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I. Introduction

I N THE context of time-advancing algorithms for the
incompressible Navier–Stokes equations
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the divergence-free condition is commonly enforced by means of so-
called projection methods [1]. Typically, the algorithm is articulated
into two main stages: at first, a velocity field that does not satisfy the
incompressibility constraint is computed; then, a pressure correction
is operated to project the intermediate flowfield onto the space of
divergence-free velocity fields, with the pressure being obtained by
the solution of an ad hoc Poisson equation. Projection methods can
hence be interpreted as two-stage fractional step schemes. In
principle, projection techniques can be coupled to any time-
advancement method, although they are most commonly applied in
conjunction with Adams–Bashforth and Crank–Nicolson schemes
for the convective and viscous terms, respectively [2,3].
Time integration can also be accomplished bymeans of multistage

Runge–Kutta (RK) methods, which are particularly advantageous
thanks to their self-starting capability and relatively large stability
regions [4]. Furthermore, the RK coefficients can be optimized for
multiple purposes, e.g., achieving a high formal order of temporal
accuracy [5], optimizing dissipation and dispersion properties [6], or
improving the accuracy of the pressure [7]. Recently, the present
authors have developed a RK-based algorithm that mimics the

discrete energy-conservation properties of the skew-symmetric form
of the nonlinear term at a reduced computational cost by properly
weighting spatial and temporal errors [8,9]. Implicit–explicit RK
methods can also be constructed to handle stiff problems [10].
Themain drawback of Runge–Kutta fractional stepmethods is that

a Poisson equation for pressure has to be solved at each RK substage
to impose the incompressibility constraint and retain the temporal
order of accuracy of the procedure, leading to a significant increase in
computational effort. As a remedy to this issue, Le and Moin [11]
proposed to project the velocity field only at the final step; within the
intermediate substages, a first-order approximation based on the
previous time step was used to compute the pressure gradient. Their
modified algorithm, developed for a three-stage semi-implicit
Runge–Kutta scheme, led to an overall time savings of about 40%.
However, the method was limited to second-order accuracy and, in
some cases, might have been susceptible to instabilities due to
nonzero divergence of intermediate velocity fields [12].
The aim of this Technical Note is to propose an approximate

projection method based on a broader class of Runge–Kutta time-
stepping schemes. The pressure correction is operated only at the
final step, as in [11]; however, an improved approximation for
pressure is usedwithin the substeps to enhance the formal accuracy as
well as the robustness of the method.

II. Numerical Method

The numerical procedure is based on the class of standard Runge–
Kutta schemes for time integration. The algorithm lies on a classical
semidiscrete approach: the Navier–Stokes equations are first
discretized in space and then integrated in time. A straightforward
s-stage time advancement of a semidiscretized version of Eqs. (1) and
(2) reads

�
ui � un�Δt
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where u ∈ RNu andp ∈ RNp are the discretized velocity and pressure
fields; aij and bi are the RK coefficients; and L,N , and G represent
proper approximations to the Laplacian, nonlinear, and gradient
operators, respectively. In particular, L ∈ RNu×Nu and G ∈ RNu×Np

are linear discrete operators, whereas N ∈ RNu is the discretization
of the nonlinear convective term and depends upon the formulation
adopted for convection (e.g., divergence, advective, skew-
symmetric) [9]. It is worth noting that the developments presented
in the Note are independent of the spatial discretization technique
employed, provided that the operators are discretized consistently, i.
e., GT � −D, whereD ∈ RNp×Nu is the discrete divergence operator
and �·�T denotes transposition. In Eq. (3) and hereinafter, subscripts
refer to the RK substep, whereas superscripts denote the time level.
Starred velocity fields are not divergence free.
In a classical fractional-step method, the pressure constraint in

Eq. (3) is most conveniently enforced bymeans of the usual splitting:

8<
:
u�i � un � Δt

P
s
j�1 aij�L�uj� −N �uj��;

DG�ϕi� � 1
ciΔt

D�u�i �;
ui � u�i − ciΔtG�ϕi�; i � 2; : : : ; s

(4)

where ϕi is a pseudopressure that acts as a Lagrange multiplier to
ensure the divergence-free condition for each u�i , and ci �

P
j aij. In
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general, the Lagrange multiplier is a first-order approximation to the

pressure [13]:

ϕi � pi �O�Δt� (5)

The algorithm that results from combining Eq. (4) with Eq. (3) will

be referred to as FS, to indicate a traditional RK-based fractional-step

scheme. In the case of explicit methods, s Poisson equations have to
be solved for pressure: (s − 1) for the intermediate stages (assuming

un is divergence free), and a final one after the last step to

project un�1;�.
A significant savings in CPU time can be obtained if one seeks to

solve only one Poisson equation after the last step. This task can be

accomplished by using a suitable approximation for the

pseudopressure within the midstages based on the previous time

steps, e.g.,

ϕi ≈ ϕ̂i � F�ϕn;ϕn−1� (6)

In particular, two methods will be considered here:

ϕ̂i � ϕn

and

ϕ̂i �
3ϕn − ϕn−1

2
� �ϕn − ϕn−1� ci

2

which correspond to constant and linear extrapolations from previous

values, respectively. The second approximation has been derived by

constructing a linear interpolant for the pressure p (that is, the

physically relevant variable) from tn−3∕2 to tn−1∕2 and by evaluating

the formula at tn�ci∕2. This choice comes from the fact that consistent

second-order estimates of pn−3∕2, pn−1∕2, and pn�ci∕2 are available

from ϕn−1, ϕn, and ϕi, respectively, by virtue of the midpoint

method [7].
The resulting algorithm can be written as follows:
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P
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No Poisson equations have to be solved for stages i � 1; : : : ; s,
but a final projection step is still required forun�1;�. Depending on the
choice made for ϕ̂i, the algorithms will be labeled FSa and FSb for

constant and linear extrapolation, respectively. Note that the method

labeled FSa is actually a generalization of the procedure proposed in

[11], and it turns out to be second-order accurate, assuming the time-

integration scheme is at least second order. It can be shown that the

new method labeled FSb is third-order accurate in time on velocity;

the accuracy of bothmethodswill be demonstrated numerically in the

next section.
It is interesting tomention that a similar higher-order extrapolation

for pressure has proved to also be beneficial for an approximate

pressure-correction method developed in the context of two-phase

incompressible flows [14].

III. Results

A. Order of Accuracy Study

The two-dimensional Taylor–Green vortex is simulated numeri-

cally to confirm the theoretical results presented in the previous

sections. The Navier–Stokes equations are solved in a periodic

domain of length 2π, and they are discretized on a uniform mesh of

202 points. The exact solution is given by

ue�x; y; t� � − cos�x� sin�y�e−2t∕Re;
ve�x; y; t� � sin�x� cos�y�e−2t∕Re;

pe�x; y; t� � −
1

4
�cos�2x� � cos�2y��e−4t∕Re (8)

Starting from t � 0, Eq. (8) is solved numerically with a standard

pseudospectral method [15]. The skew-symmetric form �Skew.�i of
the nonlinear convective term, given by

�Skew.�i �
1

2

∂ujui
∂xj

� 1

2
uj

∂ui
∂xj

(9)

is discretized, which guarantees semidiscrete conservation of kinetic

energy in the inviscid limit. This property is of fundamental

importance to enforce a nonlinear stability bound to the numerical

solution [16]. The standard three-stage third-order-explicit Kutta rule

is used for time integration [4], in conjunction with the three

algorithms presented in Sec. II. The temporal order of accuracy is

shown in Fig. 1 for Re � 100. The time-step convergence of the L2

norm of the velocity error is calculated at tf � −Re log� �������
0.9

p �, at
which the vortices’ intensity has reduced to the 90% of the initial

value. The results confirm that the method FSb is third-order

accurate, while FSa is second order. Themethods labeled FSb and FS

are both third-order accurate, although the magnitude of the error

provided by the former is larger due to the approximation for pressure

used within the substeps.
In Fig. 2, the L∞ norm of the residual divergence of the velocity

fields ûi at the RK substeps is compared for the various methods at

t � tf,Δt � 0.1, andRe � 100. The velocity field u1 does not need
to be projected, assuming that un is divergence free. For the substeps
i � 2 and i � 3, the method labeled FSb provides lower divergence

Fig. 1 Time-step convergence of velocity error for the three projection

methods: FS, FSa, and FSb. Filled circles represent the data, and

Re � 100.

Fig. 2 L∞ norm of the residual divergence of velocity at each RK

substep, calculated at t � tf for the three methods: Δt � 0.1, and

Re � 100.
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errors with respect to the FSa. It is worth remarking that, at the full

time step, the maximum value of the velocity divergence over the

domain is zero to machine precision for both methods labeled FSa

and FSb, whereas the FS method provides divergence-free velocity

fields at each RK substep.
The accuracy of the pseudopressure ϕ has also been calculated; in

all cases, it is a first-order approximation of the pressure pe, in

accordance with Eq. (6). This result can be improved by either

satisfying additional conditions for the Runge–Kutta coefficients or

by solving an additional Poisson equation at tn�1 [7].

B. Three-Dimensional Taylor–Green Vortex

A more challenging test is the three-dimensional Taylor–Green

vortex at high Reynolds numbers. In this case, the initial distribution

of vorticity is subject to vortex stretching, thus generating smaller

scales and eventually leading to turbulence breakdown [15].

A triperiodic cube is filled by the initial conditions

u�x; y; z; 0� � 2���
3

p sin

�
θ� 2

3
π

�
sin�x� cos�y� cos�z�

v�x; y; z; 0� � 2���
3

p sin

�
θ −

2

3
π

�
cos�x� sin�y� cos�z�

w�x; y; z; 0� � 2���
3

p sin�θ� cos�x� cos�y� sin�z� (10)

with θ � 0. Equation (10) is time advanced by the same numerical

method used for the previous test. The Reynolds number of Re �
1600 is chosen to be sufficiently high in order to trigger transition to
turbulence, which occurs around t � 9. An under-resolved uniform

computational mesh of 323 points is used, and no subgrid-scale

models are employed. Although this setting is not physically

relevant, it is useful to test the robustness of the solution algorithm.
The various methods are evaluated by means of the time evolution

of the derivative skewness

Sk11 � −
Z
Ω

�
∂u
∂x

�
3

∕
�Z

Ω

�
∂u
∂x

�
2
�
3∕2

(11)

integrated over the computational domain Ω. The skewness is a

fundamental quantity in turbulent flows, as it represents the rate of

production of vorticity through vortex stretching [17]. The results are

shown in Fig. 3. Despite the under-resolution, all the computations

are stable due to the use of a spatially energy-conserving method.

However, the three methods are in close agreement only until t ≈ 9.
Subsequently, the flow breaks into turbulence and the FSa method

starts to significantly deviate from the other two. In contrast, the FS

and FSb results display the same evolution at later times.
Other integral quantities (such as kinetic energy dissipation rate,

derivative flatness, enstrophy, etc., which are not shown here) follow

a similar pattern.

C. Performances

The performances of the method are highly dependent upon the
specific features of the overall solution procedure, the models
adopted, the implementation details, as well as the computational
architecture. The test presented in Sec. III.A was also performed
using a colocated energy-conserving second-order finite difference
code [18], with the pressure Poisson equation solved in physical
space by the biconjugate gradient stabilizedmethod [19]. In this case,
the approximate fractional-step methods provide computational time
savings of about 50% with respect to the FS. A further reduction of
the CPU time can be obtained by adopting the alternating Runge–
Kutta procedure developed in [8,9] to halve the cost of the skew-
symmetric splitting: in this case, an extra 10% savings was achieved
with respect to the FS method in fully skew-symmetric form.

IV. Conclusions

An approximate projection method has been developed for the
incompressible Navier–Stokes equations. The algorithm was based
on a generic family of Runge–Kutta time-stepping schemes, and it
was particularly efficient from a computational point of view since
the pressure projection step was operated only at the final stage. In
contrast to previously developed methods, the new procedure
employed a higher-order approximation for pressure within the
substages, and hence allowed achievement of third-order temporal
accuracy for the velocity field. Also, by improving the pressure
approximation, the divergence error at each substep could be
significantly reduced, leading to enhanced robustness. Preliminary
turbulent simulations demonstrated the effectiveness of the method.
The formulation was general and could, in principle, accommodate
Runge–Kutta methods of any class and type.
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