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Abstract 

Remote Sensing (RS) offers efficient tools for drought monitoring, especially in countries 

with a lack of reliable and consistent in-situ multi-temporal datasets. In this study, a novel RS-

based Drought Index (RSDI) named Temperature-Vegetation-soil Moisture-Precipitation 

Drought Index (TVMPDI) was proposed. To the best of our knowledge, TVMPDI is the first 

RSDI using four different drought indicators in its formulation. TVMPDI was then validated and 

compared with six conventional RSDIs including VCI, TCI, VHI, TVDI, MPDI and TVMDI. To 

this end, precipitation and soil temperature in-situ data have been used. Different time scales of 

meteorological Standardized Precipitation Index (SPI) index have also been used for the validation 
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of the RSDIs. TVMPDI was highly correlated with the monthly precipitation and soil temperature 

in-situ data at 0.76 and 0.81 values respectively. The correlation coefficients between the RSDIs 

and 3-month SPI ranged from 0.07 to 0.28, identifying the TVMPDI as the most suitable index for 

subsequent analyses. Since the proposed TVMPDI could considerably outperform the other 

selected RSDIs, all spatiotemporal drought monitoring analyses in Iran were conducted by 

TVMPDI over the past 21 years. In this study, different products of the Moderate Resolution 

Imaging Spectrometer (MODIS), Tropical Rainfall Measuring Mission (TRMM), and Global 

Precipitation Measurement (GPM) datasets containing 15206 images were used on the Google 

Earth Engine (GEE) cloud computing platform. According to the results, Iran experienced the most 

severe drought in 2000 with a 0.715 TVMPDI value lasting for almost two years. Conversely, the 

TVMPDI showed a minimum value equal to 0.6781 in 2019 as the lowest annual drought level. 

The drought severity and trend in the 31 provinces of Iran have also been mapped. Consequently, 

various levels of decrease over the 21 years were found for different provinces, while Isfahan and 

Gilan were the only provinces showing an ascending drought trend (with a 0.004% and 0.002% 

trendline slope respectively). Khuzestan also faced a worrying drought prevalence that occurred 

in several years. In summary, this study provides updated information about drought trends in Iran 

using an advanced and efficient RSDI implemented in the cloud computing GEE platform. These 

results are beneficial for decision-makers and officials responsible for environmental 

sustainability, agriculture and the effects of climate change. 

Keywords: Drought index; Drought in Iran; MODIS; Monitoring; Remote sensing (RS); TVPMDI 

1. Introduction 

Drought is a complicated hydrometeorological phenomenon depending on several 

environmental factors. Drought on land is known as the deficiency in Soil Moisture (SM) being 
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affected by both Land Surface Temperature (LST) (Ebrahimy et al., 2021) and vegetation 

conditions (Amani et al., 2017). Degrees of drought has increased over the past decades and are 

forecasted to be more severe in the future (West et al., 2019). Drought can cause many detrimental 

results in the environment and economy (Rulinda et al., 2012). Thus, monitoring drought variation 

(Mahmoudi et al., 2019), over long periods is essential for various applications (Heydari et al., 

2018). Accordingly, drought is a common natural disaster that has long been known as one of the 

human's ecological, hydrological, agricultural and economic concerns (Han et al., 2020; Rulinda 

et al., 2010).  

Drought can be grouped into four categories: (1) meteorological drought defined as a deficit 

in precipitation; (2) agricultural drought defined as a deficit in SM (Liu et al., 2016); (3) 

Hydrological drought defined as shortages in run-off, groundwater, or total water storage; and (4) 

socio-economic drought defined as a shortage in water supply in relation to social demands and 

response (AghaKouchak et al., 2015). Monitoring of these four drought classes is either performed 

using in-situ meteorological data provided by sparse measurement stations of meteorological and 

climatological organizations or using Remote Sensing (RS) data. In-situ data supply precise 

measurements of drought-related parameters like rainfall, temperature, and SM, they are collected 

at a limited number of sites, and thus, do not efficiently support large-scale studies (Xu et al., 

2020). Such a limitation may be exacerbated due to possible data gaps and discontinuities, leading 

to inhomogeneous data (Raziei et al., 2011). Therefore, a suitable alternative solution would be 

utilizing frequently acquired RS data and spatially consistent data from the Earth’s surface (Dyosi 

et al., 2021; Hao et al., 2017; Orimoloye et al., 2021c, 2021a; Zambrano et al., 2017). 

In addition to several advantages of RS drought monitoring using RSDIs (i.e., synoptic data 

acquisition, near-real-time observation, consistent data recording) over traditional ground-based 
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observations, the possibility of employing satellite data with high spatial resolution makes RSDIs 

more attractive for drought monitoring (AghaKouchak et al., 2015). In fact, the advances in RS 

technology have led to the acquisition of data in different spatial resolutions, which enhances 

surface state monitoring. The available high-resolution RS data enables the generation of 

sophisticated drought indices (i.e., combining different criteria for better representation of drought 

conditions) at around 1 km and also more satisfactory resolutions of nearly 30 m (Ghaleb et al., 

2015). These resolutions are more appealing than other coarse resolution satellite and ground-

based drought monitoring procedures, which were conventionally conducted at sub-degree 

resolutions. Therefore, the diversity of spatial resolution empowers the applicability of RSDIs for 

global to local drought monitoring studies. Furthermore, previous studies have also acknowledged 

the use of finer resolution RSDIs for drought monitoring and investigated the effect of spatial 

resolution on drought event detection(Huffman et al., 2007). For instance, Raziei et al., (2013) 

reported that coarser spatial resolution drought monitoring resulted in more stable and distinctive 

drought variability modes in comparison to finer spatial resolutions. Therefore, it is of high 

importance to consider the suitable spatial resolution of RSDIs based on the study requirements 

and specifications to achieve the most accurate results. For instance, RSDIs with nearly 1km 

spatial resolution would be suitable for large-scale studies, while for local studies, especially over 

agricultural areas in which different types of crops existed, finer resolution RSDIs should be 

incorporated (Zhou et al., 2020). 

Expansion of drought, its severity and environmental effects over a specific period are difficult 

to be monitored. Therefore, drought is commonly specified by drought indices (Liu et al., 2016). 

For this purpose, various meteorological indices and RS-based Drought Indices (RSDIs) have been 

proposed. For instance, the Standardized Precipitation Index (SPI) (McKee et al., 1993; Sharafati 
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et al., 2020), the Palmer drought severity index (PDSI), the Relative Precipitation Index (RPI), and 

the Effective Drought Index (EDI) (Byun and Wilhite, 1999) provide location specific information. 

Alternatively, RSDIs including the Vegetation Condition Index (VCI) (Kogan, 1995), Normalized 

Difference Vegetation Index (NDVI) (Ding et al., 2011; Rulinda et al., 2011), Temperature 

Condition Index (TCI) (Kogan, 1995), Vegetation Health Index (VHI) (Kogan, 1995), 

Temperature–Vegetation Dryness Index (TVDI) (Sandholt et al., 2002), Modified Perpendicular 

Drought Index (MPDI) (Ghulam et al., 2007), Precipitation Condition Index (PCI) (Du et al., 

2013), Temperature-Vegetation-soil Moisture Dryness Index (TVMDI) (Amani et al., 2017), The 

multivariate standardized drought index (MSDI) (Hao and AghaKouchak, 2014) have been 

proposed for rapid drought monitoring over large areas. Table 1 depicts the most popular RSDIs 

and their formulas in which different types of drought indicators have been used. 

 

 

 

 

 

 

 

Table 1. Popular RSDIs and their formulas. 

Index Formula Parameter Reference 

VCI 
𝑁𝐷𝑉𝐼𝑖,𝑡−𝑁𝐷𝑉𝐼𝑖,𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑖,𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑖,𝑚𝑖𝑛
  (1) 

NDVIi,t refers to the NDVI value for the pixel i at 

the time of t, NDVIi,min and NDVIi,max denotes 

the minimum and maximum NDVI values in the 

long time series respectively, for pixel i 

(Kogan, 1995) 
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TCI 
𝐿𝑆𝑇𝑖,𝑚𝑎𝑥−𝐿𝑆𝑇𝑖,𝑡

𝐿𝑆𝑇𝑖,𝑚𝑎𝑥−𝐿𝑆𝑇𝑖,𝑚𝑖𝑛
  (2) 

LSTi,t is the LST value for pixel i at the time of t, 

LSTi,min and LSTi,max refer to the minimum and 

maximum LST  values in the long time series, 

respectively, for pixel i 

(Kogan, 1995) 

VHI 𝛼𝑉𝐶𝐼 + (1 − 𝛼)𝑇𝐶𝐼  (3) 
α and (1 − α) are the weights of the VCI and 

TCI, respectively. α was set at 0.5 in this paper. 
(Kogan, 1995) 

TVDI 
𝑇𝑁𝐷𝑉𝐼𝑖−𝑇𝑁𝐷𝑉𝐼𝑖,𝑚𝑖𝑛

𝑇𝑁𝐷𝑉𝐼𝑖,𝑚𝑎𝑥−𝑇𝑁𝐷𝑉𝐼𝑖,𝑚𝑖𝑛

  (4) 

TNDVIi  represent the LST in the NDVI-LST 

triangle space at a pixel, TNDVIi,min
 and 

TNDVIi,max  refer to minimum and maximum 

surface temperature in the NDVI-LST triangle 

space respectively, for pixel i, which calculated 

as follow: 

TNDVIi,min = a + bNDVIi (5) 

TNDVIi,max = a′ + b′NDVIi (6) 

a, b, a’, and b’ are the undetermined coefficients, 

related to the dry edge in the triangle. The 

parameters a and b  were set equal to their 

average values used by (Schirmbeck et al., 

2018). 

(Sandholt et 

al., 2002) 

MPDI 

𝜌𝑟𝑒𝑑 + 𝑀𝜌𝑁𝐼𝑅
− 𝑓𝑣(𝜌𝑣,𝑟𝑒𝑑 + 𝑀𝜌𝑣,𝑁𝐼𝑅

)

(1 − 𝑓𝑣)√𝑀2 + 1
 

(7) 

ρv,red  and ρv,NIR  refer to green and healthy 

vegetation reflectance values of the red and NIR 

bands, respectively,  fv  is the fraction of 

vegetation cover, M implies the slope of the soil 

line equation. M was set at 1.163 (Amani et al., 

2017). The fv parameter is calculated using the 

formula presented by (Ghulam et al., 2007). 

(Ghulam et al., 

2007) 

MSDI 𝑀𝑆𝐷𝐼 = 𝜑−1 (𝑝)  (8) 

 MSDI is based on the states of precipitation and 

SM. It probabilistically combines the SPI and the 

Standardized Soil Moisture Index (SSI) for 

drought characterization. 𝜑 is the standard 

normal distribution function. Equation (8) 

transforms the joint probability to the MSDI that 

is in the same space as the original SPI and 

allows cross-comparison of different drought 

indices, such as SSI. 

 

(Hao and 

AghaKouchak, 

2014) 

NDWI 
ρNIR−ρSWIR

ρNIR+ρSWIR
  (9) 

The Normalized Difference Water Index 

(NDWI) is one of the most popular RSDIs. It is 

sensitive to changes in liquid water content of 

vegetation. 𝜌𝑁𝐼𝑅 and 𝜌𝑆𝑊𝐼𝑅 are reflectance 

values of near-infrared and short-wave infrared. 

(Gao, 1996) 

 

 

 

Table 1. (continued). 

Index Formula Parameter Reference 
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MIDI 

α × PCI+ β × SMCI + (1 − α − β) × TCI 
  (10) 

 

 

PCI =
Pi−Pmin

Pmax−Pmin
  (11) 

 

SMCI =
SMi−SMmin

SMmax−SMmin
  (12) 

The Microwave Integrated Drought Index 

(MIDI) estimates short-term drought, 

particularly the meteorological drought over 

semi-arid regions. It integrates precipitation (P), 

SM, and LST. Each variable is linearly scaled 

from 0 to 1 for each pixel based on absolute 

minimum and maximum values over time to 

monitor drought relatively. In Equation (10), 

TCI, PCI, and SM Condition Index (SMCI) are 

RSDIs. α and β also present the weight of single 

index while constituting the integrated drought 

indices. 

(Zhang and Jia, 

2013) 

OMDI/

OVDI 

OMDI: Constrained Optimization for 

TCI, PCI, and SMCI 

OVDI: Constrained Optimization for 

VCI, TCI, PCI, and SMCI 

 

The optimized versions of meteorological 

drought index (MDI) and the vegetation drought 

index (VDI) were proposed using multi-source 

satellite data, including precipitation, 

temperature, SM and vegetation information. 

The Constrained Optimization method was 

adopted to determine the optimal weights of 

VCI, TCI, PCI, SMCI indices generating 

combined drought indices. TRMM stands for 

Tropical Rainfall Measuring Mission.  

(Hao et al., 

2015) 

ESI 
fRET =

ET

ETref

 

(13) 

The Evaporative Stress Index (ESI) is an 

indicator of agricultural drought regarding the 

timing and magnitude of peak correlations with 

spatially distributed yield observations. It 

defines fluctuations in the actual/reference 

evapotranspiration (ET) ratio, retrieved using 

remotely sensed inputs of LST and Leaf Area 

Index (LAI). The ESI presents standardized 

anomalies in a normalized clear-sky ET ratio 

(𝑓𝑅𝐸𝑇), in which ET is actual ET and 𝐸𝑇𝑟𝑒𝑓 is a 

reference ET scaling flux used to minimize 

impacts of non-moisture related drivers on ET 

(e.g., seasonal variations in radiation load). 

(Anderson et 

al., 2015) 

OSDCI 
α × P + β × LST + γ × NDVI 

 (14) 

Optimal Scaled Drought Condition Index 

(OSDCI) is a developed version of SDCI, an 

agricultural drought index derived from multiple 

RS datasets including precipitation (P), LST, and 

vegetation index (NDVI). It was proposed since 

SDCI is not applicable to certain areas. OSDCI 

can address uncertainties associated with the 

coarse resolution of precipitation input, the fixed 

lag time between precipitation deficit and 

vegetation responses, experimental weights 

( α, β and γ ), and an arbitrary classification 

scheme. It should be noted that the weights for 

OSDCI are decided by the constrained 

optimization method. 

(Guo et al., 

2019) 

Studying drought over large-scale areas requires the processing of a massive amount of data 

and, thus, poses the critical limitation of high computational complexity. Despite the significant 

advances in RS and its capability to provide drought data as a time-series over large areas, a 

considerable challenge regarding big data processing remains (Adedeji et al., 2020; Ghorbanian et 

al., 2020).  In recent years, cloud-computing platforms, including Google Earth Engine (GEE), 
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have efficiently tackled this limitation. GEE is a high-performance cloud-computing platform 

supporting big geospatial data processing and analyzing at local to global scales (Amani et al., 

2020a; Gorelick et al., 2017). GEE contains a consolidated resource of open-access RS datasets, 

along with a variety of algorithms to extract information for Earth's surface monitoring (Amani et 

al., 2020b, 2017). These advantages have contributed to GEE's applicability for large-scale drought 

monitoring (Aksoy et al., 2019; Córdova et al., 2020; Khan et al., 2020; Okal et al., 2020; Sazib et 

al., 2018). Aksoy, Gorucu, and Sertel 2019 studied drought severity in Turkey using MODIS 

imagery to determine various drought indices. Khan et al. 2020 employed different data sources 

to investigate the emergence of drought in the Potohar plateau. Other drought studies using RS 

data have modeled the spatio-temporal statistical behavior of RSDIs (Oesting and Stein, 2018) and 

the movement of drought (Rulinda et al., 2013).  

Iran is one of the driest countries worldwide and several studies have explored drought 

conditions and intensity using in-situ and RS data. However, most of these studies were over 

relatively small areas (e.g., one province) and short periods (e.g., a few years) (see (Bajgiran et al., 

2008; ShadA et al., 2017; Sobhani et al., 2019) as examples). There are only a few studies in the 

literature focusing on drought monitoring of entire Iran mostly over a few years using relatively 

traditional methods. For example, Zarch et al. 2011, used the SPI and RDI meteorological drought 

indices (i.e., derived from 40 meteorological synoptic stations) for mapping drought severity in 

Iran during 1 year (1999–2000). Shahabfar, Ghulam, and Eitzinger 2012 assessed the performance 

of two RSDIs, including PDI and MPDI, derived from MODIS images. Zarei, Sarajian, and 

Bazgeer 2013 employed the SPI meteorological-based index and multiple RSDIs (i.e., NDVI, VCI, 

VHI, and TCI), derived from AVHRR images, for drought monitoring. Emadodin, Reinsch, and 

Taube 2019 employed the PVI and De Martonne aridity index (IDM) for long-term drought 
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monitoring (1950-2017) in different climate zones in Iran. Finally, Hosseini et al. 2020 studied the 

variations of drought characteristics using the data of the Global Precipitation Climatology Center-

Drought Index (GPCC-DI).  

The main objective of this study is drought monitoring in Iran over the past two decades by 

using the most accurate RSDI in the GEE platform. Considering the previous studies discussed 

above, the main contributions and novelties of this study are: (1) The proposed TVMPDI that is a 

composite of vegetation, LST, SM, and precipitation drought indicators; (2) Validation and 

comparison of RSDIs for drought monitoring in Iran using the high amount of in-situ data 

(collected from 228 meteorological stations); (3) Local and global drought monitoring in Iran over 

21 years using the most accurate RSDI; (4) GEE is employed for this purpose for the first time.  

2. Data and Methodology 

      2.1. Study area 

Iran is located in the northeastern part of Asia between latitudes and longitudes of 24° - 40° 

N and 44° - 64° E, respectively, and covers a total area of approximately 1.6 million km2. Different 

land cover types exist in the study area, varying from dense forest regions to uncovered plains 

(Ghorbanian et al., 2020). As can be seen in Fig. 1(a) and (b), the northern part of the country 

includes the Caspian Sea and dense forest covers, mostly located at Alborz Mountains. The Zagros 

Mountains are situated in the west, spanning from the north to the south of Iran, and include 

different types of vegetative land covers. The presence of these high mountains reduces the entry 

of rain clouds into the central and southeastern parts of the country, and thus, these regions are 

mostly covered by uncovered plains and sand deserts (e.g., the Lut and Kavir deserts). Finally, the 

southern border of Iran is formed by the long coastlines of the Persian Gulf and the Oman Sea. 

Although the majority of Iran is dry, the country has diverse climate conditions due to covering 
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massive latitudinal ranges and geographical characteristics (Alizadeh-Choobari and Najafi, 2018). 

Moreover, the topographic and climatic conditions cause a significant precipitation variation 

across the country, ranging from 100 mm/year to 1100 mm/year from southeastern to northern 

parts (Darand and Daneshvar, 2014). In recent decades, Iran has been adversely affected by the 

increase in meteorological droughts, which has led to the land degradation process (Emadodin et 

al., 2019). The meteorological drought is the principal driving force of land degradation, which 

occur due to the extended period of precipitation deficiency.  

2.2. Datasets 

2.2.1. RS data 

Three products of the MODIS satellite, TRMM and GPM images were used for the 

implementations of drought in GEE. Table 2 shows more information about these products.  

Table 2. Information about GEE products used in this study. 

Name of product  

(ID of image collection) 

Spatial 

resolution 

RSDIs 

generated from 

the product  

Bands used in 

drought indices 

Number of 

images  

Terra Surface Reflectance-Daily Global 

(MODIS/006/MOD09GQ) 

250m 

MPDI, 

TVMDI, 

TVMPDI 

Red and NIR 
7246 

Terra Land Surface Temperature and 

Emissivity-Daily Global 

(MODIS/006/MOD11A1) 

1km 

TVDI, 

TVMDI, TCI, 

VHI, TVMPDI 

Daytime and 

nighttime LST 
7247 

Terra Vegetation Indices 16-Day Global 

(MODIS/006/MOD13Q1) 
250m 

TVDI, VCI, 

VHI, MPDI 
NDVI 460 

TRMM 3B43: Monthly Precipitation 

Estimates (TRMM/3B43V7) 
0.25 degrees TVMPDI Precipitation 237 

Monthly Global Precipitation 

Measurement (GPM) v6 

(NASA/GPM_L3/IMERG_MONTHLY_V06) 

0.1 degrees TVMPDI Precipitation  16 

 

2.2.2. Meteorological data 
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The total monthly precipitation data collected at the 228 meteorological stations of the Islamic 

Republic of Iran Meteorological Organization (https://www.data.irimo.ir/) were used in this study 

to validate and compare the results of RSDIs. Fig. 1(c) demonstrates the spatial distribution of 

these stations. It should be noted that the location of each station is assumed to correspond to a 

single image pixel with 250m size in the produced drought maps.  

 

Figure 1. (a) land cover map of Iran (b) Two main deserts and two mountainous chains in Iran (Sanei and 

Zakaria, 2011) (c) distribution of 228 meteorological stations.  

2.3. Proposed TVMPDI index 

In a recent study, Amani et al. (2017) proposed the TVMDI to characterize the drought 

variations, in which vegetation, LST and SM have been taken into account. On one side, many 

other novel indices have incorporated precipitation data into the RSDIs to develop more accurate 

indices (Hao et al., 2015). In this study, TVMDI is integrated with the precipitation component to 

form the Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI).  

The TVMDI formula which is comprised of LST, SM and Perpendicular Vegetation Index (PVI) 

parameters is calculated in (15), and the computation of PVI and SM is given in (16) and (17):  

𝑇𝑉𝑀𝐷𝐼 = √LST2 + SM2 + (
√3

3
− PVI)

2

                                                                                                      (15) 
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PVI =
ρNIR+Mρred

−I

√M2+1
                                                                                                           (16) 

SM =
ρNIR+

ρred
M

−b

√
1

M2+1
                                                                                                        (17) 

where ρred and ρNIR in SM and PVI specify the atmospherically corrected reflectance values of 

the red and NIR bands, respectively; M and I are slope and interception of the soil line equation 

respectively. In accordance with (Amani et al., 2017), the values of the M and I parameters used 

in this study were set at 1.163 and 0.017 respectively. b refers to the interception of the 

perpendicular line with the soil line (Amani et al., 2016). The proposed TVMPDI formula in which 

the LST, SM, PVI and precipitation components are involved is defined in: 

TVMPDI =
1

2
√LST2 + SM2 + (1 − PVI)2 + P2                                                                (18) 

Where P refers to the TRMM/ GPM that are selected as the precipitation component due to their 

free availability, global coverage and near real-time data. In this study, the values for each 

component of (18) were normalized between 0 and 1 using the eq. (19): 

 

Normallized Vi =  
Vi−min (V)

max(V)−min (V)
                                                                                     (19) 

where V is one of the four variables of PVI, SM, LST, or P and Vi is the ith data in V = 

(V1, V2,…, Vi). This step is done to make the LST, PVI, SM, and precipitation comparable with 

one another, hence conversion of the final TVMPDI dryness values between 0 and 1. The 

maximum and minimum values of each component in (19) are obtained over the desired time span 

and study area. The general description of TRMM and GPM precipitation data used in TVMPDI 

is explained in subsection 2.3.1 and 2.3.2 respectively. 
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2.3.1. The Tropical Rainfall Measuring Mission (TRMM) precipitation 

The TRMM satellite is a NASA–JAXA corporation, launched in November 1997 to estimate 

tropical rainfall and currently operates between 50 ° North and 50° South with a 3-hour temporal 

resolution and a 0.25° spatial resolution (Zhang and Jia, 2013). The precipitation data can derive 

from different sensors of TRMM satellites like the precipitation radar (PR), the TRMM microwave 

imager (TMI), and the visible and infrared radiometer system (VIRS) (Labarrere et al., 2011; 

Zhang and Jia, 2013). 

2.3.2. Global Precipitation Measurement (GPM) 

The GPM mission is a joint project between JAXA and NASA to provide timely and accurate 

global precipitation observation from Integrated multi-satellite retrievals for GPM (IMERG) 

(Skofronick-Jackson et al., 2017). Such measurements help forecast life-threatening events and 

improve the understanding of the water and energy cycle. GPM is more advanced than TRMM 

because it is equipped with extra channels on both the dual-frequency precipitation radar (DPR) 

and the GPM Microwave Imager (GMI) (i.e., it is able to detect light rain and snowfall) (Hou et 

al. 2008, 2014). GPM has also developed TRMM’s reach in terms of global coverage, 

intercalibrate, merge, and interpolate precipitation datasets with other microwave radiometers, 

delivery of data items with less delay, and simplified data availability (Skofronick-Jackson et al., 

2017). 

2.4. Methodology 

The first objective of the study was comparing the accuracy and efficiency of several RSDIs 

to find the most suitable drought index for Iran. To this end, the meteorological precipitation and 

soil temperature data were used to validate the results of RSDIs, calculated for the period of 2000-

https://journals.ametsoc.org/view/journals/bams/98/8/bams-d-15-00306.1.xml#bib15
https://journals.ametsoc.org/view/journals/bams/98/8/bams-d-15-00306.1.xml#bib15
https://journals.ametsoc.org/view/journals/bams/98/8/bams-d-15-00306.1.xml#bib17
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2020. The superior RSDI was subsequently used to monitor different aspects of drought across the 

country. The spatial and temporal variations of drought, distribution of drought trends, drought 

severity classification maps and drought variations for all provinces were also investigated. The 

step-by-step workflow of this study is illustrated in Fig. 2.  

 

Figure 2. The proposed methodology flowchart for drought monitoring in Iran using GEE. 

(1) Data Preparation: Different products of MODIS, TRMM and GPM were used to compute 

RSDIs. In this study, RS data from 20th March 2000 to 20th March 2021 have been analyzed 

for drought monitoring. The meteorological data including monthly precipitation and soil 

temperature average was also used to validate and compare the performance of RSDIs.  

(2)  RS Drought monitoring methods: In this study, the VCI, TCI, VHI, TVDI, MPDI, 

TVMDI, as some of the most popular RSDIs (Amani et al., 2017; Huang et al., 2020; Wang 

et al., 2018; Zhang et al., 2016) were employed to be compared with the proposed 

TVMPDI. The comparisons are accomplished using the in-situ data of Irans’ 
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meteorological stations over 21 years. The configurations of constant parameters involved 

in these RSDIs are provided in Table 1 as well.  

(3) Meteorological index calculation: Using the precipitation data, the SPI index was 

computed as a criterion for validation of RSDIs. 1-month, 3-month, and 6-month and 12-

month timescales were set for the SPI index. All SPI calculations in this study were 

performed using the SPI code provided by Farahmand and AghaKouchak, (2015).  

(4) Comparison of RSDIs and validation with meteorological data: The correlation between 

the monthly results of RSDIs (from 2000 to 2020) calculated for all 228 stations with the 

corresponding monthly in-situ data records has been computed. In fact, 252 values for each 

RSDI were calculated for each meteorological station to be compared with the 

corresponding 252 in-situ measurements. This procedure has been done using both types 

of selected in-situ data. SPI is also a well-known meteorological drought index used in 

frequent drought studies (SafarianZengir et al., 2020). Therefore, the SPI index has been 

selected for the validation step due to its popularity and efficiency reported in the literature. 

Using the SPI, which employs in-situ rainfall data, the drought severity mapping at the 

meteorological stations over any desired period can be obtained (Amirataee and Montaseri, 

2017; SafarianZengir et al., 2020; Sobhani et al., 2020). Since there are lag effects for 

vegetation responses to meteorological drought, most studies (e.g., (Huang et al., 2020; 

Wang et al., 2014)) take the lag effect into account by comparing the RSDIs with timescale 

SPIs (especially three-month SPI) (Zambrano et al., 2016; Zormand et al., 2017). In this 

study, the correlation coefficients (r) between the monthly variations of RSDIs and 1-

month, 3-month, 6-month and 12-month scales of SPI were calculated. The r results were 

used to show the assessment accuracy of the RSDIs. The seasonal results of the selected 
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RSDIs were also calculated to compare the long-term variation pattern of each RSDI. To 

this end, the average value of every 3-month drought map was computed by all RSDIs 

within the whole boundary of Iran. 

(5) Drought maps at different time scales: Aiming at drought monitoring over the 21 years 

using the most accurate RSDI, numerous drought maps were generated for monthly, 3-

month, 6-month and yearly intervals. In this study, the starting date of the 21 years was set 

on 20th March 2000 when is the first day of spring in Iran local time. Therefore, April, May 

and June are the months that approximately represent the local time of the spring season.  

(6) Decision tree classification: The decision tree classification was implemented on every 

drought map at each time scale to create the intensity-duration-frequency curves of dry and 

wet periods, and classified severity/trend maps. For example, every 6-month drought map 

was classified, then the number of pixels belonging to each drought class was calculated to 

form the intensity-duration-frequency curves of dry and wet periods.  

(7) Drought difference maps: Using the drought difference maps along with the decision tree 

classification, the distribution of drought trends was mapped for various periods. The 

difference maps were obtained by subtracting the yearly computed drought maps from one 

another.  

(8) Local drought monitoring within 31 provinces of Iran: Since the spatial distribution of 

drought trends is considerably heterogeneous, the drought changes within the 31 provinces 

of Iran were monitored. This local monitoring was done using the georeferenced shapefiles 

of the provinces and the initially generated drought maps from step (1). 
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3. Results  

3.1.Comparison of RSDIs 

The drought maps produced from all selected RSDIs were initially produced for different time 

scales (monthly, seasonal, half-yearly, and yearly). To this end, the mean values of the dryness 

indicators (i.e., vegetation, LST or SM) over the desired time scales have been employed. In the 

case of the NDVI index, the maximum value composite method was used to synthesize the monthly 

NDVI and to reduce the effect of the atmosphere. All RSDI values were normalized between 0 

and 1 to make the results comparable.  

The scatter plot of monthly RSDIs values and monthly average of in-situ precipitation in 

Tehran (Mehrabard), Tabriz, Ahvaz, Mashhad, and Sari stations located in different climatic 

regions is shown in fig. 3. In fig. 3, each scatter plot contains 252 points representing the monthly 

values of RSDIs and in-situ precipitation over the 21 years. The scatter plot of monthly RSDIs 

values and monthly average of in-situ soil temperature data is illustrated in fig.4. These monthly 

comparisons were done for all 228 stations and the average results of r values were shown in Table 

3. The remotely sensed precipitation on the vertical axis in fig. 3 and 4 represent the TRMM and 

GPM values.  
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Figure 3. The scatter plot of monthly RSDIs results and monthly meteorological precipitation data 

over 21 years in 5 stations located in different climatic regions. The unit of meteorological precipitation 

data is mm/month (Horizontal axis). 



19 

 

 

Figure 4. The scatter plot of monthly RSDIs results and monthly average of meteorological soil 

temperature data over 21 years in 5 stations located in different climatic regions. The unit of the 

meteorological soil temperature data is degree Celsius (Horizontal axis). 
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After producing the monthly drought maps using all RSDIs over the 21 years, the results were 

compared with the results of different SPI time-scales. The input of all SPI time-scales were the 

monthly in-situ precipitation data of the stations over 21 years. After the computation of the 

correlations between the RSDIs and SPI time-scales in each station, the average of r values at SPI 

time-scale was calculated. The average values of r between the monthly results of RSDIs and 1-

month, 3-month and 6-month scales of the SPI were provided in Table 3. It is worth mentioning 

that the negative correlations between the SPI and TVDI/MPDI were multiplied by –1 in the results 

to emphasize the correlation strength rather than its direction. 

Table 3. Validation results of RSDIs. The correlation coefficients were calculated based on time series from 

March 2000 to February 2021. SPI1, SPI3, SPI6 and SPI12 refer to 1-month, 3-month, 6-month and 12-

month scales of the SPI. Correlation coefficients are significant at p = 0.05. The largest correlations are in 

bold letters. 

drought index MPDI TCI VCI TVMDI VHI TVDI TVMPDI 

Monthly precipitation 0.65 0.48 0.2 0.66 0.46 0.49 0.76 

Monthly soil 

temperature average 
0.64 0.95 0.33 0.84 0.92 0.94 0.81 

SPI1 0.23 0.12 0.04 0.25 0.1 0.18 0.27 

SPI3 0.25 0.13 0.07 0.27 0.12 0.2 0.28 

SPI6 0.22 0.1 0.05 0.24 0.09 0.17 0.26 

SPI12 0.2 0.08 0.03 0.21 0.07 0.15 0.24 

 

According to Table 3, RSDIs indicated greater r with in-situ data when they were compared 

with 3-month SPI. On the contrary, the lowest overall r was observed for the monthly SPI.  The 

average r of all stations, indicating the overall performance of each RSDI showed that TVMPDI 

outperformed all other indices for the different SPI time-scales. TVMPDI was highly correlated 

with the monthly precipitation and soil temperature in-situ data at 0.76 and 0.81 values 

respectively. However, TCI could outperform the other RSDIs when compared by monthly soil 
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temperature average. On the other hand, the VCI and VHI showed the weakest performances, 

respectively. 

The seasonal drought changes in Iran using the RSDIs during 2000-2020 were also 

calculated and shown in Fig. 5. The seasonal results were made out of averaging mean dryness 

values of every season’s months. These charts help in understanding the overall drought trend in 

each season. Based on the drought trendlines and charts of the majority of indices illustrated in 

Fig. 5, spring, summer, and autumn seasons were undergone an overall descending change over 

the 21 years, while winter showed a mild growth. Considering the TVMPDI, the least dryness 

level in spring, summer, autumn and winter occurred in 2000, 2000, and 2010, and 2020 

respectively. The precipitation rate using TRMM and GPM data indicated an incremental trend in 

Spring and Summer, while Autumn and Winter have faced a long-term declining trend of rainfall.  
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Figure 5. Drought Characteristics of Iran based on the seasonal basis during 2000–2020. Precipitation 

refers to TRMM/GPM data in mm. 
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3.2. Drought monitoring using the RS index 

4.2.1 Intensity, duration, and frequency of dry and wet periods 

The drought intensity, duration, and frequency charts of Iran using the TVMPDI between 

2000 and 2020 are illustrated in Fig. 6. Displaying the frequency variations of pixels with specific 

ranges of the TVMPDI can help to find the meaningful trends of drought over the desired period. 

Fig. 6 is produced for 6-month scales due to the noticeable difference in the amount of precipitation 

between the first and second half of the year in Iran. As depicted in Fig. 6(a), the highest percentage 

of areas with extremely severe drought (red bar chart) belongs to the years 2000, 2001 and 2002, 

respectively. The area affected by extremely severe drought has significantly decreased for the 

next 17 years. What stands out from the charts is that Iran experienced its greatest wet periods 

(TVMPDI = 0.50 or less) in the second half of 2004, 2018 and 2019, respectively. The driest half-

year during the 21 years occurred in the first half of 2000 and 2008, respectively. Since the spatial 

resolution of TVMPDI drought maps is 250m, the area of regions belonging to each drought class 

can be calculated by multiplying the number of pixels in each drought class by 0.0625 km2. By 

comparing the driest (2000) and wettest year (2019), it can be inferred that at least 187500 km2 (3 

million pixels) of Iran’s dry area turned into wet regions. The variation of the 6-month TVMPDI 

average, max and min values calculated for the entire country is demonstrated in Fig. 6(b). The 

equation of the best-fit linear trendline demonstrated a descending drought trend over the 21 years 

(slope = -0.0002). The most intensive and least drought levels occurred in 2000 and 2019 when 

the yearly mean TVMPDI were 0.715 and 0.6781, respectively. The noticeable difference between 

the drought map pixels having the min and max TVMPDI values in each half-year (Fig. 6(b)) 

indicates that a wide range of dryness level can be found in different parts of Iran.  
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Figure 6. (a) The intensity-duration-frequency curves of dry and wet periods in Iran using the TVMPDI (b) 

Mean, Max and Min variations of TVMPDI across Iran. 

4.2.2 Distribution of drought trend 

To evaluate the spatio-temporal distribution of drought changes, the classification of three 

difference maps has been shown in Fig. 7. Since drought is commonly known as the long-term 

changes of dryness values, the difference maps indicating the increase or decrease of drought were 

derived by comparing three annual TVMPDI maps.  These three maps were computed for 2000, 
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2010, and 2020 to cover the decadal and twenty-year drought changes. Based on the maps and 

statistics provided in Fig. 7, the drought trend over the first decade of the past 21 years was 

noticeably different from the second decade. Fig. 7(a),  (b) show that a considerable portion of 

regions in Iran (37%) experienced different levels of increment in the TVMPDI values from 2000 

to 2010. The corresponding regions were mostly scattered in the middle and northernmost parts of 

Iran. Fig. 7(c) also represents the severe drought exacerbation over the second decade (more than 

0.02 increase in the TVMPDI values). This trend was observed in a marginal strip in the southwest 

of Iran, while the northwestern and northeastern regions faced different ranges of decrease in 

dryness levels. 

The general drought trend over the last decade (from 2010 to 2020) was descending (e.g., see 

the blue colors in Fig. 7(c)). During the second decade (Fig. 7(d)), 52 % of the drought trend map 

experienced a TVMDI decline ranging from 0 to -0.01. However, less than 32% of the area 

indicated varying ranges of dispersed drought prevalence across the country. 

Over the twenty-year period initiated from 2000, drought severity has undergone noticeable 

alterations (Fig. 7(e)). While the overall trend of drought severity significantly alleviated, there 

were still sparse regions suffering from drought growth. The areas with intense drought 

deterioration were mostly observed in the central, northern, western and south-westernmost areas 

which account for almost 11% of the total area. Overall, the central regions along with the northern 

coastal parts have been dealing with the slight-ascending drought conversions which account for 

approximately a 16% of the entire study area.  
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Figure 7. Spatial distribution of drought trend maps between (a) 2000 and 2010 (c) 2010 and 2020 

(e) 2000 and 2020. (b), (d) and (f) are the bar charts for distribution of drought trends that 

correspond to the maps illustrated in (a), (c) and (e), respectively. 



27 

 

4.2.3 Classification maps of drought severity 

The spatial drought risk maps of Iran corresponding to the years 2000, 2005, 2010, 2015 

and 2020 are respectively demonstrated in Fig. 8. The classification ranges of TVMPDI used in 

Fig. 8 are also presented provided in Table 4. The classification ranges were set in a way that the 

spatial drought risk maps were consistent with our knowledge from the study area. In fact, the 

wettest region in Iran can be found alongside the Caspian Sea in the north, while the extensively 

dry areas are related to the Lut and Kavir deserts. 

 Table 4. Classification of TVMPDI drought index used in Fig. 8. 

Drought class TVMPDI range Drought class TVMPDI range 

Extremely arid [0.75,1] Wet [0.35,0.45] 

Moderately arid [0.65,0.75] Moderate wet [0.25,0.35] 

Arid [0.55,0.65] Extremely wet [0,0.25] 

Natural [0.45,0.55]  

 

 In accordance with previous results, Fig. 8 also emphasizes that the year 2000 had the most 

intense drought. This can be seen by considering the extremely arid regions (red class) that are 

scattered across the southeast in 2000 more extensively. The extent of these regions reduced over 

the next 20 years (see the drought classified maps in 2005, 2010, 2015 and 2020). The outstanding 

point is that the natural and wet classes considerably increased over the 20-year period as the 

regions in cyan and purple expanded in the maps ululated in Fig. 8. For instance, starting from 

3.04% in 2000, the wet class of drought covered 4.44%, 6.68%, 5.37%, and 5.33% of the entire 

country area in 2005, 2010, 2015, and 2020 respectively. 
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Figure 8. The spatial drought risk map across Iran for the years 2000, 2005, 2010, 2015, and 2020. 

4.2.4 Local drought monitoring within the provinces of Iran 

Although the overall drought trend across Iran gradually decreased with multiple oscillations 

over the past 21 years (shown in Fig. 6, 7 and 8), drought trends within each province of Iran have 

been monitored to specify drought risk level in local scales. To this end, the drought changes of 

all 31 provinces of Iran were monitored using the TVMPDI index and the results were extracted 

(and shown in Fig. 10 in the Appendix section). The TVMPDI values in the graphs of Fig. 10 were 
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averaged for every 6 months over the 20-year period starting from 20th March 2000. These results 

were obtained from the 6-month dryness maps of provinces for the aforementioned period.  

Using such graphs, the average dryness of each province during the 21 years was extracted 

that indicates the level of overall dryness in each province (Fig. 9(a)). To have an overview of the 

overall trends within the provinces during the 21 years, the best fit trendlines were recorded. The 

slope of the trendlines in the provinces which represented the general direction and intensity of the 

drought fluctuations was also extracted and shown in Fig. 9(b). Such spatio-temporal drought trend 

analysis using RS data can be considered as the main privilege against site-based drought analysis 

that is usually done by station-based meteorological data. 

The overall dryness of provinces of Iran during the 21 years was mapped and shown in Fig. 

9(a), where the darker brown colors specify the drier provinces. Considering Fig. 9(a), the 

provinces located in the eastern half of Iran showed the highest drought values.  

 The drought trend map of the provinces of Iran shows that the provinces located in the 

central regions from the north to the south are mostly affected by risky drought trends. Among all 

provinces, Isfahan and Gilan were the only provinces showing the positive slope of the drought 

trendline (Fig. 9(b)). The largest descending slopes of the drought trendline were related to West 

Azerbaijan, East Azerbaijan, Hormozgan, Qazvin, Zanjan, and Ilam which are mostly located in 

the west half of the country. Accordingly, the provinces excluding the aforementioned cases 

demonstrated a mild declining trend.  
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Figure 9. (a) TVMPDI dryness map and ranking of the provinces of Iran over 2000-2020 period (b) 

TVMPDI drought trend map of provinces of Iran (d) Drought trend map and ranking of the provinces of 

Iran using the TVMPDI oscillations.  

5. Discussion 

The reason why the TVMPDI could outperform the other indices is probably due to the 

precipitation data and SM that are involved in this index. Among the four drought indicators used 

in this index, SM and TRMM/GPM precipitation are inherently close to the nature of in-situ 

precipitation data. According to Table 3, the TRMM/GPM precipitation data used in TVMPDI 

was correlated with in-situ data at 0.93 r value.  
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It should be noted that the provision of various environmental data like SM, LST, vegetation and 

precipitation for large-scale and long-term drought monitoring studies using meteorological data 

is extremely costly, time-consuming, and very challenging. The status of some data like vegetation 

can not truly be measured by station-based methods as well. The meteorological-station-based 

methods that employ different models to turn the station-based maps into fine resolution drought 

maps inevitably incorporate inaccurate estimates in modeled areas. This is because the variation 

of environmental and climatic changes can be highly inconsistent in regions having no measuring 

station. Similar to the drought map results in (Orimoloye et al., 2019), the trend maps of drought 

in this study were built using the classification of difference maps in fig. 7 to show any 

inconsistency of drought changes. 

The in-situ precipitation data showed that Iran experienced unprecedented rainfall and the highest 

mean cumulative annual precipitation in 2019 over the past 21 years. However, the drought map 

of the 2020 period showed that drought increased in several regions compared to the drought map 

of the 2000 period (see Fig. 7(e)). According to (Orimoloye et al., 2021b), Iran was reported to 

have no risk of drought disaster impact on agriculture in 2020. This is consistent with the results 

of this study shown in fig. 5, 6 and 7. Similar to the drought severity maps in (Du et al., 2019) used 

for spatio-temporal drought analyses, the drought severity maps of this (fig. 8) study revealed the 

frequency of drought incidence over 21 years. 

 As the classification of drought intensity has been known as a valuable method for drought 

severity analyses (Junqueira et al., 2020), fig. 8 of this paper revealed that Isfahan province can be 

regarded as a high-risk region in terms of drought side-effects in future. The ranking of the 

provinces dryness shown in Fig. 9(a) states that Gilan, Mazandaran and Golestan were the wettest 

provinces during the whole 20-year period respectively. Conversely, Sistan and Baluchestan, 
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Kerman and South Khorasan were the driest provinces respectively. In general, Isfahan and Gilan 

can be considered as endangered provinces in terms of environmental sustainability challenges 

because their TVMPDI trendline slopes are positive (Fig. 9(b)). This is consistent with the results 

of Eslamian and Jahadi, (2019) where drought monitoring in Isfahan stations is reported to have 

indicated a considerable reduction of wet magnitude based on both SPI and SPEI indices. 

Considering fig. 7 and 8, Khuzestan province also faced drought prevalence that has frequently 

been occurred in several years. This is consistent with the results reported by (Sobhani et al., 2020; 

Sobhani and Zengir, 2020). The descending slopes of the drought trendline in West Azerbaijan, 

East Azerbaijan that were shown in fig. 9(b) are consistent with the results reported by 

SafarianZengir et al., (2020). 

6. Conclusion 

In this study, the TVMPDI RSDI was proposed and validated. It was found that TVMPDI had 

the highest r with the in-situ precipitation and SPI results. The SM and precipitation drought 

indicators involved in TVMPDI were probably the main reason for its high accuracy. The results 

of drought monitoring showed that Iran experienced the most severe drought in 2000, while the 

least level of drought intensity was observed in 2019. Overall changes in drought indicated a 

descending trend over the past two decades using all RSDIs. However, drought monitoring at the 

province level revealed a drought exacerbation in Isfahan, Gilan and Khuzestan showing 

incremental drought levels. Considering both province- and country-wide drought trends for the 

past two decades, Isfahan was recognized as the most endangered province. The spatio-temporal 

analysis of this study showed that severe drought effects can occur in central Iran. This is due to 

the worrying slopes of the drought trendlines of these local regions that are close to be positive. 

The seasonal analysis of drought trend using different RSDIs also showed that Winter was the only 
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season having an ascending slope, and the most descending drought trend was found in the Spring 

season. Due to the far-reaching effects of drought on human life, the results of this study can help 

the officials for better management in different fields such as agriculture, water supply, urban 

development, natural resources and economy. 

The limitation of this study is probably the 20-year period of monitoring that could have been 

much longer if other RS satellites (i.e., Landsat series) had been employed. Using the results of 

RS systems integrated with meteorological data for quantitatively/qualitatively characterizing 

different types of drought is presumably the most cost-effective and accurate solution addressing 

the drought monitoring concerns. Analyzing the sequential trend maps (i.e., year by year maps) of 

drought in future studies can arguably result in having precious information on spatial patterns of 

drought expansion that occurred over time. 
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Appendix 

 
 

Figure 10. (continued). 
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Figure 10. Drought trend using 6-month TVMPDI values for each province of Iran during 2000-2020. AM 

stands for Average Mean that is the average level of drought over 20 years. 
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