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Resumen 

 El método de los elementos finitos es un método numérico bien establecido que se puede utilizar 

para predecir el comportamiento mecánico en las ciencias de los materiales. Sin embargo, su dependencia 

de los elementos implica límites y problemas en ciertas aplicaciones de ingeniería. Es por eso por lo que 

ha surgido el concepto de eliminar la malla o, al menos, limitar la dependencia en los elementos. Así, se 

han desarrollado los métodos llamados “meshfree” (los métodos sin malla) que se siguen investigados y 

mejorados hoy en día. 

 En este trabajo, se estudian los métodos sin malla para aplicaciones de elastoestática, y en 

particular el “global Radial Point Interpolation Method (RPIM)” y el “Local Radial Point Interpolation 

Method (LRPIM)”. Él objetive de este trabajo de fin de máster es comprender los procedimientos de 

solución de los métodos sin malla y los desafíos que se presentan. Por lo tanto, problemas mecánicos 

sencillos servirán de soportes y de ejemplos para ilustrar los conceptos subyacentes. Además, gracias a 

los códigos informáticos proporcionados en (G. R. Liu e Y. T. Gu, 2005), se detallan los problemas de 

implementación debidos al RPIM global y al LRPIM, y se utilizan y modifican los algoritmos para estudiar 

aplicaciones triviales. Entonces, estos dos métodos se aplican a un problema de mecánica en 2D: un 

voladizo sometido a una carga parabólica en su extremo derecho, para la que se conoce la solución 

analítica. Así, se puede cuantificar y estudiar la precisión de la solución. 
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Abstract 

The Finite Element method is a well-established and common numerical method that can be used 

predict the mechanical behaviour in material sciences. Nevertheless, its strong reliance with the elements 

implies limits and issues for certain engineering problems. That is why the concept of eliminating the mesh 

or at least, limiting its dependence has come. Hence, the so-called meshfree methods have been 

developed and still investigated and improved nowadays. 

In this work, meshfree methods are discussed for elasto-static mechanics applications, and in 

particular the global Radial Point Interpolation Method (RPIM) and the Local Radial Point Interpolation 

Method (LRPIM). The aim of this master thesis is to understand and go through the meshfree methods 

solution procedures and challenges. Hence, simple mechanics problems will serve as supports and 

examples to illustrate the concepts behind such numerical methods. More, thanks to the computer codes 

provided in (G. R. Liu and Y. T. Gu, 2005), the implementation issues due to the global RPIM and LRPIM 

are detailed, and the algorithms are used and modified for studies on simple applications. These two 

methods are applied to a 2D mechanics problem: a cantilever beam subjected to a parabolic load at its 

right end, for which the analytical solution is known. Thus, the meshfree method parameters that affect 

the solution accuracy can be highlighted and discussed. 
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Nomenclature 

Abbreviations 

CAE   Computer-Aided Engineering 

CPU time Central Processing Unit 

FEM  Finite Element Method 

LRPIM  Local Radial Point Interpolation Method 

PIM  Point Interpolation Method 

RBF  Radial Basis Function 

RPIM  Radial Point Interpolation Method 

 

Notations 

This report uses the following notations for matrices and vectors: 

 

𝑴 = [
𝑀11 𝑀12
𝑀21 𝑀22

] 

 

𝒗 = [

𝑣1
𝑣2
𝑣3
] 

 

𝒗𝑻 = [𝑣1 𝑣2 𝑣3] 

 

𝑴𝑻 = [
𝑀11 𝑀21
𝑀12 𝑀22

] 
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1. Introduction 

1.1 Objectives 

 The aim of this master thesis is to discover and get used with the meshfree numerical methods. 

The computer codes provided in (G. R. Liu and Y. T. Gu, 2005) are used and modified to understand and 

investigate different meshfree methods. Simple mechanics problem in two dimensions are treated in 

order to focus on the numerical method itself. The challenges are going through the meshfree algorithms 

coded in FORTRAN 90 in order to extracts the influencing parameters, to understand its limits and to try 

to transpose the code to be functional for a three dimensions problem. 

At the beginning of this master thesis the following objectives has been established: 

1) Get used with the FORTRAN 90 language 

2) Handle the general procedure of the radial point interpolation meshfree shape function 

construction (see section 3.2). 

3) Get used with meshfree general procedures and in particular the Radial Point Interpolation 

Method and the Local Radial point Interpolation Method. 

4) Studying these last two meshfree methods with a numerical example provided in the book. 

5) Transpose an FORTRAN algorithm for a 2D problem to be efficient in 3D (Cantilever beam 

subjected to a parabolic load at its right end  

Nevertheless, after many tries the last objective could not be completed. The code led to wrong 

results and investigations were unable to manage to find the error(s). After that, it has been decided to 

abandon the transposition of the 2D code, but instead of that, studying the meshfree method parameters 

and properties that have influence on the solution accuracy. 

 

1.2 Scope of the work 

 More generally, this master thesis has the role to make aware of the issues in the field of 

numerical methods. Going through two meshfree methods allow to understand the process behind the 

meshfree method development and the limits of the established numerical methods, such as the Finite 

Element Method. Furthermore, this work allows to get used with and gain experience with the processes 

of problems modelling, results visualizations, numerical simulation, and lastly the analysis of the results. 

To lead these studies, few articles, but above all two books are taken as support: (G.R. Liu, 2009) and (G. 

R. Liu and Y. T. Gu, 2005). 
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2. State of the art 

2.1 Meshfree methods 

2.1.1 Numerical simulation 

By definition, a numerical simulation is executed by a computer in order to obtain a model that 

can be used to understand or predict physical problems or phenomena. These last can sometimes be 

described by algebraic, differential, or integral equations. Moreover, to obtain the exact results of such 

equations by analytical means is extremely rare because the problems are naturally complex. That is why 

the concept of numerical simulation has come. To approximate the solutions of such problems. In 

addition, the development of computers and its performance as increased a lot in the last decades. The 

processors and more and more efficient and so that numerical simulation using computer technologies. 

With a mathematical approach, a numerical simulation achieves the transformation of a complex problem 

into a discretized mathematical form. [1] In that sense, after solving the problem, the physical problems 

can be virtually reproduced. Physical problems in engineering are many and it would be impossible to 

create simulations for all of them. Historically, the finite element method was first developed for stress 

analysis but until nowadays, many other physicals problems have been solved with FEM. As examples, 

common physical problems that can be solved using FEM are mechanics for solids and structures, heat 

transfer, acoustics, or fluid mechanics. [2] Numerical simulations procedure is summarized in Figure 2.1: 

 
Figure 2.1 Numerical simulation general procedure. 
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 Thus, numerical simulation and especially numerical techniques can represent true physics 

problems. This is a true engineering challenge to develop numerical methods in order to predict and/or 

build complicated systems. Until now, many numerical techniques or approximation methods have been 

established such as the Finite Element Method (FEM), the Finite Difference Method (FDM) or the Finite 

Volume Method (FVM). 

 

2.1.2 Challenges 

The Finite Element Method is nowadays well established and widely used in the numerical 

methods field. This method first came in the 1950s to solve complex elastic and structural problems in civil 

and aeronautical engineering. [2] Since its beginning, this method has been largely developed and still a 

powerful tool for its versatility for complex geometry problems. The main idea of FEM is that it is a 

numerical method, which is based on elements. Indeed, the geometry of the problem is discretized into 

elements that are linked together by the nodes in a predefined manner, this procedure is called meshing. 

And a mesh is defined as any of the continuum open spaces or interstices that is formed by connecting 

some nodes in a properly manner. Such a procedure requires the use of pre-processors and especially for 

complex geometry problems. 

 Nevertheless, the main drawback of such a method is that it is dependent on meshes and 

elements. Thus, this mesh dependence led to the following limitations:  

▪ Meshing procedure cost. 

The meshing procedure is of great importance and meshes must be predefined. A such procedure 

is accomplished by the help of computers and its resources are termed as CPU time (central 

processing unit). For problems of complex geometry, this step can require many resources and be 

time-consuming. 

▪ Stress accuracy. 

In FEM, the stresses are often inaccurately predicted. Indeed, they are discontinuous, especially 

at the interfaces of the elements because FEM formulation relies on a piecewise continuous 

nature of the displacement field. Thus, special additional requirements can be needed in pre-

processing to obtain accurate stress in certain cases. 

▪ Adaptive analysis. 

Nowadays, a requirement for numerical methods such as FEM is to obtain a solution with a 

desired accuracy. In order to fulfil this requirement, adaptive analysis must be performed. In FEM, 

adaptive analysis involves re-meshing to ensure a proper connectivity. However, this re-meshing 

step implies the use of complex and computationally expensive pre-processors.  

▪ Limitations for some analysis. 

The FEM encounter some limitations for certain type of applications due to the use of mesh. For 

example, due to the element distortions under large deformations, the accuracy is lost. More, for 
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problems with cracks growth, phase transformation or breakage the use of FEM in limited. In fact, 

more generally, non-linear problems lead to errors or misrepresentations because FEM depends 

on elements that cannot be broken. 

All these FEM limitations have the same common point: the mesh dependence. That is why the idea of 

avoiding the meshing procedure and the element requirement has come in numerical methods. [3] 

 

2.1.3 General solution procedure 

2.1.3.1 Definition 

The so called meshfree methods are defined as “a method used to establish system algebraic 

equations for the whole problem domain without the use of a predefined mesh for the domain 

discretization”. [1] The geometry of the problem in meshfree methods is represented by a set of nodes 

called field nodes distributed within the problem domain and on its boundaries. It should be noticed that 

at this stage the problem domain and its boundaries are represented by the field nodes and not 

discretized. The term field nodes translate the fat that these nodes will carry the value of the field 

variables. More, these field nodes do not form a mesh because information on the relationship between 

each other is not required for the interpolation of the unknown function. This last will be then 

approximated locally using those sets of field nodes. 

 The ideal requirement to term a method as meshfree is if no mesh is necessary for all the solving 

procedure and for a given geometry that is governed by PDEs and with any kinds of boundary conditions. 

Nevertheless, in practice, the meshfree methods are not always completely meshless. Indeed, some 

meshfree methods can require a background mesh (composed of background cells) to perform the 

integration of system matrices over the problem domain. Another example would be methods that 

required background cells only locally to perform integrations over the problem domain. 

 Thus, the numerical methods are termed meshfree if the solution do not depend on the quality 

of a mesh, but one could be used if it is automatically generated and used for some specifics integrations 

such as integrations. [3]It can be paradoxical for the reader to the fact that many meshfree methods still 

use a mesh, but it should be mentioned that in these cases the meshes are used in more flexible and free 

ways. The most important challenges in meshfree methods are to reduce and try to avoid the reliance on 

the use of meshes that are difficult or expensive for problems with complex geometries. However, 

automatically created meshes cans still be used if it helps in getting better solutions in more effective ways 

and if the solution quality does not rely completely on it. [1] 

 Finally, meshfree methods have been developed since the last decades and have shown good 

potential to become powerful and widely use numerical tools but are still under development stage. 

Indeed, in meshfree methods, adaptative analysis can be more easily used thanks to the use of 

automatically meshing for 2D and 3D complex geometry or non-linear problems that are sufficient to 
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obtain good solutions. More, these methods provide flexibility to add or delete nodes when and where it 

is needed, such as stress analysis problem with singularity or stress concentration area. For the study of 

crack growth problems, nodes can be added wisely around the crack to lead to more accurate solutions. 

2.1.3.2 Solution procedure 

In this section, the general procedure, and the basics steps in meshfree methods will be explained 

using solid mechanics problems as example. Also note that in this work only solid mechanics problems will 

be studied to understand the main idea, operation, and challenges behind meshfree methods. The 

meshfree methods can also have different procedures and steps in its formulations, but the two methods 

that will be presented in sections 3.3 and 3.4 are quite similar. 

The method like in FEM starts at the stage of geometry creation. In meshfree methods, we speak 

then about node generation (and possibly background element generation) in contrast with element 

generation in FEM. Then, shape functions are computed based on selected local nodes. Once again, the 

difference between the finite element method and the meshfree method in shape function construction 

is that in FEM the shape functions are computed using elements and are the same for the entire element. 

However, the meshfree shape functions are generally constructed only for a point of interest and based 

its close field nodes. These shape functions can be different for different point of interest. Finally, after 

establishing the global discretized system of equations, the FEM and meshfree procedures stay quite 

similar and many FEM techniques can be used in the meshfree methods. [3] 

 The main differences between these two numerical methods can be resumed principally as  the 

meshing, the shape function construction, the global matrices, the enforcements of the EBCs, the 

computation speed, the solution accuracy, and the state of development. To go further, in FEM the 

discretized stiffness matrix is banded (sparse matrix where the non-zero values are banded in the 

diagonal) and symmetric whereas in meshfree methods, the matrix is generally banded by may not be 

symmetric. More, special treatments are required to enforce the EBCs depending on the meshfree 

method used. Finally, meshfree methods lead to more accurate results compare to FEM, and it should be 

mentioned that there are few commercial software packages available. 

Step 1: Domain representation/discretization 

The first step in the meshfree method procedure is representing the problem domain and its 

boundary. To perform this step, the geometry is modelled using sets of field nodes distributed. This can 

be accomplished thanks to CAE (Computer-Aided Engineering) code or pre-processor. The field node 

density can be changed in order to play on the accuracy, and the distribution may be usually not uniform. 

For example, a denser field node distribution can be used where the displacement gradient will be larger. 

Note that the node density should also be chosen depending on the limits of the computer resources 

available. Then, the BCs and loads are specified for the modelled geometry. 
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Figure 2.2 Meshfree domain representation. [3] 

Step 2: Displacement interpolation/approximation 

During this second step, the field variable (displacement) at any point at 𝒙 = (𝑥, 𝑦) within the 

modelled problem domain is approximated/interpolated using the function values (displacements) at the 

nodes within a small domain called support domain of this point at 𝒙 (usually a quadrature point). The 

concept of support domains will be explained later in the section 3.2.1.1. Thus, 

2.1 

𝑢(𝒙)∑ 𝜙𝑖(𝒙)𝑢𝑖 = 𝚽
𝑻𝑼𝒔

𝑛

𝑖=1
  

where  

𝑛, is the number of nodes included in the local support domain of the point at 𝒙; 

𝑢𝑖, is the nodal displacement at the 𝑖-th node; 

𝜙𝑖(𝒙), is the shape function for the 𝑖-th and it is determined using the 𝑛 nodes located in the 

support domain of 𝒙; 

𝚽, is the matrix that collects all the shape functions for this 𝑛 nodes; 

𝑼𝒔, is the vector that collects all the displacements at this 𝑛 nodes; 

 The support domain of a point at 𝒙 is used to determine the number of field nodes that should be 

used for the interpolation of the unknown function at 𝒙. Such domains can have many various shapes 

(generally rectangular or circular) and dimensions and these last may be different for different point of 

interest 𝒙. Moreover, these domains can be weighted using weight function purposely so that vanish on 

its boundary. However, its use presents some limitations especially for problems where the node density 

varies too much. In this case, the risk is if a large number of nodes are located in a side and so the shape 

function constructed will carry errors. In order to overtake this limitation, the influence domains are used. 

The concepts of influence and support domain will be further detailed in sub-section 3.2.1.1. 

 



 
 

14 
 

Step 3: Formation of system equations 

The step 3 consists of formulate the discrete equations for the meshfree method selected using 

the shape functions and (generally) weak formulations. The obtained equations can be written either in a 

nodal matrix form and are then assembled into the global system equations in a matrix form. Moreover, 

these matrices are banded and sparse, and depending on the method selected, may be asymmetric. Note 

that in the case of a static analysis, the global system equations are a set of algebraic equations. 

Step 4: Solving the global meshfree equations 

The last step of the procedure is to solve the set of global meshfree equations. For static problems 

(that will be studied in this work) the displacement at all nodes of the entire problem domain is obtained 

and then, stress and stain can be retrieved using the relationships that will be stated in the next section. 

The solving procedure is quite similar to that for FEM, but the used solver may be different depending on 

the nature of the matrix system. Here some classic solving techniques example: Gauss elimination, 

iterative methods, or LU decomposition. 

 

2.1.4 Fundamentals for meshfree methods 

In the next section, partial differential equations for solid mechanics will be established. Such 

equations are called strong forms of system equation. In practice, it is very difficult to obtain the exact 

solution of a strong form of system equations because engineering problems are generally complex. 

Indeed, the strong form requires a strong continuity on the field variable. Moreover, the approximate 

unknown function (the displacement 𝑢 and 𝑣 in our case) in a strong form formulation should have a 

sufficient degree of constituency so that it can be differentiated up to the order of the partial differential 

equation. One example of a method using strong formulation is the finite element method. Nevertheless, 

due to the strong continuity requirement, this method is used mainly only for simple and regular 

geometry/BCs problems. 

 Weak formulations are fundamental for FEM and for meshfree methods. In the FEM, all numerical 

operations and especially function approximation and integrations of the weak forms of system equations 

are based on the elements. The difference and advantage of the meshfree methods compare to FEM is 

that the function approximation and integrations are independent. In other words, meshfree methods 

allows wider ways to use weak formulations and so can lead to superior methods than FEM. In this report, 

only weak formulation will be used in order to construct the discretized system equation of two different 

meshfree weak form methods that will be detailed in another section. 

 To construct weak forms, various principles can be used. In this report, only two meshfree 

methods will be studied, the radial point interpolation method and the local radial point interpolation 

method. These methods are based respectively on the Galerkin weak form and the weighted residual 

method which are widely used principles to develop meshfree method. The weak forms are often on 
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integral form and in contrast to strong forms, it requires weaker continuity for the field variables and on 

the integral operation. This weaker requirement allows forming discretized system equations that lead to 

good and accurate results and for problems with complex geometry. [1] To sum up, this study will focus 

on weak formulation and in particular the Galerkin weak form and the weighted residual method in order 

to create discretized system equations for 2D solid elastostatics problems. 

 

2.2 Mechanics for 2D solids 

2.2.1 Introduction 

 The aim of this second section of the state of the art is to introduce the basics of mechanics applied 

to two dimensions solids in order to study simple cases with some meshfree methods. This section will go 

through the classic and established theory of solids subjected to forces and loads. Indeed, the mechanic 

of solids and structures study the strains and displacements that are generated from stresses and for some 

given boundary conditions. The challenges in this field are studying these relationships between stresses, 

strains, displacements, and boundary conditions and in the case of this word studying these relationships 

through simulations. 

 The primary issue in this report is to study the meshfree methods from the procedure to the 

visualization and analysis of the results. That is why the solid mechanics used in the applications will be 

very trivial and will simply cover statics forces applied on isotropic elastic materials and without 

increments.  

 

2.2.2 Stress-strain relationship 

In solid mechanics, and elastic comportment describe a solid for which the deformations are 

completely reversible if its unloaded.  A material is isotropic if its material properties do not depend on 

the direction. The two isotropic material constants are the Young’s modulus noted E and υ the Poisson’s 

ratio. These two constants describe, respectively for an isotropic elastic material, the relationship between 

stress and strain and the contraction (or expansion) of the material perpendicularly to the load’s direction. 

[2] [3] 

The two types of 2D solid mechanics problems are plane stress solid problems and plane strain 

solid problems. The first concerned solids for which the thickness in a direction is negligible when 

compared to the two other directions. If the solid thickness in the z direction is negligible compared with 

the solid dimensions in x and y directions, the external forces are so only applied on the x-y plane and the 

stresses in z direction are all zero (𝜎𝑧𝑧 = 𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0). 

The plain strain problems deal with solids whose thickness in a direction is very large compared 

with the solid dimensions in the two other directions. If the thickness of a solid in z direction is very large 
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compared with the dimensions of this solid in the x and y directions, the external forces are so only applied 

uniformly along the z axis and the strain components in z direction are all zero (휀𝑧𝑧 = 휀𝑥𝑧 = 휀𝑦𝑧 = 0). It 

should be mentioned that for a plane stress problem the strains 휀𝑥𝑧 and 휀𝑦𝑧 are zero but 휀𝑧𝑧 is not. 

Similarly, for the plane strain problem the stresses 𝜎𝑥𝑧 and 𝜎𝑦𝑧 are zero but not 𝜎𝑧𝑧. 

In two dimensions the stress and strain components are respectively 

2.2 

𝝈 = [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
] 𝜺 = [

휀𝑥𝑥
휀𝑦𝑦
휀𝑥𝑦
] 

(The shear stress component 𝜎𝑥𝑦 is also denoted 𝜏𝑥𝑦). 

The displacement components vector is composed of 𝑢, the displacement in the 𝑥 direction and 𝑣 the 

displacement in the 𝑦 direction: 

2.3 

𝒖 = [
𝑢
𝑣
] 

The strain-displacement relationship in the matrix form is given by  

2.4 

𝜺 = 𝑳𝒖 

where 𝑳 is the differential operator matrix obtained from the strain-displacements relationships: 

2.5 

휀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
, 휀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
 𝑎𝑛𝑑 휀𝑥𝑦 =

𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
 

2.6 

𝑳 =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 

 

The Hook’s law for two dimensions elastic solids is written in the matrix form as 

2.7 

𝝈 = 𝑫𝜺 

where D  is the matrix of material constants, which needs to be obtained empirically. The expression of D  

for isotropic materials in a plane stress problem is  
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2.8 

𝑫 =
𝐸

1−𝜈2
[

1 𝜈 0
𝜈 0 0

0 0
(1−𝜈)

2

] (Plane stress) 

For isotropic materials in a plane strain problem, the matrix D can be obtained by replacing E and ν 

respectively with 
𝐸

1−𝜈2
 and 

𝜈

1−𝜈
 as 

2.9 

𝑫 =
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)

[
 
 
 
 1

𝜈

1−𝜈
0

𝜈

1−𝜈
0 0

0 0
1−2𝜈

2(1−𝜈)]
 
 
 
 

 (Plane strain) 

2.2.3 Equilibrium equations 

The equilibrium equation translates the relationship between stress and the external forces. 

Considering the state of stresses of an infinitely small block of an elastic isotropic solid: 

Since in this report dynamics problems will not be treated, the inertial forces of this block will not be 

considered. The equilibrium equation of the forces in the x direction can be written as 

2.10 

(𝜎𝑥𝑥 + 𝑑𝜎𝑥𝑥)𝑑𝑦𝑑𝑧 − 𝜎𝑥𝑥𝑑𝑦𝑑𝑧 + (𝜎𝑦𝑥 + 𝑑𝜎𝑦𝑥) − 𝜎𝑦𝑥𝑑𝑥𝑑𝑧 + (𝜎𝑧𝑥 + 𝑑𝜎𝑦𝑥) − 𝜎𝑦𝑥𝑑𝑥𝑑𝑦 + 𝑏𝑥 = 0 

where 𝑏𝑥 is the external body force applied at the centre of the block and the vector of body forces is 

written as 

2.11 

𝒃 = [

𝑏𝑥
𝑏𝑧
𝑏𝑧

] 

𝑑𝜎𝑥𝑥, 𝑑𝜎𝑦𝑥 and 𝑑𝜎𝑧𝑥 can be expressed as 

2.12 

𝑑𝜎𝑥𝑥 =
𝜕𝜎𝑥𝑥
𝜕x

𝑑𝑥; 𝑑𝜎𝑥𝑥 =
𝜕𝜎𝑦𝑥

𝜕y
𝑑𝑦 𝑎𝑛𝑑 𝑑𝜎𝑥𝑥 =

𝜕𝜎𝑧𝑥
𝜕z

𝑑𝑧 

 

Now equation 2.10 can be simplified: 

2.13 

𝜕𝜎𝑥𝑥
𝜕x

+
𝜕𝜎𝑦𝑥

𝜕y
+
𝜕𝜎𝑧𝑥
𝜕z

+ 𝑏𝑥 = 0 
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This is the equilibrium equation for 𝑥 direction. Equations for 𝑦 and 𝑧 directions are obtained similarly. 

2.14 

𝜕𝜎𝑥𝑦

𝜕x
+
𝜕𝜎𝑦𝑦

𝜕y
+
𝜕𝜎𝑧𝑦

𝜕z
+ 𝑏𝑦 = 0 

2.15 

𝜕𝜎𝑥𝑧
𝜕x

+
𝜕𝜎𝑦𝑧

𝜕y
+
𝜕𝜎𝑧𝑧
𝜕z

+ 𝑏𝑧 = 0 

 

Finally, the static equilibrium equation can be written in the matrix form as 

2.16 

𝑳𝑻𝝈 + 𝒃 = 0 

And using equations 2.4 and 2.7  

2.17 

𝑳𝑻𝑫𝑳𝒖+ 𝒃 = 0 

This equation is a partial differential equation for three-dimensions elastostatics where 𝒖 is the vector of 

the unknown function of field variable. And where 𝑳 is the differential operator matrix in 3D. 

The equation for 2D solids is simply obtained by removing the 𝑧 coordinate terms and omitting 

the differential operations related to 𝑧. For 2D solids: 

2.18 

𝑳𝑻𝝈 + 𝒃 = 0 

or 

2.19 

𝑳𝑻𝑫𝑳𝒖+ 𝒃 = 0 

where 𝝈, 𝒃 and 𝑳 are expressed respectively as  

2.20 

𝝈 = [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
]  𝒃 = [

𝑏𝑥
𝑏𝑦
]  𝑳 =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
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2.2.4 Boundary conditions 

The boundary conditions can be either essential or natural boundary conditions. The notations 

will be respectively EBCs and NBCs. 

The EBC is the displacement BC written as 

2.21 

𝑢𝑖 = �̅�𝑖 (𝑜𝑛 Γ𝑢) 

with �̅�𝑖, the prescribed displacements on the boundary Γ𝑢 (𝑖 and 𝑗 denote either 𝑥 or 𝑦). The displacement 

condition is called essential because this condition needs to be enforced and satisfied first before the 

derivation starts. Otherwise, the resolution will fail, that is why a such condition is “essential”. In the case 

of a meshfree method formulation, this condition is enforced separately, either after or before 

establishing the final discretized system of equation of the meshfree method used. [2] [3] 

The NBCs is the force BC written as 

2.22 

𝜎𝑖𝑗𝑛𝑗 = 𝑡�̅� (𝑜𝑛 𝛤𝑡) 

with 𝑡�̅� the prescribed tractions and 𝑛𝑗 a component of the unit vector outward normal on the boundary. 

In 2D, this vector is noted as  

2.23 

𝒏 = [
𝑛𝑥 0 𝑛𝑦
0 𝑛𝑦 𝑛𝑥

] 

The force boundary condition is termed as “natural” because it is naturally formulated into the system 

equation using the weak formulation that will be explained in a different section.  

 In addition to the boundary conditions, there are the initial conditions that can be displacement 

or velocity. Since the applications in this report will not depend on time, these conditions will not be 

explained in more details. 

  Finally, a solid problem, with the equilibrium (or governing) equation (equation 2.18), the 

constitutive equation (equation 2.7), the strain-displacement relationship (equation 2.4) and the BCs is 

called a boundary value problem. 
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3. Radial Point Interpolation Method 

3.1 Introduction 

The RIPM is a Meshfree methods based on the point interpolation method (PIM). It is an 

interpolation procedure developed by GR Liu and his research team. Two specific formulations have been 

proposed: PIM using radial basis functions and PIM using polynomial basis. The PIM has been developed 

in order to replace the moving least square approximation to create shape functions. The main advantages 

of this method are the excellent function fitting accuracy and the Kronecker delta function property which 

permits simple enforcement of EBCs such as in the FEM. Historically, the radial point interpolation method 

that is based on PIM has been established from the Element Free Galerkin method by replacing the moving 

least square (MLS) shape functions with the RPIM shape functions. [1] [3]  

 

3.2 Shape functions construction  

There are many construction techniques to establish meshfree shape functions, and this part will 

focus on the conventional radial point interpolation shape functions. This last are locally supported since 

a set of field node is used for the construction in a small local domain called support of influence domain. 

In FEM, shape functions are constructed using interpolation techniques that rely on elements formed by 

a set of fixed nodes depending on the element topology and this interpolation technique is oppositely 

termed stationary element-based interpolation. In developing meshfree methods, the construction of 

efficient shape functions is one of the biggest challenges. Indeed, the difficulty is constructing efficient 

meshfree shape functions without any topology or predefined relationships between nodes. 

 

3.2.1 Methods and requirements 

3.2.1.1 Support domain and influence domain 

It is necessary to discuss the concept of support domain and state the difference between 

influence and support domain. The influence domain of a field node is the domain over which this node 

has influence. It is used to select nodes for the interpolation, and its centre is the field node. The support 

domain is an area chosen for the meshfree interpolation for a point of interest (usually a quadrature point) 

which is also the centre. Generally, to construct the shape functions at the point of interest 𝒙𝑸, a field 

node 𝑖 will be involved in the construction if 𝒙𝑸 is located in the influence domain of the node 𝑖. This means 

that if the influence domain covers the point of interest, the node 𝑖 will be registered and used to take 

part in the shape function construction. The concepts of support domain and influence domain are 

illustrated below in Figures 3.1 and 3.2. 
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The accuracy of the interpolation for a point of interest 𝒙𝑸 depends on the nodes in the support 

domain. Thus, this last must be specifically chosen to ensure a suitable and efficient approximation. The 

dimension 𝑑𝑠 of such a domain is determined by  

3.1 

𝑑𝑠 = 𝛼𝑠𝑑𝑐 

where 

𝛼𝑠 is the dimensionless size of the support domain 

𝑑𝑐 is the nodal spacing or average nodal spacing near the point of interest. If a set of uniformly 

distributed field nodes is used to describe the problem, 𝑑𝑐 will be the distance between two neighbouring 

field nodes. If a set of arbitrary distributed field nodes is used the nodal spacing will be an average nodal 

spacing determined by  

3.2 

𝑑𝐶 =
𝐷𝑠

𝑛𝐷𝑠 − 1
 

with 

𝐷𝑠, an estimated support domain dimension. It must not be accurate but should be estimated 

following this procedure: 

𝑛𝐷𝑠, the number of nodes within the domain of dimension 𝐷𝑠. 

 The influence domain of a field node is defined as the domain for which this node has an influence. 

This domain is centred on the field node, and it is used in the meshfree shape function construction. If the 

influence domain of a field node includes the sampling point (quadrature point), this field node will be 

recorded and used in the shape function construction at this sampling point. The use of the concept of 

influence instead of support domain presents some advantages. [1] [3] 

1) Influence domains work better for non-uniform set of nodes. 

2) The influence domain is defined for each node of the problem and so can be of different sizes 
depending on the “importance” of the node. For example, a node in an area with a small density 
may have a greater influence than a node in a high-density area. 

3) Generally, the number of field nodes is much less than the number of points used for the 
quadrature, such as Gauss points. Thus, if influence domains are used instead of support domains, 
there will be fewer domains to compute and so the procedure will be more effective. 

The shape of a such domain is arbitrary and its dimensions for a 2D problem are expressed as 

3.3 

{
𝑑𝑖𝑥 = 𝛼𝑖𝑥𝑑𝑐𝑥
𝑑𝑖𝑦 = 𝛼𝑖𝑦𝑑𝑐𝑦
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where 𝑑𝑖𝑥 and 𝑑𝑖𝑦 are respectively the size of the influence domain in the 𝑥 and 𝑦 directions, 𝛼𝑖𝑥 and 𝛼𝑖𝑦 

are the dimensionless domain sizes and 𝑑𝑐𝑥 and 𝑑𝑐𝑦 are the nodal spacing. The concept of influence 

domain instead of support domain will be used for the latter numerical applications in this report. 

 
Figure 3.1 Support domains representation.[3] 

 
Figure 3.2 Influence domains of field nodes representation. [3] 

 

3.2.1.2 Meshfree shape function construction requirements 

In the development of a meshfree method, one of the primary steps is meshfree shape function 

construction. As it has been said previously, the creation of an efficient meshfree shape function is one of 

the most important challenges in meshfree methods. Indeed, it is necessary to create shape functions that 

present specific properties using the field nodes scattered in the entire problem domain. Thus, here a non-

exhaustive list of the most important requirements for a good meshfree shape function construction: 



 
 

23 
 

▪ The shape function should be sufficiently robust even for arbitrarily and flexible nodal distribution 
of field nodes. [3] 

▪ It must be numerically stable; in other words, the shape function algorithm must be stable enough 
for irregularity (within reason) in the nodal distribution. [3] 

▪ It should possess a certain order of consistency, that is to say that the shape function constructed 
should present the ability to reproduce exactly the polynomials of that order. [3] 

▪ The support (or influence) domain used for the unknown function interpolation should be small 
enough to include a small number of nodes. More, shape functions should be considered as zero 
outside the support domain. [3] 

▪ The algorithm constructing shape functions should be computationally efficient (it should be the 
same order of complexity as the shape function algorithm for FEM). [3] 

▪ Ideally but not necessary, the shape functions would process the Kronecker delta function 
property. That is to say that the meshfree shape function is unit at the field node and zero at the 
other nodes of the support domain. The Kronecker delta condition is expressed as  

3.4 

𝜙𝑖(𝒙𝒋) = {
1     𝑖 = 𝑗
0     𝑖 ≠ 𝑗

 

where  

𝒙𝒋, is a sampling point; 

𝑖 = 1,2,3,… , 𝑛 ; 

𝑗 = 1,2,3,… , 𝑛 ; 

 

▪ The approximated field variable using the meshfree shape function should be compatible 
throughout either the entire problem domain if a global weak formulation is used and the local 
quadrature domain if a local weak formulation is employed. [3] 

The fulfilment of the requirements above allows to compute robust shape functions that will lead to more 

accurate numerical solutions. 

 

3.2.2 RPIM Shape functions construction 

The conventional RPIM come from the polynomial PIM which uses polynomials as basis function 

in the interpolation. This is one of the first interpolation schemes and it has been widely used for the 

numerical methods such as the FEM. However, the polynomial PIM has one main drawback. Indeed, in 

the polynomial PIM, the moment matrix may be singular. This drawback requires additional stages for the 

matrix triangulation in the meshfree method algorithm. More, PIM is not robust for non-uniform nodes 

distribution. That is why the RPIM has been developed, the use of radial basis functions can overcome the 
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matrix singularity issue. It is also robust and stable for arbitrary distributed set of nodes and since the only 

variable in the RBF is the distance between the point of interest and the node, RPIM shape function can 

be easily constructed for 3D numerical applications. [1] [3] 

 The RPIM shape functions will be used in this thesis for the numerical applications and its 

procedure comes from (G.R. Liu, 2005). The RPIM interpolation can be written as  

3.5 

u(𝐱) =∑ 𝑅𝑖
𝑛

𝑖=1
(𝒙)𝑎𝑖 + ∑𝑝𝑗(𝒙)𝑏𝑗 =

𝑚

𝑗=1

𝑹𝑇(𝒙)𝒂 + 𝒑𝑇(𝒙)𝒃  

where 

𝑅𝑖(x) is an RBF. 

𝑛, is the number of RBFS. 

𝑝𝑗(𝒙) is monomial in the space coordinates of 𝒙 

𝑚 is the number of polynomial basis functions. If 𝑚 = 0, pure RBFs are used and if m is greater 

than zero, the RBF is augmented with 𝑚 polynomials basis functions. 

 𝑎𝑖  and 𝑏𝑗 are coefficient to be determined. 

As mentioned above, the distance between the point of interest at x and the node at 𝒙𝑗 is the only variable 

in the RBF. 

For 2D problems this distance is  

3.6 

𝑟 = √(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 

Thera are many RBF and the most often used are  

• MQ: Multi-quadratics function. 

3.7 

𝑅𝑖(𝑥, 𝑦) =  (𝑟𝑖
2 + (𝛼𝑐𝑑𝑐)

2)
𝑞

 

Where 𝛼𝑐 and q are the shape parameter such as 𝛼𝑐 ≥ 0 . 

• EXP: the Gaussian exponential function. 

3.8 

𝑅𝑖(𝑥, 𝑦) =  ⅇ
−𝛼𝑐(

𝑟𝑖
𝑑𝑐
)
2
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where 𝛼𝑐 is the shape parameter. 

• TPS: The thin plate spline function. 

3.9 

𝑅𝑖(𝑥, 𝑦) =  𝑟𝑖
𝜂

 

where 𝜂 is the shape parameter.  

• The Logarithmic function. 

3.10 

𝑅𝑖(𝑥, 𝑦) =  𝑟𝑖
𝜂
log 𝑟𝑖  

where 𝜂 is the shape parameter.  

The most common used are the MQ, EXP, TPS and logarithmic RBFs. In order to use the RBFs, 
several shape parameters need to be fixed to obtain accurate results. These shape parameters are 
determined by numerical examination. It has been found for example, that in the MQ RBFs, when the 
shape parameter 𝑞 = 0.98 or 𝑞 = 1.03 the meshfree method using RPIM shape function leads to good 
results in the analysis of 2D solid problems. 

The polynomial term in equation 3.5 has for role to improve the result’s accuracy, reduce the 
sensitivity of the RBF shape parameters and more, provide a wider choice to determine it. Augmenting 
RBF with a low degree polynomial can also guarantee the non-singularity of the matrix. 

A support domain needs to be formed for the point of interest at 𝒙, to determine 𝒂 and 𝒃 in 
equation 3.5 with n field nodes inside it.  Thus, the coefficients 𝑎𝑖  and 𝑏𝑖 in equation 3.5 will be determined 
by enforcing this last equation to be satisfied at these n nodes within the support domain of point of 
interest 𝒙. And so, n linear equations will be obtained in the following matrix form: 

3.11 

𝑼𝒔 = 𝑹0𝒂 + 𝑷𝒎𝒃  

With 𝑼𝒔 the vector of function values, 𝑹0 the moment matrix and 𝑷𝒎 the polynomial moment matrix 

expressed as  

3.12 

 

𝑹0 = [

𝑅1(𝑟1) 𝑅2(𝑟1) …
𝑅1(𝑟2) 𝑅2(𝑟2) …
… … …

𝑅𝑛(𝑟1)
𝑅𝑛(𝑟2)
…

𝑅1(𝑟𝑛) 𝑅2(𝑟𝑛) … 𝑅𝑛(𝑟𝑛)

]

[𝑛×𝑚]

 

3.13 

𝑷𝒎
𝑻 =

[
 
 
 
 

1 1 … 1
𝑥1
𝑦1
⋮

𝑥2
𝑦2
⋮

…
…
⋱

𝑥𝑛
𝑦𝑛
⋮

𝑝𝑚(𝒙𝟏) 𝑝𝑚(𝒙𝟐) … 𝑝𝑚(𝒙𝒏)]
 
 
 
 

[𝑚×𝑛]
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And with the matrix 𝒂 and 𝒃 respectively for the coefficients for the RBFs and the coefficient for 

polynomial expressed as  

3.14 

𝒂𝑇 = [𝑎1 𝑎2 … 𝑎𝑛] 

3.14 

𝒃𝑇 = [𝑏1 𝑏2 … 𝑏𝑚] 

In the moment matrix, the 𝑟𝑘 (𝑘 ranging from 1 to 𝑛) in equation 3.12 are determined using equation 3.6 

as follow  

3.15 

𝑟𝑘 = √(𝑥𝑘 − 𝑥𝑖)
2 + (𝑦𝑘 − 𝑦𝑖)

2  

 Thus, there will be n + m variables in equation 3.11. The additional m equations that come from 

the augmenting with polynomials are added following the m constraint following conditions. 

3.16 

∑𝑝𝑗(𝒙𝑖

𝑛

𝑖=1

)𝑎𝑖 = 𝑷𝑚
𝑇 𝒂 = 0,    𝑗 = 1, 2, 3, … ,𝑚 

 

By combining this last condition with equation 3.11 in the matrix form, a set of equations is obtained 

3.17 

�̃�𝒔 = [
𝑼𝑺
0
] =  [

𝑹0 𝑷𝒎
𝑷𝒎
𝑻 0

] [
𝑎
𝑏
] = 𝑮𝒂0  

where  

3.18 

𝒂0
𝑻 = [𝑎1 𝑎2 … 𝑎 𝑛 𝑏1 𝑏2 … 𝑏𝑚][𝑛 ×𝑚] 

3.19 

�̃�𝒔 = [𝑢1 𝑢2 … 𝑢 𝑛 0 0 … 0][𝑛 ×𝑚] 

In equation 3.12 the matrix 𝑹0 symmetric therefore matrix 𝑮 is also symmetric, and by solving equation 

3.17, the expression of 𝒂0 is obtained 

3.20 

𝒂0 = [
𝑎
𝑏
] =  𝑮−1�̃�𝒔 

The RPIM interpolation in equation 3.5 can then be re-written as follow 

3.21 

u(𝐱) = 𝑹𝑇(𝒙)𝒂 + 𝒑𝑇(𝒙)𝒃 = [𝑹𝑻(𝒙) 𝒑𝑻(𝒙)] [
𝑎
𝑏
] 
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and using equation 3.21 : 

3.22 

u(𝐱) = [𝑹𝑻(𝒙) 𝒑𝑻(𝒙)] [
𝑎
𝑏
] = �̃�𝑻(𝒙)�̃�𝒔  

Finally, the RPIM shape functions are expressed as  

3.23 

�̃�𝑻 = [𝑹𝑻(𝒙) 𝒑𝑻(𝒙)]𝑮−1 = [𝜙1(𝒙) … 𝜙𝑛(𝒙) 𝜙𝑛+1(𝒙) … 𝜙𝑛+𝑚(𝒙)][𝑛+𝑚] 

3.24 

𝜱(𝒙) =  [𝜙1(𝒙) … 𝜙𝑛(𝒙)][𝑛+𝑚] 

where 𝜱(𝒙) is the vector of the RPIM shape functions that correspond to the nodal displacement vector. 

That is the RPIM shape function vector that will be used later in the different Radial Point interpolation 

meshfree methods. 

The RPIM interpolation can be re-written as  

3.25 

u(𝐱) =  𝜱𝑻(𝒙)𝑼𝑺 =∑𝜙𝑖𝑢𝑖

𝑛

𝑖=1

  

and thus, the derivatives of u(𝐱) are  

3.26 

𝑢,𝑙(𝐱) =  𝜱,𝒍
𝑻(𝒙)𝑼𝑺 

where 𝑙 can be either coordinates 𝑥 or 𝑦 and the comma indicates a partial differentiation with respect to 

𝑙. 

 In general, the order of polynomial used in equation 3.5 is low so there is no singularity problem 

in the RPIM since a small number of nodes are used in the local support domain of the point of interest at 

𝒙.  

The advantages of using RBFs for the RPIM shape functions construction are listed in the table below: 
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Table 3.1 Radial basis function properties  

Advantages Shortcomings 

Avoid the main drawback of the polynomial PIM 

(singularity problem). 

The use of RPIM shape functions is less accurate 

for solid problems. 

Allows stable RPIM shape function for arbitrary 

distributed set of nodes. 

It is necessary to carefully choose the shape 

parameters in order to not reduce the solution 

accuracy. 

The RPIM shape function construction can be 

easily transposed for 3D problems by simply 

changing the distance expression in equation 3.6. 

Indeed, the only variable in an RBF is the distance 

between the point of interest and the field node 

considered, so for 3D problem, the distance along 

the z-axis is added in the expression. 

Concerning the computation, the RPIM shape 

functions are more expensive because more field 

nodes are necessary in the local support 

domain.[3]  

Suitable for fluid dynamics problems. [3]  

 

3.3 Global RPIM 

3.3.1 Forewords 

The meshfree methods termed as “global RPIM” is based on a global weak form: the Galerkin 

weak form. Note that a global background cell will be needed in this method to evaluate the integrals of 

a such weak formulation. As mentioned previously, RPIM was developed from the PIM and in order to 

overcome the singularity issue of PIM. Indeed, in the polynomial PIM, the moment matrix may be singular. 

More, it has been shown that the PIM based on Galerkin weak form is not robust for non-uniform node 

distribution. However, the RPIM show a good stability and robustness for arbitrary nodes distributions. 

This method is now much more used that PIM and has been successfully used for applications such as 

solid mechanics (2D and 3D), non-linear problems and plate and shells. 

 

3.3.2 Formulation 

The global RPIM formulation comes from (G.R. Liu, 2005). A 2D linearly elastic problem defined 

over the domain Ω and the boundary Γ is considered. The PDEs and BCs of 2D solid mechanics problems 

have been defined in the section 2.2.  

Equilibrium equation:   
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3.27 

𝑳𝑻𝝈 + 𝒃 = 0 

NBCs:  

3.28 

𝝈𝒏 = �̅� 

EBCs:   

3.29 

𝒖 = �̅� 

With  

𝑳: the differential operator expressed as  𝑳 =  

[
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 

; 

𝝈𝑻 = [𝜎𝑥𝑥 𝜎𝑦𝑦 𝜏𝑥𝑦]: the stress vector; 

𝒖𝑻 = [𝑢 𝑣]: the displacement vector; 

𝒃𝑻 = [𝑏𝑥 𝑏𝑦]: the vector of body force; 

�̅�: the traction on the natural boundaries of the problem treated; 

�̅�: the displacement on the essential boundaries of the problem treated; 

𝒏: the unit vector outward normal at a point on the natural boundary; 

The global weak form for solids in terms of displacement is given as 

3.30 

∫(𝑳𝛿𝒖)𝑇

𝛺

(𝑫𝑳𝒖)𝑑𝛺 −∫𝛿𝒖𝑻𝒃𝑑𝛺 −∫ 𝑑𝒖𝑻

𝛤𝑡

�̅� 𝑑𝛤 = 0

𝛺

 

With 𝑫 the matrix of elastic constants coming from the Hook’s law for 2D elastic solids and isotropic 

materials expressed as  

3.31 

𝑫 = 
𝐸

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]  for plane stress. 
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3.32 

𝑫 =
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)

[
 
 
 
 1

1−𝜈

2
0

1−𝜈

2
1 0

0 0
1−2𝜈

2(1−𝜈)]
 
 
 
 

 for plane strain. 

 Equation 3.30 is a weak form which is defined over Ω and to evaluate during the quadrature of its 

integrals, the global problem domain needs to be discretized into a set of background cells. In the same 

way, a set of curve background cells is necessary to evaluate the integrals of the natural boundary. It is 

important that these sets of background cells and curves do not overlap. 

 After this discretization, the problem domain needs to be represented by a set of field nodes in 

order to approximate the field variable, which is the displacement in our case. These last are numbered 

from 1 to 𝑁  for the entire problem domain and the RPIM shape functions that have been explained 

previously will be used to compute the approximation of the field variable (displacement) at any point of 

interest by using the field nodes which are located in the local support domain of this point. The point of 

interest can be either a quadrature point or a field node. 

This approximated displacement 𝒖𝒉 at a point of interest is formulated as  

3.33 

𝒖[2×1]
𝒉 =∑[

𝜙𝐼 0
0 𝜙𝐼

]

𝑛

𝐼

[
𝑢𝐼
𝑣𝐼
] =∑𝚽𝑰𝒖𝑰

𝑛

𝐼

 

with 

𝚽𝑰: matrix of shape functions of node I. 

𝒖𝑰: nodal displacements. 

𝑛: number of field nodes in the local support domain. 

From this last equation, by adding the operator 𝛿 

3.34 

𝛿𝒖[2×1]
𝒉 =∑𝚽𝑰𝛿𝒖𝑰

𝑛

𝐼

= 𝚽[2×2𝒏]𝛿𝒖[2𝒏×1] 

And using the strain-displacement equation and equation 3.34, the strains can be calculated using the 

approximated displacements. 

3.35 

𝜺[3×1] = 𝑳𝒖
𝒉 = 𝑳[3×2]𝚽[2×2𝒏]𝒖[2𝒏×1] 
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𝜺[3×1] = 

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 

[
𝜙1 0 … 𝜙𝑛 0

0 𝜙1 … 0 𝜙𝑛
]

[
 
 
 
 
𝑢1
𝑣1
…
𝑢𝑁
𝑣𝑁]
 
 
 
 

 

=

[
 
 
 
 
 
 
𝜕𝜙1
𝜕𝑥

0 …

0
𝜕𝜙1
𝜕𝑦

…

𝜕𝜙1
𝜕𝑦

𝜕𝜙1
𝜕𝑥

…

𝜕𝜙𝑛
𝜕𝑥

0

0
𝜕𝜙𝑛
𝜕𝑦

𝜕𝜙𝑛
𝜕𝑦

𝜕𝜙𝑛
𝜕𝑥 ]
 
 
 
 
 
 

[
 
 
 
 
𝑢1
𝑣1
…
𝑢𝑁
𝑣𝑁]
 
 
 
 

= 𝑩[3×2𝑛]𝒖[2𝑛×1] 

And in a nodal summation form: 

3.36 

𝜺[3×1] =∑(𝑩𝑰)[3×2](𝒖𝑰)[2×1]

𝒏

𝑰

  

Where 𝑩 is the strain matrix and 𝑩𝑰 the strain matrix for the node 𝐼. 

And similarly, by adding 𝛿: 

 

3.37 

𝑳𝛿𝒖𝒉 =∑(𝑩𝑰)[3×2](𝛿𝒖𝑰)[2×1]

𝒏

𝑰

  

The stress vector can now be obtained using the Hook’ law at a point of the problem. 

3.38 

𝝈 = 𝑫𝜺 = 𝑫[3×3]𝑩[3×2𝒏]𝒖[2𝒏×1] =∑𝑫[3×3](𝑩𝑰)[3×2](𝒖𝑰)[2×1]

𝒏

𝑰

 

It should be mentioned that 𝐼 and 𝐽 are both numbering the nodes in the local support domain 

(from 1 to 𝑛 respectively). The numbering system can now be changed from a local to a global that will 

record all the fields nodes of the problem from 1 to 𝑁 (global numbering system for field nodes). Thus, 𝐼 

and 𝐽 go now from 1 to 𝑁 and if node 𝐼 and node 𝐽 are in a different local support domain the integrals 

vanish. In this manner, using equation 3.36 and 3.37, the first term of equation 3.30 can now be expressed 

as 
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3.39 

∫(𝑳𝛿𝒖)𝑇

𝛺

(𝑫𝑳𝒖)𝑑𝛺 = ∫∑𝑩𝑰
𝑻

𝑁

𝐼𝛺

∑𝑫𝑩𝑱𝒖𝑱

𝑁

𝐽

𝑑Ω 

and moving the integration inside the double summation: 

3.40 

∫(𝑳𝛿𝒖)𝑇

𝛺

(𝑫𝑳𝒖) 𝑑𝛺 = ∑∑𝜹𝒖𝑰
𝑻(∫𝑩𝑰

𝑻𝑫
𝛺

𝑁

𝐽

𝑁

𝐼

𝑩𝑱𝑑Ω)𝒖𝑱 =∑∑𝜹𝒖𝑰
𝑻𝑲𝐼𝐽

𝑁

𝐽

𝑁

𝐼

𝒖𝑱 

with  

3.41 

𝑲𝐼𝐽[2×2] = ∫(𝑩𝑰
𝑻)[2×3]

𝛺

𝑫[3×3](𝑩𝑱)[3×2]𝑑Ω 

the nodal stiffness matrix. As above, if node 𝐼 and 𝐽 are in a different support domain of a same point of 

integration, the nodal stiffness matrix vanishes.  

Finally, using the global matrix form, equation 3.40 can be expressed as 

3.42 

∫(𝑳𝛿𝒖)𝑇

𝛺

(𝑫𝑳𝒖)𝑑𝛺 = 𝜹𝑼𝑻𝑲𝑼 

with 𝑲, the global stiffness matrix. 

3.43 

𝑲[2𝑵×2𝑵] = [

𝑲11 𝑲12
𝑲21 𝑲22

… 𝑲1𝑵
… 𝑲2𝑵

⋮ ⋮
𝑲𝑵1 𝑲𝑵2

⋱ ⋮
… 𝑲𝑵𝑵

] 

The dimension of 𝑲 is [2𝑁 × 2𝑁] because this last is composed by assembling the nodal stiffness matrix 

𝑲𝐼𝐽 of dimension [2 × 2] with 𝐼 and 𝐽 varying both from 1 to 𝑁. 

The vector 𝑼 is called the global displacement vector, that contains all nodal displacements of all field 

nodes in the problem domain. 

3.44 

𝑼[2𝑁×1] = [

𝒖𝟏
𝒖𝟐
…
𝒖𝑵

] =

[
 
 
 
 
𝑢1
𝑣1
…
𝑢𝑁
𝑣𝑁]
 
 
 
 

 

The second term of equation 3.30 can now be developed.  
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3.45 

∫𝛿𝒖𝑻𝒃𝑑𝛺 =
𝛺

∫(𝛿
𝛺

∑𝚽𝑰𝒖𝑰

𝑛

𝐼

)𝑇𝒃𝑑𝛺 

And in the same manner as below, the global numbering system is now used: 

3.46 

∫𝛿𝒖𝑻𝒃𝑑𝛺 =
𝛺

∫(𝛿
𝛺

∑𝚽𝑰𝒖𝑰

𝑁

𝐼

)𝑇𝒃𝑑𝛺 

Moving the integrals inside the summation: 

3.47 

∫𝛿𝒖𝑻𝒃𝑑𝛺 =
𝛺

∑𝛿𝒖𝑰
𝑻

𝑁

𝐼

∫𝚽𝑰
𝑻𝒃

𝛺

𝑑𝛺 =∑𝛿𝒖𝑰
𝑻

𝑁

𝐼

𝑭𝑰
𝒃 

where 𝑭𝑰
𝒃 is the nodal body force vector and b the body force vector. 

3.48 

𝑭𝑰
𝒃 = ∫𝚽𝑰

𝑻𝒃
𝛺

𝑑𝛺 

 Using the global form, the second term of equation 3.30 can be rewritten as 

3.49 

∫𝛿𝒖𝑻𝒃𝑑𝛺 =
𝛺

∑𝛿𝒖𝑰
𝑻𝑭𝑰

𝒃

𝑁

𝐼

= 𝛿𝑼𝑻𝑭𝒃 

with 𝑭𝒃 the global body force vector constructing by assembling the nodal body force vectors 𝑭𝑰
𝒃 for all 

the field nodes in the problem domain. i.e. 

3.50 

𝑭𝑰
𝒃 = [

𝑭𝑰
𝒃
[2×1]

⋮
𝑭𝑰
𝒃
[2×1]

]

[2𝑵×2𝑵]

 

 The last term of equation 3.30 is treated in the exact same manner as that for the second term. 

The difference is that the body force vector 𝒃 is replaced by the traction vector �̅� and the integrations are 

along the boundaries. Thus, this last term can be expressed as 

3.51 

∫ 𝑑𝒖𝑻

𝛤𝑡

�̅� 𝑑𝛤 =  ∑𝛿𝒖𝑰
𝑻∫ 𝚽𝑰

𝑻

𝜞𝒕

𝑛

𝐼

�̅�𝑑Γ = 𝛿𝑼𝑻∑∫ 𝚽𝑰
𝑻

𝜞𝒕

𝑁

𝐼

𝑑Γ = 𝛿𝑼𝑻𝑭𝒕 
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where 𝑭𝒕 is the global traction force vector composed by assembling all the nodal traction force vectors 

𝑭𝑰
𝒕. Like for the global body force vector, the length of 𝑭𝒕 is [2N×1].  

3.52 

𝑭𝑰
𝒕 = ∫ 𝚽𝑰

𝑻

𝜞𝒕

𝑑Γ 

 Now, using equation 3.42, 3.49 and 3.51 into equation 3.30, the following equations are obtained 

successively: 

3.53 

𝛿𝑼𝑻𝑲𝑼−  𝛿𝑼𝑻𝑭𝒃 − 𝛿𝑼𝑻𝑭𝒕 = 0 

 

3.54 

𝛿𝑼𝑻(𝑲𝑼− 𝑭𝒃 − 𝑭𝒕) = 0 

And this last equation is satisfied only if the term in parenthesis is equal to the zero vector because  𝛿𝑼𝑻 

is arbitrary. Thus, the previous equation is rewritten as  

3.55 

𝑲𝑼 = 𝑭𝒃 + 𝑭𝒕 

Or 

3.56 

𝑲𝑼 =  𝑭 

 

with 𝑭 global force vector. 

 

3.57 

𝑭 = 𝑭𝒃 + 𝑭𝒕 

 Finally, the equation 3.57 is the final discretized equation of the radial point interpolation 

meshfree method. Thanks to it, the nodal displacement can be obtained by solving it after the 

enforcement of the displacement boundary condition. The strain and stress components can easily be 

founded using respectively equations 3.35 and 3.37. 
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3.3.3 Computer code 

 To perform global RPIM on solid mechanics problems a computer code will be used. This last has 

been taken and modified from (G.R. Liu, 2005). The algorithm is developed in FORTRAN 90 language and 

allows to approximate displacements for mechanical solid problems in two dimensions. The following 

flowchart illustrate the procedure on this code. 

 
Figure 3.3 RPIM algorithm flowchart. 

This report will not go through all the line of the code, but rather describe the main steps. As 

reminder, this report has for aim to run simple simulation in order to understand better the meshfree 

methods as a whole. Rather than explain all the computer code, this report will deal with meshfree 

challenges and parameters that the user may control. In the next sub-sections, the main implementations 

issue of the radial point interpolation meshfree method will be detailed. This clarification for the reader 

will also be valid for the computer code of the local radial point interpolation meshfree method. 
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3.3.3.1 Background mesh 

A background mesh in needed to evaluate the integrals of the meshfree global weak form method 

and in particular for the RPIM. The background mesh is composed by cells that can be of various shapes 

(such as rectangles or triangles for 2D problem domain). In the used computer code for the RPIM, 

rectangular and regular background cells are used. These background cells will be the support for the 

gauss quadrature to perform the numerical integrations of the RPIM procedure. 

 

3.3.3.2 Numerical integration 

In the global RPIM, all integrations are over the global problem domain 𝛺 and the global (traction) 

boundary 𝛤𝑡 (see equation 3.30). These global integrals are evaluated by discretizing the problem domain 

with a background mesh mentioned above. Thanks to his, the global integrations can be now expressed 

as integrals summation over the cells of the background mesh. As an example, considering 𝑛𝑐 background 

cells with 𝛺𝑘 the domain for the cell number 𝑘, an integrand 𝑮 can be expressed as 

3.58 

∫𝑮𝑑𝛺
𝛺

=∑∫ 𝑮𝑑𝛺
𝛺𝑘

𝑛𝑐

𝑘

 

Then, the standard Gauss quadrature scheme (common in the FEM) is used in order to numerically 

evaluate the integrations overt the background mesh’s cells. Thus, with the example above, the 

integration can be expressed as 

3.59 

∫𝑮𝑑𝛺
𝛺

=∑∫ 𝑮𝑑𝛺
𝛺𝑘

𝑛𝑐

𝑘

 

∫𝑮𝑑𝛺
𝛺

=∑∑�̂�𝑖

𝑛𝑔

𝑖=1

𝑛𝑐

𝑘

𝑮(𝒙𝑸𝒊)|𝑱𝒊𝒌
𝑫 | 

 

with 

 �̂�𝑖, the Gauss weight factor for the Gauss (quadrature) point number 𝑖 at 𝒙𝑸𝒊; 

𝒙𝑸𝒊, the coordinate vector of the Gauss (quadrature) point number 𝑖; 

𝑱𝒊𝒌
𝑫  , the Jacobian matrix of the area integration of the background cell number 𝑘; 
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𝑛𝑔, number of Gauss points used in each cell of the background mesh; 

The expression for the 𝛤𝑡 curve gauss quadrature is obtained similarly as 

 

3.61 

∫𝑮𝑑Γ =∑∫ 𝑮𝑑Γ
𝛤𝑡𝑙

𝑛𝑐𝑡

𝑙
𝛤𝑡

 

∫𝑮𝑑Γ = ∑∑�̂�𝑖

𝑛𝑔𝑡

𝑖=1

𝑛𝑐𝑡

𝑙

𝑮(𝒙𝑸𝒊)|𝑱𝒊𝒌
𝑩 |

𝛤𝑡

 

with 

 𝑱𝒊𝒌
𝑩 , the Jacobian matrix for the curve integration of the sub-boundary number 𝑙, a 1D curve 

integration since the problem domain is in 2D; 

𝑛𝑐𝑡, the number of curves from the background cells that are used to discretize the global  

boundary 𝛤𝑡; 

𝑛𝑔𝑡, the number of Gauss point used for each sub-curve; 

Now, the nodal matrices (and so the global matrices) of the RPIM procedure can be computed 

numerically using the following expressions from the Gauss quadrature scheme. 

Equation 3.41 of the nodal stiffness matrix 𝑲𝐼𝐽 can be re-written as 

3.61 

𝑲𝐼𝐽 =∑∑(𝑲𝑰𝑱
𝒊𝒌)[2×2]

𝑛𝑔

𝑖=1

𝑛𝑐

𝑘

 

with 

3.62 

(𝑲𝑰𝑱
𝒊𝒌)[2×2] = �̂�𝑖𝑩𝑰

𝑻(𝒙𝑸𝒊)𝑫𝑩𝑱(𝒙𝑸𝒊)|𝑱𝒊𝒌
𝑫 | 

Thus, the nodal matrix 𝑲𝐼𝐽 is computed by summing all the contributions from all the Gauss (quadrature) 

points for which its local support domain includes both field nodes 𝐼 and 𝐽. Hence, if both field node are 

not in the local support domain of the quadrature point number 𝑖, 𝑲𝑰𝑱
𝒊𝒌 vanishes. 

Equation of the nodal body force vector 𝑭𝑰
𝒃 (equation 3.48), can be re-written as 
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3.63 

𝑭𝑰
𝒃 =∑∑(𝑭𝑰

𝒊𝒌𝒃)[2×1]

𝑛𝑔

𝑖=1

𝑛𝑐

𝑘

 

with 

3.64 

(𝑭𝑰
𝒊𝒌𝒃)[2×1] = �̂�𝑖𝚽𝑰

𝑻(𝒙𝑸𝒊)𝒃𝑰(𝒙𝑸𝒊)|𝑱𝒊𝒌
𝑫 | 

Equation of the nodal traction force vector 𝑭𝑰
𝒕 (equation 3.52) can be re-written as 

3.65 

𝑭𝑰
𝒕 =∑∑(𝑭𝑰

𝒊𝒍𝒕)[2×1]

𝑛𝑔𝑡

𝑖=1

𝑛𝑐𝑡

𝑙

 

with 

3.66 

(𝑭𝑰
𝒊𝒍𝒕)[2×1] = �̂�𝑖𝚽𝑰

𝑻(𝒙𝑸𝒊)�̅�𝑰(𝒙𝑸𝒊)|𝑱𝒊𝒍
𝑩| 

 It should be mentioned that in the RPIM, all the global matrices are assembled based on Gauss 

(quadrature) points whose can use different support domains. In other words, the shape function matrix 

and the strain matrix can vary for different quadrature points. 

 The numerical integrations for meshfree global weak form methods such as the RPIM have been 

studied by many research groups and some requirements has been found empirically. 

▪ The total number of quadrature points 𝑛𝑄𝑡𝑜𝑡𝑎𝑙 should be chosen by respecting the 

following proportionality with the total number of field nodes 𝑁 in a problem domain (for a 2D 
problem). 

3.67 

𝑛𝑄𝑡𝑜𝑡𝑎𝑙 >
2

3
𝑁 

▪ Considering the accuracy and convergence, the following sufficient requirement has been 
found on the total number of quadrature points 𝑛𝑄𝑡𝑜𝑡𝑎𝑙 (for a 2D problem). 

3.68 

𝑛𝑄𝑡𝑜𝑡𝑎𝑙 = (3~9) 𝑁 

 

3.3.3.3 EBCs enforcement 

In the global RPIM formulation, the traction BCs are naturally formulated in the global discretized 

system equation, whereas the EBCs need a special treatment. The EBCs are enforced directly and 
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accurately in the RPIM method because the shape functions of this method possess the Kronecker delta 

function property. The penalty method is used to enforce the displacement essential condition and consist 

in replacing terms in the global stiffness matrix diagonal entry and in the global force vector as 

3.69 

𝐾𝑖𝑖
𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔
→        𝛼𝐾𝑖𝑖 

𝐹𝑗
𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔
→       {

𝛼𝐾𝑖𝑖�̅�𝑖    𝑖𝑓 𝑖 = 𝑗 
𝐹𝑗            𝑖𝑓 𝑖 ≠ 𝑗

 

The coefficient 𝛼 is the penalty coefficient and it should be chosen much larger than the components of 

the global stiffness matrix 𝑲. This EBCs enforcement technique has for advantages to limit the 

modification of the matrices and so implies a simple algorithm modification. Nevertheless, the penalty 

method only satisfies approximately the EBC and the solution accuracy of the meshfree method will be 

affected by the penalty coefficient selection. Empirically and thanks to FEM data, it has been shown that 

the penalty coefficient can be chosen as 

3.70 

𝛼 = 104~106  × (𝐾𝑖𝑖)𝑚𝑎𝑥 

with (𝐾𝑖𝑖)𝑚𝑎𝑥, the maximum element of the diagonal of the global stiffness matrix. Thus, 𝛼 is simply 

determined in the RPIM computer code with checking algorithm for matrix 𝑲 maximum diagonal element 

value. 

 

3.3.3.4 Stiffness matrix properties 

Firstly, the symmetry of global matrix 𝑲 and can be demonstrated thanks to the nodal stiffness 

matrix expression. Indeed, in its expression (equation 3.31) the matrix 𝑫 is symmetric by definition and so 

is the product 𝑩𝑰
𝑻𝑫𝑩𝑱. 

Thus, 

3.71 

(𝑲𝑰𝑱)
𝑻 = 𝑲𝑰𝑱 

And so, the global matrix 𝑲 is symmetric. 

 Secondly, as stated previously, 𝑲 computed by assembling the nodal matrices 𝑲𝑰𝑱 and these last 

are non-zero only if field node 𝐼 and 𝐽 are within at least one support domain of a Gauss point. Therefore, 

if both nodes 𝐼 and 𝐽 are far apart and so do not have the same support domain of any Gauss point, 𝑲𝑰𝑱 

vanishes. Thus, as long as the support domain is compact and small enough, most of the 𝑲𝑰𝑱 will be zero 

and so 𝑲 will be sparse. 
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3.3.3.5 Radial basis functions shape parameters 

 In the section 3.2, the RPIM shape function has been detailed and especially the use of radial basis 

functions in the construction procedure. Depending on the RBF used, several shape parameters are 

implied and need to be chosen. These different shape parameters affect the accuracy of the solution, and 

its appropriate values can only be determined empirically by numerical examinations. 

 

3.4 Local RPIM 

3.4.1 Forewords 

The global RPIM has been presented and as a reminder: in this method based on global Galerkin 

weak form, global background cells are necessary to evaluate the integrations and computing the system 

matrices. Indeed, in a global weak formulation, the system equations need to be satisfied over the entire 

problem domain and so a background mesh is required. Thus, such a method is, by definition, not truly a 

meshfree method. 

 The local radial point interpolation method (LRPIM) was developed by GR Liu and his co-workers 

from the concept of the meshless local Petrov-Galerkin method (MLPG), a numerical method proposed 

by Alturi and Zhu. Historically, the MLPG came in order to avoid the use of background meshes. The main 

difference between these two methods is that the LRPIM use RPIM shape function instead of MLS shape 

functions. Hence, if a local weak formulation, such as the local Galerkin weak formulation is used on field 

nodes, the integrations are evaluated over local quadrature domains defined for each node. This local 

quadrature domain may also be the local domain where the test/weight function is defined. Its shape is 

generally simple and regular, such as rectangles or spheres. The LRPIM has been successfully applied to 

problems such as solid mechanics, fluid mechanics or soil mechanics. 

 

3.4.2 Formulation 

The LRPIM formulation comes from (G.R. Liu, 2005) .A 2D linearly elastic problem defined over 

the domain Ω and the boundary Γ is considered. For a given node I, the governing equation 2.18 

(equilibrium equation) is satisfied using a local weighted residual method that leads to a weak form 

equation for this node. This local weighted residual form is defined over a local quadrature domain Ω𝑞 

and its boundary Γ𝑞 as 

3.72 

∫�̂�𝐼(𝜎𝑖𝑗,𝑗
𝛺𝑞

+ 𝑏𝑖) 𝑑𝛺 = 0 
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with �̂�𝐼 the weight/test function centred at node I. This previous equation is applied to all the field nodes 

that describe the entire problem domain. 

 The Meshfree local weak form method only needs the local compatibility in the local quadrature 

domain Ω𝑞 and Γ𝑞. That is to say that the solution exists as long as the field variable approximation is 

continuous at any point in the local quadrature domain and so the shape function is differentiable. 

By an integration by parts, the following equation is obtained from the first term of equation 3.72: 

11 

∫ �̂�𝐼𝜎𝑖𝑗,𝑗 𝑑𝛺
𝛺𝑞

= ∫ �̂�𝐼
𝛤𝑞

𝑛𝑗𝜎𝑖𝑗𝑑Γ −∫ �̂�𝐼,𝑗𝜎𝑖𝑗 𝑑𝛺
𝛺𝑞

 

with 𝑛𝑗 the j-th component of the unit vector outward the normal on the boundary. Using equation 3.73 

into equation 2.72, the following local-weak form expression is obtained. 

3.74 

∫ �̂�𝐼
𝛤𝑞

𝑛𝑗𝜎𝑖𝑗𝑑Γ − ∫ [�̂�𝐼,𝑗𝜎𝑖𝑗 − �̂�𝐼𝑏𝑖] 𝑑𝛺
𝛺𝑞

= 0 

It should be noticed that the local quadrature domain boundary Γ𝑞 is composed by three sub-

boundaries:  Γ𝑞 =  Γ𝑞𝑖 ∪  Γ𝑞𝑢 ∪  Γ𝑞𝑡 and where 

 

 Γ𝑞𝑖: is the boundary of the quadrature domain which does not intersect with the global boundary 

Γ. 

 Γ𝑞𝑢: is the intersecting part of the natural boundary and the quadrature domain. 

 Γ𝑞𝑡: is the intersecting part of the essential boundary and the quadrature domain. 

Thanks to these sub-boundaries, equation 3.74 can be developed as  

3.75 

∫ �̂�𝐼
𝛤𝑞𝑖

𝑛𝑗𝜎𝑖𝑗𝑑Γ +∫ �̂�𝐼
𝛤𝑞𝑢

𝑛𝑗𝜎𝑖𝑗𝑑Γ + ∫ �̂�𝐼
𝛤𝑞𝑡

𝑛𝑗𝜎𝑖𝑗𝑑Γ − ∫ [�̂�𝐼,𝑗𝜎𝑖𝑗 − �̂�𝐼𝑏𝑖] 𝑑𝛺
𝛺𝑞

= 0 

 If the local quadrature domain is located entirely inside the global domain, in other words if 𝛤𝑞 ∩

𝛤 = ∅ then 𝛤𝑞𝑖 = 𝛤𝑞 and there are no integrals over the boundaries 𝛤𝑞𝑢 and 𝛤𝑞𝑡. In this case, equation 

3.75 can be rewritten as 

3.76 

∫ �̂�𝐼
𝛤𝑞𝑖

𝑛𝑗𝜎𝑖𝑗𝑑Γ − ∫ [�̂�𝐼,𝑗𝜎𝑖𝑗 − �̂�𝐼𝑏𝑖] 𝑑𝛺
𝛺𝑞

= 0 
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 These last two equations 3.75 and 3.76, which are local weak forms can be simplified by selecting 

the weight function �̂�𝐼 so that vanishes on 𝛤𝑞𝑖. That it to say that the weight function is chosen to be zero 

along 𝛤𝑞𝑖. Such a function can be for example the cubic W1 function or the quartic spline W2. Thus, in the 

case of a local quadrature domain that intersects with 𝛤, equation 3.75 becomes 

 

3.77 

∫ �̂�𝐼
𝛤𝑞𝑢

𝑛𝑗𝜎𝑖𝑗𝑑Γ + ∫ �̂�𝐼
𝛤𝑞𝑡

𝑛𝑗𝜎𝑖𝑗𝑑Γ − ∫ [�̂�𝐼,𝑗𝜎𝑖𝑗 − �̂�𝐼𝑏𝑖] 𝑑𝛺
𝛺𝑞

= 0 

and for a node with a local quadrature domain that does not intersect with 𝛤 : 

3.78 

−∫ [�̂�𝐼,𝑗𝜎𝑖𝑗 − �̂�𝐼𝑏𝑖] 𝑑𝛺
𝛺𝑞

= 0 

As a reminder the equation of the natural boundary condition (equation 3.28) is  

𝜎𝑛 = 𝑡̅ 

The equation that relies the stress ant the traction on the boundary is given by  

3.79 

𝜎𝑖𝑗𝑛𝑗 = 𝑡𝑖 

and using this relation with the natural boundary condition (equation 3.28) into equation 3.75: 

 

3.80 

∫ �̂�𝐼,𝑗𝜎𝑖𝑗 𝑑𝛺
𝛺𝑞

−∫ �̂�𝐼
𝛤𝑞𝑖

𝑡𝑖𝑑Γ − ∫ �̂�𝐼
𝛤𝑞𝑢

𝑡𝑖𝑑Γ = ∫ �̂�𝐼𝑏𝑖 𝑑𝛺
𝛺𝑞

+∫ �̂�𝐼
𝛤𝑞𝑡

𝑡�̅�𝑑Γ 

This last equation is composed of integrations over a local quadrature domain and so smooth out 

the numerical error. The local radial point interpolation meshfree method satisfies the equilibrium 

equation for a node and over a local quadrature domain. The size of such a domain is so a very important 

parameter. To get this discretized system of equations, the global domain Ω needs to be represented by 

a set of field nodes. The RPIM shape functions that have been described in section 3.2 are used to 

approximate the trial function for the displacement at a point at 𝒙: 

3.81 

𝒖[2×1]
𝒉 (𝒙) = [

𝑢
𝑣
] = [

∅1 0 … ∅𝑛 0
0 ∅1 … 0 ∅𝑛

]

[
 
 
 
 
𝑢1
𝑣1
…
𝑢𝑁
𝑣𝑁]
 
 
 
 

= 𝚽[2×2𝑛]𝒖[2𝑛×1] 
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with 

𝑛: the number of field nodes in the support domain of the point of interest at x. These n field 

nodes vary from 1 to 𝑛, it is a local numbering system used on the support domain of the point of interest; 

𝚽[2×2𝑛]: the RPIM shape functions matrix which is constructed using the n nodes; 

It should be mentioned that all the field nodes are numbered from 1 to 𝑁 by a global numbering 

system (different for the local one used for the support domains). This last will be used at the assembling 

step of the local nodal matrices in order to obtain the global matrix form. By an algorithmic approach, that 

is to say that a specific index will be necessary to collect the global number of a field node that will be used 

in a support domain. 

In the same way as the radial point interpolation meshfree method procedure the strain and 

stress can be expressed as 

3.82 

𝜺[3×1] = 𝑩[3×2𝒏]𝒖[2𝒏×1]  

 

3.83 

𝝈[3×1] = 𝑫[3×3]𝜺[3×1] = 𝑫[3×3]𝑩[3×2𝒏]𝒖[2𝒏×1] 

with 𝑩[3×2𝒏] the strain matrix and 𝑫[3×3] the matrix of elastic constants respectively defined as 

  

3.84 

𝑩[3×2𝒏] =

[
 
 
 
 
𝜕𝜙1

𝜕𝑥
0 …

0
𝜕𝜙1

𝜕𝑦
…

𝜕𝜙1

𝜕𝑦

𝜕𝜙1

𝜕𝑥
…

𝜕𝜙𝑛

𝜕𝑥
0

0
𝜕𝜙𝑛

𝜕𝑦

𝜕𝜙𝑛

𝜕𝑦

𝜕𝜙𝑛

𝜕𝑥 ]
 
 
 
 

 (Strain matrix) 

3.85 

𝑫 = 
𝐸

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]  (Matrix of elastic constants for plane stress) 

3.86 

𝑫 =
𝐸(1−𝜈)

(1+𝜈)(1−2𝜈)

[
 
 
 
 1

1−𝜈

2
0

1−𝜈

2
1 0

0 0
1−2𝜈

2(1−𝜈)]
 
 
 
 

 (Matrix of elastic constants for plane strain) 

 The equation 3.80 can then expressed in a matrix form: 
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3.87 

∫ �̂�𝑰𝝈𝑑𝛺
𝛺𝑞

−∫ �̂�𝑰
𝛤𝑞𝑖

𝒕𝑑Γ − ∫ �̂�𝑰
𝛤𝑞𝑢

𝒕𝑑Γ = ∫ �̂�𝑰𝒃𝑑𝛺
𝛺𝑞

+∫ �̂�𝑰
𝛤𝑞𝑡

�̅�𝑑Γ 

with �̂�𝑰 and �̂�𝑰 respectively the matrices of weight functions and derivatives of the weight functions. 

3.88 

�̂�𝑰 = �̂�(𝒙, 𝒙𝑰) [
�̂�(𝒙, 𝒙𝑰) 0

0 �̂�(𝒙, 𝒙𝑰)
] 

3.89 

�̂�𝑰 =  𝑽 ̂(𝒙, 𝒙𝑰) = [

�̂�,𝑥(𝒙, 𝒙𝑰) 0

0 �̂�,𝑦(𝒙, 𝒙𝑰)

�̂�,𝑦(𝒙, 𝒙𝑰) �̂�,𝑥(𝒙, 𝒙𝑰)

] 

The traction at a point 𝒙 is expressed as  

3.90 

𝒕 = [
𝑡𝑥
𝑡𝑦
] = [

𝑛𝑥 0 𝑛𝑦
0 𝑛𝑦 𝑛𝑥

] [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
] = 𝒏[2×3]𝑫[3×3]𝑩[3×2𝒏]𝒖[2𝒏×1] 

and  

3.91 

𝝈 = [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
] = 𝑫[3×3]𝑩[3×2𝒏]𝒖[2𝒏×1] 

where 𝒏Γ is the unit vector outward the normal direction on the boundary. 

3.92 

𝒏Γ = [
𝑛𝑥
𝑛𝑦
] 

and 

3.93 

𝒏[2×3] = [
𝑛𝑥 0 𝑛𝑦
0 𝑛𝑦 𝑛𝑥

] 

Using the equations 3.88 to 3.93 into equation 3.87 gives a discretised system of equation for the 𝐼-th 

node. 

3.94 

∫ �̂�𝑰𝑫𝑩𝒖𝑑𝛺
𝛺𝑞

−∫ �̂�𝑰
𝛤𝑞𝑖

𝒏𝑫𝑩𝑼𝑑Γ −∫ �̂�𝑰
𝛤𝑞𝑢

𝒏𝑫𝑩𝑼𝑑Γ = ∫ �̂�𝑰𝒃𝑑𝛺
𝛺𝑞

+∫ �̂�𝑰
𝛤𝑞𝑡

�̅�𝑑Γ 

The matrix form of this last equation is 
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3.95 

(𝑲𝑰)[2×2𝒏](𝒖)[2𝒏×1] = (𝒇𝑰)[2×1] 

with 

 𝒇𝑰, the nodal force vector composed either by the contributions of the body forces applied in the 

problem domain and tractions applied on the boundary. 

3.96 

𝒇𝑰 = ∫ �̂�𝑰𝒃𝑑𝛺
𝛺𝑞

+∫ �̂�𝑰
𝛤𝑞𝑡

�̅�𝑑Γ 

𝑲𝑰, the nodal stiffness matrix for the field node I. 

3.97 

𝑲𝑰 = ∫ �̂�𝑰𝑫𝑩𝒖𝑑𝛺
𝛺𝑞

−∫ �̂�𝑰
𝛤𝑞𝑖

𝒏𝑫𝑩𝑼𝑑Γ −∫ �̂�𝑰
𝛤𝑞𝑢

𝒏𝑫𝑩𝑼𝑑Γ 

  𝒖, the vector of the displacements for all the field nodes that are within any support domain of 

the quadrature/integration points in the quadrature domain of node I. 

 The equation 3.95 corresponds to the general form of system equations for a given field node. 

Furthermore, for a local quadrature domain of a given field node that is located within the global domain 

Ω without intersecting 𝛤, 𝑲𝑰 and 𝒇𝑰  can be simplified as 

  

3.98 

𝑲𝑰 = ∫ �̂�𝑰𝑫𝑩𝒖𝑑𝛺
𝛺𝑞

−∫ �̂�𝑰
𝛤𝑞𝑖

𝒏𝑫𝑩𝑼𝑑Γ 

3.99 

𝒇𝑰 = ∫ �̂�𝑰𝒃𝑑𝛺
𝛺𝑞

 

 

3.4.3 Computer code 

The numerical applications on 2D solid mechanics problem will be performed using a computer 

code provided in (G. R. Liu and Y. T. Gu, 2005). As for the RPIM, the algorithm is coded in FORTRAN 90 

language and will be modified purposely depending on the applications and meshfree parameters 

investigation. The general procedure of this code is illustrated in the following Figure 3.4. 
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Figure 3.4 LRPIM algorithm flowchart. 

 

3.4.3.1 Numerical integration 

The gauss quadrature is used to approximate the integrals in the expressions of  𝑲𝑰 and 𝒇𝑰 in 

equation 3.95. The integrals over 𝛺𝑞 are area integrals and the one along 𝛤𝑞𝑖, 𝛤𝑞𝑢 and 𝛤𝑞𝑡 are curve 

integrals. Considering a local quadrature domain in a rectangular shape, according to the standard Gauss 

quadrature scheme, the equations 3.98 and 3.99 can be rewritten as 

3.100 

𝑲𝑰 = ∑ �̂�𝑘

𝑛𝑔𝑎𝑢𝑠𝑠

𝑘=1

�̂�𝑰
𝑻(𝒙𝑸𝒌)𝑫𝑩(𝒙𝑸𝒌)|𝑱𝛀𝒒| − ∑ �̂�𝑘

𝑛𝑠𝑢𝑏−𝑔𝑎𝑢𝑠𝑠

𝑘=1

�̂�𝑰
𝑻(𝒙𝑸𝒌)𝒏𝑫𝑩(𝒙𝑸𝒌)|𝑱𝚪𝒒𝒊|

− ∑ �̂�𝑘

𝑛𝑠𝑢𝑏−𝑔𝑎𝑢𝑠𝑠

𝑘=1

�̂�𝑰
𝑻(𝒙𝑸𝒌)𝒏𝑫𝑩(𝒙𝑸𝒌)|𝑱𝚪𝒒𝒖| 
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3.101 

𝒇𝑰 = ∑ �̂�𝑘

𝑛𝑠𝑢𝑏−𝑔𝑎𝑢𝑠𝑠

𝑘=1

�̂�𝑰
𝑻(𝒙𝑸𝒌)�̅�|𝑱𝚪𝒒𝒕| + ∑ �̂�𝑘

𝑛𝑠𝑢𝑏−𝑔𝑎𝑢𝑠𝑠

𝑘=1

�̂�𝑰
𝑻(𝒙𝑸𝒌)𝒃|𝑱𝛀𝒒| 

With  

 𝑛𝑔𝑎𝑢𝑠𝑠: the total number of Gauss/integrations points in the quadrature domain. 

 𝑛𝑠𝑢𝑏−𝑔𝑎𝑢𝑠𝑠: the number of Gauss/integrations points that are used on a sub-curve. 

 𝒙𝑸𝒌: the Gauss point considered (point of interest). 

 �̂�𝑘: the weight factor of the standard gauss quadrature for the point𝒙𝑸𝒌. 

 𝑱𝛀𝒒: the Jacobian matrix for the area integration of 𝛀𝒒 (local quadrature domain). 

 𝑱𝚪𝒒𝒊: the Jacobian matrix for the curve integration of 𝚪𝒒𝒊. 

 𝑱𝚪𝒒𝒖: the Jacobian matrix for the curve integration of 𝚪𝒒𝒖. 

 𝑱𝚪𝒒𝒕: the Jacobian matrix for the curve integration of 𝚪𝒒𝒕. 

 

 All the different integration points located in the same local quadrature domain can use different 

support domains. That is to say that 𝑲𝑰 and 𝒇𝑰 can be different for different Gauss points. 

 Finally, in order to assemble the global system of equations, the equation 3.95 is applied for all 

field node (from 1 to N) of all the problem domain using the global numbering system. That changes the 

system of equations from local to global by passing from 2 linear equations (for one node) to 2N linear 

equations (for all field nodes): 

 

3.102 

𝑲[2𝑵×2𝑵]𝑼[2𝑵×1] = 𝑭[2𝑵×1] 
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[
 
 
 
 
 
 
 
 
𝑲11 𝑲12
𝑲12 𝑲22
⋮ ⋮

𝑲(2𝑰−1)1 𝑲(2𝑰−1)2
𝑲(2𝑰)1 𝑲(2𝑰)2
⋮ ⋮

𝑲(2𝑵−1)1 𝑲(2𝑵−1)2
𝑲(2𝑵)1 𝑲(2𝑵)2

… 𝑲1(2𝑵−1) 𝑲1(2𝑵)
… 𝑲2(2𝑵−1) 𝑲2(2𝑵)
⋱ ⋮ ⋮
… 𝑲(2𝑰−1)(2𝑵−1) 𝑲(2𝑰−1)(2𝑵)
… 𝑲(2𝑰)(2𝑵−1) 𝑲(2𝑰)(2𝑵)
⋱ ⋮ ⋮
… 𝑲(2𝑵−1)(2𝑵−1) 𝑲(2𝑵−1)(2𝑵)
… 𝑲(2𝑵)(2𝑵−1) 𝑲(2𝑵)(2𝑵) ]

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑢1
𝑣1…
𝑢𝐼
𝑣𝐼…
𝑢𝑁
𝑣𝑁]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑓1𝑥
𝑓1𝑦
…
𝑓𝐼𝑥
𝑓𝐼𝑦
…
𝑓𝑁𝑥
𝑓𝑁𝑦]
 
 
 
 
 
 
 

 

 

 The developed form of equation 3.102 above shows that matrix 𝑲 is composed by assembling all 

the nodal equations; both equations for node I correspond to the (2I-1) and 2I-th rows. The method to 

assemble the global stifness matrix 𝑲 is different from that on the radial point interpolation meshfree 

method (based on global weak- form). For the LRPIM the nodal matrices are added row by row whereas 

in RPIM, the nodal matrices are assembled symmetrically into the global stiffness matrix. 

 The essential boundary condition has not been considered in the formulation because the RPIM 

shape functions possess the Kronecker delta function property. In other words, the enforcement of the 

EBC can be done in the same way as for the conventional radial point interpolation meshfree method. 

After that, the final discretized system of equations can be solved to get the displacements for all field 

nodes and the stress and strain can be calculated using equations 3.82 and 3.83. 

 

3.4.3.2 Local domains used in LRPIM 

As stated in the previous sub-section, the gauss quadrature is employed to evaluate the integrals in 

equations 3.95 The Figure 3.4 shows that for each field node, the computer code will construct a local 

quadrature cell Ω𝑞. Then, for each Gauss (quadrature) points of each quadrature cells, the RPIM shape 

functions will be computed. Thus, for each field node, three local domains are considered: 

▪ The local quadrature domain (quadrature cell) Ω𝑞 of size r𝑞. 

▪ The local weight (test) function domain Ω𝑤 of size r𝑤 defined where w𝑖 is non-zero. 

▪ The local support domain Ω𝑠 of size r𝑠 for the Gauss point 𝐱𝑸. 

All these domains are considered arbitrary if the quadrature domain is smaller than the local test function 

domain (r𝑞 ≤ r𝑤). Since the weight function can be chosen purposely so that the integration along the 

internal boundary Γ𝑞𝑖 vanishes, to simplify both LRPIM procedure and computer code, Ω𝑞 and Ω𝑤 are 

chosen to be the same size (r𝑞 = r𝑤). 

 Furthermore, the size of Ω𝑞 and Ω𝑠 for the field node 𝐼 are defined as 

3.103 

r𝑞 = αq 𝑑cI  
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and 

3.104 

r𝑠 = α𝑠 𝑑cI  

with 

 𝑑cI, the nodal spacing (or average nodal spacing) around the field node 𝐼; 

αq, the dimensionless size of Ω𝑞; 

αs, the dimensionless size of Ω𝑠; 

 

3.4.3.3 Stiffness matrix properties 

The final stiffness matrix 𝑲 of the LRPIM is sparse like in the RPIM as long as the support domain 

is compact. In addition, 𝑲 is generally asymmetric and banded. Its asymmetry is mainly due to causes. 

Indeed, in Petrov-Galerkin formulation the trial and test functions may be different as well as the sizes (or 

shapes) of the support domains to construct it. More, the sizes (or shapes) of the local quadrature domains 

may vary depending on the field node. Thus, the integration over Ω𝑞, Γ𝑞𝑖 and Γ𝑞𝑢 in equation 3.95 may be 

asymmetric. 

 

3.4.3.4 Test/weight function 

The local radial point interpolation method is derived from a local weighted method and therefore 

the test (weight) function is on importance. This test function can be any as long as the continuity condition 

is satisfied. Since a local weak formulation is employed to formulate the LRPIM, local quadrature domains 

are constructed for each field nodes centred on it. It seems logical to use test function that increase in 

magnitude when the distance with the centre decrease. More, the test function used will depend only on 

the distance between the point of interest and the centre, such as the cubic spline function or the 4th-

order spline weight function. In addition, the test function is selected purposely to be zero over Γ𝑞𝑖. 

 To sum up, if we consider the weight function �̂� that depend on the distance between the 

quadrature point considered and the centre (field node) 𝒙 − 𝒙𝒊, the following properties need to be 

satisfied. 

▪ �̂�(𝒙 − 𝒙𝒊) > 0  within the support domain Ω𝑠 (which is equivalent to Ω𝑞). 

▪ �̂�(𝒙 − 𝒙𝒊) = 0 outside Ω𝑠. 

▪ �̂�(𝒙 − 𝒙𝒊) monotonically decreases from the point of interest (quadrature point) at 𝒙. 

▪ �̂�(𝒙 − 𝒙𝒊) is sufficient smooth and especially on the boundary of its support domain Ω𝑠. 
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In the computer code of LRPIM, the cubic spline function W1 is employed as test function but it could 

be any other which would satisfy the above properties. The W1 is expressed as 

3.105 

�̂�𝑖(𝒙) =

{
 
 

 
 

2

3
− 4�̅�𝑖

2 + 4�̅�𝑖
3    (�̅�𝑖 ≤ 0.5)

4

3
− 4�̅�𝑖 + 4�̅�𝑖

2 −
4

3
�̅�𝑖
3     (0.5 < �̅�𝑖 ≤ 1)

0     (�̅�𝑖 > 1)

  

3.106 

�̅�𝑖 =
𝑑𝑖
𝑟𝑤
=
|𝒙 − 𝒙𝒊|

𝑟𝑤
 

where 𝑑𝑖  is the distance between the point of interest at 𝒙 (quadrature point) and the field node at 𝒙𝒊 and 

𝑟𝑤 is the size of the local weight test function domain Ω𝑤 (note that 𝑟𝑤 has be chosen to be the same as 

r𝑞). 
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4. Numerical application 

4.1 Cantilever beam 

In this section, a rectangular cantilever beam subjected to a parabolic traction at its free end is 

numerically studied. This example is often used as a benchmark for numerical methods because its 

analytical solution is known. In consequence, this first numerical application allows to study the meshfree 

methods detailed in the previous sections. Thus, the different meshfree method properties and 

parameters could be highlighted such as the shape parameters, the convergence, the CPU time, the 

number of field nodes, or the effects of the different influence domains. Indeed, many factors are implied 

in a meshfree method, and this first application aims to quantify how these factors will affect the solution 

accuracy. 

 The studied beam is so parabolically loaded at its free end with an external force 𝑃 in the 𝑦 

direction. Its thickness is unit (𝑡 = 1) and since the geometry of the problem do not depend on 𝑧 its surface 

normal to 𝑧 is free, the problem is considered as a plane stress problem (in 𝑧). Thus, the stress matrix is  

4.1 

𝝈 = [
𝜎𝑥𝑥(𝑥, 𝑦) 𝜏𝑥𝑦(𝑥, 𝑦)

𝜏𝑥𝑦(𝑥, 𝑦) 𝜎𝑦𝑦(𝑥, 𝑦)
] 

 
Figure 1 Cantilever beam subjected to a parabolic load at its right end. 

The exact solution of this problem (illustrated on Figure 4.1) is known and listed as follow. [4] 

The displacement in the 𝑥 direction is : 

4.2 

𝑢(𝑥, 𝑦) = −
𝑃𝑦

6𝐸𝐼
[(6𝐿 − 3𝑥)𝑥 + (2 + 𝜈)(𝑦2 −

𝐷2

4
)] 
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where 𝐼 is the moment of inertia expressed for a beam with rectangular cross-section and unit thickness 

as 

4.3 

𝐼 =
𝐷3

12
 

The displacement in the 𝑦 direction is given as 

 

4.4 

𝑣(𝑥, 𝑦) =
𝑃

6𝐸𝐼
[3𝜈𝑦2(𝐿 − 𝑥) + (4 + 5𝜈)

𝐷2

4
+ (3𝐿 − 𝑥)𝑥2] 

The normal stress on the cross-section of the cantilever is  

4.5 

𝜎𝑥𝑥(𝑥, 𝑦) = −
𝑃(𝐿 − 𝑥)𝑦

𝐼
 

The normal stress in the 𝑦 direction is 

4.6 

𝜎𝑦𝑦 = 0 

The shear stress on the cross-section of the beam is 

4.7 

𝜏𝑥𝑦(𝑥, 𝑦) =
𝑃

2𝐼
[
𝐷2

4
− 𝑦2] 

The parameter of the cantilever beam and its elastic material constants are listed in the following table. 
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Table 4.1 Table of the cantilever geometry parameters and material constants.[1] 

Property (SI unit) Value 

Loading (integration of the parabolically 

distributed traction) (𝑁) 

𝑃 = −1000 

Height (𝑚) 𝐷 = 12 

Length (𝑚) 𝐿 = 48 

Young’s modulus () 𝐸 = 3 × 107 

Poisson’s ratio 𝜈 = 0.3 

 

The force 𝑃 is distributed in a parabolic fashion at the right free end (𝑥 = 𝐿) of the beam as 

4.8 

𝑡𝑥𝑦|𝑥=0 =
𝑃

2𝐼
[
𝐷2

4
 − 𝑦2] 

At the left end boundary (𝑥 = 0), the EBCs are expressed using the analytical equations 4.2 and 4.4. 

4.9 

𝑢|𝑥=0 = −
𝑃(2 + 𝜈)

6𝐸𝐼
[𝑦2 −

𝐷2

4
] 

4.10 

𝑣|𝑥=0 = −
𝑃𝜈

2𝐸𝐼
𝑦2 

Finally, as an error indicator, the strain energy error ⅇ will be computed as an accuracy indicator for the 

meshfree numerical methods detailed in sections 3.3 and 3.4. 

4.11 

ⅇ = (
1

2
∫ (휀𝑛𝑢𝑚 −
𝛺

휀𝑒𝑥𝑎𝑐𝑡)𝑇𝑫(휀𝑛𝑢𝑚 − 휀𝑒𝑥𝑎𝑐𝑡) 𝑑𝛺)

1
2

 

where 휀𝑛𝑢𝑚 and 휀𝑒𝑥𝑎𝑐𝑡 are the strain vectors obtained respectively by a numerical method and the 

analytical method. [1] 
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4.1.1 Prerequisites 

First the meshfree properties and the problem are established in an input data file including: 

1) The definition of the problem domain geometry. The cantilever is modelled with a set of field 
nodes purposely chosen for the studies. 

2) The background mesh. Background cells may be created to compute the error indicator or 
depending on the meshfree method used. 

3) The EBCs possibly its coefficient (penalty coefficient) depending on the enforcement method 
used. 

4) The shape parameters of RPIM shape functions. 

5) The parameters for the Gauss quadrature, such as the number of quadrature point. 

6) The sizes of influence domains. 

Note that in this problem the geometry is simple, it is therefore simple to scatter field nodes (and 

create the background mesh) in the entire problem domain. However, for problems with complex 

geometries, a pre-processor step may be necessary to generate the field nodes or the background cells. 

Note that the concept of influence domain detailed in sub-section 3.2.1.1 is used for the applications. 

 

4.1.1.1 Global RPIM 

To run the global RPIM computer code for this cantilever problem, the beam is modelled with a 

uniformly distributed set of field nodes and a background mesh is generated to perform the numerical 

integrations. The number of field nodes used is given by  

4.12 

𝑁 = 𝑁𝑥 × 𝑁𝑦  

with 𝑁𝑥  and 𝑁𝑦the number of nodes in 𝑥 and 𝑦 directions, respectively. 

The total number of cells used for the background mesh is denoted as 𝑛𝑐𝑒𝑙𝑙 and expressed as 

4.13 

𝑛𝑐𝑒𝑙𝑙 = 𝑛𝑥 × 𝑛𝑦 

where 𝑛𝑥 and 𝑛𝑦 are the number of cells in 𝑥 and 𝑦 directions, respectively. 

𝑛𝑔 represents the number of Gauss (quadrature) point for a cell and the total number of quadrature points 

𝑛𝑄𝑡𝑜𝑡𝑎𝑙  can be calculated as 

4.14 

𝑛𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑔 × 𝑛𝑐𝑒𝑙𝑙 = 𝑛𝑔 × 𝑛𝑥 × 𝑛𝑦 



 
 

55 
 

The background mesh and field nodes are independents. The nodal arrangement is illustrated in the 

following figure with 175 (25 × 7) regularly distributed nodes and 40 (10 × 4) regular and rectangular 

cells: 

 
Figure 4.2 Cantilever problem representation using 175 regular nodes and 40 cells. [3] 

 

4.1.1.2 Local RPIM 

For the LRPIM computer code, to simulate the cantilever beam problem, the geometry is also 

modelled with a regular set of field nodes 𝑁 = 𝑁𝑥 × 𝑁𝑦. Note also that no background mesh is needed 

to solve the problem, but one is needed in order to compute the strain energy error in equation 4.11. 

Furthermore, in the LRPIM algorithm, the local quadrature domains of each field nodes are divided into 

𝑛𝑑 = 𝑛𝑑𝑥 × 𝑛𝑑𝑦 sub-partitions to ensure the numerical integration accuracy. For simplification,  𝑛𝑑 =

𝑛𝑑𝑦 = 𝑛𝑑𝑦 will be used. For each sub-partition, 𝑛𝑔 Gauss (quadrature) points are used and so its total 

number is 𝑛𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑔 × 𝑁 × 𝑛𝑑
2. The sub-local domains are illustrated in the Figure 4.3 where the local 

quadrature domain in divided into 4 parts. [3] 
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Figure 4.3 Representation of a local quadrature domain divided into 4 sub-partitions using 16 Gauss points each. [3] 

For the LRPIM studies, the cubic spline function detailed in the sub-section 3.4.3.4 will be employed 

as the test function. 

 

4.1.2 Results visualization  

The rectangular cantilever problem is modelled and simulated with both global RPIM meshfree 

method and LRPIM meshfree method. The displacement field is obtained, and the stress, strain or energy 

error can be computed using the equations presented in the previous sections. All these results can easily 

be compared with the analytical solution since this problem and its solution equations are known. [4] All 

the results that will follow are plotted and studied with MATLAB and Microsoft Excel. 
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Figure 4.4 Visualization of the deflections (magnified 500 times) of the cantilever using RPIM with a set of 175 uniformly 

distributed nodes.  

 

The RPIM solution is obtained for a set of 175 (25 × 7) regularly distributed nodes and 40 (10 × 4) 

regular and rectangular cells with 16 Gauss points for each of it. MQ-RBFs are used with 𝛼𝑐 = 1.0, 𝑑𝑐 =

2.0 and 𝑞 = 1.03. The dimensionless size of the support domains is chosen as 𝛼𝑠 = 3.0 and linear 

polynomials are employed. The displacement is magnified by 500 to highlight the results. [3] 
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Figure 5 Visualization of the deflections (magnified 500 times) of the cantilever using LRPIM with a set of 55 uniformly 

distributed nodes.  

 

The LRPIM solution is obtained for a set of 55 (11 × 5) uniformly distributed field nodes. The 

displacement is magnified by 500. The local quadrature domains are divided in four sub-partitions with 

16 Gauss points for each of it. MQ-RBFs are used for the RPIM shape functions construction with 𝛼𝑐 =

1.0, 𝑑𝑐 = 3.0 and 𝑞 = 1.03. The quartic spline function W1 is employed as the test function. [3] 

Another result that may be interesting to represent thanks to the data obtained with the simulations is a 

stress contour. It can be represented thanks to the Von Mises equivalent stress expressed for a three 

dimensions case as 

4.14 

𝜎𝑉𝑜𝑛 𝑀𝑖𝑠𝑒𝑠 =
1

√2
√(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2 + (𝜎𝑦𝑦 − 𝜎𝑧𝑧)
2 + (𝜎𝑧𝑧 − 𝜎𝑥𝑥)

2 + 6(𝜏𝑥𝑦
2 + 𝜏𝑥𝑧

2 + 𝜏𝑧𝑦
2) 

with 𝝈 the tensor of stress.[5] [6] 

4.15 

𝝈 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑧𝑦 𝜎𝑧𝑧

] 
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However, since the cantilever problem is considered as plane stress, 𝝈 is simplified as 

4.16 

𝝈 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑧𝑦 𝜎𝑧𝑧

]
𝒑𝒍𝒂𝒏𝒆 𝒔𝒕𝒓𝒆𝒔𝒔
→         𝝈 = [

𝜎𝑥𝑥 𝜏𝑥𝑦
𝜏𝑥𝑦 𝜎𝑦𝑦

] 

and the Von mises stress equivalent may be simplified as follow. 

4.17 

𝜎𝑉𝑜𝑛 𝑀𝑖𝑠𝑒𝑠 =
1

√2
√(𝜎𝑥𝑥 − 𝜎𝑦𝑦)

2 + 𝜎𝑦𝑦
2 + 𝜎𝑥𝑥

2 + 6𝜏𝑥𝑦
2 

The Von Mises  stress equivalent contour has been plotted from the RPIM solution obtained with a set of 

175 (25 × 7) regularly distributed nodes and 40 (10 × 4) regular and rectangular cells with 16 Gauss 

points for each of it. And, with the following parameters 𝛼𝑐 = 1.0, 𝑑𝑐 = 2.0, 𝑞 = 1.03 and 𝛼𝑠 = 3.0. 

 Lastly, the different stresses (or shear stress)  distributions 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜏𝑥𝑦 may be represented 

along the cross section of the beam for example. Indeed, since the analytical expressions of the different 

stresses are known for this problem, some comparisons between the analytical and the numerical 

solutions can provide information about the meshfree method accuracy (as the energy error indicator). 

Figure 4.6 Contour of the Von Mises stress equivalent  obtained with the global RPIM for a set of 175 uniformly distributed nodes. 
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Figure 4.7 Normal stress distributions along the cross section  of the cantilever obtained from the analytical solution, 
global RPIM and LRPIM. 
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Figure 4.8 σyy stress distributions along the cross section  of the cantilever obtained from the analytical solution, global 

RPIM and LRPIM.  

 

 
Figure 4.9  τxy shear stress distribution along the cross section  of the cantilever obtained from the analytical solution, 

global RPIM and LRPIM 
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4.1.3 Studies of the parameters 

4.1.3.1 Geometry and Gauss quadrature 

In this first study, the analysis will focus on the modelled geometry of the cantilever problem. In other 

words, on the number of field nodes employed, the background mesh or the Gauss quadrature 

parameters. 

As a reminder, the global RPIM is performed using a set of regularly distributed field nodes and a 

background mesh for the integrations.  

Firstly, to study the effect of the background mesh and the Gauss quadrature, the energy error 

computed with the global RPIM algorithm have been compared for different configurations of number of 

cells 𝑛𝑐𝑒𝑙𝑙  and the number of Gauss (quadrature) points 𝑛𝑔. The total number of field nodes 𝑁 stay 

constant with 175 (25 × 7) nodes in order to highlight sufficient values for 𝑛𝑐𝑒𝑙𝑙 and 𝑛𝑔. 

 

Table 4.2 Energy errors and  ratios for different background meshes and number of gauss points. 

 

The previous table highlights the empirical requirements found by the research groups mentioned 

in sub-section 3.3.3.2. The entries of the table with red background show that the total number of 

quadrature points 𝑛𝑄𝑡𝑜𝑡𝑎𝑙 should be at least greater that 
2

3
 in order to lead to a significant solution. 

Moreover, the entries with green background show sufficient values of 𝑛𝑔 and 𝑛𝑐𝑒𝑙𝑙  to give meaningful 

results and an error lower than 1%.  

Secondly, the field node density (uniformly distributed) has been studied. The number of background 

cells and quadrature points are constants are chosen purposely in order to obtain a ratio between 𝑛𝑄𝑡𝑜𝑡𝑎𝑙 

and 𝑁 close enough compare the experiments. To study the different sets of field nodes, the error energy 

and the CPU time are used. The results are presented in the Table 4.3. 
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Table 4.3 Energy error, CPU time (s) and  ratio for different set of field nodes and Gauss quadrature points. 

 

 

Thus, the previous Tables (4.2 and 4.3) highlight the fact that the number of field nodes should not be 

chosen too small or too high but wisely by respecting some ration between the total number of quadrature 

points and the total number of field nodes to lead to accurate solutions without a too long computational 

time. For example, a problem modelled with a large set of field nodes but also a wide backgrounds mesh 

may lead to inaccurate results compare with a set of field nodes and background cells wisely sectioned. 

Finally, there are no proper law to choose either the number of field nodes or background cells, but some 

sufficient requirements may be founded empirically. 

 

4.1.3.2 EXP-RBF shape parameter 

This second study will investigate the effect of the shape parameters of the Gaussian exponential radial 

basis function that is used in the RPIM shape functions constructions. Since both meshfree methods LRPIM 

and RPIM use the same meshfree shape function, the study can rely on both. 

 LRPIM algorithm is used to investigate the influence of 𝛼𝑐 with the energy error as an indicator. 

The error is plotted for different values of 𝛼𝑐 with the following parameters for the meshfree method: 

1) A set of 55 (11 × 5) uniformly distributed field nodes. 

2) EXP-RBF for the RPIM shape function construction. 

3) 40 (10 × 4) background cells to perform the integrations for the energy error. 

4) Four sub-partitions for each local quadrature domain. 

5) 16 Gauss points for each sub-partition. 

6) 𝛼𝑖 = 3.0 is used for the construction of the influence domain. 
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7) A constant nodal spacing of 𝑑𝑐 =
48

10
= 4.8.  

The experience has shown some good accuracy solving the cantilever problem with LRPIM and the 

previous parameters for 𝛼𝑐  within the range of 0.008~0.1. For 𝛼𝑐 = 0.009 and error of ⅇ = 0,0119 and 

so this value for the shape parameter of EXP-RBF may be retained for latter studies. 

 

 
Figure 4.10  Effect of the EXP-RBF shape parameter on the energy error indicator calculated with global RPIM. 

 

 For further investigations, the RPIM meshfree method is performed on the cantilever problem 

with the following parameters based on the previous results and sufficient requirements: 

1) A set of 175 (25 × 7) uniformly distributed field nodes. 

2) EXP-RBF for the RPIM shape function construction. 

3) 40 (10 × 4) background cells to perform the integrations with 16 gauss points for each of it. 

4) A nodal spacing of 𝑑𝑐 =
48

24
= 2.0. Note that since the field nodes are uniformly distributed, the 

nodal spacing 𝑑𝑐 is a constant and can be found easily. 

5) Size of influence domain 𝛼𝑖 = 3.0 

 

The energy error is also used as an indicator to investigate the influence of the shape parameter 𝛼𝑐. The 

error is computed for different values of the EXP-RBF shape parameter as showed in the Figure 4.10. 
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Figure 4.11 Effect of the EXP-RBF shape parameter on the energy error indicator calculated with LRPIM. 

 

The results of this investigations show that good results are obtained for 𝛼𝑐 within the range 0.1~0.25. 

More, an 𝛼𝑐 = 0.15 has led to an error of 0.0743 which is very accurate. 

 

4.1.3.3 Size of influence domains 

The concept of influence for meshfree shape functions construction has been discussed in the 

section 3.2.1.1 and its expression is given in equation 3.3. In this work, only regularly distributed set of 

field nodes are uses so the nodal spacing in 𝑥 and 𝑦 direction are constants. Hence, the size on the 

influence domain is controlled by 𝛼𝑖𝑥 and 𝛼𝑖𝑦, its dimensionless sizes. To simplify the investigations on the 

influence domain size, 𝛼𝑖𝑥 = 𝛼𝑖𝑦 = 𝛼𝑖  will be used in this study. 

Thus, various value of 𝛼𝑖 are compared with the energy error in this study. The LRPIM meshfree 

method is used with the following parameters: 

1) A set of 55 (11 × 5) uniformly distributed field nodes. 

2) EXP-RBF for the RPIM shape function construction with 𝛼𝑐 = 0.009. 

3) 40 (10 × 4) background cells to perform the integrations for the energy error. 

4) Four sub-partitions for each local quadrature domain. 

5) 16 Gauss points for each sub-partition. 

6) A constant nodal spacing of 𝑑𝑐 =
48

10
= 4.8 .  
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In the following figures, the influence of the size of influence (support) domain on the solution accuracy 

and CPU time is studied. 

 
Figure 4.12 Effect of the size of influence domains on the energy error using LRPIM. 

 

 
Figure 4.13 Effect of the size of influence domains on CPU time using LRPIM. 

 

This study shows that the influence domain has an influence on the solution accuracy and should 

be chosen empirically, but furthermore, it also shows a great influence on the CPU time. The figures show 

that good results can be obtained for 1.5 ≤ 𝛼𝑖 ≤ 3.25 and sufficient results for 𝛼𝑖 ≥ 4.0. Nevertheless, 

increasing the size of the influence domains has a great influence on the computing time. Indeed, the 

larger the domain and the greater number of field nodes will be included in the interpolation and so the 
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computational time will increase. Also note that for 𝛼𝑖 ≤ 1.0 the computer code fails because when the 

influence domain is too small, the number of field nodes used in the interpolation is not large enough. 

Values within the range of 2.0 ≤ 𝛼𝑖 ≤ 3.25 lead to good results and compromise for the CPU time. In 

particular, 𝛼𝑖 = 3.0 can be used. 

 

4.1.3.4 Local quadrature domains (LRPIM) 

In LRPIM procedure, the quadrature domains are constructed locally for each node thanks to a 

loop over all the nodes. Its sizes are defined in equation 3.103. The following study will focus on the effect 

of the local quadrature domain sizes with the following LRPIM parameters (according to the last studies): 

1) A set of 55 (11 × 5) uniformly distributed field nodes. 

2) EXP-RBF for the RPIM shape function construction with 𝛼𝑐 = 0.009. 

3) 40 (10 × 4) background cells to perform the integrations for the energy error. 

4) Four sub-partitions for each local quadrature domain. 

5) 16 Gauss points for each sub-partition. 

6) A constant nodal spacing of 𝑑𝑐 =
48

10
= 4.8 . 

7) An influence domain size controlled by 𝛼𝑖 = 3.0 

Like for the influence domain size, the local quadrature domain size is managed by 𝛼𝑞𝑥 and 𝛼𝑞𝑦 its 

dimensionless size in 𝑥 and 𝑦 directions. For simplification, 𝛼𝑞 = 𝛼𝑞𝑥 = 𝛼𝑞𝑦 will be considered. The 

results are presented on figure 4.14 and highlight the influence of 𝛼𝑞 on the accuracy. An acceptable range 

of its value is 1.0~3.0. When the local quadrature domain is large enough, good results can be obtained 

but if this last is chosen too large, the Gauss quadrature necessary to compute the error will be less 

accurate. 
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Figure 4.14 Effect of the size of local quadrature domains on energy error using LRPIM. 

 

As mentioned in the prerequisites, the LRPIM is based on a local quadrature domain which is itself 

divided into sub-partitions. The number of these sub-partitions is controlled by 𝑛𝑑 = 𝑛𝑑𝑥 × 𝑛𝑑𝑦 and could 

be changed to study the effect of its value. In this next study, same parameters as in the previous study  

are used and with 𝛼𝑞 = 2.0. The error is obtained for local domains divisions as follow: 

 
Figure 4.15 Effect of the number of sub-partitions on CPU time using LRPIM. 

 



 
 

69 
 

The previous figure shows that the energy error decrease when the number of sub-partitions increase. In 

fact, augmenting the number of sub-partitions improves the integral evaluation accuracy because more 

quadrature point will be computed. However, adding a sub-partition impact the calculation time. If one 

partition is added, there will be 16 × 𝑁 (the number of field nodes) more quadrature points and so impact 

the computational cost. 

 

4.1.4 Convergence and conclusions 

4.1.4.1 Global RPIM convergence 

 As a final study, the convergence of a meshfree method can be investigate. The global RPIM 

convergence is studied with four different models created with different uniform distribution of nodes. 

Then, the logarithmic error and nodal spacing in 𝑥 direction are plotted. The different model are sets of 

31 × 7, 25 × 7, 17 × 7 and 13 × 7 field nodes with the same parameters. The nodal displacement in 𝑥 

direction is noted ℎ and on the plot, the error seems to decrease linearly with the nodal spacing. The rate 

convergence is estimated from the trend curve and is lower than the theoretical value of 1.0. 

 
Figure 4.16 Study of the convergence for the global RPIM meshfree method. 

4.1.4.1 Conclusions  

 This section went through the main parameter that characterize a meshfree method. It has been 

highlighted that many parameters can affect the meshfree solution and efficiency. Thus, the geometry of 

the problem needs to be correctly represented by relevant sets of field nodes and, if it is necessary, 

background cells. The Gauss quadrature should be also considered because it has a direct influence on the 
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precision for the evaluation of the integrals of the problem. The parameters used for the meshfree shape 

function construction can be modified and must be determined empirically by investigations. Finally, the 

size of the different domains (influence or quadrature) directly impacts the accuracy, but rather the 

computational time. Indeed, it affects the number of field nodes used for interpolation or the total number 

of quadrature points.  

 A relevant meshfree method model and its parameters is determined by considering a good 

accuracy for low computational costs. This last may concern the calculation time but also the pre- and 

post-processing. For example, in an meshfree method, a pre-processor creating non-uniformly distributed 

set of field nodes may be compared to the element’s creation in the FEM. 

 It should be mentioned that in this study, only uniformly distributed sets of nodes have been 

studied for simplicity. Nevertheless, it is also a parameter that influences the accuracy. Irregularly 

distributed nodes can lead to better results but also requires modification in the algorithms, such as the 

average nodal spacing calculation or the use of a pre-processor to create it. Another point that could be 

studied is the EBCs enforcement method. Indeed, depending on the method (direct method, penalty 

method) the computational time and solution accuracy will vary. [1] 
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5. Conclusion 

 This master thesis went through meshfree methods, and especially the global RPIM and 

the LRPIM from the meshfree and shape function procedure, to the analysis of a numerical example. 

Furthermore, the procedures of these last two methods have been established, discussed, and related to 

a computer code approach. Unfortunately, the transposition of the 2D code to be efficient in 3D 

(mentioned in the introduction) could not be completed. Nevertheless, this failure has also been the 

opportunity to gain experience with algorithms coding for numerical methods and make aware of the 

issues of such a process. 

The global RPIM and LRPIM have been applied for simple mechanics problems in order to stay focused 

on the meshfree study perspective. By means of the cantilever beam deflection example, the mains 

parameters that control the meshfree methods and affects its accuracy have been highlighted. In addition, 

the state of the art and the studies of global RPIM and LRPIM allowed to lead to the following conclusions: 

• The global RPIM allows to overtake the singularity problem of the PIM. More, this meshfree 

method is robust, stable and lead to accurate results even for arbitrarily distributed field nodes.  

However, this is not truly a meshfree method because this last is based on a global weak form and 

so it requires a background mesh to evaluate the integrations. 

• The LRPIM allows to get rid of the background mesh and its implementations are as simple as that 

in the FEM. However, its computational cost increase because of the of the asymmetry of the 

stiffness matrix. Another drawback is the use of additional parameters to control the local 

quadrature domain and test functions, and so more parameters need to be taken into account to 

obtain sufficient solutions 

• Many parameters must be considered in meshfree methods. Here are the mains influencing 

parameters: the problem representation with proper set of field nodes, the quadrature 

parameters, the shape parameters, the sizes of influence, the local quadrature domain (if it is 

needed) and the background mesh (if it is needed). 

Thus, a numerical method combined with proper parameters can lead to relevant and accurate solutions 

for good computational times.  
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