encoder–decoder approach in neural networks. Thus, with the use of an attention mechanism, the
long-term dependency of the temperature predictions in a furnace was improved. A warm-up period
in the training process of the neural network was implemented. The results of the attention-based
mechanism were compared with the use of recurrent neural network architectures to deal with time
series data, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The results
of the Average Root Mean Square Error (ARMSE) obtained with the attention-based mechanism were
the lowest. Finally, a variable importance study was performed to identify the best variables to train
the model.

Keywords: structural health monitoring; temperature forecasting; recurrent neural network; attention;
GRU; LSTM; electric arc furnace

1. Introduction

The control and monitoring of industrial processes require special attention because of
their complexity, which is the result of the sub-processes and the multiple variables involved
that need to be considered to know the current state of the general process. Regarding
systems that make use of structures, the use of structural health monitoring (SHM) systems
allows the proper monitoring of variables in the decision-making process, allowing better
knowledge of the behavior of the structure and providing tools for maintaining tasks [1].
In an SHM system, some elements are required, such as the use of sensors permanently
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installed in the structure, a data acquisition system for sensing/actuating over the structure,
a signal conditioning step, the development of statistical models and the possibility of a
decision-making process [2]. This last element can be developed by computational tools in
an autonomous way or by the analysis obtained from the statistical models. The literature
includes multiple examples of developed monitoring systems and applications in different
kinds of structures, such as those used in aircraft [3–5], buildings [6,7], bridges [8,9] and
furnaces [10,11], among others.

Concerning furnace monitoring as used in smelting processes, the number of variables
and the influence on the process is highly significant. As an example, in the case of the
ferronickel production industry, this process can be performed in an electric arc furnace
(EAF) [12] and the structural health monitoring (SHM) of the system requires the monitoring
of several parts. The refractory hearth lining of an EAF is a crucial part to improve the
campaign life of the furnace [13]. The lining monitoring variables comprise temperature,
heat fluxes, water quality, remaining thickness refractory, sidewall erosion and protective
layer formation, among others [14]. However, the development of temperature lining
prediction models in an EAF is still an open research field because of the reduced number
of works in this area [15,16].

Recently, the use of deep learning models has spread due to the data availability and
their success rates in classification and regression tasks in minerals processing [17]. In
addition, the success of deep learning models is based on their capacity for extracting
features, improving the data-driven models in terms of accuracy and efficiency; moreover,
the big data coming from a sensor network allow large-scale training based on deep learning
models [18].

Cerro Matoso S.A. (CMSA) is one of the world’s major producers of ferronickel
and it is operated by South32. This is an open-cut mine operation in Northern Colombia,
/textcolorbluewith nearly 40 years of operation in the region. More details about the process
developed by CMSA can be found directly on its web page https://www.cerromatoso.com.
co/ (accessed on 10 January 2022 ). The complex process of produce ferronickel in the EAF
of (CMSA) involves a number of variables. In this work, the lining temperature in an EAF
is predicted using a multivariate time series deep learning model. The developed model
is able to handle the multiple input variables as well as predict multiple thermocouple
output variables. The time series approach was selected in order to process variable-length
sequences of inputs. This kind of model can use recurrent neural networks (RNN) to handle
the temporal dynamic behavior of the data. The long-term dependency of the temperature
predictions in the EAF was compared using, first, a Long Short-Term Memory (LSTM) unit
and, second, a Gated Recurrent Unit (GRU) approach [19]. These kinds of cells are used in
contrast with traditional RNN due to the capacity to handle the vanishing and exploding
long-term gradient problems [20]. The temporal information has been incorporated into
deep learning models using different encoder architectures, such as convolutional neural
networks (CNN), RNN and attention-based models [21]. Attention models allow us to
identify relevant parts in the input sequence data to improve the prediction behavior of the
deep learning model in the target time series [22–24].

The time series forecasting deep learning model is developed with data from a 75 MW
shielded arc smelting furnace of CMSA [25]. This furnace is instrumented with a large
set of thermocouples radially distributed in the lining furnace. The cooling system in the
furnace uses plate and waffle coolers [26]. There are four levels of plate coolers radially
distributed in 72 panels in the furnace.

The novelty of this work lies in the development of a time series forecasting deep
learning model using an attention-based mechanism. This model takes into account
as input variables different operation variables in the furnace, such as power, current,
voltage, electrode position, amount of input material and chemistry composition. As output
variables, 68 thermocouples radially distributed in the furnace lining were satisfactorily
predicted at different forecast times in a range from 1 h to 6 h in the future.

https://www.cerromatoso.com.co/
https://www.cerromatoso.com.co/
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The remainder of the paper is structured as follows. Section 2 includes the theoretical
background, where all methods are described, followed by the dataset for validation in
Section 3; then, the multivariate time series temperature forecasting model is described
in Section 4. Then, the results and discussion are shown in Section 5, and, finally, the
conclusions are included in the last section.

2. Theoretical Background

Here, the main concepts used in the development of the attention-based deep recurrent
neural network model are described. For more information, the reader is referred to each
provided reference.

2.1. Electric Arc Furnace

The ferronickel production inside CMSA has several stages, including the mining
and material homogenization phase, in which the material extracted from the mine is
divided into smaller parts. Then, the phase of drying and storing the material is executed.
Subsequently, the semi-dried material enters a rotatory kiln calciner; the material at the exit
of this stage is called calcine, which is supplied to the electric arc furnace through different
upper tubes distributed in three central, semi-central and lateral zones. The smelting stage
is carried out within the EAF, which is detailed below. After the material is melted, it is
ejected from the furnace employing two different runners, one for the ferronickel and the
other for the slag. The next phase in the process is the refining and granulation phase of
the material; finally, there is the finished product handling phase, where the material is
packed and taken to commercialization. Figure 1 shows a picture of the building where the
two furnaces are located. The dimensions of each furnace are 22 m in diameter and 7 m
in height.

Figure 1. Panoramic of the CMSA plant.

The main stage of ferronickel production is smelting. It is performed in the EAF.
Figure 2 shows an inside view of the EAF, detailing its parts: (1) electrodes, (2) feeding
tubes, (3) exhaust chimney, (4) top roof, (5) back-side wall, (6) input calcine, (7) sidewall,
(8) waffle coolers, (9) plate coolers, (10) smelted ferronickel, (11) slag and (12) bottom hearth
furnace lining. This study is focused on the temperature monitoring and forecasting of the
side-wall; in particular, this temperature is measured by a thermocouples’ sensor network
located at the plate coolers of the side-wall.
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1. Electrodes

2. Load feed pipe

3. Chimney

4. Refractory roof

5. Gas chamber

6. Charge

7. Refractory brick wall

8. Slag crust 

9. Thermocuples

10. Slag

11. Ferronickel

12. Furnace bottom

Figure 2. Electric arc furnace components description.

2.2. Multivariate Time Series Forecasting

The multivariate time series forecasting process seeks the behavior of a set of output
variables at a specific future time. Several methods have been developed to model the
relationships between fluctuating variables in time series data. These methods can be
divided into classical and machine learning methods. Among the classical methods are
Autoregressive Integrated Moving Average (ARIMA), Vector Autoregression (VAR) and
Vector Autoregression Moving-Average (VARMA) [27]. In contrast to classical methods,
machine learning methods are effective in more complex time series prediction problems
with multiple input variables, complex nonlinear relationships and missing data [28].
Some machine learning algorithms used for regression tasks have been used for time
series forecasting; among them are Support Vector Regression, Random Forest, Extreme
Gradient Boosting and Artificial Neural Networks [21]. Recently, deep learning advances
have emerged as a satisfactory method to perform time series forecasting. The recurrent
neural networks and their variants, such as Gated Recurrent Unit (GRU) and Long Short-
Term Memory (LSTM), have addressed the problem of vanishing gradient and long-term
dependencies, achieving remarkable behaviors [19].

2.3. Encoder–Decoder

For each time step in the LSTM and GRU models, each input corresponds to one
of the outputs. In some cases, the objective is to predict an output given a different-
length input, without correspondence; the models developed for these cases are known
as seq-to-seq models. A typical model has two parts, an encoder and a decoder, with two
different networks combined into one network; this network can take an input sequence
and generate the next most probable sequence as the output. First, the encoder traverses
the input at each time step to encode the complete sequence in a vector called the context
vector; this vector acts as the last hidden state of the encoder and as the first hidden state
for the decoder. This will contain information about all the input elements, which will help
in the realization of the predictions [29].
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2.4. Attention Mechanism

One of the frontiers in deep learning is attention mechanisms, which represent an
evolution of encoder–decoder models, which were developed to improve the performance
of long input sequences. In attention mechanisms, the decoder can selectively access
the encoded information and uses a new concept for the context vector c(t), which is
now calculated at each time step of the decoder, from the previous hidden state and all
the hidden states of the encoder [29]. Trainable weights will be assigned to these states
and produce different degrees of importance to all the elements in the input sequence.
Special attention is paid to the most significant inputs—hence, they are named attention
mechanisms [30]. The construction of the context vector starts from the combination of
each time step j of the encoder with each time step t of the decoder. This expression is
called the alignment score, and it is calculated as follows:

score(j, t) = Vatanh(Uas(t − 1) + Wah(j)) (1)

The terms Va, Wa and Ua correspond to the trainable weights mentioned above, where
Va defines the function to calculate the alignment score, Wa are associated with the hidden
states of the encoder and Ua with the hidden states of the decoder. The score must be
normalized for each time step t; therefore, the SoftMax function is used together with the
time steps j, and we obtain the attention weights α(j, t), defined as follows:

α(j, t) =
escore(j,t)

∑M
j=1 escore(j,t)

(2)

This weight can capture the importance of the input at time step j to adequately decode
the output at time step t. Finally, the context vector is found from the weighted sum of the
relationship between all the encoder hidden values and attention weights:

c(t) = ∑
j=1

Tα(j, t)h(j) (3)

The context vector allows more attention to the relevant inputs in the electric arc
furnace variables. The term c(t) passed through the decoder and the probability for the
next possible output is calculated. This operation applies to all time steps at the input.
Then, the current hidden state s(t) is calculated, taking as input the context vector c(t), the
previous hidden state s(t − 1) and the output ŷ(t − 1) from the previous time step:

s(t) = f (s(t − 1), ŷ(t − 1), c(t)) (4)

Therefore, using this attention mechanism, the model can find the correlations between
the different parts of the input sequence to the corresponding parts of the output sequence.
For each time step, the decoder output is calculated by applying the “SoftMax” function to
the hidden state [31].

2.5. Root Mean Squared Error (RMSE)

The performance of the multivariate time series forecasting deep learning model is
calculated using the Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
B

B

∑
i=1

(ŷi − yi)2 (5)

where B is the number of data points in the time series to be estimated, yi is the actual value
of the time series, and yi is the estimated value at the time i by the prediction model.
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3. Dataset for Validation

Data used to train and validate the attention-based deep RNN model were obtained
from a thermocouple sensor network located at the side-wall of an EAF in CMSA. Pho-
tography of the EAF side-wall is shown in Figure 3. The EAF side-wall is composed of
72 radially distributed panels. Figure 3 details a portion of the side-wall of 1 panel. The
illustrated hoses carry water, which is used to cool the refractory walls of the EAF through
the plate coolers (4 for each panel) and the waffle cooler (1 for each panel).

Figure 3. Photography of CMSA furnace outside wall with its coolers.

The dataset used for model training and validation is composed of data recorded
during 5 years, with 177,312 instances and 49 attributes, from an EAF located in Cerro
Matoso, South 32 company. Data were collected every 15 min during a period of 1847 days,
from September 9th of 2016 to September 30th of 2021. The input variables in the model
were related to electrode current, voltage, arc, power, calcine feed, the chemical composition
of the calcine, relative electrode position and 16 thermocouples. These 16 thermocouples
were also taken as output variables to predict. In particular, 4 panels radially distributed
90 degrees in each quadrant of the furnace were selected to study the behavior of their
plate cooler thermocouples. Each of the selected 4 panels had 4 plate coolers; thus, a total of
16 plate coolers were analyzed. The behavior of the time series of some of these variables
in a time window that allows the trend to be seen can be observed in Figure 4.
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Figure 4. Time series plot of some input and output variables in the dataset.

Several data preprocessing steps were performed to detect abnormal behavior in the
used variables. These data preprocessing steps are listed below [32]:

• Remove duplicates;
• Treat empty and null values;
• Treat unique values;
• Encode strings;
• Remove negative temperatures;
• Eliminate variables with high variance;
• Remove variables with zero variance.

After verifying the data preprocessing, it was concluded that the 49 variables used to
train and test the models did not present abnormal behaviors.

4. Multivariate Time Series Temperature Forecasting Model

The development of the multivariate time series temperature forecasting model com-
prised several stages. It started with the definition of the initial set of data already prepro-
cessed, where the input variables for the models were selected as well as the variables to be
predicted, the data were normalized so that the neural networks could work with them, the
forecast time was defined and, in this way, the batch set generator was created for model
training, as well as the data sequences for validation. The neural network models GRU
and LSTM are designed to be incorporated with the attention mechanisms, and the RMSE
loss function is defined with a warm-up period of 50 steps, which was not considered for
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the calculation of the evaluation metric, so we proceeded to train the model, validate it
and generate the predictions to be able to compare them with the real values and make
conclusions; this process is summarized in Figure 5.

Figure 5. Step by step development of the temperature prediction model.

The different layers that compose the multivariate time series deep learning attention
models are summarized in Figure 6. Details of the shape and the number of parameters
and connections of the layers in the multivariate time series deep learning attention model
are noted. For the the gradient descent method, we used Adam optimization; this is a
stochastic gradient descent (SGD) method that is based on adaptive estimation.

Figure 6. Details of the shape and layer connections in the attention-based multivariate time series
forecasting model.
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5. Results and Discussion

Four deep neural network configurations corresponding to a GRU model and an LSTM
model, with and without attention mechanisms, were designed, trained and tested, using
49 input variables to predict the 16 output variables corresponding to the thermocouple
temperature. The Average Root Mean Square Error (RMSE) of these 16 output variables
was used as a performance metric for each of the models.

5.1. Influence of Changing the Prediction Time

To determine the models’ behavior relating to the time interval under which they
performed the prediction, the test was performed in a time window of 1 to 6 h predicting in
the future for each model, increased by 1 h, as shown in Table 1 and Figure 7. From Table 1,
it is evident that the Average RMSE values in the test set are larger than the train values.
This is caused by the large amount of data belonging to the train set (90%) compared to the
data from the test set (10%).

Table 1. Average RMSE results of the train and test sets for the four different deep learning models in
6 different times.

MODEL SET
AVERAGE RMSE TRAIN—TEST SETS [°C]

1 H 2 H 3 H 4 H 5 H 6 H

LSTM Train 1.30 1.58 1.92 2.31 2.63 2.92
Test 1.65 1.96 2.33 2.96 3.39 3.75

GRU Train 1.17 1.48 1.80 2.13 2.53 2.76
Test 1.43 1.72 2.09 2.42 2.98 3.24

LSTM + Attention Train 1.20 1.63 2.09 2.45 2.82 3.11
Test 1.31 1.77 2.30 2.74 2.99 3.45

GRU + Attention Train 1.05 1.48 2.00 2.38 2.74 3.06
Test 1.15 1.62 2.13 2.54 3.01 3.47
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Figure 7. Average RMSE behavior over the forecast time increases.

Figure 7 shows that the models with attention mechanisms had higher performance
during a shorter prediction time. As the prediction time increased from 1 to 6 h, the
models without attention mechanisms outperformed the other models. The GRU model
obtained the best results with attention mechanisms for short times and without attention
mechanisms for long times; for the short times, the longer input sequence in the GRU and
LSTM networks resulted in worse prediction accuracy of the output sequence because it
focused on all input variables equally. An attention mechanism can be used to alleviate this
problem by focusing on more relevant input variables, since, as already described above,
attention mechanisms can adaptively assign a different weight to each input sequence to
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automatically choose the most relevant features of the time series. Therefore, the model can
effectively capture the long-term dependence on the time series.

As a result of the models evaluated in a 1 h forecast with and without attention,
the predicted and true behaviors for a single thermocouple were compared, as shown in
Figure 8. It is evident that the GRU model including attention (orange line) obtained a
better representation of the true (green line) behavior. In contrast, the only GRU model
(blue line) presented a more curly and distant behavior from the true data.

Figure 8. Predictive versus true behavior of the GRU and GRU + attention models in the test set in
one of the output thermocouples.

Additionally, in Table 2, the individual comparison of the RMSE error of each one of
the thermocouples for each model used is presented. Here, it can be observed how some
thermocouples have small prediction errors and others very large, which is averaged and
leads to obtaining the Average RMSE of the total forecast.

Table 2. RMSE results in the 16 thermocouples for the train and test sets versus the different deep
learning models for a 6 h forecast.

GRU GRU + ATT LSTM LSTM + ATT

Thermocouple (T) Train Test Train Test Train Test Train Test

T1 2.11 3.62 2.07 3.38 1.69 3.77 2.13 3.65
T2 2.68 3.12 2.76 3.18 2.18 3.51 2.91 3.15
T3 2.05 2.40 2.31 2.37 1.56 2.61 2.32 2.56
T4 1.39 1.12 1.46 1.15 1.22 1.29 1.47 1.15
T5 3.22 3.87 3.59 4.13 2.88 4.35 3.59 4.16
T6 3.69 4.60 3.76 4.23 3.08 5.02 3.80 4.22
T7 2.33 3.46 2.65 2.94 1.83 3.82 2.66 3.03
T8 1.58 1.23 1.62 1.25 1.38 1.48 1.66 1.24
T9 2.21 2.38 2.43 2.44 1.98 2.44 2.46 2.48

T10 2.49 2.26 2.65 2.46 2.10 2.52 2.65 2.74
T11 2.29 2.70 2.57 2.89 1.81 3.42 2.62 2.78
T12 1.56 1.40 1.65 1.33 1.38 1.62 1.69 1.41
T13 7.31 8.22 7.26 8.03 6.54 5.83 7.44 8.05
T14 6.63 6.65 6.71 6.50 6.35 7.32 6.78 6.55
T15 4.16 5.14 4.25 4.43 3.72 5.66 4.29 4.47
T16 2.86 3.29 2.72 2.63 2.57 2.99 2.83 3.11

5.2. Parameter Exploration

To evaluate the influence of some parameters in the Average RMSE results, an explo-
ration procedure was executed. The changing of three different parameters was evaluated.
These parameters were the optimizer, the number of cells in the GRU and LSTM models
and finally the number of training epochs in the GRU model.
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5.2.1. Changing of Optimizer

Four different optimizers were evaluated in order to compare their influence on the
Average RMSE obtained by the GRU model. The four compared optimizers were RMSprop,
Adam, Adamax and Nadam. As shown in Table 3, the best optimizer was Adam, obtaining
an RMSE value in the train set of 3.01.

Table 3. Average RMSE for GRU model with attention mechanisms against optimizer variance.

SET
Optimizer

RMSprop Adam Adamax Nadam

Train RMSE 3.08 3.01 3.13 3.03
Test RMSE 3.62 3.32 3.37 3.44

5.2.2. Change of GRU Cell Number

The variation in the number of GRU cells was studied by changing this number from
50 to 175, as shown in Table 4. The results indicate that, as the number of cells increases, the
RMSE in the training set decreases, which does not mean that it is a good result because, in
this way, the model is over-fitting with the training data, which means that, as the number
of cells increases, the RMSE of the test set becomes worse because the model is so adjusted
to the training data that when new and unknown data arrive in the model input, it is more
difficult to make an adequate prediction.

Table 4. Average RMSE for GRU model with attention mechanisms against GRU unit variance.

SET
GRU UNITS

50 75 100 125 150 175

Train RMSE 3.11 3.08 3.06 3.05 3.04 3.03
Test RMSE 3.41 3.26 3.29 3.31 3.35 3.39

5.2.3. Change of LSTM Cell Number

Three different cell numbers were compared in the LSTM model. In this case, they
were 32, 64 and 96, as shown in Table 5. The results show favorable behavior for the
variation of 64 cells; as in the GRU model, more units does not lead to better results, due
again to phenomena such as over-fitting.

Table 5. Average RMSE for LSTM model with attention mechanisms against LSTM unit variance.

SET
LSTM UNITS

32 64 96

Train RMSE 3.25 3.10 2.80
Test RMSE 3.44 3.41 3.81

5.2.4. Changing of the Loss Behavior of the GRU Model through the Epochs

Figure 9 shows the loss behavior as the number of training epochs increases. From
the results, it is evident that the first seven epochs are crucial in the decrease in loss, while,
from epoch 7 onwards, the decrease in loss is scarce.
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Figure 9. Evaluation of the loss behavior of the GRU model through the epochs in the train set and
test set.

5.3. Time Series Cross-Validation

Different cross-validation procedures have been developed to evaluate the behavior
of a time series forecasting model [33]. In this study, three different approaches to perform
time series cross-validation were used. These three approaches were (a) 7-fold moving
origin, (b) Blocking Time Series Split and (c) Blocking Time Series Split with a static test set.
Below, these three approaches are described and discussed.

5.3.1. Seven-Fold Moving Origin Time Series Split Cross-Validation

The first approach for the time series cross-validation was the 7-fold moving origin.
This procedure involves cumulative training data from October 1 of 2020 to September 1 of
2021. Figure 10 illustrates the results at the top and details the data division in the bottom
section. Seven different folds were evaluated; the first is the least in the training set, and
as the folds increase, the size of the training data also increases. The size of the test set
remains constant in each fold. The size of this test set is 4000 data instances.
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Figure 10. Time series split cross-validation data partitions.

Table 6 shows the RMSE results for the train and test sets in each fold. As can be seen,
the train RMSE increases as the number of folds increases. The opposite happens with
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the behavior of the RMSE test set; this indicates that it is better to train with numerous
data because, with more data, the model can learn different scenarios that are presented in
the furnace.

Table 6. Average RMSE for training and test sets at each iteration with time series split.

# Iteration Train RMSE Test RMSE

1 1.99 5.63
2 2.22 4.70
3 2.60 4.07
4 2.81 3.43
5 2.89 3.64
6 2.92 4.30
7 3.02 3.51

5.3.2. Blocking Time Series Split

A second study using a blocking time series split cross-validation was performed. This
validation approach consists of setting a fixed size of the train and test sets and moving
across the entire dataset in several folds. In this case, 11 folds were used, and the train test
had a size of 36,000 instances, whereas the test size had a size of 4000 instances. The shift
between each fold was 140 days. Figure 11 illustrates the 11 folds and every train set in
blue and test set in orange. In total, 177312 instances of the dataset were used; these data
began on September 9th of 2016 and ended on September 30th of 2021.
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Figure 11. Blocking time series split cross-validation data partitions.

The results after performing the 11-fold blocking time series split cross-validation are
shown in Table 7. From these results, it is evident that the best results of RMSE in the
train set (1.89) and test set (1.96) were reached by the oldest fold—in this case, the 11th
fold. Furthermore, a decreasing behavior of the RMSE through the folds is evident for the
train set. In contrast, the behavior of the test set is oscillatory decreasing. Considering the
11 folds, the average RMSE was 2.24 for the train set and 2.89 for the test set.
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Table 7. Average RMSE for training and test sets at each iteration with blocking time series split.

# Iteration Train RMSE Test RMSE

1 3.08 3.46
2 2.65 3.59
3 2.11 4.33
4 2.21 2.06
5 2.34 3.22
6 2.42 2.35
7 2.18 3.76
8 2.07 2.59
9 1.87 2.11

10 1.89 2.37
11 1.89 1.96

Average RMSE 2.24 2.89

5.3.3. Blocking Time Series Split with Static Test Set

The last study for the time series cross-validation model was the blocking time series
split with the static test set. In this case, 11 folds were also evaluated, but the test set re-
mained the same for every fold. This test set was created with the most recent 4000 instances.
Different training sets were tested. The shift between each training fold was 140 days. The
size of each training set was 36,000 instances. Figure 12 illustrates the blocking time series
split with static test set approach.
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Figure 12. Blocking time series split with static test set cross-validation data partitions.

The RMSE results of the blocking time series split with static test set approach are
shown in Table 8. The results indicate that it is preferable to perform training with recent
data since the RMSE increases as the training data move away from the test data. The
RMSE in the test set changes from 3.37 for the first fold to 6.21 in the 11th fold, which
represents an increase of 84.27%. Therefore, it is advisable to train the model every certain
period to avoid obvious increases in the RMSE.
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Table 8. Average RMSE for training and test sets at each iteration, with blocking time series split with
static test set.

# Iteration Train RMSE Test RMSEr

1 3.02 3.37
2 2.62 3.78
3 2.13 3.92
4 2.24 4.09
5 2.36 3.59
6 2.41 3.88
7 2.19 4.01
8 2.07 6.13
9 1.87 6.91

10 1.90 6.89
11 1.92 6.21

Average RMSE 2.24 4.79

5.4. Variable Importance Study

A study of the selected variables used to train and test the GRU model was performed
to evaluate their influence on the RMSE values. This study was performed with the
data of the 7th fold in the time series split cross-validation data partitions shown in
Figure 10. Therefore, 36,000 instances composed the training set, whereas 4000 instances
constituted the test set. Seven different scenarios were selected to train and test, removing
the original number of variables as follows: (a) only with the 16 thermocouples to predict,
(b) without furnace and electrode electric power, (c) without an electric arc, (d) without
electrode position, (e) without electrode voltage, (f) without electrode current, (g) without
the automatic control of electric power in the furnace (SAEE) mode, (h) without calcine
chemistry and (i) using all 49 variables. The results of the RMSE comparison are shown in
the bar chart of Figure 13. From the results in the bar chart, one can observe the difference
between the RMSE results in the train and test sets, the latter being the one with the largest
RMSE values. In particular, the worst results in the test set were obtained by the (i) all
variables’ configuration, causing the error to reach the highest value of 3.45 in the test set.
Consequently, when removing different groups of variables, the RMSE value improved.
The lowest RMSE value of the test set of 3.22 was reached when the group (c) without
electric arc was removed. Thus, it is better to remove the group of variables (c) related to
the electric arc to develop the GRU model.

2.9 3.0 3.1 3.2 3.3 3.4 3.5

Train

Test

Average RMSE [°C]

Only termocuples (16)

Without furnace and
electrode power (46)

Without electric arc (45)

Without electrode posi�on
(46)

Without electrode voltage
(46)

Without electrode current
(46)

Without SAEE (48)

Without calcine (34)

All variables (49)

Figure 13. Variable influence in the Average RMSE of the GRU model.
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5.5. Study of Increasing the Number of Predicted Thermocouples to 76

Based on a request made by the CMSA engineering team in which they preferred
to concentrate on the monitoring of the plate coolers in the lower row, the number of
thermocouples to be monitored and predicted was increased. A study of the increase in the
number of thermocouples was carried out, progressively evaluating their impact on the
Average RMSE of the predictions.

The number of thermocouples was progressively increased from 16 until reaching 76
thermocouples. The RMSE values of the training set and the test set were measured for each
increase; these values are shown in Table 9. It can be seen that the relationship between the
increase in thermocouples and the Average RMSE of the predictions is directly proportional
since, in Figure 14, the increasing trend of this evaluation metric can be observed due to the
increase in the number of variables to be predicted.

The increase that occurs in the Average RMSE is small compared with the increase
in the number of thermocouples. There was an increase of 4.75 times in the number
of thermocouples, while the RMSE in the training set remained approximately constant
because there was more information that the model could use to obtain better relationships
between the variables. On the other hand, for the test set, the RMSE increased only 1.1 times;
this is because the number of variables and data that the model must predict is greater, but
it is still a good prediction result.

From the results depicted in Figure 14, it can be seen that the attention GRU model
improved the RMSE value when 24 thermocouples were predicted. Therefore, for a few
thermocouples, the attention GRU model is better, whereas, for numerous thermocouples,
it is recommended to use the GRU model without the attention mechanism.
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Figure 14. Average RMSE behavior when increasing the output thermocouples to predict.

Table 9. Average RMSE results when increasing the number of thermocouples to predict in the GRU
attention model.

Number of Thermocouples GRU Att Train GRU Att Test

16 3.08 3.51
20 2.90 3.05
24 2.76 3.10
28 2.90 3.55
32 2.96 3.60
36 2.96 3.58
40 2.92 3.52
48 2.92 3.64
56 2.98 3.60
76 3.04 3.89
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5.6. Root Mean Squared Error Distribution by Each Thermocouple in the Test Set

Figure 15 illustrates the boxplot of the RMSE obtained by each thermocouple in the
test set. In particular, the four quadrants of the furnace are separated. These quadrants are
named as follows: northwest (section 18), southwest (section 19), southeast (section 20) and
northeast (section 21). From the results, the southeast quadrant presents the lower error,
while the southwest quadrant presents the highest. In general, the mean value of RMSE for
each thermocouple is near to 0.4, reaching a maximum value of 1.75.
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Figure 15. Absolute error analysis by each thermocouple in the test set.

6. Conclusions

This work has shown the development of a multivariate time series deep learning
model to predict the temperature behavior of a lining furnace. The developed model is
based on an attention mechanism in the encoder–decoder approach of a recurrent neural
network. The validation of the model was performed using data acquired in an industrial
ferronickel furnace over a period of 5 years. The model considered the historical behavior of
49 variables involved in ferronickel production. Among these variables were the electrode
current, voltage, power and position, besides the electric arc, the chemical composition
and the temperature measured by the thermocouples themselves. These results were
validated by a study carried out in terms of the Average RMSE calculated in 76 different
thermocouples located in the furnace lining side-wall at four different heights.

The principal conclusions of this work are as follows:

• The temperature of the lining furnace at different heights of the wall and in different
sectors was satisfactorily predicted using the developed deep learning model.

• The results showed that the prediction time influenced the obtained Average RMSE,
which was better when predicted in a time window of 1 h in the future when the
attention mechanism was used. RMSE values increased as the time window increased.

• A comparison between four different approaches using GRU, LSTM, and their attention-
based variants was performed. The best RMSE results were obtained using the GRU
attention-based model.
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• Three different time series cross-validation procedures were used: the 7-fold moving
origin time series split, the Blocking Time Series Split and the Blocking Time Series
Split with static test set. The results showed that, over time, the model lost its ability
to correctly predict temperatures. Therefore, it is recommended to retrain the model
every year to maintain an RMSE value of around 4 ◦C.

• A study increasing the number of thermocouples to predict from 16 to 76 was carried
out. The results showed that the Average RMSE was maintained at a value near to 4 ◦C,
which is allowed in the furnace operation due to the normal operation conditions.

As general conclusions, we can highlight that this work aimed to provide and validate
a forecast temperature methodology that is applied to an electric arc furnace. The validation
was performed by using real data from a furnace of the Cerro Matoso S.A. and results were
validated by staff from the same company. Although the methodology was implemented in
this furnace, the paper presents the steps to apply it to any multivariable process to predict
the behavior of a variable.

As future works, the following ideas will be explored:

• An online learning-based stream data approach will be developed to evaluate damages
in the refractory walls using the developed model. Moreover, the concept of drift
detection and treatment in these variables will be studied.

• The methodology will be adapted to forecast other important variables in this furnace,
such as the thickness of the refractory wall by predicting, among others, the flow heat
in these walls. Since thickness can be measured directly by the operational conditions,
it can be obtained by a model that uses forecasted variables.
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