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Abstract—The ability to enhance the spatial resolution of mea-
surements collected by a conical-scanning microwave radiometer
is discussed in terms of noise amplification and improvement
of the spatial resolution. Simulated (and actual brightness tem-
perature profiles) are analyzed at variance of different intrinsic
spatial resolutions and adjacent beams overlapping. The actual
measurements refer to Special Sensor Microwave Imager (SSM/I)
data collected using the 19.35 GHz and the 37.00 GHz channels
that matches the simulated configurations. The reconstruction of
the brightness profile at enhanced spatial resolution is performed
using an iterative gradient method which is specialized to allow
a fine tuning of the level of regularization. Objective metrics are
introduced to quantify the enhancement of the spatial resolution
and noise amplification.
Numerical experiments show that the regularized deconvolu-
tion results in negligible advantages when dealing with low-
overlapping/fine-spatial-resolution configurations. Regularization
is a mandatory step when addressing the high-overlapping/low-
spatial-resolution case and the spatial resolution can be enhanced
up to 2.34 with a noise amplification equal to 1.56. A more
stringent requirement on the noise amplification (up to 0.6)
results in an improvement of the spatial resolution up to 1.64.

Index Terms—Resolution enhancement, inverse problem, de-
convolution, microwave radiometer, conical scan, multi-channel
data fusion.

I. INTRODUCTION

Microwave radiometers (MWRs) for Earth Observation
(EO) are sensors that measure the emission of the Earth [1]. In
a conventional scanning radiometer, a rotating antenna scans
the scene, providing an output as function of the scan angle.
The measured power depends on the system’s parameters
(e.g., receiver gain and noise figure, noise bandwith, antenna
pattern, etc.), the apparent brightness temperature TB and the
brightness temperature coming from different directions. As-
suming a well-calibrated measurement [2], the t-th radiometer
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measurement can be written as [3]:

bt =

∫
Ω

A(ρ)TB(ρ)dρ (1)

where ρ is the integration variable spanning the spatial domain
Ω and A(·) is the measurement response function (MRF) [2] of
the microwave radiometer, i.e., a smooth function that weights
the brightness temperature TB(ρ) with the antenna pattern.
However, since the signal received by the MWR is integrated
over a short period to reduce the measurement variance and
because of the rotation of the scanning antenna during the
integration period, A(·) is actually a smeared version of the
projected antenna pattern [2], [4], [5]. MWR observations are
typically provided into two formats: swath data (that preserve
the native scan geometry); gridded data (that are organised
into an image format with annotated geolocation informa-
tion) [6]. There is an increasing interest towards gridded
products since they allow observing the time variability of
geophysical parameters at fixed locations [7]–[10]. Gridded
products are obtained by swath-based measurements using
interpolation methods that call for a trade-off between noise
amplification and improved spatial resolution. The simplest
approach consists of using interpolation schemes that result
in low-noise and low-resolution gridded products [11]–[13].
However, there is a growing interest towards finer spatial
resolution products for new regional-scale MWR applications.
Within this context, methods to grid radiometer products on
a spatial scale finer than the -3 dB area of the radiometer
MRF have been proposed in the literature. Those approaches,
which are basically antenna pattern deconvolution methods,
enhance the spatial resolution of the radiometer measurements
by solving a linear inverse problem [14]. Several algorithms
have been proposed that are based on either direct inversion
of the linear ill-conditioned problem [4], [5], [15] or by using
iterative methods [5], [16]–[19]. The latter are to be preferred
when addressing large-scale problems such as the one resulting
from the enhancement of the spatial resolution of microwave
radiometer measurements [18]. The achieved spatial resolution
depends on the MRF, and the reconstruction method itself. In
the case of iterative regularization methods, the convergence
rate can be relatively slow and, therefore, methods to speed
up this convergence rate have been proposed [20], [21].
The enhancement of the spatial resolution is limited by the
overlapping of the radiometer measurements and depends on
the sampling pattern. In addition, since noisier products are

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. DOI: 10.1109/TGRS.2022.3163522



2

obtained, a trade-off between the enhancement of the spatial
resolution and the noise amplification must be considered [22].
In [23] the reconstruction performance of several deconvo-
lution methods is discussed in terms of the achieved spatial
resolution and noise amplification by subjectively stopping the
iterations in each method.

In this study, a theoretical framework to discuss the per-
formance of spatial resolution enhancement with respect to
the intrinsic radiometer spatial resolution and the level of
overlapping among adjacent beams is proposed. The theoret-
ical framework is based on a preconditioned version of the
gradient iterative regularization method (LW-P) that, originally
developed in [21] to speed-up the convergence rate of the
Landweber (LW) iterative method, is here specialized to tune
the level of regularization by a proper setting of its parameters.
This analyses are accomplished on both radiometer measure-
ments, simulated using three MRFs that mimic three conical
scanning radiometer’s measurement configurations, and using
actual radiometer measurements calling for different spatial
resolutions and overlapping among adjacent beams.

The main novelties can be summarized as follows: a) for
large-scale discretized MRF, it is theoretically shown that the
coarser is the spatial resolution of the MWR, the larger is the
instability of the linear system to be inverted. This has a direct
implication on the regularizing capabilities of the deconvolu-
tion schemes to be applied; b) the preconditioned regularizing
scheme is analyzed to provide a better understanding of its
capability to filter high-frequency components and, therefore,
to trade off regularization and enhancement capabilities; c) a
quantitative analysis of reconstruction’s performance is car-
ried on by jointly accounting for regularization, enhancement
capabilities and noise amplification.

The remainder of the paper is organised as follows. The
spectral properties of the discretized MRF, and the regulariza-
tion scheme that deconvolves the antenna pattern are discussed
for different MWR configurations in Section II. Numerical ex-
periments performed on both simulated and actual brightness
profiles are discussed in Section III, and the conclusions are
drawn in Section IV.

II. THEORETICAL BACKGROUND

In this section, a simplified 1D MRF is used to model the
MWR measurement process in eq. (1), and to characterize the
spectral properties of the discretized MRF for three MWR
measurements configurations calling for different footprint
sizes and degree of overlapping among adjacent beams. In
addition, a regularizing scheme that exploits the spectral prop-
erties of the discretized MRF to control noise amplification in
the reconstructed brightness profile is also presented.

A. Spectral analysis of the discretized MRF

From a physical viewpoint, the enhancement of the radiome-
ter spatial resolution is possible since MWR makes multiple
observations of the same scene under different viewing an-
gles. Hence, coarse, but partially correlated measurements are
available. A shift-invariant convolution with a Gaussian kernel
is here used to model the MWR measurement process in the

cross-track direction. Hence, the discretized version of eq. (1)
leads to an underdetermined linear system of equations:

Ax = b , (2)

with b ∈ Rm and x ∈ Rn representing the m measurements
and the n points where the finer spatial resolution brightness
temperatures are to be reconstructed and A contains the
discretized MRF. The retrieval of the brightness temperatures
on the finer resolution grid is based on a suitable methodology
to invert the highly under-determined (m� n) linear system
(2). In addition, since the system comes from an ill-posed
continuous problem, i.e. the Fredholm equation of the first
kind with a smooth kernel (eq. (1)), the linear system (2) is also
ill-conditioned. This means that the noise on the measurements
significantly affects the spatial resolution enhancement process
by limiting the quality of the reconstruction. Hence, regu-
larizing schemes are mandatory to reconstruct the brightness
temperature profile.

From a mathematical viewpoint, the challenges when invert-
ing (2) depend on the A matrix. Hence, its special properties
are here analysed. The entries of the A matrix are here
modeled as follows [20]:

Ai,j = abigc−j , for i = 0, . . . ,m− 1

and j = 0, . . . , n− 1 ,
(3)

where g = n/m > 1, b·c is the floor function, and the entries
of the (Gaussian kernel) vector a are given by

ak = exp(−k2/2σ2), for k = −n+ 1, . . . , n− 1 . (4)

The standard deviation σ > 0 is a parameter which depends
on the considered radiometer channel and is set in such a way
that the -3dB width of the discretized MRF matches the MWR
field of view. The coarser is the spatial resolution (the larger
is σ) and the larger is the overlapping among adjacent beams,
i.e., the available measurements are highly correlated.
To link σ to the stability of the linear system (2) to be inverted,
a spectral analysis is carried on the A matrix that can be
considered as the leading principal (i.e., upper-left) m × n
submatrix of the square g-Toeplitz matrix T ∈ Rn×n [24]
whose entries are defined as

Ti,j = abigc−j , for i, j = 0, . . . , n− 1 . (5)

In the context of spatial resolution enhancement, n is typically
a large value, hence it can be shown [25] that the singular
values sk, for k = 1, . . . n, of T in eq. (5) are distributed as
the inverse Fourier transform of the continuous extension of
the Gaussian convolution kernel, that is:

sk+1 ≈ bσ exp(−cσ2k2) , for k = 0, n− 1 , (6)

where the constants b, c > 0 depend only on the dimension
n. Moreover, all the m singular values of the m × n matrix
A are well approximated by the first m singular values of T,
which leads to the following estimate of its 2-norm condition
number

µ2(A) = s1/sm ≈ exp(bσ2m2) = Cσ
2

, (7)

where C = exp(bm2) > 1 does not depend on σ. This implies
that, since Cσ

2
1 > Cσ

2
2 with σ1 > σ2, for a fixed spatial
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sampling (i.e., for a fixed pair (m,n)), the larger is σ the
larger is the condition number of the matrix. Recalling that
the latter gives information on the stability of the associated
linear system, that is, how sensitive the solution x is to
changes or errors in the measurements data b of eq. (2), the
larger is σ (i.e., the coarser is the spatial resolution of the
MWR channel) the larger is the conditioning number of the
linear discrete system (eq. (2)) to be inverted to retrieve the
brightness temperature on a finer spatial resolution grid.

B. Regularizing preconditioner

According to eq. (7), regularization is a mandatory step to
reconstruct the brightness temperature on a finer spatial reso-
lution grid. In this subsection, we first recall the conventional
gradient-like LW regularization scheme [16] and then we
review its preconditioned version (LW-P) that was developed
in [21] to improve the convergence rate of the LW method.
Finally, the regularizing properties of the preconditioner are
here analyzed to design a regularizing scheme where the
amount of regularization can be explicitly tuned. This is
a mandatory step to provide a theoretical framework when
jointly discussing enhancement capabilities with respect to
noise amplification and regularization needed.

The LW method, also known as the gradient method with
constant step size, minimizes the leas square functional:

Ω2(x) =
1

2
‖Ax− b‖2 (8)

by means of the following iterative scheme:

xk = xk−1 − λ∇Ω2(xk−1) , (9)

where λ ∈ (0, 2/‖A‖2) is the step-size of the iterative method.
By straightforward computation of the gradient, eq. (9) can be
rewritten as

xk = xk−1 − λA∗(Axk−1 − b) , (10)

being A∗ ∈ Rn×m the adjoint operator of A, that is, the
transpose matrix in our real case. In the noiseless case, the
iteration converges to the generalized inverse x† ∈ N(A)⊥

for x0 = 0, or x†+x′0 for x0 6= 0, where x′0 is the orthogonal
projection of the initial guess x0 onto the null space N(A). In
the noisy case, the method belongs to the family of iterative
regularization algorithms, where an early stop of the iterations
acts as regularization parameter.

Iterative methods often result in a low convergence rate
[3]. In [21] a LW-P method is proposed to improve the LW
convergence rate by exploiting the structured nature of the A
matrix using a preconditioner. A regularizing preconditioner is
the operator Pf [26], [27] that, applied to the linear system (2),
allows for a clustering at unity of the singular values related
to the signal subspace only. The preconditioner is a filtered
version of the well studied Strang straightforward circulant
preconditioner [28], which is hereinafter briefly described. The
algebra of circulant matrices allows for fast, i.e. O(n log n),
matrix-vector inversion and computation of the spectrum via
FFT. Anyway, in general, given a n × n Toeplitz matrix
T̃i,j = ai−j for i, j = 0, . . . , n − 1, the Strang circulant
preconditioner S = S(T̃) of the matrix T̃ is defined by simple

arrangements of its central elements, that is, by copying the
central diagonals of T̃ and reversing them to complete the
circulant structure as follows:

Si,j = si−j =

{
ai−j |i− j| ≤ bn/2c

sn−(i−j) otherwise . (11)

In [27] it was shown that a large part of the eigenvalues
of the preconditioned matrix S−1T̃ clusters at unity, that is
S−1T̃ ≈ I, since the identity matrix has all the eigenvalues
equal to 1. This property can be explained by recalling that
the central diagonals of any Toeplitz matrix correspond to
the central values of the associated convolution kernel, which
usually keep the most important information on the point
spread function (remember that convolution kernels usually
vanish far from the central points).

In this study, to ensure regularization (i.e., to obtain a
regularizing preconditioner) we require for a clustering at unity
of the spectrum of the preconditioned matrix in the signal
space only, in order to avoid, in the spatial enhancement
process, the amplification of the components mainly corrupted
by noise. Hence, since the n × n symmetric matrix A∗A is
approximated by the n × n symmetric matrix T̃∗T̃ = T̃2,
the regularized version of the Strang preconditioner can be
designed as follows. First, the spectral decomposition of (11)
is considered:

S = S(T̃T) = F diag(λ1, λ2, . . . , λn)F ∗ , (12)

where λi ≥ 0 are the eigenvalues corresponding to the
eingevectors in the columns of the Fourier matrix F, since S is
a circulant matrix, and diag(v1, . . . , vn) denotes the diagonal
matrix with diagonal entries v1, . . . , vn. Then, the inverse of
the filtered preconditioner is directly computed as:

P−1
f = F diag(fα(λ2

1), fα(λ2
2), . . . , fα(λ2

n))F∗ . (13)

In this study, the scalar real function

fα(x) = (x+ α)−1 , (14)

is considered to design the so-called “regularizing inverse”,
that is, a (family of) bounded function defined on x ≥ 0
which approximates, for the regularization parameter α → 0,
the unbounded inverse function x−1 defined on x > 0 only.
Basically, a regularized inverse allows a “filtered” inversion.
The idea behind the use of eq. (14) when inverting the system
in eq. (13) is to reduce the amplification of the smallest
eigenvalues of S∗S, i.e.; a phenomenon that arises when the
straightforwardly inverting the linear system. This way, the
regularized preconditioner P−1

f is a filtered version of the
inverse of S(T̃∗T̃), so that P−1

f T̃∗T̃ ≈ P−1
f A∗Ã fulfills

the following heuristic rule [21],

P−1
f A∗A ≈

{
I in the signal subspace
A∗A ≈ 0 in the noise subspace

, (15)

where I is the identity matrix, so that the convergence is very
fast in the signal subspace (where the preconditioned matrix
is close to the identity, i.e., the system is already almost
resolved), whilst is slow in the noise subspace (where the
preconditioned matrix is vanishing). The signal subspace is
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the vector subspace of the solution space Rn less sensitive to
noise amplification in the enhancement procedure, and it is
related to the large singular values of A. On the contrary, the
noise subspace is the vector subspace highly sensitive to noise
amplification, related to the smallest (and vanishing to zero)
singular values of A. It must be recalled that, in any convolu-
tion model, the signal subspace is the low frequency subspace,
while the noise subspace is the high frequency one. Indeed,
the high frequency components are highly reduced by the
convolution integral operator (i.e., multiplied by the smallest
singular values), by virtue of the Riemann-Lebesgue Theorem.
To better understand the concept of “filtered” inversion the
following example can be considered. The difference between
a non-filtered and a filtered preconditioner relies in the scalar
real function used in computing the inverse of eq. (12), i.e.
f(x) = x−1 for the non-filtered and fα(x) = (x + α)−1 for
the filtered cases, respectively. In our case x = λ2

i where λi
are the eigenvectors of A and the square elevation is due to
the term A∗A. Considering λ1 � λn (e.g. λn = λ1/104 ) and
the non-filtered preconditioner, it can be noted that the smaller
eigenvalue is strongly amplified in the inversion (see Fig. 1(a)).
In the filtered case, i.e., when using fα(x), the amplification
effect is strongly reduced (see Fig. 1(b)). This is due to the
fact that the regularized inverse (11) causes a shifting of the
hyperbole in Fig. 1(a) by a factor α towards the negative
x-axis, avoiding the excessive amplification of the smaller
eigenvalues. It is worth noting that the regularized inverse (14)

Fig. 1. Sketch of the scalar real functions used in computing the inverse of
(12) for the (a) non-filtered, (b) filtered cases, respectively.

we used in this study is based on the conventional Tikhonov
regularization filtering. Other low-pass filtering functions can

be also applied (see the filters in Section 3 of [29]), leading
to different regularization behaviours.

Once the spectral properties of Pf and its filtering ability
has been discussed, the k-iteration of the LW-P can be obtained
starting from the least square preconditioned system

P−1
f A∗Ax = P−1

f A∗b , (16)

whose set of solutions coincides with the set of solutions of
the least square minimization problem of eq. (8), because of
the invertibility of Pf . Hence, the k-th iteration of the LW-P
method is very similar to eq. (10) and reads as

xk = xk−1 − λP−1
f A∗(Axk−1 − b) . (17)

III. NUMERICAL EXPERIMENTS

In this section, thought numerical experiments are presented
and discussed. The reconstruction problem is formulated ac-
cording to eq. (2) where n = 64 and m = 1400 and reference
is made to a realistic 1D microwave radiometer configuration
that performs uniformly spaced (25 km) measurements over
a 1400 km swath. This means that the brightness temperature
profile is reconstructed on a finer grid whose spacing is
1 km. Noisy measurements b ∈ Rm are obtained through
the forward problem of eq. (2) where the rectangular matrix
A ∈ Rm×n (with m � n ) is built using a shift-invariant
Gaussian-shaped function G(·). An additive white Gaussian
noise (AWGN) with standard deviation is 1 K is considered
and different x ∈ Rn reference scenarios are used to showcase
meaningful scenarios.

The brightness profile x is reconstructed using the LW-P
method by a suitable choice of the α parameter in eq. (14).
This means that α allows tuning the degree of regularization of
the gradient-like method encompassing also the conventional
LW.

To analyse the role played by the intrinsic MWR spatial
resolution and the degree of overlapping among adjacent
beams, three measurements configurations (MC) are used:
• MC1 refers to the low spatial resolution and high overlap-

ping case, see Fig. 2 (a). In this case, the -3 dB width of
MRF is equal to 43 km, and the percentage of overlapping
among adjacent beams (PO) is equal to 77%.

• MC2 refers to an intermediate case, see Fig. 2 (b), where
the -3 dB width of the MRF is equal to 34 km and PO
is equal to 65%.

• MC3 refers to the finest spatial resolution and lowest
overlapping case, see Fig. 2 (c), where the MRF calls
for a 20 km width and PO is equal to 39%.

To discuss qualitatively and quantitatively reconstruction’s
performance, the following objective metrics are introduced:
• Improvement Factor (IF). It is defined as the ratio be-

tween the -3 dB width of the reconstructed and the
measured pulse-like functions. It can assume values in
the range [1,∞), and the larger IF is, the finer is the
spatial resolution of the reconstructed profile.

• Peak-to-background Ratio (PBR). It is defined as the
ratio between the brightness level measured over the
top of a pulse-like reference profile with respect to the
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reconstructed brightness level value. PBR = 1 stands
for perfectly reconstructed brightness level; while PBR
> 1(< 1) stands for overestimated (underestimated)
reconstructions. Hence it allows quantifying over- and
under-estimation that may result from the reconstruction
of spot-like discontinuities, see Fig. 3.

• Depth-to-Null Ratio (DNR). It is defined as the ratio be-
tween the background brightness level measured over the
reconstructed profile and the reference one. It is evaluated
in the region enclosed by two pulse-like functions and
it aims at quantifying the ability of the reconstruction
method to recover abrupt discontinuities with a limited
over-smoothing. DNR = 1 stands for a background per-
fectly reconstructed; while DNR > 1(< 1) stands for
over- (under-)estimation, see Fig. 3.

• Noise amplification. The absolute value of the root mean
square error (RMSE) between the measurement and the
reconstructed field is evaluated over a homogeneous area
to quantify the amplification of noise that comes with the
resolution enhancement process.

The first set of experiments is related to simulated noisy
measurements obtained using the three MCs depicted in Fig.
2. Then, experiments performed using profiles extracted from
actual MWR measurements collected by the SSM/I are dis-
cussed.

A. Simulated measurements

The first experiment consists of discussing the enhancement
of the spatial resolution by contrasting the point spreading
function in the non-enhanced and enhanced cases. On this
purpose, an unrealistic reference profile (RP) that consists of
1 -pixel Kronecker function calling for a 106 K brightness
temperature is used. The noisy measurements (linearly inter-
polated on the finer-resolution grid) are depicted together with
the LW and LW-P reconstructions in Fig. 4. The LW-P is run
with a low level of regularization, i.e., α = 5·10−3 and the LW
case, that is approximated by α = 5 · 10−4, is also annotated
for comparison purposes. To better visualise the outputs, the
decibel (dB) scale is used. Figure 4 (a), (b) and (c) refer to
the MC of Fig. 2 (a), (b) and (c), respectively. As expected,
MC3 calls for the finest spatial resolution; while the coarsest
one is achieved when using MC1. The reconstructions related
to MC1 are depicted in Fig. 4 (a) where it can be noted that,
although both LW and LW-P improve the spatial resolution
with respect to the measurements, LW-P performs best since
it results in the brightness level closest to the RP one. To
quantitatively analyse the reconstruction’s performance, the
IF metric is evaluated (see Table I) confirming that LW-P
(1.57) outperforms LW (1.09). This implies that a smaller level
of regularization allows a better reconstruction of spot-like
discontinuities since it reduces the over smoothing. Similar
comments apply when dealing with the MC2 case, see Fig.
4 (c). In the MC3 case, LW performs better than LW-P. This
is likely due to the finer resolution of MWR measurements,
and the low overlapping among adjacent beams affecting the
performance of LW-P. A deeper analysis on the three MC
cases can be provided analysing the matrix system function

Fig. 2. System matrix A related to the three MCs. The G(·) functions
belonging to the i-th row (restricted to the range 500 to 900 samples) and
centered at the the n-th and (n+1) samples are here shown for the cases MC1
(a) MC2 (b) and MC3 (c).
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Fig. 3. Sketch of a hypothetical reference (continuous line) and measured
(dotted line) profile to clarify the meaning of the metrics PBD and DNR.

A. In particular, the singular value decomposition (SVD) is
used to analyse the A matrices associated to the three MC
cases, see Fig. 5, where the singular values are depicted
using a semilog-y scale. One can note that MC1 penalizes
higher-order eigenvalues; while MC3 does not significantly
affect them. The discrete forward problem used to generate
the measured profile (see eq. (2)) comes from a continuous
Fredholm integral equation of the first kind with a smooth
kernel. Hence, a low-pass measuring system is in place that,
in discrete settings, results in an ill-determined rank system
matrix A. Hence, its spectral analysis performed using the
SVD results in a clustering of the smaller singular values
towards the origin. This phenomenon is more pronounced in
the MC1 case; while there is a negligible clustering in the
MC3 case. This means that the MC1 scenario is the most
challenging in terms of the ill-conditioning (condition number
equal to 6248.18) of the system matrix. In fact, it represents
a measurement configuration where a large aperture function
(i.e., a strong low-pass filter) is used. The MC3 scenario results
in the best conditioned problem (condition number equal to
2.79), since it comes from a continuous forward problem that
calls for a narrower aperture function (i.e., a weaker low-pass
filtering). Hence, regularisation is a mandatory choice in the
MC1 case when dealing with the inverse problem; while its
effects are almost negligible in the MC3 case. This justifies
the behaviour of LW-P that results in an added-value with
respect to LW in the MC2 cases; while it does not improve
reconstruction’s performance in MC3. It is also worth noting
that, in the MC3 case, even the LW method does not improve
significantly the conventional linear interpolation.

TABLE I
IF VALUES RELATED TO THE CONFIGURATIONS MC1, MC2 AND MC3

WHEN USING LW AND LW-P.

LW-NP LW-P

MC1 1.09 1.57
MC2 1.11 1.81
MC3 1.18 1.08

The second experiment refers to two 300 K narrow (50
samples) pulse functions separated by ∆ (samples): 50, 20 and
10 (see Fig. 6 (a), (b) and (c), respectively). The reconstructed
profiles using LW and LW-P are depicted in Fig. 7 that
is arranged in a matrix format with the rows standing for

Fig. 4. Reconstruction of the 1-pixel Dirac-like delta function using both
LW and LW-P for the scenario MC1 (a), MC2 (b) and MC3 (c). The noisy
measurements, interpolated onto the finer-resolution grid, are also annotated.
Note that dB scale is used.

the reference profiles depicted in Fig. 6 (a), (b) and (c),
respectively. In this experiment, the LW-P method is run with
α = 3, while the LW method is approximated using α = 10−2.
The three columns refer to the scenarios MC1, MC2 and MC3,
respectively. In all the panels, the measured profile interpolated
onto the finer resolution grid is also shown together with a
horizontal bar showing the brightness temperature level of
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Fig. 5. Singular values associated to the three system functions describing
the measurements process in the scenarios MC1, MC2 and MC3. Note that
semiology-y scale is used.

the RP. Note that dB scale is adopted. When dealing with
the MC1 scenario (see the first column), although both LW
and LW-P succeed in reconstructing a profile sharper than
the measured one, the LW-P method outperforms the LW
one since it results in a reduction of the over-smoothing and,
therefore, it reconstructs sharper edges. In fact, it provides
a better reconstruction of the abrupt discontinuities in the
region bounded by the two pulse functions. To analyse the
separability in an objective way, a -3 dB threshold, evaluated
with respect to RP, is considered (see dotted blue line in
Fig. 7). Hence, the reconstructed pulse functions are separated
when two distinguishable peaks are above the threshold. This
means that, when ∆ = 50 (see first row) the two pulse
functions are distinguishable in both the measurements and
the reconstructions; while in the ∆ = 20 and ∆ = 10
samples (see second and third rows, respectively), the RP
cannot be separated neither in the measurements, nor in the
reconstructions. However, it can also be noted that the LW-P
method is able to provide non-negligible distinguishable hints
of signal associated to the two pulse functions in the ∆ = 20
case, while this is no longer true when LW is used. Hence,
LW is never able to reach the performance of LW-P.
When dealing with the MC2 case, although LW-P still out-
performs LW, the difference in their reconstructed profiles
reduces significantly if compared to the MC1 case. LW-P
allows distinguishing the two profiles correctly when ∆ = 50
and ∆ = 20; while non-negligible hints of signal belonging
to the two pulse functions can be observed in the ∆ = 10
case. The LW method correctly distinguishes the two pulse
functions only in the ∆ = 50 and ∆ = 20 cases; while
almost negligible hints of signals are visible in the ∆ = 10
case. When dealing with the MC3 case, the intrinsic MWR
spatial resolution is finer enough to make the pulse functions
well distinguishable in the profiles measured at both ∆ = 50
and ∆ = 20 cases. In fact, the reconstructions practically do
not improve the measurements when dealing with ∆ = 50
case; while they result in non-negligible improvements when

dealing with the ∆ = 20 and ∆ = 10 cases. In the ∆ = 20
case, LW-P results in a reconstructed profile that well-fits the
RP in terms of the brightness level on the top of the pulse
functions. The same applies also for the ∆ = 10 case. In
addition, in both cases, LW-P outperforms LW, that results in
an overestimated brightness temperature level. When dealing
with separability of the two pulse functions, in the ∆ = 20
case the two RPs are distinguishable (according to the -3
dB threshold) in the measurements; while they are no longer
distinguishable in the measured profile at ∆ = 10. The LW
improves the separability in both the ∆ = 20 and ∆ = 10
cases with respect to the measured profile, and the LW-P. In
the ∆ = 10 case, both the LW and the LW-P reconstructions
show well-distinguishable hints of signals belonging to the
two pulse functions. To deeply analyse the separability of
the two pulse functions the DNR metric is evaluated, see
Table II. Quantitative results confirm the qualitative analysis of
Fig. 7. In general, the methods improve the measured profiles
in terms of DNR. The LW-P method generally outperforms
LW. The improvement is largest in the MC1 case when
∆ = 50. In the MC2 and MC3 cases, the finer intrinsic
MWR spatial resolution reduces the difference between DNR
values resulting from LW and LW-P. In some cases (MC2,
∆ = 50; MC3, ∆ = 20 ), LW outperforms LW-P. In the MC3
case, when ∆ = 50, the linearly interpolated measurements
outperform the reconstructed profiles in terms of DNR.

The third experiment consists of discussing the performance
of the reconstructions obtained by varying the amount of
regularization jointly using the metrics IF, noise amplification
and PBR, see Table III . The RP consists of a 300 K pulse
function of 50 samples width, see Fig. 8 (a). The analysis
consists of using the LW-P with different α values that include
the one that best fits the LW behaviour. The scatter plots of Fig.
8 (b) and (c) depict the reconstruction’s performance in terms
of noise amplification and IF related to the MC1 and MC3
cases, respectively. The reconstructions obtained using LW-P
with the 5 filter’s values are labeled as LW-Pf1 up to LW-
Pf5 with the former one calling for a performance very close
to the LW one. The metric noise amplification is evaluated
by averaging the absolute value of the RMSE related to the
shaded boxes depicted in Fig. 8 (a). Note that the α values
shown in Fig. 8 (b) and (c) are normalised to LW-Pf1. When
dealing with the MC1 case, see Fig. 8 (b), the performance of
LW-P is always superior to the LW one in terms of IF and PBR
for all the α values. The largest IF (∼ 1.5) and PBR (0.998)
values are obtained in the LW-P f5 case with an α value equal
to 0.005. The lowest IF and PBR values (larger than the the
LW ones) are achieved in the LW-P f1 case (∼ 1.1 and 0.791,
respectively) with an α value equal to 0.5, see Table III where
non-normalised α values are listed together with the metric
PBR. When dealing with the noise amplification, the superior
performance of LW-P can ben noted at the expense of a noise
amplification always larger than the LW one. In details, LW-
Pf1, LW-Pf2 and LW-Pf3 improve the IF performance with
respect to LW, while keeping the noise amplification at levels
comparable with the ones achieved by LW. When using LW-
Pf4 and LW-Pf5 the slight improvement in IF performance
is achieved at the expense of a larger increase of the noise
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TABLE II
DNR METRIC EVALUATED USING THE MEASUREMENTS AND THE RECONSTRUCTIONS RELATED TO THE SCENARIOS MC1, MC2 AND MC3 THAT REFER

TO THE REFERENCE PROFILES DEPICTED IN FIG. 6.

∆ (samples) 50 20 10
Measurements LW LW-P Measurements LW LW-P Measurements LW LW-P

MC1 121.55 95.38 0.88 211.82 241.11 181.32 244.08 292.51 257.55
MC2 69.15 9.81 35.45 192.21 162.69 81.70 245.41 243.62 180.86
MC3 15.44 38.74 22.60 128.21 32.77 75.76 212.62 160.30 180.18

TABLE III
IF, NOISE AMPLIFICATION AND PBR VALUES RELATED TO THE RP OF FIG.

8 AND OBTAINED USING LW AND LW-P. THE LATTER IS RUN WITH
DIFFERENT FILTER’S VALUES.

MC1

Filter IF Noise Amplification PBR
LW - 1.11 0.5119 0.791
LW-Pf1 0.5 1.18 0.5449 0.816
LW-Pf2 0.1 1.35 1.3821 0.927
LW-Pf3 0.05 1.39 1.988 0.946
LW-Pf4 0.01 1.4 4.249 0.969
LW-Pf5 0.005 1.49 8.2959 0.998

MC3

Filter IF Noise Amplification PBR
LW - 1.08 1.4282 0.879
LW-Pf1 2 1.08 0.9693 0.899
LW-Pf2 3 1.06 0.6377 0.944
LW-Pf3 4 1.04 0.2903 0.998
LW-Pf4 5 1.02 0.2798 0.942
LW-Pf5 6 1.01 0.2251 0.885

amplification. A fair compromise between noise amplification
and resolution enhancement is achieved in the LW-Pf3 case,
with a noise amplification ∼ 2 and an improvement factor
IF = 1.4. With respect to the MC3 case, see Fig. 8 (c),
the finer intrinsic spatial resolution and the lower overlapping
among adjacent beams limit the performance of both LW and
LW-P that result in IF values close to the unity and a reduced
noise amplification with respect to the MC1 case, see Table III.
The reduced noise amplification is likely due to the filtering
effects of the preconditioner. Hence, this confirms that the
antenna pattern deconvolution is not needed in the MC3 case.

B. Real measurements

Experiments on actual measurements refer to the bright-
ness temperature profiles extracted from data collected by
the Special Sensor Microwave Images (SSM/I) radiometer
that flown abroad the United States Defense Meteorological
Satellite Program. SSM/I is a multi-channel MWR and, for the
purposes of this study, measurements collected in 1988 by the
lowest spatial resolution channel, i.e., the 19.35 GHz channel,
and the 37.00 GHz channel are considered since they match
the parameters related to MC1 and MC3, respectively. In fact,
the 19.35 GHz measurements call for an along-scan spatial
resolution of 43 km whilst in the 37.0 GHz case the latter
is 29 km. In both the channels the radiometer, whose orbital
altitude is 833 km with a nominal swath width of 1400 km,
performs 64 uniformly spaced (25 km) measurements along
the along-scan direction.

The fourth experiment refers to radiometer measurements
collected over the Canary islands, see Fig. 9. The figure is
arranged in a matrix format, with the two columns (a,c,e)
and (b,d,f) standing for 19.35 GHz and 37.0 GHz H-polarized
channel, respectively. The rows are related to: the brightness
temperature field measured by the SSM/I (first row); the profile
measured along with the white transect of panel (a) (second
row) and the reconstructions obtained using LW and LW-P
together with the linearly interpolated measurements (third
row). When dealing with the 19.35 GHz case (see Fig. 9
(a)), both LW and LW-P provide reconstructed profiles sharper
than the measurements (see Fig.9 (e)). The LW-P is run with
α = 0.2 while the LW is approximated by α = 0.05. The
profile reconstructed using LW-P improves the measurements
in terms of both reconstruction of the brightness temperatuere
level of the small islands, and in the separation among them.
The reconstructed profile using LW, although correctly follows
the profile of the small islands, results in overestimations and
underestimations. The performance of both LW-P and LW
are similar when dealing with the continental area depicted
in the right-hand-most part of the image. When dealing with
the 37.00 GHz case (see Fig. 9 (f)) the two methods result
in similar reconstruction performance with LW-P calling for
lower fluctuations than LW. As far as for the simulated sce-
nario, even in this case the fine native SSM/I spatial resolution
and the very low level of overlapping among adjacent beams
let the reconstructed profiles being very close to the measured
one.

The fifth experiment is related to radiometer measure-
ments collected over an area that includes part of the United
Kingdom, Ireland, Northern Europe and the Scandinavian
Peninsula, see Fig. 10 that is arranged in a fashion similar
to Fig. 9. This experiment aims at analysing the performance
of the two methods when reconstructing small islands. On
this purpose, a transect (see dotted white line) is considered
that includes the isle of Man, see red circle in Fig. 10 (c,d).
The profiles reconstructed using LW and LW-P are depicted
together with the measured profile interpolated on the finer
resolution grid, see Fig. 10 (e) and (f) for the 19.35 GHz
and the 37 GHz cases, respectively. The LW-P is run with
α = 0.2 while the LW is approximated by α = 0.09.
When dealing with the 19.35 GHz case (Fig. 10 (e)), both
LW and LW-P result in a reconstructed profile sharper than
the measured one although characterised by Gibbs-related
fluctuations. The LW-P reconstruction performs best, since it
sharpens the edges resulting in a better reconstructed isle of
Man. When dealing with the 37.00 GHz case (see Fig. 10 (f))
the two methods result in almost similar performance that does
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Fig. 6. Three RPs that consist of pulse functions calling for a 300 K
brightness temperature and different separations (∆): ∆ = 50 samples (a);
∆ = 20 samples (b) and ∆ = 10 samples (c).

not improve significantly the measured profile. However, LW-
P results in a better reconstructed island with respect to LW.
To quantitatively discuss the reconstruction’s performance, the
metrics IF (referred to the isle of Man) and noise amplification
are used. Note that since in this case the RP is not available,
the metric PBR cannot be evaluated. In addition, to evaluate
IF a threshold equal to - 1 dB is used since the brightness
temperature level is not strong enough to allow using a
threshold equal to -3 dB. Results are depicted in Fig. 11 (a)

TABLE IV
IF, NOISE AMPLIFICATION AND PBR VALUES RELATED TO THE RP OF FIG.

11 AND OBTAINED USING LW AND LW-P. THE LATTER IS RUN WITH
DIFFERENT FILTER’S VALUES.

19.35 GHz
Filter IF Noise Amplification

LW - 1.24 0.6025
LW-Pf1 1 1.35 0.5540
LW-Pf2 0.5 1.74 0.5971
LW-Pf3 0.2 2.1 1.0814
LW-Pf4 0.15 2.22 1.2973
LW-Pf5 0.1 2.34 1.5561

37.00 GHz
Filter IF Noise Amplification

LW - 2.21 1.0572
LW-Pf1 1 2.5 1.6468
LW-Pf2 0.5 2.78 2.4361
LW-Pf3 0.2 3.75 5.0583
LW-Pf4 0.15 4.17 6.6008
LW-Pf5 0.1 5 9.7575

and (b) for the 19.35 GHz and 37.00 GHz cases, respectively,
where the same format of Fig. 8 is adopted. When dealing
with the 19.35 GHz case (see Fig. 11 (a)), LW-P always
outperforms LW in terms of IF with the largest IF (2.34)
being achieved with a filter equal to 0.1 (LW-Pf5). The lowest
IF value (1.35) is achieved with the filter value 1 (LW-Pf1),
see Table IV, and it is slightly higher than the corresponding
LW IF value (1.24). With respect to noise amplification, it
can be noted that up to LW-Pf2, the superior performance
of LW-P is not achieved at the expense of a larger noise
amplification. In particular, the latter is indeed a bit lower
than the LW case. From LW-P f3 onwards, the superior
performance of LW-P calls for a noise amplification larger
than the LW one. When dealing with the 37.00 GHz case, see
Fig. 11 (b), the joint analysis of IF and noise amplification
confirms that in this case the reconstruction algorithm is
generating very noisy reconstructions at low α values. This
confirms that in this scenario (finer intrinsic spatial resolution
and low overlapping among adjacent beams) antenna pattern
deconvolution algorithms do not work properly.

CONCLUSIONS

A study on the ability of enhancing of the spatial resolution
of conical-scanning microwave radiometer brightness profiles
using an iterative regularizing antenna pattern deconvolution
method that allows tuning the level of regularization is pre-
sented. The enhancement capabilities are discussed against the
overlapping among adjacent beams and native spatial resolu-
tion using both simulated and actual radiometer measurements.
In particular, three MRFs that resemble three conical scanning
radiometer’s measurement configurations and measured 1D
profiles extracted from data collected by the SSM/I sensor
are considered.

When retrieving the brightness profile on a finer spatial
resolution grid inverting the linear ill-posed forward problem,
special attention is due to ill-conditioning of the problem
that jointly depends on intrinsic radiometer spatial resolution
and the overlapping among adjacent beams. In case of finer
spatial resolution radiometer measurements calling for a lower
overlapping among adjacent beams, regularization is not a key
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Fig. 7. Profiles reconstructed using LW and LW-P. The rows (a,d,g), (b,e,h) and (c,f,i) refer to the reconstructions of the RPs depicted in Figure 6 (a), (b)
and (c), respectively. The columns (a,b,c), (b,e,f) and (g,h,i) refer to the MC1, MC2 and MC3 cases, respectively. In all the panels, the measured profile,
interpolated onto the finer-resolution grid is also shown together with horizontal bars that stand for the brightness level on the top of the RP. The dotted blue
line depict the -3 dB threshold. Note that dB scale is used.

issue to be dealt with. When dealing with lower-resolution
measurements resulting in higher overlapping among adjacent
beams, regularization plays a key role. In this latter case
a proper tuning of the regularization parameter allows an
application-oriented reconstruction calling for a desired trade-
off between enhanced performance and noise amplification.

The analysis carried on both synthetic and actual radiometer
measurements that resemble the SSM/I configuration shows
that:

• when dealing with the 19.35 GHz channel - i.e., the
one that best matches the simulated low-resolution high-
overlapping MC1 configuration - the improvement of the
spatial resolution can reach up to 2.34 at the expense of a
noise amplification equal to 1.56. In addition, to reach an
enhancement of 1.64 the noise amplification is less than
0.6.

• when dealing with the 37.0 GHz channel - i.e., the
one that best matches the simulated high-resolution low-

overlapping MC3 configuration - the improvement of the
spatial resolution is negligible and it is actually obtained
at the expense of an intolerable noise amplification.
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Fig. 10. Brightness field collected by the SSM/I over part of the United Kingdom, Ireland, Northern Europe and the Scandinavian Peninsula in 1988. The
first column refers to the measurement and the processing related to the 19.35 GHz channel; while the second column refers to the 37.0 GHz channel. The
brightness profile measured along the transects (shown as white lines in (a) and (b)) over an area that includes the isle of Man are depicted in (c) and (d)
for the 19.35 GHz and the 37.0 GHz cases, respectively. Note that the samples collected within the isle of Man are enclosed in the red circle. The linearly
interpolated measurements and the reconstructions obtained using both LW and LW-P are depicted in (e), (f) for the 19.35 GHz and the 37.00 GHz case,
respectively.
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Fig. 11. Reconstructions related to the actual SSM/I radiometer profile depicted in Fig. 10. The measured profile interpolated onto the finer resolution grid is
depicted in the panel (a) where the shaded boxes that are used to evaluate noise amplification are also annotated. The three-dimensional scatter plots contrast
the metrics IF and noise amplification for different values of the preconditioner filter for the 19.35 GHz (b) and 37.00 GHz (c) cases.




