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Abstract. In a fractured rock mass, the existence of discontinuities may generate preferential 
paths where the hydraulic flow velocities are frequently much higher than in the porous medium 
and heat advection tends to dominate over heat diffusion. In these cases, the standard Galerkin 
FEM method leads to oscillatory results and requires the use of stabilization methods. Thus, the 
current paper introduces a 3-D formulation to solve the large advection problem for zero-
thickness interface elements –which may be used to discretize fractures in a FEM context–, 
based on a pre-existent Characteristic method. A verification example is presented, showing 
that the formulation exhibits a good performance to represent the heat transport by the fluid 
along zero-thickness interface elements. 

 
 
1 INTRODUCTION 

Two of the main mechanisms of heat transport in engineering problems are diffusion and 
advection. In the FEM context it is well known that if advection dominates over diffusion 
(Péclet number 𝑃𝑃𝑃𝑃 >  1), traditional Galerkin formulations may lead to oscillatory results [1], 
although in many practical engineering situations, such as the case of geological materials, fluid 
velocities generally remain small due to the low permeability of the pore system and this 
problem may be ignored [2]. 

However, in the presence of preferential paths of fluid circulation this situation may change. 
The existence of open fractures or cracks may produce fluid velocities much higher in 
comparison with those found in the surrounding porous medium. This situation can lead to 
exceeding the limit condition 𝑃𝑃𝑃𝑃 >  1. In a FEM context, these preferential paths or cracks 
may be modelled using double-node zero-thickness interface elements. Thus, the paper 
discusses these concepts and presents a zero-thickness interface FE formulation for transient 
large advection, which consists of an implicit extension of Zienkiewicz´s explicit formulation 
based on characteristics [3], which was originally developed for traditional continuum elements 
in its explicit form.  

2 GOVERNING EQUATIONS 
The transient heat conduction-advection differential equation may be written as: 
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𝜌𝜌𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐯𝐯⊤ 𝛁𝛁𝜕𝜕� − 𝛁𝛁⊤ 𝐃𝐃𝑇𝑇 𝛁𝛁𝜕𝜕 − 𝑄𝑄𝑇𝑇 = 0       in       Ω 
(1) 

where 𝜕𝜕 is the temperature (unknown), 𝜌𝜌 is the material density, 𝜌𝜌 is the material thermal 
capacity, 𝐯𝐯 = [𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 𝑣𝑣𝑧𝑧]⊤ is the velocity vector (usually obtained as the result of the 
solution of a pore fluid flow problem), 𝐃𝐃𝑇𝑇 is the thermal conductivity matrix, 𝑄𝑄𝑇𝑇 is the source 
term, 𝛁𝛁 = [𝜕𝜕/𝜕𝜕𝜕𝜕 𝜕𝜕/𝜕𝜕𝜕𝜕 𝜕𝜕/𝜕𝜕𝜕𝜕]⊤ and [  ]⊤denotes the transposed of a vector or a matrix (not 
to be confused with superscript T which stands for “thermal”). The heat flow vector can be 
written as: 

𝐪𝐪𝑇𝑇 = −𝐃𝐃𝑇𝑇𝛁𝛁𝜕𝜕 +  𝜌𝜌𝜌𝜌𝜕𝜕𝐯𝐯 (2) 

The boundary and initial conditions are usually defined as:  
𝜕𝜕 = 𝜕𝜕�(𝜕𝜕,𝜕𝜕, 𝜕𝜕, 𝜕𝜕)      on      Γϕ (3) 

𝑞𝑞𝑛𝑛 𝑇𝑇 = 𝑞𝑞�𝑛𝑛 𝑇𝑇(𝜕𝜕,𝜕𝜕, 𝜕𝜕, 𝜕𝜕)      on      Γq (4) 

𝜕𝜕(𝜕𝜕,𝜕𝜕, 𝜕𝜕, 𝜕𝜕0) = 𝜕𝜕0(𝜕𝜕,𝜕𝜕, 𝜕𝜕)        𝑖𝑖𝑖𝑖        𝛺𝛺 (5) 

where 𝑞𝑞𝑛𝑛 𝑇𝑇 is the flow normal to the boundary and 𝑞𝑞�𝑛𝑛 𝑇𝑇 is the prescribed value of the flow. The 
flow 𝑞𝑞𝑛𝑛 𝑇𝑇 is calculated as the normal projection of the flow vector 𝐪𝐪𝑇𝑇 on the boundary Γq. Using 
Eq. (2) this condition becomes: 

𝑞𝑞𝑛𝑛 𝑇𝑇 = [𝐧𝐧]⊤𝐪𝐪𝑇𝑇 = −[𝐧𝐧]⊤𝐃𝐃𝑇𝑇 𝛁𝛁𝜕𝜕 +  𝜌𝜌𝜌𝜌𝜕𝜕𝑣𝑣𝑛𝑛 (6) 

where 𝑣𝑣𝑛𝑛 = [𝐧𝐧]⊤𝐯𝐯 is the normal velocity at the boundary 𝛤𝛤𝑞𝑞 . Using Eqs. (4) and (6) the same 
equation may be finally written as:  

− 𝜌𝜌𝜌𝜌𝜕𝜕𝑣𝑣𝑛𝑛 + [𝐧𝐧]⊤𝐃𝐃𝑇𝑇 𝛁𝛁𝜕𝜕 + 𝑞𝑞�𝑛𝑛 𝑇𝑇 = 0      on      Γq (7) 

3 CHARACTERISTIC PROCEDURES TO SOLVE LARGE ADVECTION 
PROBLEMS 

As it is well known [2], the standard Galerkin FEM resolution of Eq. (1) may lead to unstable 
solutions when the advection dominates the problem (𝑷𝑷𝑷𝑷 > 𝟏𝟏). In the last decades, several 
methodologies have been proposed to solve large advection transient problems, such as the 
Streamline-Upwind Petrov-Galerkin method –SUPG– [3], the Galerkin Least Squares –GLS– 
[4], the Characteristic procedures [5-12], the Variational Multiscale Method –VMS– [13], the 
artificial diffusion method [14], the bubble functions method [15], the Finite Increment 
Calculus –FIC– [16], or the High Resolution method [17], among others. 

 Characteristic methods lead to stabilization parameters similar to those obtained with the 
SUPG and the GLS, but are obtained with a methodology conceptually based on the wave 
nature of the equations, which “is much more direct, intuitive and fully justifies the numerical 
procedures” [1].  

3.1 Introduction to the Characteristic Methods 
From Eq. (1) it is possible to write the differential equation for the conduction-advection 

transient problem in indicial notation as follows 
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𝜌𝜌𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

� −
𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

�𝑘𝑘𝑖𝑖𝑖𝑖𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖

� − 𝑄𝑄𝑇𝑇(𝜕𝜕𝑖𝑖) = 0 
(8) 

In order to simplify the numerical solution and determine the main behaviour patterns of this 
equation, a change of the independent variable 𝜕𝜕 to 𝜕𝜕′ is proposed. Considering a moving 
coordinate system 𝜕𝜕′ defined by 

𝑑𝑑𝜕𝜕𝑖𝑖′ = 𝑑𝑑𝜕𝜕𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑑𝑑𝜕𝜕 (9) 

and the material derivative of the temporal derivative of Eq. (8) can be written as 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥≡𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐

= −𝑣𝑣𝑖𝑖 ·
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖′

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥′≡𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐

 
(10) 

Performing a change of the independent variable 𝜕𝜕𝑖𝑖 to 𝜕𝜕𝑖𝑖′ on Eq. (8), the differential equation 
becomes simply:  

𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖′

�𝑘𝑘𝑖𝑖𝑖𝑖𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖′

� − 𝑄𝑄𝑇𝑇(𝜕𝜕𝑖𝑖′) = 0 
(11) 

Equation (9) has the same form as the traditional diffusion equation but formulated on the 
moving coordinate system 𝜕𝜕′, where the advection term has disappeared. This type of equations 
can be discretized along the characteristics with the standard Galerkin spatial approximation, 
as usual for pure diffusion problems but along a moving coordinate system 𝜕𝜕′. 

The coordinate system of Eq. (9) describes the so-called characteristic directions of the 
problem, and it is a moving coordinate system that depends on the velocity of the fluid particles 
in a time-increment ∆𝜕𝜕, which determines the distance travelled by the particle in that time-
increment. This concept leads to the so-called Characteristic-based methods [1]. 

From this concept, different methods have been developed, such as the Mesh Updating 
Method [5], the Galerkin-Characteristics Method [6] or the Taylor-Characteristics Method [7]. 
However, these methods are “computationally complex and time-consuming” [1]. Thus, a 
simple alternative method was proposed by [18]: the simple explicit Characteristic-Galerkin 
method, that avoids the difficulties of the previous methods but is conditionally stable. 

Thus, and for simplicity, this paper starts from the simple Characteristic-Galerkin method 
proposed by [18], but with a time-integration scheme unconditionally stable. 

3.2 An implicit Characteristic-Galerkin Method (ICG Method) 
This section develops the extension of the simple explicit Characteristic method proposed 

by [18] to an implicit scheme. The first step of this procedure consists of the time discretization 
of Eq. (11) along the characteristic, using the Finite Difference Method. Developing this part 
for a one-dimensional problem: 

𝜌𝜌𝜌𝜌
1
Δ𝜕𝜕
�𝜕𝜕𝑛𝑛+1|𝑥𝑥 − 𝜕𝜕𝑛𝑛|(𝑥𝑥−𝛿𝛿)� ≈ 𝜃𝜃 �

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝑄𝑄𝑇𝑇�

𝑛𝑛+1

�
𝑥𝑥

+ (1 − 𝜃𝜃) �
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝑄𝑄𝑇𝑇�

𝑛𝑛

�
(𝑥𝑥−𝛿𝛿)

 
(12) 

where 0 ≤ 𝜃𝜃 ≤ 1; 𝑖𝑖 indicates the 𝑖𝑖-th time-increment, and 𝛿𝛿 is the distance travelled by the 
particle in the x direction (Figure 1) and can be expressed as 

𝛿𝛿 = �̅�𝑣∆𝜕𝜕 (13) 
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where �̅�𝑣 is the average value of 𝑣𝑣 along the characteristic, which can be approximated as 
described in [19] by the expression 

�̅�𝑣 =
𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛|(𝑥𝑥−𝛿𝛿)

2
 

(14) 

 
Figure 1: Basis of the characteristic-Galerkin method, that shows the distance travelled by the particle (δ) from 

time n to time n+1 [1]. 

In order to obtain the solution value at time 𝑖𝑖 + 1 it is necessary to evaluate the equations at 
time 𝑖𝑖 but at the position 𝜕𝜕 − 𝛿𝛿 (position at where the particle that is currently at 𝜕𝜕 for time 
𝑖𝑖 + 1, was at time 𝑖𝑖). The functions at 𝜕𝜕 − 𝛿𝛿 can be approximated by using Taylor expansions 
as follows: 

𝜕𝜕𝑛𝑛|(𝑥𝑥−𝛿𝛿) ≈ 𝜕𝜕𝑛𝑛 − 𝛿𝛿
𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕
+
𝛿𝛿2

2
𝜕𝜕2𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕2
+ 𝑂𝑂(∆𝜕𝜕3) 

(15) 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛

�
(𝑥𝑥−𝛿𝛿)

≈
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛

− 𝛿𝛿
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛

� + 𝑂𝑂(∆𝜕𝜕2) 
(16) 

𝑄𝑄𝑇𝑇𝑛𝑛�
(𝑥𝑥−𝛿𝛿)

≈ 𝑄𝑄𝑇𝑇𝑛𝑛 − 𝛿𝛿
𝜕𝜕𝑄𝑄𝑇𝑇𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝜕𝜕2) 

(17) 

𝑣𝑣𝑛𝑛|(𝑥𝑥−𝛿𝛿) ≈ 𝑣𝑣𝑛𝑛 − ∆𝜕𝜕 𝑣𝑣𝑛𝑛
𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕
+ 𝑂𝑂(∆𝜕𝜕2) 

(18) 

The average value of 𝑣𝑣 along the characteristics (Eq. 14) can be approximated by leaving 
out the second term of Eq. (18) as 

�̅�𝑣 =
𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛|(𝑥𝑥−𝛿𝛿)

2
≈
𝑣𝑣𝑛𝑛+1 + 𝑣𝑣𝑛𝑛

2
= 𝑣𝑣𝑛𝑛+1/2 

(19) 

And substituting Eqs. (15)-(19) in Eq. (12) the following is obtained: 

𝜌𝜌𝜌𝜌
1
Δ𝜕𝜕

(𝜕𝜕𝑛𝑛+1 − 𝜕𝜕𝑛𝑛) =

= −𝜌𝜌𝜌𝜌 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕𝜕𝜕
𝑛𝑛

𝜕𝜕𝜕𝜕
+
𝜌𝜌𝜌𝜌
2
Δ𝜕𝜕 𝑣𝑣𝑛𝑛+1/2 𝑣𝑣𝑛𝑛+1/2 𝜕𝜕

2𝜕𝜕𝑛𝑛

𝜕𝜕𝜕𝜕2
+ 𝜃𝜃 �

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝑄𝑄𝑇𝑇�

𝑛𝑛+1

+ (1 − 𝜃𝜃) �
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝑄𝑄𝑇𝑇�

𝑛𝑛

−  (1 − 𝜃𝜃) �Δ𝜕𝜕 𝑣𝑣𝑛𝑛+1/2 �
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�� −

𝜕𝜕𝑄𝑄𝑇𝑇𝑛𝑛

𝜕𝜕𝜕𝜕
�� 

(20) 
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From Eq. (20), the final FE equations of the ICG method are obtained by leaving out the 
third order terms and performing the spatial discretization using the standard FEM Galerkin 
weighting. Boundary terms are the same as defined in Eq. (7). 

The resulting time-integration scheme is always stable when 0.5 ≤ 𝜃𝜃 ≤ 1. Additionally, the 
Courant condition must be satisfied for each element of the FEM mesh [1], which fixes a 
maximum time-increment to be applied due to the advection effect:  

C =
|𝑣𝑣|Δt
ℎ𝑐𝑐𝑐𝑐𝑐𝑐

≤ 1                   𝛥𝛥𝜕𝜕𝑐𝑐,𝑚𝑚𝑐𝑐𝑥𝑥 =
ℎ𝑐𝑐𝑐𝑐𝑐𝑐
𝑣𝑣

 
(21) 

where ℎ𝑐𝑐𝑐𝑐𝑐𝑐 is the characteristic length of the element. Finally, the time-increment condition due 
to the diffusion problem [1] must also be satisfied:  

𝛥𝛥𝜕𝜕𝑑𝑑,𝑚𝑚𝑐𝑐𝑥𝑥 = 𝜌𝜌𝜌𝜌
ℎ𝑐𝑐𝑐𝑐𝑐𝑐2

2𝑘𝑘𝑇𝑇
 

(22) 

4 ZERO-THICKNESS FORMULATION: LARGE ADVECTION PROBLEM USING 
A SIMPLE IMPLICIT CHARACTERISTIC METHOD 

This section develops a formulation of the thermal problem with large advection for zero-
thickness interface elements by using the ICG method presented in Section 3.  

It is assumed that the discontinuity is surrounded by a continuum medium and, as in the 
hydraulic flow described by [20], the thermal flow can leak from the discontinuity to the 
continuum medium and vice versa.  

4.1 Double-nodded zero-thickness interface elements 
This work follows the definition of zero-thickness interface element originally proposed for 

purely mechanical problems in [21]. In this type of elements one of the dimensions is collapsed 
and the integration is reduced one order; lines for 2D and surfaces for 3D problems (Figure 2). 

 
Figure 2: Double-nodded zero-thickness interface element. Example of a quadrilateral interface element, where 

𝑖𝑖𝑖𝑖 are the element nodes and 𝑚𝑚𝑚𝑚𝑖𝑖 the mid-plan nodes [24] 

The formulation of this kind of elements for flow or diffusion problems is composed of two 
terms: the longitudinal flow along the interface and the transversal flow across the same, as 
described by [20, 22-24]. 
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The longitudinal (or in-plane) problem is formulated along the mid-plane surface in terms 
of the mid-points (Figure 2). Once the results are obtained at the mid-points, the temperatures 
at the nodes of the element are obtained assuming that the temperature at each mid-point is the 
average of the temperature of the two original nodes of the interface. Additional to the 
longitudinal flow, the existence of a discontinuity may also represent a resistance to the 
temperature flow in the transversal direction, which would result in a localized temperature 
drop across the interface. It is assumed that the potential thermal drop at the mid-plane nodes 
is defined as the difference of potential between the two nodes of the interface.  

It is also assumed that the large advection affects only the longitudinal flow of the interfaces 
and not the transversal one. 

4.2 Longitudinal flow 

The longitudinal flow vector 𝐪𝐪L𝑇𝑇 defined by the conduction-advection equation in the 
transient problem can be written from Eq. (2) as: 

𝐪𝐪L𝑇𝑇 = −𝑘𝑘𝐿𝐿𝑇𝑇 𝛁𝛁𝐽𝐽 𝜕𝜕 +  𝜌𝜌𝜌𝜌𝜕𝜕𝐯𝐯L (23) 

where 𝑘𝑘L𝑇𝑇 is the longitudinal thermal conductivity; 𝛁𝛁𝐽𝐽  =  � 𝜕𝜕
𝜕𝜕𝑙𝑙1

  𝜕𝜕
𝜕𝜕𝑙𝑙2
�
⊤

 is the partial differential 
operator for the local in-plane axis; 𝐯𝐯L is the longitudinal velocity (known) field at the mid-
plane of the interface element; 𝜕𝜕 is the temperature field; 𝜌𝜌 and 𝜌𝜌 are the density and the thermal 
capacity of the material filling the interface, respectively; and {𝑖𝑖, 𝑙𝑙1, 𝑙𝑙2} is the local orthogonal 
coordinate system, where 𝑙𝑙1 and 𝑙𝑙2 are the local directions of the interface along the mid-plane. 

By imposing heat conservation in the longitudinal direction of a differential interface 
element (Figure 3) and assuming Eq. (23) the governing differential equation is obtained:  

𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ [𝐯𝐯L]⊤𝛁𝛁𝐽𝐽𝜕𝜕� − 𝑟𝑟𝑁𝑁 �𝛁𝛁𝐽𝐽�
⊤𝑘𝑘𝐿𝐿𝑇𝑇 𝛁𝛁𝐽𝐽𝜕𝜕 = 0       in     Ω𝐽𝐽 

(24) 

where 𝑟𝑟𝑁𝑁 is the interface aperture and 𝛺𝛺𝐽𝐽 is the local mid-plane longitudinal coordinate defined 
by the system {𝑖𝑖, 𝑙𝑙1, 𝑙𝑙2}. Source terms are left out for simplicity.  

 

Figure 3: Thermal flow through a differential interface element [20] 

The complete Neumann boundary condition may be written from [25] as: 
−𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌𝜕𝜕𝑣𝑣𝐿𝐿,𝑁𝑁 + [𝐧𝐧]⊤𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿𝑇𝑇  𝛁𝛁𝐽𝐽𝜕𝜕 + 𝑞𝑞�𝑁𝑁 𝑇𝑇       on     Γq (25) 
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where 𝑣𝑣𝐿𝐿,𝑁𝑁 = [𝐧𝐧]⊤𝐯𝐯L is the normal longitudinal component of the velocity at the boundary Γq, 
and 𝑞𝑞�𝑁𝑁 𝑇𝑇 is the prescribed value of the heat flow. 
 In order to solve the problem using the simple implicit Characteristic-Galerkin method 
(Section 3), the differential equation for the one-dimensional transient problem along the 
characteristics (the advective term of the equation disappears) can be written from Eq. (24) and 
Eq. (12) as: 

𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝑙𝑙′

�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙′
� 

(26) 

where 𝑙𝑙 is the local coordinate system for the one-dimensional problem {𝑙𝑙,𝑖𝑖} and 𝑑𝑑𝑙𝑙′ = 𝑑𝑑𝑙𝑙 −
𝑣𝑣𝐿𝐿  𝑑𝑑𝜕𝜕. 

The first step consists on the time discretization of Eq. (26) using the FDM and the concepts 
developed in Section 3 (ICG method):  

𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌
1
Δ𝜕𝜕
�𝜕𝜕𝑛𝑛+1|𝑥𝑥 − 𝜕𝜕𝑛𝑛|(𝑥𝑥−𝛿𝛿)� ≈≈ 𝜃𝜃 �

𝜕𝜕
𝜕𝜕𝑙𝑙
�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿𝑇𝑇  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙
��

𝑛𝑛+1

�
𝑥𝑥

+ (1 − 𝜃𝜃) �
𝜕𝜕
𝜕𝜕𝑙𝑙
�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿𝑇𝑇

𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙
��

𝑛𝑛

�
(𝑥𝑥−𝛿𝛿)

 
(27) 

Substituting Eqs. (15)-(20) into Eq. (27) and leaving out third-order terms results in: 

𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌
1
Δ𝜕𝜕

(𝜕𝜕𝑛𝑛+1 − 𝜕𝜕𝑛𝑛) =

= −𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌 𝑣𝑣𝐿𝐿
𝑛𝑛+1/2 𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕𝑙𝑙
+

1
2
𝑟𝑟𝑁𝑁𝜌𝜌𝜌𝜌Δ𝜕𝜕 𝑣𝑣𝐿𝐿

𝑛𝑛+1/2 𝑣𝑣𝐿𝐿
𝑛𝑛+1/2 𝜕𝜕2𝜕𝜕𝑛𝑛

𝜕𝜕𝑙𝑙2
+ 𝜃𝜃 �

𝜕𝜕
𝜕𝜕𝑙𝑙
�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿𝑇𝑇

𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙
��
𝑛𝑛+1

+ (1 − 𝜃𝜃) �
𝜕𝜕
𝜕𝜕𝑙𝑙
�𝑟𝑟𝑁𝑁 𝑘𝑘𝐿𝐿𝑇𝑇

𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙
��
𝑛𝑛

 

(28) 

The extension of the above formulation to 3D is automatic by considering a local coordinate 
system such as 𝒍𝒍𝑖𝑖 = (𝑙𝑙1, 𝑙𝑙2) and the corresponding nodes and mid-plane nodes. 

Leaving out the third order terms and performing the spatial discretization, applying the 
Divergence Theorem to the diffusion terms and using the FEM with the standard Galerkin 
weighting (𝑤𝑤 = 𝑁𝑁𝐽𝐽

 (1),𝑁𝑁𝐽𝐽
 (2), …) results in 

𝐐𝐐Lmp = �
1
Δ𝜕𝜕
𝐂𝐂Lmp + 𝜃𝜃𝐊𝐊Lmp�Δ𝛟𝛟mp

𝑛𝑛 + �𝐊𝐊Lmp + 𝐊𝐊𝐯𝐯,Lmp
 +

1
2
𝐊𝐊𝐬𝐬,Lmp

 �𝛟𝛟mp
𝑛𝑛  (29) 

where 

𝐂𝐂Lmp =  𝑟𝑟𝑁𝑁 � 𝜌𝜌𝜌𝜌 �𝐍𝐍𝐽𝐽 �
⊤ 𝐍𝐍𝐽𝐽  

 

Ω𝐽𝐽
dΩ𝐽𝐽  (30) 

𝐊𝐊Lmp = 𝑟𝑟𝑁𝑁 � ��𝐁𝐁𝐽𝐽 �
⊤ 𝑘𝑘𝐿𝐿𝑇𝑇 𝐁𝐁𝐽𝐽 �

 

Ω𝐽𝐽
dΩ𝐽𝐽 (31) 

𝐊𝐊𝐯𝐯,Lmp
 = 𝑟𝑟𝑁𝑁 � 𝜌𝜌𝜌𝜌 ��𝐍𝐍𝐽𝐽 �

⊤ 𝐯𝐯L  𝐁𝐁𝐽𝐽 �
 

Ω𝐽𝐽
dΩ𝐽𝐽 (32) 

𝐊𝐊𝐬𝐬,Lmp
 = 𝑟𝑟𝑁𝑁 ∆𝜕𝜕� 𝜌𝜌𝜌𝜌 ��𝐁𝐁𝐽𝐽 �

⊤ [𝐯𝐯L ]⊤𝐯𝐯L  𝐁𝐁𝐽𝐽 �
 

Ω𝐽𝐽
dΩ𝐽𝐽 (33) 

and 
𝐁𝐁𝐽𝐽 = 𝛁𝛁𝐽𝐽𝐍𝐍𝐽𝐽  (34) 
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𝛟𝛟mp
 = �𝜕𝜕𝑚𝑚𝑚𝑚

  (1)  𝜕𝜕𝑚𝑚𝑚𝑚
  (2)  … 𝜕𝜕𝑚𝑚𝑚𝑚

  (𝑚𝑚)�
⊤

         𝐯𝐯L = �𝑣𝑣𝐿𝐿
 (1)  𝑣𝑣𝐿𝐿

 (2)  … 𝑣𝑣𝐿𝐿
 (𝑚𝑚)�

⊤
 (35) 

In order to obtain the final FEM formulation related to the nodes of the mesh (and not to the 
mid-plane nodes), it is assumed that the temperature at the mid-plane is the average of the nodal 
temperatures. As described accurately by [25], the temperature at the mid-plane of the interface 
can be written in terms of the element’s nodal temperatures as 

𝛟𝛟mp 
 =

1
2

 [𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] 𝛟𝛟e
 = 𝕋𝕋�L 𝛟𝛟e

  (36) 

where 𝕋𝕋�L = 1
2

 [𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] is the longitudinal transference matrix, 𝐈𝐈𝑚𝑚 is the 𝑚𝑚 × 𝑚𝑚 identity matrix 
and 𝛟𝛟e is the element’s temperature vector. Finally, Eq. (29) has to be written referred to the 
element nodes [25]: 

𝐐𝐐Le = �𝕋𝕋�L �
⊤𝐐𝐐Lmp  

(37) 

All the matrices and vectors defined at the mid-plane of the interface have to be transformed 
using the transference matrix to obtain element matrices and vectors by substituting Eqs. (36) 
and (37) into Eq. (29):  

𝐐𝐐Le = �
1
Δ𝜕𝜕
𝐂𝐂Le + 𝜃𝜃𝐊𝐊Le�Δ𝛟𝛟e

𝑛𝑛 + �𝐊𝐊Le + 𝐊𝐊𝐯𝐯,Le
 +

1
2
𝐊𝐊𝐬𝐬,Le

 �𝛟𝛟e
𝑛𝑛 (38) 

with 

𝐂𝐂Le =  �𝕋𝕋�L �
⊤ 𝐂𝐂Lmp  𝕋𝕋�L      ;      𝐊𝐊Le = �𝕋𝕋�L �

⊤ 𝐊𝐊Lmp  𝕋𝕋�L (39) 

𝐊𝐊𝐯𝐯,Le
 = �𝕋𝕋�L �

⊤ 𝐊𝐊𝐯𝐯,Lmp
  𝕋𝕋�L      ;      𝐊𝐊𝐬𝐬,Le

 = �𝕋𝕋�L �
⊤ 𝐊𝐊𝐬𝐬,Lmp

  𝕋𝕋�L (40) 

4.3 Transversal flow  

The transverse heat flow 𝑞𝑞𝑁𝑁𝑇𝑇  may be written by a simple discrete version of Fick's law as: 
𝑞𝑞𝑁𝑁𝑇𝑇  = 𝑘𝑘�𝑁𝑁𝑇𝑇   𝜕𝜕�𝑁𝑁 (41) 

where 𝑘𝑘�𝑁𝑁𝑇𝑇  is the transversal thermal conductivity of the interface and 𝜕𝜕�𝑁𝑁 is the localized thermal 
drop across the interface, which is defined by the temperature difference between the two 
surfaces of the interface as follows: 

𝜕𝜕�𝑁𝑁 =  𝜕𝜕𝑏𝑏𝑐𝑐𝑐𝑐 − 𝜕𝜕𝑐𝑐𝑐𝑐𝑚𝑚  (42) 

It is important to note that the large advection affects only the longitudinal flow and not the 
transversal one. Thus, as described accurately by [24] the final FEM formulation for the 
transversal flow may be written as: 

𝐐𝐐Ne =  𝐊𝐊Ne  𝛟𝛟e (43) 

𝐊𝐊Ne = �𝕋𝕋�N �
⊤ ��  �𝐍𝐍𝐽𝐽  �

⊤ 𝑘𝑘�𝑁𝑁𝑇𝑇  𝐍𝐍𝐽𝐽  dΩ𝐽𝐽
 

Ω𝐽𝐽
�𝕋𝕋�N 

(44) 

where 𝕋𝕋�N = [−𝐈𝐈𝑚𝑚  𝐈𝐈𝑚𝑚] is the transference transversal matrix and 𝐊𝐊Ne is the transversal thermal 
conductivity matrix of the interface element. 
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Figure 4: Scheme of the potential thermal drop across a differential interface element [20] 

4.4 Integrated formulation: longitudinal and transversal flow  
To obtain an integrated conductivity matrix it is necessary to combine the longitudinal and 

the transversal flow as a sum of both, performing first the time discretization of the transversal 
flow by means of the FDM. The final element equation may be written in the following form: 

�
1
Δ𝜕𝜕
𝐂𝐂Le + 𝜃𝜃�𝐊𝐊Le + 𝐊𝐊Ne��Δ𝛟𝛟e

𝑛𝑛 = −�𝐊𝐊Le + 𝐊𝐊Ne + 𝐊𝐊𝐯𝐯,Le
 +

1
2
𝐊𝐊𝐬𝐬,Le

 �𝛟𝛟e
𝑛𝑛 

(45) 

where the element matrices are defined by Eqs. (30-33) and Eqs. (39-40).  
Finally, the global matrices and vectors of the system of equations are obtained by the 

assembly of the contribution of each element of the mesh. Boundary conditions are left out for 
simplicity. Conditions defined by Eqs. (21) and (22) must be satisfied.  

5 VERIFICATION EXAMPLE 
The objective of this example is to compare the solutions between the standard Galerkin 

FEM method and the ICG Method (Section 3) and verify that the latter provides stable solutions 
when 𝑃𝑃𝑃𝑃 > 1 in a 2-D simple transient example with zero-thickness interfaces. 

The geometry consists of a domain of 400×250 m with an interface at the symmetry axis, 
composed by 600 continuum elements and 20 zero-thickness interface elements, with an 
aperture of 𝑟𝑟𝑁𝑁 = 0.01 m. The material thermal parameters for the analysis are: 𝑘𝑘𝑇𝑇 = 7.0 ·
10−6 J/(m ℃ s), 𝑘𝑘𝐿𝐿𝑇𝑇 = 7.0 · 10−8 J/(m ℃ s), 𝑘𝑘𝑇𝑇𝑇𝑇 = 1.00 J/(m2 ℃ s), 𝜌𝜌𝜌𝜌𝑖𝑖𝑛𝑛𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 =  0.001 J/
(m3 ℃) and 𝜌𝜌𝜌𝜌𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑖𝑖𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚 =  0.10 J/(m3 ℃). The boundary conditions are: 100℃ at the left 
side boundary and 0℃ at the right one (both Dirichlet).  

In order to reproduce the heat transport, a known and constant velocity field of 𝑣𝑣𝐿𝐿 =
0.19 m/s  from left to right is imposed along the discontinuity, as a preferential path throughout 
the continuous medium.  

The time-increments applied during the analysis are 𝛥𝛥𝜕𝜕 = 70 s, and consequently the Courant 
number is smaller than 1 (𝐶𝐶 = 0.67), a necessary condition to obtain a stable solution. As the 
element characteristic length is equal to 20 meters, Péclet number 𝑃𝑃𝑃𝑃 = 273 (large advection). 

Figure 4 shows the results of the transient analysis for different time-steps, first using the 
standard Galerkin weighting, which leads to oscillatory results, and then using the ICG method, 
which leads to the stable correct solution.  
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Time 

    

    

    

    

     
Figure 5: Transient thermal solution for Pe = 273: (left) Oscillatory results using the standard Galerkin 

weighting, and (right) correct solution using the ICG method (section 3). 
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6 CONCLUDING REMARKS 
This paper describes a numerical FEM solution of the heat flow transient problem for zero-

thickness interface elements, where a known velocity field produces thermal transport with 
large advection. First, a simple Characteristic methodology to solve large advection problems 
has been reviewed [18]. Then, a formulation of the large advection heat problem for zero-
thickness interface elements has been developed, using for this purpose the implicit 
Characteristic methodology reviewed in the previous section. Finally, a verification example 
has been presented to show that this method is suitable for this type of elements when the 
advection is dominant for transient problems. Current work aims at the extension of the 
formulation presented to different stabilization methodologies to solve large advection 
problems, such as the GLS [4], the FIC [16] or the High Resolution method [17], among others. 
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