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A B S T R A C T   

Black carbon (BC) is a product of incomplete combustion, present in urban aerosols and sourcing mainly from 
road traffic. Epidemiological evidence reports positive associations between BC and cardiovascular and respi-
ratory disease. Despite this, BC is currently not regulated by the EU Air Quality Directive, and as a result BC data 
are not available in urban areas from reference air quality monitoring networks in many countries. To fill this 
gap, a machine learning approach is proposed to develop a BC proxy using air pollution datasets as an input. The 
proposed BC proxy is based on two machine learning models, support vector regression (SVR) and random forest 
(RF), using observations of particle mass and number concentrations (N), gaseous pollutants and meteorological 
variables as the input. Experimental data were collected from a reference station in Barcelona (Spain) over a 2- 
year period (2018–2019). Two months of additional data were available from a second urban site in Barcelona, 
for model validation. BC concentrations estimated by SVR showed a high degree of correlation with the measured 
BC concentrations (R2 = 0.828) with a relatively low error (RMSE = 0.48 μg/m3). Model performance was 
dependent on seasonality and time of the day, due to the influence of new particle formation events. When 
validated at the second station, performance indicators decreased (R2 = 0.633; RMSE = 1.19 μg/m3) due to the 
lack of N data and PM2.5 and the smaller size of the dataset (2 months). New particle formation events critically 
impacted model performance, suggesting that its application would be optimal in environments where traffic is 
the main source of ultrafine particles. Due to its flexibility, it is concluded that the model can act as a BC proxy, 
even based on EU-regulatory air quality parameters only, to complement experimental measurements for 
exposure assessment in urban areas.   

1. Introduction 

Exposure to fine particles in polluted air accounts for approximately 
seven million premature deaths every year (Lelieveld et al., 2015; WHO, 
2018), globally. While poor air quality is associated with an increasing 
variety of cardiovascular and respiratory disease, recent research evi-
dences statistically significant health impacts even at low concentrations 
(Brunekreef et al., 2021). As a result, air pollution monitoring and 
mitigation remains a key challenge for urban areas (Viana et al., 2020). 

In order to understand the nature of urban air pollution, EU- 
reference air quality monitoring stations are available across Europe 

(Hussein et al., 2012), which monitor the parameters regulated by the 
Air Quality Directive (CO, NOx, SO2, O3 and particles PM10, PM2.5). 
Aside from these parameters, two relevant aerosol metrics are so far 
un-regulated: ultrafine particles (UFPs; particles smaller than 100 nm in 
diameter), and black carbon (BC). UFPs penetrate deep into the respi-
ratory tract and are especially linked to health impacts due to their high 
surface area to mass ratios (Oberdörster et al., 2007). BC is emitted from 
the incomplete combustion of carbonaceous material and it is typically 
associated with vehicle exhaust, coal-fired power plants, and biomass 
burning for heating and cooking (Petzold et al., 2013). BC is a relevant 
component of PM in European cities, contributing 5%–15% to PM mass 
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concentrations in urban air (Cavalli et al., 2016). BC exposure has 
negative implications for human health as well as for regional and global 
climate and extreme weather events (Bond et al., 2013; Saide et al., 
2015). 

Monitoring BC is valuable from a research perspective as well as for 
air quality and human exposure monitoring, as it is a tracer of traffic 
emissions and atmospheric processes (Luoma et al., 2021; Pakkanen 
et al., 2000; Reche et al., 2011a). Monitoring this parameter in urban 
areas would provide high added value during the design and testing of 
the effectiveness of mitigation strategies targeting road traffic. However, 
the complexity and cost of the instrumentation and the lack of reference 
monitoring protocols for BC results in limited data availability. To 
address this gap, diverse modelling approaches are applied aiming to 
improve the spatio-temporal coverage of non-regulated (e.g., BC, UFPs) 
and regulated metrics (e.g., PM2.5, NO2). Land-use regression (LUR) 
models are one of the most frequently used tools, especially as input for 
epidemiological research (Jones et al., 2020; Kerckhoffs et al., 2021, 
2017; Tripathy et al., 2019; Vizcaino and Lavalle, 2018). Other ap-
proaches are based on GIS (Ma et al., 2019) and spatio-temporal analysis 
(Simon et al., 2020; van de Beek et al., 2021). As a novel tool, an 
input-adaptive proxy model was developed (Fung et al., 2021), with 
which air quality datasets may be used to estimate BC concentrations not 
only in the present, but also historically or in the future as prediction. 
Input-adaptive proxies have so far been developed for BC and 
lung-deposited surface area (LDSA) (Fung et al., 2021, 2019; Martha A. 
Zaidan et al., 2019), using white and black-box models based on 
Bayesian and linear mixed-effects models. The models were successfully 
tested in Helsinki (Finland) and Amman (Jordan). 

The present work develops an input-adaptive proxy for BC based on 
two machine learning models, support vector regression (SVR) and 
random forest (RF), and tests their performance in a Mediterranean 
urban environment (Barcelona, Spain). The use of a BC proxy based on 
data-driven models allows the estimation of BC concentrations where BC 
is not directly measured, but where other pollutants are measured. BC 
was considered an adequate candidate for the application of a data- 
driven model, as its concentrations in urban environments typically 
correlate with those of traffic-related gaseous pollutants such as CO, NO, 
NO2, and fine particulate matter (PM2.5) and submicron particle number 
concentration (or ultrafine particles; N) in this urban environment 
(Brines et al., 2015; Reche et al., 2011a). It was hypothesised that BC 
concentrations can be estimated using multipollutant datasets 
combining regulated (PM2.5, O3, NO2) and non-regulated (N) concen-
trations. The application of this proposed input-adaptive proxy model is 
foreseen relevant and useful for regulatory as well as research (exposure 
assessment, air quality) purposes, for example to predict BC concen-
trations and for gap-filling in time series suffering from instrumental 
failure. 

2. Methods 

2.1. Monitoring sites 

Air quality measurements were carried out at the EU-reference urban 
background monitoring station Palau Reial, in Barcelona (41◦23′14′′ N, 
02◦06′56′′E, 80 m a.s.l.;Figure S1). The site is influenced by vehicular 
emissions, as evidenced by the daily patterns of BC and particle number 
concentrations (N) (Reche et al., 2011a). Air quality data were also 
collected from a second EU-reference urban background site (Roma 
Ave.), for subsequent validation of the modelling results. Both stations 
are part of the Barcelona reference air quality network (XVPCA; htt 
p://mediambi-ent.gencat.cat/). 

2.2. Air quality and meteorology datasets 

A combination of conventional (regulated) and novel (non-regu-
lated) air quality parameters were monitored at Palau Reial for a 2-year 

period (2018–2019). Data from EU reference analysers were collected 
for tropospheric ozone (O3), nitrogen oxide (NO), and nitrogen dioxide 
(NO2), with a 1-h time resolution. Particulate matter concentrations 
(PM10, PM2.5, PM1) were monitored with an environmental dust monitor 
Grimm EDM180, corrected against reference gravimetric measure-
ments, with a 10-min time resolution. Black carbon mass concentrations 
were monitored using a multiangle absorption photometer (MAAP, 
Thermo ESM Andersen Instruments) fitted with a PM10 inlet, operating 
on a 1-min time resolution. The MAAP determines absorbance by par-
ticles deposited on a filter using measurements of transmittance and 
reflectance at different angles. The absorbance was converted to BC 
mass concentrations using the default 6.6 m2/g mass absorption coef-
ficient at 637 nm (Müller et al., 2011; Petzold et al., 2013). Finally, total 
particle number concentrations (N) were monitored with a water-based 
condensation particle counter (WCPC TSI 3785), operating on a 5-min 
time resolution and measuring in the size range 5–1000 nm. The data 
for all parameters were averaged to a 1-h time resolution, and the entire 
row of data was removed whenever a missing value was encountered. 
Data availability was >80% for the period 2018–2019. 

Meteorological variables (temperature, relative humidity and 
boundary layer height, PBL) were obtained from a meteorological sta-
tion located on the rooftop of the Faculty of Physics at Barcelona Uni-
versity, at approximately 400 m from Palau Reial. 

In addition to the Palau Reial dataset, 2 months of data were 
collected from the Roma Ave. station to assess the applicability of the 
model at a second urban location. The Roma Ave. dataset included a 
more limited set of parameters (NO2 and O3, monitored with reference 
instrumentation, and BC, monitored with an AE33 Magee Aerosol doo 
aethalometer; with 1 h time resolution). Ambient temperature (T) and 
relative humidity (RH) were obtained from the Faculty of Physics, as in 
the case of Palau Reial. 

2.3. The black carbon proxy model 

Machine learning (ML) infers plausible models to explain observed 
data, which are capable of making predictions about unobserved data 
and take rational decisions based on these predictions (Hastie et al., 
2009). Specifically, machine learning models are systems which 
generate predictions (output) based on the data inputs they receive. 
Within the machine learning models, prediction techniques include 
linear and nonlinear methods, the latter requiring hyperparameters. To 
find the best set of hyperparameters per each algorithm a N-fold 
cross-validation strategy is typically used (Hastie et al., 2009). 

To test the performance of the BC proxy, we compare two models 
based on nonlinear supervised machine learning: support vector 
regression and random forest. The first model is the support vector 
regression (SVR) (Drucker et al., 1997), used in previous works for 
calibrating low-cost NO2 and O3 sensors (Barcelo-Ordinas et al., 2019; 
Ferrer-Cid et al., 2019; Ripoll et al., 2019). SVR, a nonlinear model, is a 
kernel method that is the analogous of support vector machines (SVMs; 
Cortes and Vapnik, 1997) which uses continuous values instead of 
classifying as SVM. It maps the data to a higher dimension in order to 
find a better regression curve while performing computations in input 
space via a positive-definite kernel function K(x, x’). The points which 
are far away from the correct regression plane will be the ones relevant 
for the correct model building. This is achieved via the ε-insensitive 
error loss, where only the points with error greater than ε are consid-
ered. The resulting SVR function is as follows: 

ŷ(x)=
∑N

i=1

(
α̂*

i − α̂i
)
K(x, xi) + b 

The values for the parameters α̂*
i and α̂ i are found by solving a 

quadratic optimisation problem. The objective function to solve is ob-
tained with the dual formulation of the problem, minimising a loss 
function. The radial basis function (RBF) kernel was used in this work. 
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The RBF kernel is proven to have an implicit map of infinite dimension. 
Finally, the hyperparameters optimised via cross-validation were the 
variance of the RBF kernel, the ε in the loss function, and a penalisation 
term C. 

The second model was the random forest (RF, Breiman, 2001). It is 
an ensemble method that uses multiple decision trees to achieve better 
results. Each decision tree begins with a root node and partitions the 
data into subsets that contain instances with similar values. The subdi-
vision continues using different model parameters until it reaches a leaf 
node in which a decision is made on the numerical value of the input. 
For any new input, the leaf node it falls is determined by starting at the 
root node and following a path according to the different criteria at each 
node. The mean squared error function was used to measure the quality 
of a split at each node. The number of trees in the forest varied from 1 to 
1000. 

In both models, the input variables were combinations of PM1, PM2.5, 
PM10, NO2, O3, N, PBL, temperature and relative humidity, to model 
hourly BC concentrations as output. 

To run each of the models, a randomly selected fraction of the dataset 
(80%) was used for training the model and the remaining fraction (20%) 
for validating the model. Randomising the data is essential to ensure that 
the model is challenged with the broadest range of concentrations 
among the input variables, covering different seasons in the year and 
times of day. Finally, a 10-fold cross-validation strategy was used to 
obtain the SVR and RF hyperparameters. 

The models’ root mean square error (RMSE), relative root mean 
square error (RRMSE) and coefficient of determination (R2) were used as 
diagnostic evaluation attributes (Fung et al., 2019). While R2 measures 
the amount of variance explained by the independent variables, the 
RMSE estimates the absolute difference between the modelled and 
measured mass concentrations. The RMSE is calculated as the square 
root of the average squared difference between the forecast and the 
observation pairs, while the RRMSE is calculated as the ratio between 
the RMSE and the mean BC concentration value for the observations. 

The models were run for different datasets, constructed using the 
original datasets from Palau Reial (2 years of data, 2018–2019) and 
Roma Ave. (2 months of data). The main comparison between models 
was carried out for the full dataset, comprising 2 years of data. In 
addition, the SVR model was run for different scenarios characterised by 
different sources and atmospheric processes. The 6 datasets included the 
following data:  

- Full dataset: 2 full years of data (2018 and 2019), Palau Reial; full 
dataset without any filtering (8011 samples).  

- Winter: December to February 2018 and 2019, Palau Reial; aiming to 
avoid new particle formation (NPF) events typical of summer (3049 
samples).  

- Summer: June to August 2018 and 2019, Palau Reial; aiming to focus 
on NPF events (674 samples).  

- Midday: hourly values between 10:00 and 14:00 UTC, Palau Reial; 
aiming to focus on midday NPF events (1598 samples).  

- Day: hourly values between 14:00 and 10:00 UTC, Palau Reial; 
aiming to avoid NPF events (6772 samples).  

- Roma Ave.: November and December 2020, Roma Ave; for model 
validation at a location different from where the model was trained. 
Hourly concentrations for BC, NO2 and O3 (105 samples). 

3. Results and discussion 

3.1. Daily variability of atmospheric pollutants 

Prior to BC modelling, the mean daily patterns of gaseous and par-
ticulate pollutants at the Palau Reial site were evaluated, for the period 
2018–2019 (Fig. 1). The purpose was to understand the daily pollutant 
trends and to assess their representativity. As observed in previous 
works (Brines et al., 2015; Carnerero et al., 2021; Reche et al., 2011a, 
2011b, 2015), NO2 and BC concentrations followed a diurnal pattern 
influenced by traffic activity, with maxima during the morning and 
evening rush hours (06:00–08:00 and 18:00–21:00 UTC), decreasing 
during midday mainly due to lower emissions and atmospheric dilution 
(Fig. 1). Ozone levels showed the characteristic inverse trend, with an 
increase at midday coinciding with the maximum photochemistry and 
solar radiation during the central hours of the day. Submicron particle 
number concentrations (N) were also closely related to traffic emissions, 
with maxima during the morning and evening rush hours. However, this 
parameter is known to be highly influenced in Barcelona by new particle 
formation (NPF) during the central hours of the day, especially in 
summer (photochemically induced nucleation; Carnerero et al., 2019; 
Cheung et al., 2011). Therefore, N and BC maxima were typically 
detected during morning and evening rush-hours linked to traffic 
(Maricq, 2007; Wehner et al., 2009), while N showed an additional 
maximum at midday, coinciding with a decrease in BC concentration, 
resulting from photochemical nucleation processes. This midday 
nucleation takes place in Barcelona as a consequence of the high solar 
radiation, the growth of the mixing layer, the increase in wind speed and 
the consequent decrease in pollutant concentrations. 

As a result, the dataset selected was considered representative. BC 
and N patterns observed in this study for Barcelona were in agreement 
with results shown by previous authors (Brines et al., 2015; Reche et al., 
2011a), who observed similarities between N and BC daily variability in 
North-European cities in contrast with the differences observed in 
high-insolation climates. 

3.2. Data-driven modelling – predicting BC concentrations 

An initial assessment of the relationship between each of the input 
parameters and BC concentrations was carried out based on Spearman’s 
coefficient (Table S1). PM2.5 and NO2 showed the highest correlation 

Fig. 1. Mean hourly variation of gaseous pollutant concentrations (NO2 and O3; left) and black carbon (BC) and particle number (N) concentrations (right) at the 
Barcelona Palau Reial station for the period 2018–2019. 
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with hourly BC concentrations (>0.60), while ozone was anti-correlated 
with BC (− 0.51). N showed a moderate positive correlation (0.54). The 
relationship with meteorological parameters (T, RH, PBL) was not 
especially relevant. PBL, included in the analysis as an indicator of at-
mospheric dilution processes, showed an inverse relationship with BC 
although minor in terms of Spearman’s coefficient (− 0.077). 

Fig. 2 shows the results (in terms of R2) obtained after applying SVR 
models to the full dataset from Palau Reial (PR), for a two-year period 
(2018–2019). The full dataset was divided into a training and a test set 
and each variable was used individually as input to the model. The 
process of splitting the dataset was repeated 10 times for each variable. 
The predictions were compared with the BC concentration in terms of 
R2. In univariable models NO2 and O3 showed better results than the 
other variables, but NO2 was the only parameter which achieved a fit 
with R2 > 0.5 (median R2 = 0.537). 

Table 1 summarises the results of multivariable SVR on the full 
dataset from PR. The Table shows the independent variables used as 
input, and the results obtained when compared to the dependent vari-
able (BC) in terms of R2 and RMSE for the testing dataset. The order of 
the input variables was obtained by forward selection. In this method, 
the model starts with a single input variable. In each iteration, the 
variable which improved the model the most was added to the model 
until all variables were considered. The first variable selected was NO2, 
as since it showed the best performance in univariable models Table S1 
and Fig. 2). 

As shown in Table 1, the model performance varied as a function of 
the input variables selected, with R2 for the testing dataset spanning 
between 0.537 and 0.828. After including 6 variables, the R2 for the 
testing dataset was >0.800, suggesting that the model was able to 
reproduce observed BC concentrations with a reasonably high degree of 
correlation. In terms of RMSE, results were also promising given that 
errors were <0.69 μg/m3 when using at least 2 variables. The highest 
model fit for the full dataset (R2 testing = 0.828; RMSE = 0.478 μg/m3; 
RRMSE = 36%) was obtained using all the variables as input (NO2, N, 
PM10, PM2.5, PM1, O3, T, RH, PBL). In addition, if we select an arbitrary 
threshold of R2 = 0.800, this was already achieved with the combination 
of 6 variables (NO2, N, PM2.5, O3, T, PM1). As the number of input 
variables was reduced, the fit between the modelled and measured BC 
concentrations decreased (Table 1). The lowest R2 obtained (R2 testing 
= 0.537) used only NO2 as input. It is relevant to take into account that 
adding a large number of parameters in a machine learning model may 
lead to overfitting, which in this case was not observed. Adding certain 
input parameters may result in significant quantitative leaps in R2 or 
RMSE, while others may result in only a marginal leap: for example, 
including PM10, and PBL only improved R2 and RMSE by a few in a few 

thousandths (Table 1). In accordance with the results from Table 1, the 
parameters which contributed the most (and therefore were considered 
critical) to estimate BC in this work, for the full dataset, were NO2, N and 
PM2.5. Parameters considered as correctors, with only marginal im-
provements to model performance, were PM10, PBL and RH (Table 1). 

The scatter plot and the time series for 1 month of the measured vs. 
modelled BC concentrations for the most optimal combination of input 
variables (resulting in R2 = 0.828, Table 1) for the full dataset are shown 
in Fig. 3. The Figure suggests better model performance for low when 
compared to high BC concentrations, given that data dispersion 
increased significantly for measured BC concentrations >7 μg/m3. In 
addition, the model tends to underestimate the highest measured BC 
concentrations as well as the seasonal variability of the model’s 
performance. 

These results are aligned with those reported by Zaidan et al. (2019) 
and Fung et al. (2019), who also modelled BC using black- and 
white-box approaches and obtained R2 ranging between 0.74 and 0.94 
for measured vs. modelled BC concentrations. Conversely, higher RMSE 
were obtained (0.19–2.3 μg/m3) than in the present study (0.48–0.81 
μg/m3). 

In addition to the SVR model, a RF model was also applied to the full 
dataset aiming to compare the performance of two machine-learning 
models. Results from the RF model did not significantly differ from 
those obtained with SVR (R2 = 0.544–0.808; Table S2 and Figure S2). 
The order in which the variables were included in the forward selection 
algorithm was different for each of the models, and this is why the 
parameter combinations are not shown in Table S2. The relative weight 
of PM2.5 and N was different for both models, and PM1 was not as critical 
in RF as it was with SVR. Figure S2 shows the performance of SVR and 
RF in terms of R2 and RMSE, as the number of parameters considered 
according to forward selection increased. The SVR model was slightly 
better at predicting hourly BC concentrations, but the difference was not 
significant, and we conclude that both models can be used to build the 
BC proxy. 

3.3. Model performance as a function of air pollutant emissions and 
meteorology 

After assessing model performance for the full dataset, the model was 
challenged with different subsets of data where BC concentrations were 
influenced by different emission sources and atmospheric processes. The 
full dataset was divided into the summer and winter periods with the 
aim of assessing the influence of new particle formation events on model 
performance, given that N was one of the parameters identified as 
critical. Similarly, subsets of data were also created for the midday hours 
of the day vs. the rest of the day. For each subset of data, a forward 
selection method was used. The results for the different datasets are 
shown in Fig. 4. The box plots describe the interquartile range (IQR) of 
the R2 and RMSE solutions obtained for the testing datasets, respec-
tively. The results used to generate the box plots (9 variables considered 
for the forward selection) can be found in Table 1 and in Supporting 

Fig. 2. Box plot of R2 on the testing dataset between measured and modelled 
hourly BC concentrations, for each variable individually. Results obtained after 
dividing the dataset 10 different times into training and test datasets. 

Table 1 
SVR model performance (RMSE in μg/m3, RRMSE in % and R2 for the testing 
dataset) for the full dataset, with data collected over the full 2-year period 
(2018–2019) at the Palau Reial reference station.  

Input parameters R2 RMSE RRMSE 

NO2 0.537 0.805 60.0 
NO2, N 0.660 0.671 50.0 
NO2, N, PM2.5 0.725 0.604 45.0 
NO2, N, PM2.5, O3 0.761 0.562 41.9 
NO2, N, PM2.5, O3, T 0.780 0.541 40.3 
NO2, N, PM2.5, O3, T, PM1 0.810 0.501 37.3 
NO2, N, PM2.5, O3, T, PM1, RH 0.822 0.485 36.1 
NO2, N, PM2.5, O3, T, PM1, RH, PM10 0.826 0.480 35.8 
NO2, N, PM2.5, O3, T, PM1, RH, PM10, PBL 0.828 0.478 35.6  
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Information (Tables S3, S4, S5, S6 and S7). 
As in the case of the full dataset, the correlation between modelled 

and measured BC evidenced the model’s capability to predict BC 

concentrations in the urban environment selected, with the optimal R2 

coefficients for the testing datasets >0.800 for the seasonal datasets. 
Model performance was the highest for winter (R2 = 0.848, Fig. 4 and 
Table S4 in Supporting Information) and decreased in summer (R2 =

0.812; Table S5), as expected due to the influence of nucleation peaks in 
summer which are uncorrelated with those of BC. Model performance 
was poorest for the daily datasets, with the lowest R2 obtained for the 
midday dataset (R2 = 0.737, Fig. 4 and Table S6), and a higher R2 for the 
dataset excluding the midday hours (R2 = 0.811; Table S7). Once again, 
this was explained by the influence of new particle formation during 
midday hours. The fit was better for the dataset excluding the midday 
hours as during those hours BC was mainly driven by road traffic 
emissions. 

Overall, the optimal parametrisation for all of the subsets of data 
included N as a critical variable. These results confirm that the absence 
or presence of NPF events is key for the model’s success. This has im-
plications regarding the potential for application of the model especially 
in environments where traffic is the main driver of N concentrations, 
and with low influence of NPF events (e.g., highly polluted environ-
ments, colder climates, etc.). Despite this, it should be noted that, for 
Barcelona, the model was able to adequately predict BC concentrations 
during traffic rush hour periods, when population exposure is typically 
the highest (Reche et al., 2015; Rivas et al., 2014). 

In terms of RMSE (Fig. 4, bottom) results ranged between 0.286 and 
0.553 μg/m3, with the lower RMSE being obtained for the summer 
dataset (0.286 μg/m3). Contrarily to the R2 coefficients, the best per-
formance (lowest RMSE) was obtained for the summer dataset, probably 
linked to the smaller size of the dataset: fewer values imply fewer large 
errors, resulting in lower RMSEs. The largest RMSE (for the winter and 
full day datasets, RMSE = 0.553 μg/m3 and 0.478 μg/m3, respectively) 
were at the low end of the values reported in the literature (0.19–2.3 μg/ 
m3, Fung et al., 2019; Zaidan et al., 2019). When calculating RMSE, 
larger errors have a disproportionately large effect, which means that 
having a limited number of outliers has a strong impact on the calculated 
RMSE. 

Finally, the model was validated with data from a second reference 
station (Roma Ave.) after it had been trained with the winter dataset 
from Palau Reial. This period was selected to match the environmental 
conditions for the period of data available from Roma Ave. (Nov–Dec 
2020), even though due to the impact of the COVID-19 pandemic the 
year 2020 should not be considered as fully representative of traffic 
emission patterns. Prior to this validation at a different station, the 
model was tested to predict BC concentrations at Palau Reial from the 

Fig. 3. Left: scatter plot of estimated BC vs. measured (Ref) BC for the optimal parametrisation for the full dataset (with NO2, N, PM10, PM2.5, PM1, O3, T, RH and PBL 
as input variables), for the period 2018–2019 at the Palau Reial site (full dataset). The red line indicated 1:1, while the thinner dotted lines indicate a 0.5 μg/m3 

uncertainty range. Right: time series of estimated BC and measured (ref) BC for this parametrisation, for the month of January 2019, as an example. 

Fig. 4. Box plot of R2 (top) and RMSE (bottom) between measured and 
modelled hourly BC concentrations for the different subsets of data. Results 
shown only for the testing datasets. Year_PR: full dataset (hourly values for 
2018 and 2019); Winter_PR: hourly data for December, January and February 
2018 and 2019; Summer_PR: hourly data for June, July and August 2018–2019; 
Midday_PR: all hourly values between 10:00 and 14:00 UTC; Day_PR: all hourly 
values from 14:00 to 10:00 UTC; Roma Ave.: dataset for model validation, 
including data from this site for November and December 2020. 
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winter of 2020 when trained with data from 2018 to 2019 (2 full years), 
to confirm the capability of the model to predict towards future years at 
a given station. Because the results for Palau Reial were positive (R2 =

0.837, RMSE = 0.478 μg/m3), the same analysis was applied for Roma 
Ave. For this validation it was not possible to apply the optimal com-
bination of input parameters selected for Palau Reial (NO2, N, PM10, 
PM2.5, PM1, O3, T, RH, PBL), given that particle number concentrations 
(N) were not monitored at Roma Ave. and PM2.5 concentrations were 
only available as daily means. Instead, only regulatory (NO2, O3) and 
meteorological (T, RH, PBL) parameters were used. Five combinations of 
input variables were tested, based on the experience obtained from the 
Palau Reial dataset and on the parameters available (Table S8). The 
optimal model parametrisation (with NO2, O3, T, RH and PBL) achieved 
an R2 coefficient for the testing dataset of 0.633, with RMSE = 1.19 μg/ 
m3, significantly lower than the results for the Palau Reial site. However, 
the Roma Ave. dataset was strongly limited by its size (only two months 
of data) and the lack of critical variables such as N and PM2.5. Also, as 
expected, the fact that the model had been trained at a different location 
clearly impacted the performance indicators, as well as the different BC 
emission patterns during the COVID pandemic period (winter 2020, 
while the model had been trained with data from a pre-pandemic 
period). 

3.4. Parametrisation with regulatory vs. non-regulatory air quality 
variables 

In the last stage of this assessment we evaluated the applicability of 
the model in urban scenarios where different combinations of input 
parameters may be available, depending on the infrastructure available 
at the air quality networks. For example, while networks in certain cities 
(e.g., Paris or Copenhagen) include several stations with particle num-
ber monitors, others currently cover strictly the regulatory parameters 
(e.g., Madrid or Barcelona in the majority of stations). Thus, it was 
considered useful to test the model using only regulatory parameters as 
input, and compare the results with parametrisations using combina-
tions of regulatory and non-regulatory parameters (mainly, N). The 
Roma Ave. dataset was not included in this assessment due to the lack on 
N data. 

As shown in Table 1, the most optimal model parametrisation for the 
full dataset included N (non-regulatory) as input. The range of R2 co-
efficients obtained when including N was 0.660–0.828 (Table 1), while 
it decreased to 0.537–0.727 using only regulatory parameters (Table 2). 
Despite this decrease, the optimal model solution using regulatory pa-
rameters still obtained R2 > 0.700. 

Comparing the different subsets of data (Fig. 5), results showed that 
the midday dataset produced the most similar result for para-
metrisations with regulatory and non-regulatory parameters, while the 
winter dataset showed the largest difference. This was due to the 
different sizes of the data subsets, and to the seasonality of the corre-
lation between BC and N: in summer, when the midday N peak was most 
relevant, model performance did not improve as much as in winter, 
when N and BC show a highly correlated hourly evolution. The errors 
were larger for the parametrisations using only regulatory parameters. 
This is in agreement with the fact that the R2 was higher when N (non- 

regulatory) was included. The range of RMSE estimated when including 
N was 0.286–0.553 μg/m3 slightly lower than when considering only 
regulated pollutants (0.339–0.756 μg/m3). 

In summary, the modelling results improved with N as input vari-
able. The model’s performance using only regulated pollutants supports 
the application of this methodology in locations where only EU air 
quality reference data are available. 

4. Conclusions 

This work presents the development of a BC proxy based on super-
vised machine learning frameworks using data-driven models. The val-
idity of the proxy approach was evaluated on a 2-year BC dataset 
obtained from two reference air quality monitoring stations in Barcelona 
(Spain), representative of Mediterranean climate, air pollutant mix and 
main emission sources. 

After testing diverse combinations of input variables, the optimal 
model parametrisation using SVR was found to be using NO2, N, PM10, 
PM2.5, PM1, O3, T, RH and PBL as input variables. With this para-
metrisation, the model was able to estimate BC concentrations with a 
correlation coefficient between modelled and measured concentrations 
of R2 = 0.828 and low errors (RMSE = 0.48 μg/m3). The correlation 
coefficient was comparable to those reported in the literature with 
white/black box models. Conversely, the RMSE obtained was lower than 
those reported for black/white box models, which was considered an 
improvement. Within the optimal parametrisation, critical variables 
were N, PM2.5 and NO2, while O3, RH, PBL and T were considered 
correctors with only marginal improvements to model performance. The 
relevance of N as input variable was linked to the influence of new 
particle formation (NPF) events, which mainly occur at midday and 
during the summer months in Mediterranean climates (e.g., Carnerero 
et al., 2018; Casquero-Vera et al., 2020; Petäjä et al., 2007). As a result, 
model performance was dependent on seasonality (maximum R2 for 
winter = 0.848, vs. 0.812 for summer). This has implications regarding 
the model’s applicability, which may have the highest potential in en-
vironments where traffic is the main driver of N concentrations and 
where NPF events are scarce (e.g., highly polluted environments, colder 
climates, etc.). Finally, aiming to support the use of the model by air 
quality monitoring networks, the model was challenged with a dataset 
consisting of only EU-regulatory parameters (PM2.5, NO2, O3). While 
performance was lower in comparison to other parametrisations, results 
evidenced a relatively high degree of correlation between modelled and 
measured BC concentrations (R2 = 0.727; RMSE = 0.601 μg/m3). Future 
research will involve including solar radiation as indicator of NPF events 
for locations where N data are not available. 

To conclude, it is evident that experimental monitoring of BC con-
centrations in urban areas is highly advisable. However, high infra-
structure costs and the lack of specific legislation limit the deployment 
of BC monitors across urban areas. In this framework, the data-driven 
model presented, together with other proxies being developed (Fung 
et al., 2021, 2019; Zaidan et al., 2019), may constitute a useful addition 
to urban air quality monitoring, which can contribute to the relatively 
scarce datasets currently available (mostly, from research teams). The 
proxy model proposed may provide value for exposure assessment in 
terms of gap filling in air quality time series (e.g., instrumental failures), 
or of predicting BC concentrations at locations where this parameter was 
once monitored (so that sufficient data are available to train the model). 
Under these considerations, we conclude that this methodology is 
applicable in Mediterranean urban environments for exposure assess-
ment of BC concentrations, provided that the model can be adequately 
trained. It may be of interest for urban air quality research and 
management. 
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Input parameters (only regulatory) R2 RMSE RRMSE 
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NO2, PM2.5, O3, RH, PM10, T 0.727 0.601 44.8  
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Petäjä, T., Kerminen, V.-M., Dal Maso, M., Junninen, H., Koponen, I.K., Hussein, T., 
Aalto, P.P., Andronopoulos, S., Robin, D., Hämeri, K., Bartzis, J.G., Kulmala, M., 
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Pedrerol, M., Alastuey, A., Sunyer, J., Querol, X., 2014. Child exposure to indoor and 
outdoor air pollutants in schools in Barcelona, Spain. Environ. Int. 69 https://doi. 
org/10.1016/j.envint.2014.04.009. 

Saide, P.E., Spak, S.N., Pierce, R.B., Otkin, J.A., Schaack, T.K., Heidinger, A.K., da 
Silva, A.M., Kacenelenbogen, M., Redemann, J., Carmichael, G.R., 2015. Central 
American biomass burning smoke can increase tornado severity in the. U.S. Geophys. 
Res. Lett. 42, 956–965. https://doi.org/10.1002/2014GL062826. 

Simon, M.C., Naumova, E.N., Levy, J.I., Brugge, D., Durant, J.L., 2020. Ultrafine particle 
number concentration model for estimating retrospective and prospective long-term 
ambient exposures in urban neighborhoods. Environ. Sci. Technol. 54, 1677–1686. 
https://doi.org/10.1021/acs.est.9b03369. 

Tripathy, S., Tunno, B.J., Michanowicz, D.R., Kinnee, E., Shmool, J.L.C., Gillooly, S., 
Clougherty, J.E., 2019. Hybrid land use regression modeling for estimating spatio- 
temporal exposures to PM2.5, BC, and metal components across a metropolitan area 
of complex terrain and industrial sources. Sci. Total Environ. 673, 54–63. https:// 
doi.org/10.1016/j.scitotenv.2019.03.453. 

van de Beek, E., Kerckhoffs, J., Hoek, G., Sterk, G., Meliefste, K., Gehring, U., 
Vermeulen, R., 2021. Spatial and spatiotemporal variability of regional background 
ultrafine particle concentrations in The Netherlands. Environ. Sci. Technol. 55, 
1067–1075. https://doi.org/10.1021/acs.est.0c06806. 

Viana, M., Leeuw de, F., Bartonova, A., Castell, N., Ozturk, E., González Ortiz, A., 2020. 
Air quality mitigation in European cities: status and challenges ahead. Environ. Int. 
143, 105907. https://doi.org/10.1016/j.envint.2020.105907. 

Vizcaino, P., Lavalle, C., 2018. Development of European NO2 Land Use Regression 
Model for present and future exposure assessment: implications for policy analysis. 
Environ. Pollut. 240, 140–154. https://doi.org/10.1016/j.envpol.2018.03.075. 
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