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START 
A STABLE AND RESILIENT ATM BY INTEGRATING ROBUST AIRLINE OPERATIONS 
INTO THE NETWORK 

This Deliverable is part of a project that has received funding from the SESAR Joint Undertaking under grant agreement No 
893204 under European Union’s Horizon 2020 research and innovation programme. 

 

Abstract  

This document establishes the basis for the work to be developed within Work Package 2 of the START 
project. The objective of this Work Package is to build a methodology that could allow for the 
obtainment of the probabilistic trajectories that would result from the propagation of the 
characterized micro-level uncertainties in the aircraft trajectory prediction process. This deliverable 
will be focused on implementing the models and processes required to capture the influence of the 
uncertainties that are present in the development of an aircraft trajectory. To this end, we will show 
how to propagate these uncertainties, using a stochastic trajectory predictor, that will allow us to 
obtain a set of probabilistic trajectories from an initial deterministic flight plan, which will encapsulate 
the effect of the inputs’ variability. 

First, an introduction to Polynomial Chaos Theory, which is the basis of the stochastic trajectory 
predictor developed in START, and our solution for introducing weather uncertainty into the trajectory 
prediction process will be exposed. Then, it will be presented how the integration of the advanced data 
assimilation models, introduced in the deliverable D2.1 [2], together with the stochastic trajectory 
predictor will lead to more robust airline operations. Additionally, the framework for the probabilistic 
trajectory generation will be introduced, showing how all different modules will be employed in START 
in a two-phase approach (first an off-line fitting phase to obtain the models for uncertainty 
propagation, and then an online phase where, making use of the fitted model, the probabilistic 
trajectories can be obtained from a deterministic flight plan). Finally, a study case will be presented, 
showing the application of the previously defined methodology to a specific scenario. 
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1 Introduction 

1.1 START project goals 

The development, implementation and validation of optimization algorithms for robust airline 
operations that result in stable and resilient Air Traffic Management (ATM) performance even in 
disturbed scenarios is the overall goal of START. To reach this goal, START will combine various 
methods form applied mathematics, i.e., mathematical optimization, optimization under uncertainty, 
Artificial Intelligence (AI) and data science, as well as algorithm design. Furthermore, insight into the 
uncertainties relevant to Trajectory-Based Operations (TBO) systems will be gained through 
simulations. According to START’s Project Management Plan (PMP) [1], the main focus of the project 
is the optimization of conventional traffic situations while considering disruptive weather events such 
as thunderstorms. 

The main uncertainty sources considered in this project can be classified as: 

1. Uncertainties at the micro-level or trajectory level, e.g., due to inaccurate wind forecasts, aircraft 
performance models, aircraft weight estimation, aircraft intent, and take-off times. 

2. Uncertainties at the macro-level or ATM network level, e.g., due to disruptive events in the network 
such as thunderstorms, congested airspaces or airports, and propagation of micro-level (trajectory 
level) delays over the network. 

Within the main goal stated above, the following specific goals arise: 

1. To model uncertainties at the micro (trajectory) level, assimilate air traffic observations every 
15 minutes using advanced data science methods, and propagate trajectory uncertainties using 
assimilated models and a stochastic trajectory predictor. 

2. To model uncertainties at the macro (ATM network) level, assimilate observations (satellite 
data for storm and network status) every 15 minutes using advanced data science methods and 
propagate ATM network uncertainties using the assimilated models. 

3. To develop an AI algorithm capable of generating a set of pan-European (i.e., considering the 
whole traffic over Europe) robust trajectories that make the European ATM system resilient when 
facing these relevant uncertainties. 

4. To implement those algorithms as an advanced fight dispatching demo functionality for 
airspace users to obtain robust trajectories. 

5. To validate these concepts through system-wide simulation procedures in order to evaluate 
their stability, assessing the benefits for both the airspace users and the network manager. 
Recommendations for the derivation of resilient TBO networks will be derived. 

The overall concept underpinning the project is sketched in Figure 1. In this structure, one can identify 
five blocks (each of them corresponding to the five specific goals of the project), namely: Micro-Level 
(trajectories); Macro-level (ATM Network); AI Metaheuristic Algorithm; Flight dispatching tool; Fast-
Time Simulations. 
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Figure 1 START project concept schema 

1.2 START work plan 

According to START’s PMP [1], the project is divided into seven Work Packages (WP), as sketched in 
Figure 2, which describes the different tasks to be performed in START. The objectives of each WP are 
the following: 

• WP1 - Project management: The goal is to effectively fulfil all the administrative, contractual, 
financial and technical aspects of the coordination of the project. 

• WP2 - Trajectory level - Uncertainty modelling, data assimilation and uncertainty propagation: 
The goal is to develop uncertainty propagation models at trajectory level; identify and 
characterize potential sources of trajectory level uncertainty following a data-driven approach; 
build and develop methods for the cyclic ingestion of data inputs that will feed the uncertainty 
propagation models at the trajectory level. 

• WP3 - ATM network level - network modelling, uncertainty propagation with disruptive 
events: The goal is to develop an approximate ATM network model from the historical data 
enabling to simulate and analyse uncertainty and delay propagation; integrate individual 
trajectory uncertainties into the network model; provide models for disruptive events and 
integrate them into the network-wide model; validate the model, procedures and provide a 
simulation environment/tool for use case analyses. 

• WP4 - Network-wide robust trajectory planning and resiliency management based on 
simulating annealing: The goal is to formulate a concept of operations implementing TBO 
allowing for the appropriate management of uncertainty; formulate the network resiliency 
and develop network resiliency management procedures in case of disruptive events; develop 
optimization algorithms for the determination of efficient strategic interventions that increase 
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the predictability and resiliency of ATM operations and validate the proposed methods 
through use case simulation and analysis. 

• WP5 - Flight dispatching prototype tool: The goal is to validate the concept in a simulated 
dispatch environment of one or more airline operators, utilizing the FLIGHTKEYS5D flight 
management system. 

• WP6 - Simulation and validation: The goal is to validate the concept in a simulated dispatch 
environment of one or more airline operators, utilizing the FLIGHTKEYS5D flight management 
system. 

• WP7 Dissemination, exploitation and communication: The goal is to coordinate all START 
dissemination, exploitation, and communication activities while ensuring that the different 
targets have been reached. 

 

Figure 2 START project work package breakdown 

1.3 Purpose and scope of the deliverable 

START proposes a framework for obtaining robust airline operations that lead to a stable and resilient 
ATM performance in any kind of disruptive scenario by means of a combination of methods from 
applied mathematics. Consequently, the focus will be on providing the capabilities required to update 
the planned flight trajectories according to the uncertainties introduced by the disturbances in the 
considered air traffic scenarios, which would be a key enabler for the implementation of the TBO 
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concept. For this purpose, introducing the capability of identifying potential disturbances in the system 
and optimizing the air traffic operations to adapt to their associated uncertainty at different 
operational levels, was considered an essential feature of the framework.  

With regards to this main focus of START, Work Package 2 will address all the technical challenges 
related to three main tasks: 

• Identify and characterize the sources of uncertainty that may affect the evolution of the 
trajectory and that stem from the micro or trajectory level. 

• Model how these uncertain factors influence the development of the planned trajectory. 

• Ingest data on a continuous fashion that provides an input on the status of the uncertainty 
sources in the pre-tactical phase of the considered air traffic scenario.  

After the identification and characterization of micro-level uncertainties and the implementation of 
advanced data assimilation models explained in the deliverable D2.1 [2], this deliverable describes the 
methodology followed to propagate uncertainties at trajectory level. For this purpose, the formulation 
and implementation of the Polynomial Chaos (PC) theory and a weather dimensionality reduction 
framework will be presented in order to obtain a stochastic trajectory predictor. 

Furthermore, the integration of the different modules and models introduced in D2.1 will be explained, 
as well as how the system obtained from this integration can be employed to obtain a set of 
probabilistic trajectories from an initial input flight plan. To assess the validity of the proposed 
methodology, a study case using real data will also be presented in the final section of this deliverable. 

1.4 Intended readership 

This document is intended to be used by START members and SJU (included the Commission Services).  

1.5 Acronyms 

Non-exhaustive list of acronyms used across the text. 

Acronym Description 

aPCE Arbitrary Polynomial Chaos Expansion 

ADS-B Automatic Dependent Surveillance Broadcast 

AI Artificial Intelligence 

ATM Air Traffic Management 

ATS Air Traffic Service 

CAS Calibrated Airspeed 

CI Cost Index 

CNN-AE Convolutional Neural Networks – Auto Encoder 

DDR2 Demand Data Repository 

ECMWF European Center for Medium-Range Weather Forecasts 

EPS Ensemble Prediction System 
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FPO Flight Plan Optimization 

FRA Free Route Areas 

ILS Instrumental Landing System 

METAR Meteorological Aerodrome Reports 

NOAA National Oceanic and Atmospheric Administration 

PC Polynomial Chaos 

PMP Project Management Plan 

POD Proper Orthogonal Decomposition 

ROC Rate of Climb 

TBO Trajectory-Based Operations 

TOC Top of Climb 

TOD Top of Descent 

TP Trajectory Prediction 

WP Work Package 

Table 1: Acronyms 

START Consortium 

Acronym Description 

BDG Boeing Research and Technology Europe-Germany 

DLR German Aerospace Center 

ENAC École Nationale de l’Aviation Civile 

FLIGHTKEYS FlightKeys 

ITU Istambul Teknik Universitesi 

UC3M Universidad Carlos III de Madrid 

UPC Universitat Politecnica de Catalunya 

Table 2: START consortium acronyms 
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2 Modelling aircraft trajectories with 
uncertainty propagation 

2.1 Introduction 

The determination of the influence of micro-level uncertainties in the evolution of a planned aircraft 
trajectory is the core problem to be tackled in this section of the START project. Quantifying and 
modelling the effect of these uncertain factors when issuing the prediction for the aircraft trajectories 
to be considered in any potential air traffic scenario is a key step in the development of the capabilities 
for proposing robust and resilient airline operations. 

The identification of the uncertain factors that affect the aircraft trajectory prediction process was well 
covered in deliverable D2.1 [2], as well as its characterization using a data-driven approach that relies 
on historical data instances coming from various information sources. Therefore, this deliverable refers 
to this previous document for the necessary activities to be executed prior to the complex task of 
incorporating these quantified uncertainties to the trajectory prediction activities, which will be 
developed in this document. 

Starting our analysis from the conclusions extracted in [2], it will be paramount to develop the 
capabilities to assess the impact of the variability of the identified stochastic factors on the trajectory 
predictions to be calculated. It was seen that the actual values to be adopted by the inputs affecting 
the prediction process (aircraft intent, initial state, aircraft performance and weather conditions) are 
uncertain, and will most probably vary with respect to the nominal values available for the prediction 
(e.g., declared flight plan, weather forecasts).  

Deviations are then expected and observed between the predicted and actual trajectories, which can 
be considered as an error associated to the deterministic prediction of the aircraft trajectory due to 
the stochastic variability of the considered inputs (sensitivity of the aircraft trajectory prediction 
process to the variability of the inputs is well studied [3][4]). As such, it is essential to assess how said 
variability affects the output predicted trajectories to be obtained, as the spectrum of possible 
predictions will depend on the value distributions for each of the identified uncertain input variables. 
These distributions were characterized in [2] for the proposed uncertain factors, so now the focus is 
on determining how to propagate these uncertainties along the aircraft trajectory prediction process, 
so that an assessment can be obtained on the effect of the inputs’ variability on the predicted 
trajectory from a nominal flight plan. 

This is a problem that has been tackled in previous instances that can be found in the literature. The 
classical methodology applied to uncertainty propagation problems in dynamic systems normally relies 
on Monte Carlo simulations to evaluate the variability of inputs on the output trajectories by applying 
statistical methods to the numerous simulated runs. Examples of these are available with different 
methodologies to model the variability of a different range of uncertain inputs, such as neural 
networks for single trajectory variables in various flight phases [5] or cause-effect models for 
interdependent uncertainties [6], or including worst-case prediction algorithms [7]. Although the 
application of Monte Carlo simulations seems simple and straightforward in these problems, it has a 
clear limitation on scalability for large air traffic scenarios, as it is very computationally demanding and 
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time consuming. These limitations were also acknowledged on similar studies regarding aircraft 
trajectory predictions [8][9].  

An alternative method with respect to Monte Carlo approaches that provides an increased 
computational efficiency while establishing a framework for uncertainty propagation is based on the 
Polynomial Chaos theory.  This fact has been stated widely and its benefits shown in previous literature 
work, as for example in a similar problem tackled in the COPTRA project [10] or in [11], as well as in 
specific studies regarding the sensitivity of the arrival time output taking into account aircraft intent 
uncertainty [12] or the propagation of mass uncertainty for cruise phases [13].  

Therefore, the implementation of the PC theory will be selected for the propagation of the identified 
and quantified sources of uncertainty along the trajectory prediction process. This will be done in order 
to obtain an assessment on the potential probabilistic trajectories that can be output for an initial flight 
plan as a function of the spectrum of values to be adopted by the characterized uncertain inputs for 
the aircraft trajectory prediction process. The formulation and implementation of the PC theory, along 
with the integration of additional modules to support the process, will be developed in the following 
sections. 

2.2 Applying arbitrary Polynomial Chaos Theory 

2.2.1 Theoretical framework 

Chaos theory, introduced by Norbert Wiener in 1938 [14], proposes that any function or model 𝑧 
dependent of a stochastic variable 𝜉 can be posed as a linear combination of coefficients 𝑎𝑖(𝑡), 
independent of the stochastic variable, times a set of one-dimensional polynomials 𝛾𝑖(𝜉), which form 
a basis orthogonal to the probabilistic distribution of the stochastic variable 𝜉, such that: 

 𝑧(𝑡, 𝜉) = ∑𝑎𝑖(𝑡)𝛾𝑖(𝜉)

∞

𝑖=1

≈ ∑𝑎𝑖(𝑡)𝛾𝑖(𝜉)

𝑑

𝑖=1

 (1) 

Where the subindex 𝑖 refers to polynomial degree. Whereas the approximation error disappears when 
𝑖 tends to infinity, it is common practice to truncate the model at certain polynomial degree 𝑑. 
Nonetheless, any realistic model representing a physical mechanism depends on several stochastic 
parameters such that 𝝃 = {𝜉1, 𝜉2, 𝜉3, … , 𝜉𝑁}. Henceforth, the total number of stochastic input 
parameters will be referred as 𝑁. Consequently, Equation (1) needs to be reformulated as a 
multidimensional polynomial expansion as follows: 

 𝑧(𝑡, 𝜉1, 𝜉2, … , 𝜉𝑁) = ∑𝑏𝑖(𝑡)Γ𝑖(𝜉1, 𝜉2, … , 𝜉𝑁) 

∞

𝑖=1

 (2) 

Where 𝑏𝑖(𝑡) still quantifies the model’s dependence on the polynomial expansion, while 
Γ𝑖(𝜉1, 𝜉2, … , 𝜉𝑁) contains a multidimensional orthogonal polynomial basis for the stochastic variables 
𝝃. Assuming that the stochastic input variables 𝝃 are independent of each other, the multidimensional 
basis can be constructed as a simple product of the one-dimensional polynomials, such that: 
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 Γ𝑖(𝜉1, 𝜉2, … , 𝜉𝑁) = ∏𝛾
𝑗

𝛼𝑗
𝑖

(𝜉𝑗)

𝑁

𝑗=1

 (3) 

Where the index 𝛼𝑗
𝑖 is used to indicate the combinatoric information between the different 

independent variables and the polynomial degrees. 

 ∑𝛼𝑗
𝑖 ≤ 𝑀

𝑁

𝑗=1

,          𝑖 = 1,… ,𝑁 (4) 

The number 𝑀 of possible combinations between the different stochastic variables and polynomials 
degrees is defined as: 

 𝑀 =
(𝑁 + 𝑑)!

𝑁! 𝑑!
 (5) 

Thus, allowing to picture 𝛼𝑗
𝑖 as  𝑀 × 𝑁 matrix containing the corresponding degree of the stochastic 

variables for each combination. 

2.2.2 Definition of aPCE polynomial expansions 

While there are several methods to compute these polynomials based on predefined probability 
density functions such as normal, gamma, beta or uniform, this project tackles these polynomials 
construction from a data-driven point of view, for which the arbitrary Polynomial Chaos Expansion 
(aPCE) [15] method is used. This method uses the statistical moments for each stochastic variable, 
calculated as: 

 𝜇𝑘 = ∫𝜉𝑖
𝑚𝑑𝑃(𝜉𝑖) (6) 

With this method, each polynomial 𝛾𝑖
𝑘 is defined with a set of polynomial coefficients 𝑐𝑚

(𝑘)
 multiplied 

by their corresponding power of the stochastic variable 𝜉𝑖
  

 𝛾𝑖
𝑘 = ∑ 𝑐𝑚

(𝑘)
𝜉𝑖

𝑚

𝑘

𝑚=0

 (7) 

 𝑐𝑚=𝑘
(𝑘)

= 1 (8) 

For each stochastic variable, the polynomial coefficients can be computed by ensuring the 
orthogonality between two polynomials of order 𝑘 and 𝑙 such that: 

 ∫𝛾 
𝑘 ∙ 𝛾 

𝑙 ∙ 𝑑𝑃(𝜉𝑖) = 𝛿𝑘,𝑙 (9) 

Where 𝛿𝑘,𝑙  is the Kronecker delta and is equal to 0 unless 𝑘 is equal to 𝑙. Subsequently, a set of 

equations can be defined for each polynomial degree such that: 
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 ∫𝑐0
(0)

∙ [∑ 𝑐𝑚
(𝑘)

𝜉𝑖
𝑚

𝑙

𝑚=0

] ∙ 𝑑𝑃(𝜉𝑖) = 0 (10) 

 ∫[∑ 𝑐𝑚
(1)

𝜉𝑖
𝑚

1

𝑚=0

] ∙ [∑ 𝑐𝑚
(𝑘)

𝜉𝑖
𝑚

𝑙

𝑚=0

] ∙ 𝑑𝑃(𝜉𝑖) = 0 (11) 

⋮ 

 ∫[∑ 𝑐𝑚
(𝑘−1)

𝜉𝑖
𝑚

𝑘−1

𝑚=0

] ∙ [∑ 𝑐𝑚
(𝑘)

𝜉𝑖
𝑚

𝑙

𝑚=0

] ∙ 𝑑𝑃(𝜉𝑖) = 0 (12) 

 
∫[∑ 𝑐𝑚

(𝑘)
𝜉𝑖

𝑚

𝑘

𝑚=0

] ∙ [∑ 𝑐𝑚
(𝑘)

𝜉𝑖
𝑚

𝑙

𝑚=0

] ∙ 𝑑𝑃(𝜉𝑖) = 𝑐𝑚
𝑘 = 1 (13) 

Substituting Equation (6) into Equations (10)-(13) leads to a system of linear equations that can be 
written in a matrix form. 

 

[
 
 
 
 

𝜇𝑜 𝜇1

𝜇1 𝜇2

… 𝜇𝑘

… 𝜇𝑘+1

⋮ ⋮
𝜇𝑘−1 𝜇𝑘

0 0

⋱ ⋮
… 𝜇2𝑘−1

… 1 ]
 
 
 
 

[
 
 
 
 
 
 𝑐𝑜

(𝑘)

𝑐1
(𝑘)

⋮

𝑐𝑘−1
(𝑘)

𝑐𝑘
(𝑘)

]
 
 
 
 
 
 

=

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

 (14) 

2.2.3 Calculation of the aPCE coefficients 

To compute the aPCE coefficients 𝑏𝑖(𝑡), the aPCE polynomials 𝛾𝑖
𝑘(𝜉) need to be evaluated at certain 

points of the stochastic-variable parametric space in order to solve the system of equations defined in 
Equation (14), where the number of unknowns is defined by Equation (5). Several methods can be 
found in the literature for this task, such as Galerkin projection [16] or collocation [17] methods, of 
which we will use the latter.  

The collocation method evaluates each polynomial expansion at certain values, known as collocation 
points, which are extracted from the roots of the next higher-order polynomial for each stochastic 
parameter [18]. This implies that, for a polynomial of order 𝑑, the number of available collocation 
points is (𝑑 + 1)𝑁, which is always larger than the number of unknows in the system of equations. This 
overdetermined system is solved by selecting the optimal 𝑀 combination of collocation points based 
on the probability of each combination of collocation points. This probability is computed from the 
sum of the polynomial degree of each stochastic variable in every combination, assuming than in a 
standard Gaussian random variable with zero mean and unit variance the higher the root degree the 
lower the probability to occur. 

Each of the 𝑀 combinations of collocation points require to compute a solution of 𝑧(𝑡, 𝜉1, 𝜉2, … , 𝜉𝑁). 
Following [19], the coefficients 𝑏𝑖(𝑡) can be computer either using Galerkin projection: 
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 〈∑ 𝑏𝑘Γ𝑘(𝜉
(𝑖))

𝑑

𝑘=0

, Γ𝑙(𝜉
(𝑖))〉 = 0 (15) 

Or least-square approximation: 

 �̂�𝑖(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏 ∑(𝑧(𝑖) − ∑ 𝑏𝑘Γ𝑘(𝜉
(𝑖))

𝑑

𝑘=0

)

𝑀

𝑖=1

 (16) 

2.3 Considering weather uncertainties  

As introduced in Section 2.2, the computational cost of arbitrary polynomial chaos expansion increases 
factorially with the increase of the polynomial degree and the number of variables, as stated in 
Equation (5). This poses a problem when dealing with systems affected by a large number of stochastic 
input variables. One of these systems is the effect of weather on the aircraft trajectory as shown in 
[20], where a robust aircraft trajectory planning tool was presented to account the effects of wind 
uncertainty. The weather information used for this type of tools is usually stored in large four-
dimensional tensors, with three spatial dimensions and one dimension for the relevant quantities 
describing the atmosphere state. Moreover, the spatial resolution required for aircraft trajectory 
predictors is normally of the order of 𝒪(100) degree in the longitudinal and latitude direction, while 
in the altitude direction is discretized in steps of 100 mbar. Taking this into account, a four-dimensional 
(4D) weather information tensor for Europe may contain a number of variables of the order of 𝒪(104), 
which would require 𝒪(1012) collocation points, which is far beyond the scope of computational cost 
reduction intended for aPCE and the computational capabilities available in the consortium. 

To overcome this issue, a dimensionality reduction of the weather information can be carried out, 
allowing the aPCE to deal with a reduced version of weather. Later, the collocation points provided by 
aPCE for this reduced-state weather information can be translated back into the original weather 
dimension, allowing any aircraft trajectory predictor tool to ingest this artificial information. It is 
important to remark that, although the weather information produced by the aPCE may not have 
existed before, the techniques used are aimed at maintaining a physical sense. Two different 
algorithms are used for this dimensionality reduction task, one exploiting the linear relationship of the 
weather data and the other taking advantage of the modern artificial intelligence techniques designed 
for this type of tasks.  

2.3.1 Proper orthogonal decomposition 

The first methodology used to reduce the dimensional state of the weather data is the proper 
orthogonal decomposition (POD), also known as principal component analysis or Karhunen–Loève 
decomposition. This decomposition states that any function dependent of time 𝑡 and space 𝑥 can be 
decomposed in a time-averaged value plus a fluctuating component defined as a linear combination 
of a spatial basis, composed of spatially orthonormal functions 𝜙𝑖(𝑥), times a temporal orthonormal 
basis made of orthonormal function 𝜓𝑖(𝑡): 
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 𝑐(𝑥, 𝑡) ≈ 𝑐̅(𝑥) + ∑𝜓𝑖(𝑡)𝜎𝑖𝜙𝑖(𝑥)

𝑁𝑚

𝑖=1

 (17) 

Where the 𝑁𝑚 is the number of orthonormal modes used for the reconstruction. 

The practical implementation of POD follows the method of snapshots proposed in [21]. Each weather 
sample is reshaped in a vector of size 𝑁𝑝, where this value refers to the total number of variables in 

each sample. The total number of samples 𝑁𝑡in vector form are rearranged in a matrix: 

 𝐶 = [

𝑐(𝑥1, 𝑡1) … 𝑐(𝑥𝑁𝑝
, 𝑡1)

⋮ ⋱ ⋮
𝑐(𝑥1, 𝑡𝑁𝑠

) … 𝑐(𝑥𝑁𝑝
, 𝑡𝑁𝑠

)
] (18) 

Of size 𝑁𝑡 × 𝑁𝑝, where each row refers to a sample and each column to a variable. 

The matrix Ψ containing the POD temporal modes can be obtained solving the eigenvalue problem of 
the temporal correlation matrix 𝑆 as follows: 

 𝑆 = 𝐶𝐶𝑇 = ΨΛΨ𝑇 (19) 

Where Λ is a diagonal matrix with elements 𝜆𝑖 = 𝜎𝑖
2 representing the variance content of each mode. 

The 𝜎𝑖 coefficient can be rearranged in a diagonal matrix Σ. Finally, the matrix Φ containing the spatial 
modes can be obtained by projecting the weather matrix of the temporal basis as: 

 Φ = Σ−1Ψ𝑇𝐶 = Σ−1Ψ𝑇ΨΣΦ = Φ (20) 

Assuming statistical convergence of the weather dataset used to compute the POD modes, any 
weather sample (inside and outside of the training dataset) can be quite accurately described as a 
linear combination of the modes contained in the ΣΦ matrix by the corresponding time coefficients. 
Thus, a reduced version of any weather sample can be obtained by truncating the number of POD 
modes used in the reconstruction and requiring only the temporal coefficients to be embedded on the 
aPCE as inputs. 

2.3.2 Convolutional neural network autoencoder 

The second methodology is based on autoencoders [22], a type of neural networks that maps a given 
input 𝑐 into a latent space 𝑞 using an encoding function ℱ𝑒𝑛𝑐(𝑐, 𝑤𝑒𝑛𝑐), and then maps back the latent 
space into the original input by means of a decoding function ℱ𝑑𝑒𝑐(𝑞, 𝑤𝑑𝑒𝑐). Subsequently, any input 
can be described as: 

 �̃� = ℱ𝑑𝑒𝑐(𝑞, 𝑤𝑒𝑛𝑐) = ℱ𝑑𝑒𝑐(ℱ𝑒𝑛𝑐(𝑐, 𝑤𝑒𝑛𝑐),𝑤𝑒𝑛𝑐) (21) 

Where 𝑤𝑒𝑛𝑐 and 𝑤𝑑𝑒𝑐 refers to the weight of the encoding and decoding functions respectively. These 
weights can be fitted using a stochastic gradient descent approach, commonly used in deep learning, 
to minimize the 𝐿2 norm between the original and reconstructed samples 

 𝑤 = {𝑤𝑒𝑛𝑐, 𝑤𝑑𝑒𝑐} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤‖�̃� − 𝑐‖2
2 (22) 

It is worth to mention the intrinsic relationship between the POD and autoencoders, since it has been 
proved that a neural network with a single hidden layer and linear activation function is equivalent to 
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POD [23]. The nonlinearities inherent to neural networks allow autoencoders to retain more 
information than POD for the same number of latent-space variables. 

Since weather information is characterized by the local spatial dependency of the data, the layers of 
the autoencoder are built using convolutional neural networks, henceforth referred to as CNN-AE. This 
type of network allows to exploit the spatial relationship of the data and to reduce the computational 
cost with respect to a classical autoencoder [24]. The weather information can be compressed into a 
latent representation to be fed into the aPCE, and the collocation points extracted from this can be 
translated to the dimensional space of the weather data, in a similar way as in POD approach. One of 
the benefits of CNN-AE with respect to POD is that the latter is limited by the linearity of the 
orthonormal basis, while the former can include nonlinearities that allow to capture better the 
weather information. The CNN-AE nonlinearities are embedded using nonlinear activation functions 
such as hyperbolic tangent or rectified linear unit [25]. With respect to the stochastic gradient descent 
approach for the weights fitting, the Adam [26] algorithm has been used. 

2.4 Integration of data assimilation models 

Data assimilation models were introduced in [2] as complementary modules capable of providing an 
estimation on some of the identified uncertain variables in the trajectory prediction process based on 
the captured status information of the air traffic system of interest. As such, considering an 
approximated value for these uncertain parameters avoids the need of modelling their uncertainty 
using the aPCE process, and offers the possibility of taking into account an approximate value that may 
be better adapted to the current and updated air traffic situation to be considered. 

The integration of these data assimilation models will be focused on calculating an estimate of the 
initial time of the flight, a parameter that was identified as uncertain for any given flight and that 
affects the results to be provided by the aircraft trajectory prediction process. As it was documented 
in Section 2.3 with the weather data, the aPCE process benefits of considering a reduced number of 
uncertain variables in the calculations. Therefore, considering a data-driven estimation of the initial 
time allows to remove this uncertain parameter from the aPCE calculation. On top of that, using these 
data assimilation models for the initial flight time estimation provides the added benefit of taking into 
account the current status of the system, helping to make the solution to be provided more robust by 
considering tactical factors. 

The proposed data assimilation models will therefore be integrated as an external module to the aPCE 
calculation process, as they do not need to be embedded within the uncertainty quantification process 
to be defined for the uncertain variables for which no data assimilation model is built. This can be done 
for any uncertain parameter that affects the aircraft trajectory for which it would be possible to gather 
relevant real-time information about and for which the uncertainty characterization is not suitable due 
to the lack of reference data from the flight plan data. As it was developed in [2], this is true for the 
initial time of the flight, as the flight plan does not give an exact value for the take-off time and it is 
possible to retrieve estimations for it, but could be extended to other stochastic variables affecting the 
trajectory prediction process that are not considered within this work, such as the initial 3D position 
of the flight. 

Estimations provided by the data assimilation models will entail an associated uncertainty due to the 
potential error to be introduced by the prediction process. Therefore, the estimations to be considered 
for the uncertain variables to be modelled will consist of a distribution of possible values according to 
the issued prediction and its associated prediction error. 
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3 Probabilistic trajectory generation 
framework 

In this section, the specific implementation of the PC theory for the generation of the probabilistic 
trajectories needed for later stages of the START project will be detailed. The developed framework is 
a two-phase system which depends on several inputs coming from different data sources, as well as 
on multiple standalone modules or tools that have their own inherent complexity. Therefore, the 
process followed to document the system will go phase by phase and module by module to explain all 
the developed capabilities throughout the process. 

A relevant feature of the developed methodology, as previously mentioned, is that it consists of two 
separate but sequential phases or structures. The first phase is dedicated to the obtainment of the full 
definition of the polynomials, posed following the PC theory, that will describe the evolution of the 
variables characterizing an aircraft trajectory as a function of the time elapsed and of the values 
adopted by the identified uncertain input variables. This first structure is therefore focused on 
following a data-driven approach for retrieving the set of polynomial coefficients that are best suited 
to describe the trajectories of interest, which will have a certain set of common characteristics (e.g., 
for a specific city pair, for a specific aircraft type, of for both a specific city pair and aircraft type). 
Parallel to this process, the employed datasets will be leveraged to execute the uncertainty 
quantification of the identified uncertain variables following the methodology explained in [2], so it is 
included in this first structure of the system. The whole process for this first phase will be described in 
Section 3.1 

Once the full definition of the polynomials is obtained, the second phase of the system is applied to 
use them to retrieve the set of probabilistic trajectories that can be associated to a nominal flight plan. 
This second phase is then dedicated to perturbing an initial flight plan coming from network demand 
data with the characterized value distributions for the uncertain variables that determine the 
trajectory evolution as per the PC formulation. This set of perturbations is then fed to the defined 
polynomials to obtain different trajectories that can be formulated for the input flight plan according 
to the considered uncertainty spectrum. In this structure, the data assimilation models introduced in 
[2] will enter the process by providing updates of expected values for some of the uncertain input 
variables, providing a better assessment of the probabilistic trajectories by reducing the uncertainty 
associated to the input variables. This second phase of the system will be fully developed in Section 
3.2. 

3.1 Building the aPCE polynomials 

This first phase of the framework, as explained before, is focused on obtaining the polynomials that 
will characterize the evolution of the variables defining the aircraft trajectory. To that end, different 
modules have to be coordinated in order to have an appropriate trajectory characterization based on 
a thorough and complex aircraft trajectory prediction process, which will be the base from which the 
polynomials to be retrieved will be fit. For this purpose, the input datasets to this first phase are the 
network demand data for the defined past instances, composed of flight plan, surveillance and 
performance data, as well as the weather information for the established timeframe. 
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Figure 3 Structure for the fitting process of the aPCE polynomials 

The schema showing the process to be followed during this first phase in order to build the aPCE is 
shown in Figure 3. In this schema, it can be observed that the main structure revolves around the 
obtainment of the boxes coloured in red, which constitute the modules that will be required in the 
second phase in order to calculate the established values for the probabilistic trajectories. These three 
modules are: the polynomials that will allow to describe the aircraft trajectory variables as a function 
of the possible values of the defined uncertain input parameters, through a fitting process described 
in Section 3.1.5; the module for integrating the retrieved weather information in order to consider the 
weather conditions as a potential source for uncertainty affecting the trajectory, described in Section 
3.1.6; and the uncertainty quantification process for the uncertain trajectory variables, detailed in 
Section 3.1.7. 

Additional instrumental modules of this phase, illustrated in Figure 3 with green boxes, are the tools 
employed for deterministic Flight Plan Optimization (FPO) and deterministic Trajectory Prediction (TP). 
The former will allow for the optimization of the trajectories to be followed starting from an initial 
flight plan, so that the dataset feeding the process for calculating the collocation points required to fit 
the aPCE polynomials is constituted of optimized trajectories. The latter allows for the calculation of 
the trajectories that are needed in order to fit the coefficients of the aPCE polynomials. The 
characteristics and details of both tools are explained in Section 3.1.2 and Section 3.1.4 respectively, 
with an introduction to how the trajectories will be modelled in Section 3.1.1, and the calculation 
process and purpose of the mentioned collocation points are commented in Section 3.1.3. 
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3.1.1 Trajectory modelling 

The flight plan optimization activities to be described in Section 3.1.2, as well as the trajectory 
prediction tasks to be described in Section 3.1.4, will be executed using the DYNAMO software [27]. In 
order to understand how this software handles the trajectories to be computed, it will be important 
to establish the basis for understanding the processes to be followed when modelling trajectories in 
both the optimization and the prediction tasks. 

DYNAMO software is the UPC in-house trajectory prediction and optimization software. This software 
has been made available to the project and it has been integrated into the developed framework to 
compute the trajectories required to fit the aPCE polynomials. 

The trajectory computation starts at 50ft above the departure runway elevation with landing gear up 
and flaps/slats in take-off configuration and ends at 50ft above the destination runway elevation with 
landing gear down and flaps/slats in landing configuration. Considering the needs for the START 
project, it was proposed to model the trajectory in the vertical domain as a sequence of the following 
flight phases:  

- Take-off and initial climb (block of several phases):  A predefined sequence of aircraft intent 
instances and hypotheses have been implemented.  

- A first block with a predefined sequence of phases with a predefined pair of aircraft intent 
instances per phase is implemented first. Therefore, all phases within this block are not subject 
to optimization since the movement of the aircraft in the vertical plane is completely 
constrained by the two predefined aircraft intent instances. The first phase is executed at 
maximum take-off thrust with flaps/slats in take-off configuration. Once the thrust reduction 
altitude is reached, the maximum engine rating is switched to maximum climb. Then, a 
sequence of phases follows to progressively accelerate the aircraft and retract flaps/slats. This 
block of phases ends when the aircraft is in clean configuration. It is worth noting that what is 
fixed in this block are the aircraft intents (i.e., initial climb speed), but not their specific values 
(i.e., 170 knots). Different aircraft types, different aircraft weights and different weather 
conditions might lead to different specific values for those intents. Similarly, the “take-off” 
flaps/slats configuration used here will be aircraft model dependent. Thus, although this block 
is not optimised, the particularities of the flight are taken into account and different initial 
climbs will be obtained for different aircraft/masses/weather.  

- Clean climb below FL100: A small phase follows to accelerate the aircraft to 250 knots 
calibrated airspeed (CAS) or ECON CAS, whatever the smallest speed is. The ECON CAS is the 
“economic” speed, resulting from the optimization process. This speed is such that the 
compound optimization function is minimised which takes into account fuel consumption and 
flight time (see section 3.1.2). Then, a constant CAS climb at maximum climb thrust follows up 
to reaching FL100. In this way, the typical ATM restriction of maximum 250kt CAS below FL100 
is modelled here, except for those (rather exceptional) cases where the optimal climb CAS is 
below 250kt where the speed constraint is not applicable.  

- Climb at constant CAS:  Above FL100, and assuming a given throttle setting (i.e., maximum 
climb thrust), the optimiser computes the optimal speed (ECON speed) and the aircraft flies at 
this speed until the ECON Mach is reached (optimal Mach climb also computed by the 
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optimiser). If needed, a small phase of acceleration from 250 knots to the ECON CAS is added 
before. For trajectory prediction the value of CAS value and thrust should be provided as input. 

- Climb at constant Mach: Assuming a given throttle setting (i.e., maximum climb thrust), the 
optimiser computes the optimal Mach (ECON Mach) and the aircraft flies at this Mach until 
the optimal first cruise altitude is reached. Thus, the final altitude of this phase defines the Top 
of Climb (TOC) value. A short acceleration phase at the end of the climb could be to reach the 
cruise Mach. For trajectory prediction, the values of Mach and thrust setting should be 
provided as input. 

- Cruise (block of several phases): Assuming a finite sequence of constant Altitude and Constant 
Mach segments. The optimiser determines the optimal Altitude-Mach values, taking into 
account a given maximum thrust rating (i.e., maximum cruise thrust) while in case of trajectory 
prediction it should be provided as input. 

- The trajectory can contain several step climbs (i.e., changes in the cruise altitude), which 
should be provided as intents to perform the trajectory prediction. But it will be the optimiser 
who will determine the best number of step climbs (that could be zero) and the exact location 
of each step climb, while observing the following constraints (configurable):  

o A minimum cruise of 50 nm and 5 minutes is enforced before the next step climb.  

o Altitude steps of 2000 ft  

o During the whole step climb the aircraft shall maintain, at least, 500 ft/min of rate of 
climb (ROC). Otherwise, the step climb is disregarded.  

o A given throttle setting is assumed (i.e., maximum climb thrust) 

It should be noted that the small climb segment that goes from a cruise altitude to the next 
one is also modelled, taking into account the dynamics of the aircraft in the same way they are 
considered for the rest of the trajectory. The final altitude of this block of phases defines the 
Top of Descent (TOD) value (i.e., the altitude of the last step climb).  

An acceleration/deceleration phase could be required to move from cruise Mach to Descent 
Mach speeds. 

- Descent at constant Mach: Assuming a given throttle setting (i.e., idle thrust), an initial descent 
phase is executed at constant Mach. Similar to the climb, the optimiser computes the ECON 
Mach for the descent. This phase ends once the descent ECON CAS is reached. For trajectory 
prediction the value of Mach and thrust (or idle thrust) should be provided as input. 

- Descent at constant CAS: Assuming a given throttle setting (i.e., idle), the optimiser computes 
the ECON CAS for the descent. This phase ends when reaching FL100. Clean descent below 
FL100: like in the climb, the speed is limited to 250 knots CAS below FL100. Thus, if the ECON 
descent CAS is above 250 knots a deceleration is executed to 250 knots and the idle descent 
continues at this speed. For trajectory prediction, the value of ECON CAS and thrust (or idle 
thrust) should be provided as input. 

- Approach and landing (block of phases): Like in the take-off and initial climb block, a predefined 
sequence of phases with a predefined pair of aircraft intent instances per phase is 
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implemented to model a progressive flaps/slats extension, the interception of the 
Instrumental Landing System (ILS) glide slope, gear down deployment and a progressive 
deceleration to the final approach speed. Thus, this block of phases is not subject to 
optimization, but the exact values for speeds and flap/slats settings will be 
aircraft/mass/weather dependent.  

Since the starting reference point is the runway threshold of the origin airport, both the distance and 
time are computed as the elapsed time and flown distance from that point. Push-back and taxi out, 
plus taxi-in and parking are not computed. 

As stated in the phase descriptions above, it is required to provide some data in order to compute the 
trajectory prediction.  

3.1.1.1 Main input parameters 

The main input parameters that are considered in DYNAMO to optimise or predict trajectories are:  

• Mass of the aircraft (for both trajectory prediction and optimization). This value has to be 
defined, or a default value is taken. In START project, this value has been defined as 80% of 
Maximum Landing Mass of the A320-231. 

• Weather: wind, pressure and temperature (for both trajectory prediction and optimization). 
Based on GRIB format, the weather information should be provided for the day and time of 
the prediction/optimization. In case the requested day and time are not available in the 
database, DYNAMO will take the closest weather information available. Weather input must 
be provided following GRIB/GRIB2 format. If the weather information is coming from a 
forecast or a nowcast is not a relevant issue for DYNAMO. 

• Cost Index (only in optimization). Cost Index (CI) value must be defined, or a default value is 
taken. In START project CI equal to zero has been selected so far, although it is planned to use 
real CI values in a later stage. 

3.1.1.2 DYNAMO output 

Both the flight plan optimizer and trajectory prediction tools will provide a trajectory as a result based 
on the DYNAMO software that has been particularised and further developed for the needs of the 
START project. Once this trajectory is available, any related parameter can be calculated: 

• TOC: it is considered that the Top of Climb is that altitude that the aircraft reaches after the 
climb phase. It is the value obtained from the optimizer when applying the “constant altitude” 
and “constant Mach” constraints (basic definition of the cruise phase). 

• TOD: it is considered that the Top of Descent is that altitude just before the descent phase, 
and just finishing the cruise phase (Constant Altitude and Constant Mach). 

• TOC Distance: flown distance from the threshold of the origin runway to reach the TOC. 

• TOD Distance:  flown distance from the threshold of the origin runway to reach the TOD. 

• TOC Time: elapsed time from the threshold of the origin runway to reach the TOC. 

• TOD Time:  elapsed time from the threshold of the origin runway to reach the TOD. 
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• Number of step climbs in cruise 

• For each step climb:  

o Step climb trip distance (bottom of climb and/or top of climb) 

o Step climb elapsed time (bottom of climb and/or top of climb) 

These values can be post-processed from a given trajectory (with the format of the DYNAMO output).  
The START project required several modifications and implementations to enable some of these 
parameters to be used as inputs of the Trajectory Predictor. 

3.1.1.3 DYNAMO execution strategy 

DYNAMO can be used following any of the three following options: 

• Aircraft intents for all the phases are provided; DYNAMO is able to predict the trajectory. 

• Aircraft intents for some of the phases are provided. Those phases not defined are taking pre-
defined values, which could come from a previous optimization run or could be defined by the 
user; DYNAMO is able to predict the trajectory. 

• Aircraft intents for a few phases are provided; DYNAMO optimizes those phases not defined 
by the initial intents. Compared to a previous optimization, leaving some intents free will lead 
to a new optimization with additional constraints (the defined intents), so the final outcome 
of this constrained optimization can differ from the original optimization results. Then, a few 
phases are fixed by the intents, the remaining are going through the optimizer, so we obtain a 
hybrid optimization and prediction of the trajectory. 

3.1.2 Flight plan optimization 

As it was commented above, the first phase of the proposed methodology requires the employment 
of a tool capable of computing the optimal trajectories for a given flight plan, declaring the intended 
flight to be executed for any given city pair. The proposed tool for undertaking this task is the DYNAMO 
trajectory optimizer. 

The trajectory optimization in the vertical domain is dealing with the following phases:  

• Climb at constant CAS:  The aim of the optimizer is to compute the optimal CAS, with a given 
throttle setting (i.e., maximum climb). 

• Climb at constant Mach:  The aim of the optimizer is to compute the optimal Mach number, 
with a given throttle setting (i.e., maximum climb).  

• Cruise: The optimiser will determine the optimal values for altitude and Mach number. The 
trajectory can contain step climbs (i.e., changing the cruise altitude). Thus, the optimiser will 
determine the best number of step climbs (that could be zero) and the exact location of each 
step climb, while observing the already mentioned constraints. 

• Descent at constant Mach: The aim of the optimizer is to compute the optimal Mach number, 
with a given throttle setting (i.e., idle).   
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• Descent at constant CAS: The aim of the optimizer is to compute the optimal CAS, with a given 
throttle setting (i.e., idle).  

• Take-off and initial climb: block of phases not subject to optimisation.  

• Approach and landing: block of phases not subject to optimisation.  

Excluding the take-off, initial climb, approach and landing phases, which are not subjected to 
optimization, DYNAMO can optimise the whole trajectory or could optimise some phases (for example, 
fixing the intents for the two climbs and then optimising cruise and descent, or fixing the intents for 
the descent and only optimising cruise, etc.). If all intents are fixed for all phases, then there is no 
optimisation, producing then a pure trajectory prediction.  

3.1.2.1 Objective function 

The optimizer is using a single function to minimize, named J, defined as:  

 

With Fuel being the total fuel burnt, CI being the selected cost index and Time being the total flight 
time. 
 
The CI is an input parameter for the trajectory optimization algorithm and specifies the relative 
importance of time associated costs with respect to the fuel cost. Thus, this is a parameter chosen by 
the airline taking into consideration its internal policies and cost structures. The cost index value can 
be a provided input, or a default value will be chosen. 

3.1.2.2 Horizontal optimizer 

Although the main application of DYNAMO on the START project is based on the vertical optimization 
and prediction, this section is aimed to complement what has been described so far with the settings 
established for the horizontal profile. 

The horizontal optimizer has different modes of use: 

• Set a fixed route and not optimize. Mainly defining the waypoints beforehand as in the FPL. 

• Optimize based on the routes available in a graph (structured network of Air Traffic Service 
(ATS) routes). This graph can include Free Route Areas (FRA). The graph could represent the 
actual airspace, or it could be a partial modification, or it could be completely invented. The 
key point here is to manage to get the graph.  

• Set only origin and destination and fly following the great circle distance between these two 
points. 

• Full Free Route (no ATS routes). We call that “Full” Free Route, since current “Free Route” 
implementations have entry, intermediate, and exit points and we are assuming that the free 
route is executed directly from origin/destination airports, without considering the 
particularities of the terminal airspace. 

 



PROBABILISTIC TRAJECTORY GENERATION USING UNCERTAINTY PROPAGATION MODEL  

 

  

 

 

 26 
 

 

 

3.1.3 Calculation of aPCE polynomial and collocation points 

From the optimized flight plan dataset, the following 8 variables have been considered as input 
parameters for the aPCE: 

• Mach number at climb phase 

• CAS at climb phase  

• Pressure altitude at cruise phase 

• Mach number at cruise phase 

• Mach number at descent phase 

• CAS at descent phase 

• TOC pressure altitude 

• TOD pressure altitude 

Note that is not necessary to use all the variables as input for the aPCE. Each of these variables has an 
arbitrary distribution, thus aPCE becoming indispensable to generate the appropriate polynomial basis 
functions describing the response of the model i.e., the trajectory prediction. 

The statistical moments for each variable are computed following Equation (6), which can be used 
together with the orthogonal condition for polynomials posed in Equations (10)-(13) to obtain the 
polynomial coefficients from the linear system of Equation (14). 

As shown in Section 2.2.3, the collocations points are obtained from the roots of the next higher-order 
polynomial for each stochastic parameter. Since the number of available collocation points is larger 
than the number of unknows, the system is overdetermined. This issue is solved by selecting the 
optimal 𝑀 combination of collocation points in terms of the probability of each combination of 
collocation points. This approach allows to obtain 𝑀 combinations of collocation points that are 
transformed back into optimized flight plans. 

3.1.4 Trajectory prediction 

Trajectory prediction is based on the definition of the flight intents. A summary of intents per phase is 
the following:  

• Climb at constant CAS:  Throttle setting and CAS.  

• Climb at constant Mach: Throttle setting and Mach.  

• Cruise: (sequences of) Altitude and Mach  

• Descent at constant Mach: Throttle setting and Mach.  

• Descent at constant CAS:  Throttle setting and CAS.  
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Other combinations of intents are also possible in DYNAMO, such as for instance “CAS and Vertical 
Speed” or “CAS and flight path angle”. Yet, these are typically used at tactical level and/or at low 
altitudes (approach etc). So, it has been considered as being out of the scope of the START project. 

The specific application to START project is devoted to providing a fast response to the calculation of 
the trajectories defined by the collocation points extracted from the aPCE method.  The specific input 
aircraft intent variables for the calculation of those trajectories are listed in Section 3.1.3. TOC and TOD 
altitude are not normally defined in the input aircraft intents but are calculated as a result of the 
optimization or prediction process.  A special implementation for START project is enabling the 
definition of these two altitudes as input parameters to adjust the vertical profile.  

Two different tests have been performed using all the listed intents or just using a restricted set. This 
restricted set includes the climb CAS and Mach number, the TOC altitude and the cruise altitude. 

Other data included as parameters from each collocation point include the airport of departure and of 
arrival, so that the trajectories can be computed for a specific city pair. 

The definition of the collocation points could lead to unfeasible flight intents, which is unacceptable 
from a mathematical point of view. Since the aPCE method requires the evaluation of all the points in 
order to estimate the statistical parameters,ot getting all the collocation points evaluated would lead 
to a complete failure of the method.  

The trajectory prediction software checks for these infeasibilities, as well as other vertical profiles 
issues; namely the ordering of the step climb/descent during the cruise phase. It has led to the 
definition of several cruise types: 

• Cruise block of type 1: 3 different altitudes. Two consecutive step climbs. The collocation 
points are defining 3 different altitudes, which defines a consecutive climb. Due to the 
requirements imposed on the cruise phase, a minimum separation (distance and time) 
between each step climb is considered. The ROC should be also checked to ensure that the 
plane is capable of performing the required operation. In case the aircraft performance is not 
enabling a minimum ROC, DYNAMO will enlarge the previous phase until the characteristics 
and performances of the airplane enable a ROC value which fulfils the requirement. If this 
situation is not reached before arriving at the point of the TOD altitude, the corresponding 
step climb will not be executed. 

• Cruise block of type 2: 3 different altitudes. Step descent followed by a step climb. Although it 
can hardly represent real cruise operations, inputs from the collocation points can lead to the 
definition of a cruise altitude below the TOC altitude, with a second step climb before the 
descent phase. As described on the previous cruise type, separation between steps and ROC 
requirements will be checked. If some of them are not fulfilled, then, the step is not executed.    

• Cruise block of type 3: 3 different altitudes. Step climb followed by a step descent. A standard 
definition of the cruise altitude from a theoretical point of view, with an initial step climb, 
followed by a step descent. Separation between steps and ROC values will be assessed before 
forcing the execution of the operation.  

• Cruise block of type 4: 3 different altitudes. Two consecutive step descents. For such a case, 
where two step descents are defined, the only requirement to be fulfilled is to ensure a 
minimum separation between the two steps. 
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• Cruise block of type 5: TOC altitude equal to cruise altitude and one step climb. This scenario 
represents a simplification compared to cruise block type 1, since it still defines a step climb 
along the cruise phase, but the initial cruise altitude and the first step climb altitude are the 
same. Again, separation between steps and ROC are checked for requirements fulfilment.  

• Cruise block of type 6:  One step climb and cruise altitude equal to TOD altitude. It is similar to 
the cruise block of type 5 but inverting the equalities. The final result is a similar profile, 
although it is the cruise and the TOD altitudes that are equal.  

• Cruise block of type 7: One step descent and cruise altitude equal to TOD Altitude. Another 
situation that provides a similar profile that type 5 and 6 but considering a descent step instead 
of a climb step.  

• Cruise block of type 8: TOC altitude equal to cruise altitude and one step descent. Similar to 
type 8, so similar to 5, 6 and 7, but starting with the same altitude as the TOC altitude and 
applying a descent step. Since it is a descent, ROC requirement is not applicable.  

• Cruise block of type 9:  One single cruise altitude. The simplest case, which equals the three 
altitudes, so the cruise phase starts at TOC and ends at TOD altitudes, being both the same. 

All these types of cruise block have to fulfil the requirements of the cruise phase, as defined in the 
trajectory modelling basis described in Section 3.1.1. 

These cruise types have been defined considering the specification in the collocation points of three 
altitudes, namely the TOC, cruise and TOD ones. If the collocation points are modified only defining 
the TOC and cruise altitudes, the number of cruise types will be reduced, but the concepts described 
above will remain the same. 

In order to ensure the feasibility of the flight, additional checks are done while defining the vertical 
profile: 

• If the TOC altitude is lower than the altitude of the climb Mach phase, so the TOC altitude is 
below the cross-over altitude of the given climb Mach number and CAS, this climb Mach phase 
is not considered. 

• Same situation is considered during descent and with regards the TOD altitude. 

• If ROC available at TOC altitude is not larger than 500 ft/min this altitude is disregarded and 
the TOC altitude is the first available FL where a minimum ROC available of 500 ft/min can be 
attained. 

• Flight envelope protection: Maximum operating Mach number (MMO), maximum operating 
speed (VMO) for maximum speeds, Greendot (CAS) for minimum speed. If a higher/lower 
speed is given as intent, then it is disregarded, and the max/min limit is imposed. 

3.1.5 Retrieving the aPCE coefficients 

Once the trajectories corresponding to the previously defined collocation points are obtained from the 
trajectory-prediction module, aPCE coefficients for Equation (1) may be obtained. For that purpose, 
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the least-square-approximation method will be used. Equation (16) can be expressed in matrix form 
as follows: 

 𝑩 = (𝚪𝑻𝚪)
−𝟏

𝚪𝑻𝒀 (23) 

where 𝑩, 𝚪, and 𝒀 are the matrices of coefficients, polynomials and outputs respectively. Note that 
bold uppercase letters refer to matrices. The aPCE polynomials previously obtained are evaluated at 
each collocation points, thus leading to the composition of matrix 𝚪. Matrix 𝒀 is generated from 
trajectory information. Since the present aPCE implementation intends to provide an uncertainty 
evolution with respect to the time, for each sample i.e., for each row of 𝒀, there is more than one 
column. Each column contains the flight time up to a single predefined point in the horizontal path of 
the route, for example at the 25%, 50%, 75% and 100% covered distance with respect to the entire 
one. Note that Equation (14) posed a system linear of equations that requires a matrix inverse to be 
solved. Depending on the polynomial degree this matrix could be ill-conditioned, which would lead to 
completely wrong results. Whereas in the cases of study that condition does not happen, Moore-
Penrose algorithm is used to compute the inverse. This algorithm allows to reduce significantly the 
numerical error associated to ill-conditioned matrices. 

3.1.6 Integration of weather information 

Similar to Section 3.1.3, POD coefficients or CNN-AE latent variables are added to the list of input 
parameters in the aPCE. In the present study, 3 coefficients are considered. For the aPCE fitting 
purpose, weather data for years 2016 and 2017 are considered. The weather is downloaded from 
European Center for Medium-Range Weather Forecasts (ECMWF) in a rectangular grid that covers the 
area between the origin and destination airports. The sides of this grid are aligned with the meridians 
and parallels. 

Once the set of collocation points are obtained, the weather coefficients are transformed back into 
weather information with physical dimensions. Note that each combination of collocation points is 
combined with their corresponding weather. It is worth mentioning the standard format to operate 
with weather information is known as GRIB. While there is full support to read this format from the 
ECMWF, the writing support is quite limited.  

The generated flight plan and weather information for each combination of collocation point is fed 
into the trajectory predictor. With the generated output, and the aPCE polynomials evaluated at each 
combination of collocation points, it is possible to obtain the aPCE coefficients. 

3.1.7 Uncertainty quantification of input variables 

Parallel to the process previously described of obtaining the definition of the aPCE polynomials, the 
quantification of the uncertainty for the aircraft intent variables is executed in this first phase of the 
framework. This specific module is implemented in this phase because it uses the same data inputs 
than the ones used for the determination of the aPCE polynomials, namely, the historical instances of 
network demand data, consisting of flight plans and surveillance information. 

As it was widely described in [2], the process for quantification of the uncertainty present in the aircraft 
intent variables will be executed by evaluating the differences between the planned and the actual 
values for these variables in past aircraft trajectories relevant for the proposed scenario (i.e., for any 
given city pair, aircraft type, etc.). Hence, this process is fed by the datasets available in this phase of 
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the process, which will therefore be evaluated in order to obtain the probability distributions for the 
observed differences in the values of the identified uncertain aircraft intent variables. These 
probability distributions will later be employed in order to define the possible perturbations in the 
defined uncertain variables within the second phase, and therefore will be paramount in order to 
define the spectrum of values of the output probabilistic trajectory variables. 

3.2 Probabilistic trajectory generation 

The second phase of the framework can be implemented at any point in time once the first phase has 
been completed and the definition of the relevant aPCE polynomials has been established. The 
expected framework for this second phase is to be used in the tactical phase, in conjunction with all 
the other activities to be executed within the START project. This is because the modules deployed 
within this second phase of the methodology are prepared to consume network demand information 
as it is issued and calculate the set of probabilistic trajectories that can be incurred when following it, 
taking into consideration the potential perturbations that it may suffer along its execution. 

The schema for the proposed methodology to be followed is represented in Figure 4. As it can be 
observed, both the weather processing module and the aPCE polynomials, computed within the first 
phase of the framework, constitute an integral part of the process for obtaining the desired 
probabilistic trajectories. Regarding the input, the same kind of information as the one commented for 
the first phase will be employed, although in this second phase, the information is to be consumed 
through a live feed, so that current data relevant for the short-term future (following the framework 
proposed by the START project) is expected regarding the scenario of interest. 

Additionally, three further modules, represented in green colour in Figure 4, are required in order to 
perform all the necessary calculations. The first one is the module for executing the deterministic 
optimization of the flight plans that are gathered in the tactical phase. This optimization is executed 
following the same procedure as the one described in Section 3.1.2, just in order to have the same 
kind of input than the one employed for the calculation of the aPCE polynomials. Also, the uncertainty 
distributions computed for the aircraft intent variables as explained in Section 3.1.7 will be integrated 
in order to retrieve the necessary perturbation values for the uncertain input variables on which the 
aPCE polynomials depend. This is the key step that allows the deployed methodology to account for 
the potential deviations that the flight may suffer with respect to the declared plan, as observed in 
similar flights in the past. Finally, the data assimilation models, presented in [2], are integrated in this 
phase in order to receive updated information about the current air traffic status that may affect the 
flight in its execution. Therefore, these updates will be taken into account in order to reduce the 
uncertainty in some of other input values that influence the probabilistic trajectories to be obtained.  

In order to describe the processes executed within the modules presented in Figure 4, the optimized 
flight plan will be taken as initial point, consumed in its declared version from a live feed (as established 
in [28]) and optimized following the process described in Section 3.1.2. Then, Section 3.2.1 will explain 
how, using the weather processing module and the uncertainty distributions coming from the first 
phase, the initial values for the input variables as calculated from the optimized flight plan will be 
perturbed to account for their actual uncertainty, and thus will constitute different input cases to be 
fitted into the aPCE polynomials. Once fitted, Equation (7) can be solved for each of the input cases to 
retrieve the corresponding values for the variables defining the aircraft trajectory. Therefore, each of 
the input cases will provide a different description of the final trajectory that could be described by an 
aircraft executing the declared flight plan. When considering all these cases together, a probability 
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distribution of the possible values to be adopted by the different aircraft trajectory variables will be 
obtained, and thus the required probabilistic trajectory set will be defined for the considered declared 
flight plan. Finally, Section 3.2.2 will comment on the possibility of integrating the values obtained from 
the data assimilation models in order to reduce the uncertainty of certain factors that affect the aircraft 
trajectory. 

 

Figure 4 Structure for the generation of probabilistic trajectories from demand data 

3.2.1 Perturbations for aPCE polynomials input 

Once the optimized flight plan is retrieved, a definition of the declared values for the aircraft intent 
variables is obtained for the nominal trajectory that the aircraft will have to describe. However, as it 
was made evident throughout this document, deviations from the plan normally occur on all aircraft 
trajectories when the flight is executed. As such, the objective of this framework is to account for the 
possible spectrum of deviations and project the probabilistic trajectories that may be incurred from 
the nominal one established by the declared flight plan. 

The proposed methodology will be then to perturb the nominal values for the aircraft intent variables 
considering the potential deviations that can be expected on them. These perturbations will be 
obtained by following a data-driven approach by which comparable past trajectories are observed in 
order to derive the probability distributions of the deviations incurred in these variables in historical 
instances. The process to obtain these probability distributions was described in Section 3.1.7, and 
now they will be used to define the spectrum of perturbations to be considered. 

Consequently, the procedure for perturbing the nominal values for the aircraft intent variables is 
adding and/or subtracting the typical deviations observed in past similar trajectories. The criteria for 
defining the range of values for these deviations is arbitrary but should cover the wide majority of 
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possibilities. Extreme cases in which the deviations are very large may be avoided, as depending on 
the magnitude of cases considered, they may be statistically irrelevant. 

With this procedure, the uncertainty in the values for the aircraft intent variables is considered in the 
calculation of potential trajectories to be incurred. Each combination of perturbed values for each of 
the aircraft intent variables will lead to a unique trajectory. Thus, all the calculated trajectories will 
conform a set of probabilistic trajectories emanating from a single flight plan. 

3.2.1.1 Weather 

Weather perturbations are included in the model by means of ensemble weather forecast datasets 
retrieved from the ECMWF’s Ensemble Prediction System (EPS). These forecasts are composed of a 
reference forecast, known as control forecast, as well as up to 50 perturbed cases to this nominal 
forecast, following the perturbation methodology introduced in [2].  

Therefore, the procedure for integrating these perturbations to the weather conditions consists of 
calculating the predictions for the entire set of aircraft intent variables’ perturbations with each of the 
perturbed weather forecast. Consequently, all these combinations of perturbed cases provide a set of 
individual trajectory estimations that conform a probability value distribution for the trajectory 
variables of interest. 

3.2.2 Data assimilation models 

Further input information can be considered within the proposed framework in order to enhance the 
consideration of micro-level uncertainties in the proposed methodology. In particular, the data 
assimilation models presented in [2] can be integrated within the second phase of the framework. 
These models provided different information: 

• A runway configuration model was introduced capable of estimating the runway from which 
any flight would depart from a given airport based on the wind information available in the 
airport weather forecasts (Meteorological Aerodrome Reports (METAR) from National Oceanic 
and Atmospheric Administration (NOAA)). 

• A taxi time model was introduced capable of estimating the time it would take any given 
aircraft departing from any given airport to complete the taxiing phase from the parking to the 
runway based on the surveillance reports being received from a live feed. 

• A turnaround time model was introduced capable of estimating the time it would take any 
given aircraft to complete the turnaround phase (from the aircraft entering a parking spot in 
the arrival phase of a previous flight to exiting the same parking spot in the departure phase 
of the immediate next flight to be served by the same aircraft) based on the information 
contained within EUROCONTROL’s DDR2 dataset. With the turnaround time estimation and 
the actual arrival time for the previous flight, an estimation can be done on the off-block time 
for the departure operation. 

All these models can provide estimations on relevant factors that could affect any given flight planned 
to depart in the short-term future. Following the pre-tactical temporal framework proposed within the 
START project, this would mean that the estimations provided by these models could be used for all 
those operations planned to depart in the immediate hours after the execution of the second phase 
of the framework. 
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Including the estimates provided by the proposed data assimilation models can help in reducing the 
uncertainty associated to certain factors or parameters affecting the trajectory. These factors would 
be in this case the initial conditions of the flight, as using the estimates for the runway to be used and 
for the off-block and taxi time for the flight could eliminate the uncertainty on the initial time and 
location of the flight. This would consequently introduce some prediction errors in the calculation, as 
the issued estimates will not be accurate each and every time. 

An important factor to take into account is the fact that assuming an initial location and time for the 
flight would theoretically require the declared flight plan to be optimized taking into account this new 
information. This is because the optimal calculation of the nominal trajectory to be followed based on 
the declared flight plan would change based on both a different initial location (starting the flight from 
a different runway than the one declared in the flight plan would probably lead to a different lateral 
and horizontal profile to be followed by the aircraft) and a different initial time (starting the flight at a 
different time than the one declared in the flight plan, with a different taxi time, would maybe cause 
the aircraft to be affected by different weather conditions, and therefore would maybe make it follow 
a different lateral or horizontal profile). Although this consideration will not be explored in the study 
case shown in Section 4, it would be interesting to observe the trade-off caused in the accuracy of the 
probabilistic trajectory determination when accounting for the estimates issued by the data 
assimilation models. 
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4 Use case 

The objective of this section is to exemplify the framework proposed in Section 3 in order to obtain a 
probability distribution of values for any given aircraft trajectory variable as a result of the 
consideration of potential uncertainty in the identified set of input variables affecting the trajectory 
prediction process. The use case developed during this section will therefore comment on all the steps 
to be followed for both phases of the framework, first in order to obtain the definition of the aPCE 
polynomials that allow for the description of the aircraft trajectory variables of interest as a function 
of the considered uncertain input variables, and then to retrieve the probability distributions for those 
trajectory variables attending to the potential perturbations to be taken into account. 

It is established that for this use case, the flight time will be the trajectory variable to be evaluated, 
specifically at the end point of the trajectory. The flight time is selected because it is the trajectory 
variable that allows for a straightforward comparison to similar values obtained by using the trajectory 
prediction tool or by observing the flown trajectories, and also because it will be the variable of interest 
for later stages of the START project. The temporal and spatial framework for said evaluation will be 
established on all flights covering the route between Adolfo-Suárez Madrid Barajas airport (LEMD) and 
Franz Josef Strauss Munich International Airport (EDDM) during June 2018, for all present airlines and 
aircraft types. 

As it was represented in Figure 3, the main input datasets to be considered are conformed by network 
demand and weather data. The sources from where this information will be consumed were already 
identified on the Data Management Plan [28], and are specific to each data piece. Flight plans will be 
gathered to be consumed by the flight plan optimization module from EUROCONTROL’s Demand Data 
Repository (DDR2) in the ALLFT+ format, in their filed version. Surveillance data are compiled in order 
to perform the uncertainty quantification for aircraft intent variables from BDG’s data pool, which 
consumes surveillance messages from Flightradar24. Aircraft performance models to be used 
throughout the different tools deployed in the proposed framework come from EUROCONTROL’s 
BADA4 [29]. Regarding weather information, the ERA5 reanalysis datasets from ECMWF will be 
employed in the first phase to have a better weather conditions definition. Although the ECMWF’s EPS 
are proposed in Section 3.2.1.1 as a mean to consider weather perturbations in the second phase of 
the methodology, they are not employed in this study case. As an alternative for the sake of simplicity, 
ERA5 reanalysis datasets are employed as well. A more detail explanation about this will be provided 
in Section 4.2 

The proposed use case was scaled progressively in terms of complexity, and as such will be 
documented throughout this section. First, a complete study of the process followed will be done in 
Section 4.1 considering only aircraft intent uncertainties, disregarding uncertainty in the micro-level 
coming from other sources. Then, in Section 4.2, it will be described how the uncertainty in the 
weather conditions could be included in the process, and Section 4.3 will comment on how uncertainty 
on the initial flight time could be added by employing the outputs provided by the proposed data 
assimilation models. 

4.1 Considering aircraft intent uncertainties 

The process to be executed in order to obtain the probability distribution of possible flight times for 
the trajectories to be incurred by following any given declared flight plan will follow exactly the 
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schemas shown in Figure 3 and Figure 4. In this first iteration, only the potential uncertainties coming 
from the aircraft intent definition will be considered, so weather and initial conditions are momentarily 
disregarded. 

As it was documented in Section 3, the process starts by optimizing the trajectories corresponding to 
the declared flight plans following the process described in Section 3.1.2 for a relevant timeframe 
regarding the scenario of interest. For this purpose, 2731 flight plans declared for the flights between 
LEMD and EDDM were collected and optimized for the period between June 2017 and May 2018. These 
optimized trajectories constitute the baseline for the calculation of the collocation points for all the 
uncertain aircraft intent variables to be considered, and thus for the first step of the definition of the 
aPCE polynomials, as explained in Section 3.1.3. In this first iteration, there will be 8 different aircraft 
intent variables for which their potential uncertainty will be considered: two for the climb and descent 
phases (calibrated airspeed and Mach number), another two for the cruise phase (pressure altitude 
and Mach number), as well as the altitudes achieved at the TOC and TOD. The value distributions over 
all the considered optimized trajectories for these 8 aircraft intent variables are shown in Figure 5. 
These histograms illustrate the possible range of values to be adopted for these variables over similar 
trajectories, and from them, the value spectrum for the calculation of the collocation points is 
established. In general, this spectrum will cover a range smaller than the one covered by considering 
the standard deviation and is tailored to keep reasonable values for all variables. This considered range 
of values is marked in Figure 5 as the one between the dashed yellow lines. 

 

Figure 5 Histograms of values of the considered aircraft intent variables for all optimized LEMD-EDDM 
trajectories between June 2017 and May 2018. Calibrated airspeeds are provided in knots, pressure altitudes 
in FL. Solid red lines indicate mean values, dashed red lines indicate the values for the standard deviation. 
Dashed yellow lines indicate the range of values considered for the calculation of the collocation points. 

The calculated collocation points for an aPCE polynomial of order 3 are shown in Table 3. Following 
the formula established in Equation (5), in which the number of variables N considered is 8 and where 
the degree of the polynomial d is 3, a total of 165 combinations of values are obtained. Therefore, the 
TP tool will have to calculate the trajectories that comply with each of the variables’ combinations in 
order to have the required elements to perform the polynomial fitting. The process for calculating 
these trajectories was described in Section 3.1.4. Once the trajectory prediction tool calculated the 
trajectories corresponding to the aircraft intent variables indicated, the coefficients of the aPCE 
polynomials can be calculated following Equation (16). This calculation completes the definition of the 
aPCE polynomials for the selected use case. 
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Table 3: Values for the calculated collocation points for all LEMD-EDDM trajectories between June 2017 and 
May 2018 

𝑪𝑨𝑺𝒄𝒍𝒊𝒎𝒃 
[kts] 

𝑴𝒄𝒍𝒊𝒎𝒃 
𝑯𝑻𝑶𝑪   

[ft] 
𝑴𝒄𝒓𝒖𝒊𝒔𝒆 

𝑯𝒄𝒓𝒖𝒊𝒔𝒆   
[ft] 

𝑯𝑻𝑶𝑫   
[ft] 

𝑴𝒅𝒆𝒔𝒄 
𝑪𝑨𝑺𝒅𝒆𝒔𝒄 

[kts] 

141.15 0.764 41006 0.769 41521 41005 0.759 137.03 

137.01 0.756 40765 0.762 41006 39801 0.751 133.93 

132.59 0.745 38990 0.753 38990 38991 0.739 131.04 

129.21 0.733 37001 0.742 37001 37001 0.728 128.63 

 

Regarding the uncertainty quantification for the considered aircraft intent variables, the process is 
executed following the methodology described in [2]. Therefore, the planned values for these variables 
are retrieved from the filed flight plan information, while the actual values are retrieved from the 
analysis of the trajectories present in the surveillance data for all flights between LEMD and EDDM 
during the considered period (June 2017 to May 2018). These differences in the selected aircraft intent 
variables build to distributions of the deviations between planned and flown trajectories, and 
therefore provides a certain insight on the dimension of the uncertainty to be expected on the selected 
variables. 

The obtained probability density functions for all the aircraft intent variables in consideration are 
presented in Figure 6 and Figure 7. In general, the differences observed respond to expected 
behaviour. The climb and descent phases seem to be usually executed slower than what was planned, 
which could be argued as a will to reduce the fuel burnt. Also, differences for the TOC and cruise 
altitude are in intervals of 2000 feet, which was expected since rules for Air Traffic Flow Control 
indicate that flights going in a similar orientation (from west to east or vice versa) should be separated 
in altitude intervals of that magnitude. For the TOD altitude, these differences are not that well 
grouped in said intervals, although this could be explained by the difficulties in determining the exact 
point for the TOD, as its identification is complex. Finally, the velocity acquired during the cruise phase, 
as it can be seen in the top left plot of Figure 7, tends to be higher during the cruise phases of the 
actual flights. 

Once the probability distributions for the deviations in the established aircraft intent variables are 
retrieved, as well as the definition of the aPCE polynomials is completed, the second phase of the 
developed methodology can be implemented. This second phase, as described previously, is the one 
in charge of issuing the probability distributions for the expected flight time of any given flight plan as 
a function of the uncertainty to be observed in the defined variables. The selected dataset for the 
evaluation of the results provided by the developed methodology will be all flights between LEMD and 
EDDM during June 2018, which amounts to a total of 202 trajectories. In order to assess the validity of 
the developed method, the perturbations to be introduced to the eight aircraft intent variables on 
which the aPCE polynomials depend have to be selected. The deviations to be expected between their 
values as provided in the flight plan and as flown in actual trajectories were illustrated in Figure 6 and 
Figure 7 for a relevant period of time, so these probability density functions will serve as the baseline 
from which the perturbations will be calculated.  
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Figure 6 Probability density function of the difference between planned and observed values for the first block 
of aircraft intent variables 

 

Figure 7 Probability density functions of the difference between planned and observed values for the second 
block of aircraft intent variables 
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Table 4: Values for the perturbations introduced to the aircraft intent variables for all flights between LEMD 
and EDDM during June 2018 

𝑪𝑨𝑺𝒄𝒍𝒊𝒎𝒃 
[kts] 

𝑴𝒄𝒍𝒊𝒎𝒃 
𝑯𝑻𝑶𝑪   

[ft] 
𝑴𝒄𝒓𝒖𝒊𝒔𝒆 

𝑯𝒄𝒓𝒖𝒊𝒔𝒆   
[ft] 

𝑯𝑻𝑶𝑫   
[ft] 

𝑴𝒅𝒆𝒔𝒄 
𝑪𝑨𝑺𝒅𝒆𝒔𝒄 

[kts] 

19.22 0.051 2000 0.056 2000 2000 0.307 62.13 

 

In a first approach, most of these distributions can be approximated to a normal one, so we can 
consider their standard deviation as a good indication of how far the perturbations in the input value 
can be taken. However, for the TOC and cruise pressure altitude, it was already mentioned how the 
deviations were clearly grouped in intervals of 2000 feet, so this value will be taken instead of the 
standard deviation. 

With the perturbations defined and the input flight plan information ready, the aPCE polynomials can 
provide the desired values that will build the probability distribution for the flight time. It has to be 
understood that, for each flight to be computed, 3 different values (nominal one and the two 
perturbation values as per Table 4) will be considered for each of the 8 aircraft intent variables. 

For the 202 trajectories included in the present case of study, aPCE returns only a successful evaluation 
for 153 of them. The non-evaluated predictions suffer from numerical instabilities, which lead to 
unrealistic predictions. This is one of the major drawbacks of aPCE implementation, which is intimately 
related to its main advantage. Since aPCE allows a much lower computational cost compared to a 
Monte Carlo approach, the proposed optimal collocations points do not cover all the possible 
parametric space that can be found in the set of testing flights. Subsequently, the aircraft intent 
variables found in the non-evaluated cases are in regions of the parametric space very far from those 
evaluated with the optimal collocation points. 

In order to assess the suitability of the issued flight time estimations, the actual flight times for the 202 
flights considered during June 2018 are introduced in Figure 8. These are the baseline values that the 
issued estimations should approximate to. Therefore, a comparison of the flight times issued by the 
input of the flight plan data and the correspondent perturbations with these real flight times is 
necessary to understand how well the developed methodology replicates the real conditions. 
Consequently, Figure 9 is introduced illustrating this comparison for all the estimations executed with 
the built aPCE polynomials, showing the error incurred for each estimated flight time of each flight. 

As it can be observed in Figure 9, the results are quite satisfactory, showing a normal distribution of 
the error centred around zero, so a large proportion of the estimations issued are accurate with 
respect to reality. The dispersion of the results acquires a maximum value of around 20 minutes of 
deviation, a magnitude not very disproportionate for a flight that normally takes around 125 minutes 
as shown in Figure 9, so in the worst cases the estimation is off by a 20% percent. These inaccurate 
estimations correspond to cases in which the perturbations included for some of the uncertain aircraft 
intent variables deviate too much the trajectory from the normal course, and therefore lead to a final 
estimation of the flight time that is off with respect to the incurred one. 

It is also interesting to observe how the issued estimations with the aPCE polynomials compare to the 
ones that a normal trajectory prediction tool would issue for the same scenario. This comparison is 
introduced with Figure 10, where the probability density functions of the issued flight times for the 
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proposed scenario by both the trajectory prediction tool (described in Section 3.1.4) and the built aPCE 
polynomials are shown. It is seen that the trajectory prediction tool also does a good job of estimating 
the flight times, and even the dispersion obtained is closer to the one observed in reality. These more 
extreme cases are not properly calculated with the aPCE polynomial cause they probably are related 
to more extreme flight conditions in which the computation of the polynomials fail, as previously 
mentioned. 

 

Figure 8 Histogram for the real flight times for all flights between LEMD and EDDM during June 2018 

 

Figure 9 Probability density function of the error incurred in the flight time estimation for all flights between 
LEMD and EDDM during June 2018 
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Figure 10 Probability density function of the estimated flight times for all flights between LEMD and EDDM 
during June 2018 by (top) the trajectory prediction tool and (bottom) the aPCE polynomials 

In any case, it is observed that the aPCE methodology approximates quite well the results obtained by 
a complex trajectory prediction tool with a much simpler approach, and with the added benefit of 
taking significantly less time. For the proposed case study of 202 trajectories in which three different 
values are proposed for the eight aircraft intent variables, the aPCE methodology just took 37 seconds 
in order to compute all the proposed variations and obtain the flight time estimations, while the 
trajectory prediction tool required one second per computed trajectory, leading to a total of around 
600 seconds required to compute all variations. This serves to show the benefits of employing the 
developed methodology, especially when extrapolating the case study to a large-scale scenario of 
thousands of trajectories which increased spectrums of possible perturbations. 
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4.1.1 Reducing the number of uncertain aircraft intent variables 

To evaluate the robustness of the developed methodology, a study case was proposed in order to 
check how the accuracy in the aircraft trajectory variable estimation is affected by a reduction of the 
number of uncertain aircraft intent variables taken into consideration. For example, in the work that 
served as a basis upon which the presented methodology was built [10], the aircraft intent variables 
considered as uncertain were only three: the Mach and pressure altitude during the cruise phase and 
the calculated distance to the TOD. Therefore, it is interesting to assess what would be the implications 
of considering a reduced set of uncertain input variables. 

When selecting this reduced set, a straightforward decision is to try to reduce complexity in the 
parametric space defined by the perturbations of the eight aircraft intent variables considered in the 
first place. As it was mentioned before, some of the considered perturbations on some of the input 
variables led the aPCE polynomials to provide flawed results. Therefore, it is reasonable to remove 
those variables and keep the ones which provide robustness to the developed methodology even when 
heavily perturbed. As such, the same study case will be implemented again but just considering the 
following four uncertain aircraft intent variables: 

• Mach number at climb phase 

• CAS at climb phase  

• Pressure altitude at cruise phase 

• TOC altitude 

The ones  removed are those related to the descent phase, as well as  the Mach number in the cruise 
phase. These are the ones that present more problems in the uncertainty quantification process due 
to the complexity in their exact determination (most times there is not a clear boundary between the 
cruise phase, the TOD and the descent phase), and consequently are those, as shown in ¡Error! No se 
encuentra el origen de la referencia., which present a more complex uncertainty profile. The selected 
aircraft intent variables to keep in the loop are those for which the full spectrum of uncertainty, as 
defined in ¡Error! No se encuentra el origen de la referencia., can be considered without leading to 
defective results from the aPCE polynomials. 

The results obtained for the proposed case study can be observed in ¡Error! No se encuentra el origen 
de la referencia. and ¡Error! No se encuentra el origen de la referencia.. The immediate conclusion 
that can be extracted is that, as it could have been expected, the lower definition in the consideration 
of uncertainty for the proposed trajectories lead to less accurate estimations when compared to real 
trajectories. This is evident in the results shown in ¡Error! No se encuentra el origen de la referencia., 
where the dispersion of the incurred error is significantly higher than the one obtained with the full 
set of aircraft intent variables as seen in ¡Error! No se encuentra el origen de la referencia..  

Additionally, it is seen that the flight time estimations provided with this reduced set in the aPCE 
polynomials are significantly worse than the ones that can be retrieved from the trajectory prediction 
tool, with very dissimilar distributions as depicted in ¡Error! No se encuentra el origen de la 
referencia.. This leads to a reduced applicability of the developed method, as although it would reduce 
the computational time incurred to obtain these estimations (only 4 seconds are required to compute 
all variations for the 202 trajectories), it does not maintain an acceptable level of accuracy in 
comparison with a more traditional method such as a kinematic trajectory prediction. 
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Therefore, these results confirm that the application of the developed methodology requires the 
consideration of aircraft intent variables that covers most if not all of the phases of the aircraft 
trajectory, as with the reduced set, the accuracy is significantly impacted. The benefits of limiting the 
set of considered input aircraft intent variables come from an important reduction in the 
computational time, as well as a higher success rate in the issuance of flight time estimations with 
perturbations in all variables thanks to the reduction in complexity.  

 

Figure 11 Probability density function of the error incurred in the flight time estimation with the reduced set 
of input variables 
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Figure 12 Probability density function of the estimated flight times with the reduced set of input variables for 
all flights between LEMD and EDDM during June 2018 by a) the trajectory prediction tool and b) the aPCE 
polynomials 

4.2 Including uncertainty in weather conditions 

Whereas the previous cases have been evaluated without taking into account the weather 
information, it is clear that weather plays a key role in the trajectory evolution of any flight. To include 
weather information into the aPCE polynomials as a few input variables, two different compressing 
methodologies have been evaluated: POD and CNN-AE. Both approaches have been implemented with 
the goal of encoding three-dimensional fields of temperature and wind velocity components into 3 
latent variables. 
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Figure 13 shows the low-order reconstruction provided by POD approach. A visual inspection makes it 
clear that the large-scale structures populating atmospheric flows are well captured by the 
reconstructions. In the case of Figure 13, a significant large-scale structure is observed. It represents a 
counter-clockwise-rotating vorticity region located over the South of France, with an associated area 
of high temperatures. However, the predictions show attenuated values of these temperatures close 
to the peak. This result is expected since the truncation of POD modes is removing energy from the 
reconstruction. Furthermore, the vertical-velocity wind component of the predictions is attenuated 
with respect to its reference. This behaviour could be ascribed to the fact that this quantity does not 
represent a significant part of the energy content compressed by the POD, thus being represented in 
the largest POD modes not included in the reconstruction. 

 

Figure 13 Results for low-order reconstruction of weather data at three different pressure levels for the POD 
method. Top row refers to reference data, while bottom one refers to POD low-order reconstructions. Contour 
plot refers to temperature fluctuations with respect to the mean temperature at each level, while arrows 
heading and length refer to the direction and intensity of the wind component in the Earth-surface-parallel 
directions. Arrow colour denotes the magnitude of the wind in the Earth-surface-normal direction. All 
quantities are scaled with their corresponding standard deviation. 

Figure 14 shows the results for the CNN-AE compression. As in the case of POD results, it can be 
observed that the large-scale structures governing the atmospheric flow are well captured in the low-
order reconstruction. In the same manner, the predictions tend to attenuate the values at the areas 
with the highest fluctuations. However, this attenuation is not caused by the same reasons as in POD, 
since CNN-AE does not impose a hierarchical order in the latent space based on the energy content. 
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Figure 14 Results for low-order reconstruction of weather data at three different pressure levels for the CNN-
AE method. Top row refers to reference data, while bottom one refers to CNN-AE low-order reconstructions. 
Contour plot refers to temperature fluctuations with respect to the mean temperature at each level, while 
arrows heading, and length refer to the direction and intensity of the wind component in the Earth-surface-
parallel directions. Arrow colour denotes the magnitude of the wind in the Earth-surface-normal direction. All 
quantities are scaled with their corresponding standard deviation. 

In order to select the most suitable method, both methodologies have been compared in terms of 
mean-squared error of the low-order reconstructions. Results show that the lowest overall error is 
reported by POD, while the different architectures tested in the case of CNN-AE are not able to improve 
this error. Because of this, and since POD is significantly cheaper from a computational-cost point of 
view, POD has been selected as the encoding methodology for this study case. In any case, the results 
provided here do not imply that in general POD works better than CNN-AE, but with the available 
amount of training data it is more suitable. This statement relies on that, during CNN-AE training, an 
overfitting behaviour was observed, i.e., the network was not able to generalize enough due to not 
high enough amount of training data. 

A dataset containing the first three POD coefficients for the flights between May 2017 and May 2018 
have been included to the original dataset of aircraft intent variables, thus increasing the number of 
dependent variables in the aPCE polynomials up to 11. In this study case however, the perturbations 
for the weather conditions were not considered using the EPS datasets proposed in the methodology 
as per Section 3.2.1.1 due to the simpler scope proposed. Instead, the reference reconstruction of 
weather conditions coming from ECMWF’s ERA 5 datasets will be used, considering only the potential 
perturbations along the flight development, that is, considering the forecast at the different issuance 
times in which the flight will develop (i.e., if flight is estimated to depart at 9AM, consider the 
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reconstruction weather dataset for 9AM, 10AM and 11AM). This constitutes a shortcoming from the 
process proposed by the methodology described in Section 3, as the output would be richer when 
considering 50 possible perturbations in the weather conditions. Then, the results to be presented are 
assumed to be less robust than they could be when using EPS datasets. 

Figure 15 shows the error distribution for the aPCE predictions with respect to the real flight times 
including the perturbations for the weather uncertainty. Similar to the previous examples, the error is 
centred in zero. In this case, the dispersion of the error is narrower than in the reduced set of variables 
case, and similar to the results provided for the nominal case. Nonetheless, there are a few cases in 
the left side of the graph not observed in the reference case. These errors could be ascribed to the 
inherent complexity of including a high-dimensionality weather system into an aPCE expansion with 
only a few variables. 

 

Figure 15 Probability density function of the error incurred in the flight time estimation with the aircraft intent 
set of input variables together with weather variables. 

Figure 16 reports the comparison between the flight times obtained from the aPCE and the real ones. 
As it can be observed, in this case the resemblance between the prediction and the reference is the 
largest one. Specifically, it can be observed that aPCE is able to cover the prediction spectrum even in 
the most extreme cases, i.e., in the edges of the distribution function. 
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Figure 16 Probability density function of the estimated flight times with the aircraft intent and weather set of 
input variables for all flights between LEMD and EDDM during June 2018 by a) the trajectory prediction tool 
and b) the aPCE polynomials 

4.3 Including uncertainty in initial conditions 

The potential variations of the initial conditions on the development of the aircraft trajectory were 
identified in [2] as a source of uncertainty that should be taken into account when issuing a trajectory 
prediction. These conditions were mainly defined as the initial 4D position of the aircraft when starting 
its journey, as well as the initial mass of the aircraft. 

With respect to the mass, the problem of lacking actual performance data was already identified as 
the main issue impeding its inclusion, since without real performance data including the mass, it is not 
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possible to execute the required uncertainty quantification. With respect to the initial 4D position of 
the aircraft, each component should be analyzed separately. 

The uncertainty for the initial altitude of the flight will be considered as negligible. Once the airport of 
departure is well known, the initial altitude of the aircraft will be taken as the one for the reference 
point of the airport, as the difference between this altitude and the one for the runways can be 
neglected. 

On the other hand, the uncertainty on the initial latitude and longitude should definitely be considered, 
because the departure runway configuration for any flight will significantly influence the trajectory to 
be described by the aircraft to the destination airport. For this purpose, a runway configuration 
estimation model was included within the deployed data assimilation models in order to determine 
which runway is to be used by the flight associated to each incoming flight plan. These estimations 
were executed for the proposed case study, but the estimations for the flight time were not updated 
including the computed initial position. This is because no significant differences in the estimated flight 
time were found for this case when considering the estimation for the runway configuration. If the 
study case were to be expanded in order to also be able to estimate other relevant aircraft trajectory 
parameters, such as the lateral or the vertical profile, the consideration of the estimations provided by 
the built runway configuration model would be much more important. 

Finally, the last component of the initial 4D position of the aircraft trajectory is the initial or take-off 
time, for which its uncertainty should also be considered. For this purpose, the three different data 
assimilation models described in Section 3.2.2 are employed in order to come up with an approximated 
estimation of what the take-off time is expected to be for any incoming flight plan for which an 
estimation of the flight time needs to be issued. This approximation is built by assuming that the 
deviations on the initial time of the flight will be taken as the sum of the deviations on the off-block 
time and on the taxi time to be incurred by the operation. Therefore, when taking as baseline the time 
at which a given tail parks at the airport, the estimated turnaround time could be used to calculate the 
estimated off-block time for the next operation to be executed for the same tail, and adding the 
estimated taxi time, the approximated take-off time for the operation of interest can be obtained. 

This approach has a shortcoming for all those flights that are served by aircraft that is already on the 
airport and have not executed another operation just before (e.g., early morning flights served by 
aircraft that arrived the night before). In these cases, the turnaround time does not serve as a good 
estimation of the off-block time. However, for these cases, the deviation in the initial flight time can 
be approximated to just that one of the taxi time, thus taking as valid the off-block time information 
provided in the flight plan. 

Consequently, for all those aircraft that are executing consecutive operations, the process starts by 
identifying the arrival time at the airport of departure for the next flight, which can be gathered from 
the surveillance information. Then, an estimation is done by the corresponding data assimilation 
model on the turnaround time that will be required by the aircraft so that the next operation is started. 
This turnaround time is then defined as the time that the aircraft spends parked at the airport between 
consecutive operations. Figure 17 shows the distribution of turnaround times for E195 and A320 
aircraft within the proposed study case, i.e., operating the city pair LEMD-EDDM during June 2018. This 
estimation, driven by the aircraft type of interest, together with the arrival time for the previous 
operation, provides with an estimation of the off-block time for the operation of interest. This 
estimation serves as an update to the planned off-block time provided within the flight plan. 
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Figure 17 Probability density function of the estimated turnaround time for (left) E195 and (right) A320 aircraft 
operating flights with departure from LEMD to EDDM during June 2018 

 

Figure 18 Probability density function of the estimated taxi times for all flights departing from LEMD during 
June 2018 for runway (top left) 14L (top right) 14R (bottom left) 36L (bottom right) 36R 

To complement this off-block time estimation, the taxi time to be expected for the operation of 
interest can be issued. Using the output from the runway configuration model, a prediction of the 
runway to be used by the operation can be known. Then, the taxi time prediction model can provide 
with an estimation of the required time for the aircraft to complete the taxiing phase to the expected 
runway. This issued time, when added to the previously issued off-block time, results in an acceptable 
estimation of the take-off time for the operation of interest. 

Figure 18 serves to illustrate the estimations that have been issued for the proposed case study. It 
presents the probability distributions for the estimated taxi time to be spent depending on the runway 
selected for the departure. Thus, the runway configuration estimation is the one that allows to know 
which runway is chosen, and thus determines the associated taxi time. 
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It could be argued that using these estimates could reduce the uncertainty but introduce some 
prediction error, as obviously the estimations provided by these models are not perfect. Although a 
thorough review was done on the accuracy of these estimations for the airport used in this study case, 
it would remain as a future work to check the increase or decrease in the accuracy of trajectory 
determination as a consequence of the consideration of an estimate for the initial time and location 
of the flight. 
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5 Concluding remarks 

Within this document, a fully developed framework was presented in order to propagate the identified 
uncertainty factors affecting the trajectory in the micro-level. This framework takes into consideration 
the sources of uncertainty coming from the deviations in the aircraft intent and initial conditions, as 
well as the potential changes in the weather conditions.  

The proposed methodology employs a time-dependent formulation of the Polynomial Chaos theory, 
that serves as an alternative to traditional methods based on Monte Carlo simulations using kinematic 
aircraft trajectory predictions. This formulation is complemented with a novel encoding methodology 
capable of compressing standard weather datasets to a few latent variables that are introduced as a 
necessary input within the aPCE polynomials, which allows the proposed framework to consider 
potential deviations in the weather conditions as posed in the perturbed weather forecasts. This is a 
significant improvement with respect to similar methodologies seen in the literature [10][11][12]. 
Additionally, a further advancement is executed by including the output of data assimilation models 
within the framework for determining the initial conditions to be expected for any given flight, 
providing estimations for factors directly influencing  the initial time and/or position of the aircraft for 
the computation process.  

The proposed study case explores the applicability and suitability of the posed methodology for 
uncertainty propagation in the aircraft trajectory prediction process. It shows how, when applying the 
framework to a relevant scenario within the European air traffic, the results obtained for estimating 
the probability distribution of the flight times resembles the actual values observed in reality, even 
when considering weather uncertainties. It obtains results comparable to those retrieved by using a 
complex aircraft trajectory prediction tool [27] while reducing the involved computational time and 
complexity, as it avoids the application of computationally demanding methods (e.g., a Monte Carlo 
simulation).  

This use case could be expanded and improved in future iterations within the START projects. First, the 
reduction of uncertainty when considering estimations for initial conditions using the data assimilation 
models output should be assessed in a similarly relevant scenario. In this document, the approach to 
the inclusion of such estimations was only theoretical, so the introduction of error coming from 
inaccurate estimations could not be evaluated. Also, the employment of EPS forecasts for the 
consideration of weather perturbations was proposed within the theoretical posing of the 
methodology, but in the study case ERA5 reanalysis datasets were employed. The latter should be 
considered in an expanded use case, as it is expected to enhance the results, making the resulting 
probability distributions more resilient to potential deviations. Uncertainties affecting the trajectory 
coming from aircraft performance deviations were not considered due to the lack of required data, so 
further iterations should aim to include them. Finally, the only trajectory variable analyzed within the 
use case was the total flight time, but other relevant variables should be introduced in further 
iterations, such as the incurred latitude, longitude and altitude. This would allow to evaluate the time-
dependence of the retrieved aPCE polynomials, as it would be possible to retrieve the probability 
distributions for the values of those variables in the different discrete points defined within the 
trajectory, and not only at the end point. 
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