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Abstract 

 
In analyses of compositional data, it is important to select a suitable unchanging component as a reference to 
detect the behavior of a single variable in isolation. This paper introduces two tests for detecting the 
unchanging component, based on a new approach that utilizes the coefficient of variation of component 
ratios. That is, the coefficient of variation of a compositional ratio is subject to change when the unchanging 
component is switched between the denominator and numerator, and the coefficient of variation tends to be 
small when the unchanging component occurs as the denominator against any arbitrary components (Test 1). 
In addition, the ratio of the component pair that gives the lowest coefficient of variation is most likely to 
represent the two unchanging components (Test 2). However, Tests 1 and 2 are not necessary and sufficient 
conditions for uniquely finding the unchanging component. To verify the effectiveness of the tests, 500 
artificial data sets were analyzed and the results suggest that the tests are able to identify the unchanging 
component, although Test 1 underperforms when the data set includes a component with skewness greater 
than 0.5, and Test 2 fails when the data set includes components with a correlation coefficient greater than 
0.75. These defects can be overcome by interpreting the two test results in a complementary manner. The 
proposed tests provide powerful yet simple criteria for identifying the unchanging component in 
compositional data; however, the reliability of this approach needs to be assessed in further studies. 
 
Keywords: Compositional data, closed data, unchanging component, reference frame, coefficient of 
variation 
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1. Introduction 
 
 In the field of geosciences, scientists seek to compare compositional data to identify differences 

between data sets or to detect a trend within the data. An innovative approach proposed by Aitchison (1986) 
and many successive works made this difficult task possible by mapping the simplex sample space to the 
Euclidean sample space (logratio analysis) or by building a proper algebra and distance function within the 
simplex (stay-in-the-simplex method). 

The basic problem encountered in analyzing compositional data is that they only retain relative 
information, which is best extracted using Aitchison’s (1986) method. However, in some cases, geoscientists 
need to determine the behavior of a single variable in isolation; e.g., detecting gains or losses of a single 
element during geological processes such as magmatism, metamorphism or alteration. Four methods have 
been proposed for this purpose: (1) mass-balance calculations (Brimhall and Dietrich, 1987; Brimhall et al., 
1988), (2) the isocon method (Grant, 1986), (3) the logratio f-value method (Woronow and Love, 1990) and 
(4) Pearce element ratios (Pearce, 1968). 

For example, the mass-balance approach combines the chemical and physical properties of the 
host rock and weathered derivatives to determine the enrichment or depletion of a single element during 
weathering. The basic mass conservation of any element during weathering can be stated based on the 
volumes, densities, compositions of the host rock and weathered material as well as the mass flux between 
them (e.g., eq. 1 of Brimhall and Dietrich, 1987). The compositions and densities can be measured directly, 
and in the case of an element whose absolute abundance remained unchanged during weathering, the mass 
flux term can be eliminated. Subsequently, the only remaining unknown quantity, the volumetric change, 
can be calculated. By importing this quantity to the mass conservation equations of other elements, the 
absolute mass flux of a given element can be estimated (Brimhall and Dietrich, 1987; Brimhall et al., 1988). 
The logical operation of the isocon method is similar to this mass-balance approach (see Grant, 1986, 2005). 

All four of above methods utilize the unchanging component to determine the fractionation of a 
single variable. However, a problem arises when the unchanging component is not self-evident, which 
happens to be the case in many practical data sets in geosciences. Woronow and Love (1990) and Schedl 
(1998) made an advance in determining a truly unchanging reference component by providing robust 
statistical criteria for the identification of the unchanging component in compositional data. Although these 
statistical methods are mathematically valid, few studies have employed these methods in practical analyses 
of geoscientific data. This lack of uptake may reflect the fact that the methods involve a somewhat 
complicated series of statistical tests and require the existence of two unchanging components within the 
given compositional data. 
 Subsequent to these studies, there has been little progress. The present study aims to introduce 
additional criteria for detecting the unchanging component, based on a new approach that utilizes the 
coefficient of variation. First, we investigate the properties of the coefficient of variation in compositional 
data. Then, we show that the coefficient of variation of an unchanging component meets two unique 
conditions that can serve as new criteria in identifying the unchanging component. If this method can be 
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used to readily identify the unchanging component, it would then be possible to quantify the actual variation 
of the single component in compositional data. 
 

2. Definitions 
 
 The nomenclature and symbols used in this paper follow those of Aitchison (1986). Basis is a 
non-constrained, D–dimensional data vector   w= (w1,…,wD )  and wt  is the sum of the basis. 
Composition,   x= x1,…, xD( ) , corresponds to the constrained data vector of w whose sum is 1 or 100. D 

and n denote the number of variables and the number of cases, respectively. Note that we only give the 
sub-index for the variables in all data matrix symbols and that we omit using the sub-index for the cases 
(e.g., wi  and xi ), for the sake of simplicity. Therefore, if the summation sign ( ∑ ) is used, it indicates a 

summation over the cases for which the sub-index is not given. 

 wi , swi
 and Vwi

 denote the mean, standard deviation and coefficient of variation of wi , 

respectively. The standardized k-th moment of wi  is expressed as 
 
αwi

k  and the product moment 

coefficient of wi  and wj  is expressed as rwi ,wj
. 

 

3. Prediction of compositional data using the basis 
 
 Because x is in a constrained form, it is impossible to identify the unchanging component solely from 
x. Conversely, the unchanging component in w is obvious. Therefore, we will attempt to identify the 

relationship between the composition and the basis by predicting Vxi  for any component in compositional 

data in terms of the statistics of the basis. If this approach is successful, it would be possible to determine the 
conditions under which xi  is the unchanging component. 

 In terms of mathematical background, this study is largely an extension of Pearson’s (1897) theory. 
However, we also seek to improve the formula proposed by Pearson (1897) because the associated 
prediction error tends to be large, as discussed below. 
 
3.1 Predicting the mean 
 

 If the deviation of wi  is denoted as 
  
εwi

= wi −wi , the mean of the composition xi  is: 
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We assume that the ratio of the deviation to the mean is small, and using the McLaurin expansion 
(third-order approximation), we have: 

 

  

xi =
1
n
wi
wt

1+
εi
wi
−
εt
wt

+
εt
2

wt
2 +
εt
3

wt
3 −
εiεt
wiwt

+
εiεt

2

wiwt
2

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
∑  

We neglect the cubic terms, except for the skewness term, as skewness can be large depending on the 
distribution. Subsequently, the mean of composition can be expressed in terms of the basis statistics as 
follow: 
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3.2. Predicting standard variation 
 
 Similarly to above, the standard deviation of the composition xi  can be denoted by the basis. 
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If the McLaurin expansion of Equation (3) is performed until the fourth-order approximation, and if we 
neglect the products of more than four quantities (except for the kurtosis term, as kurtosis is always greater 
than 1.8), we have: 
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3.3 Predicting the coefficient of variation 
 
 Above, we obtained two equations predicting the mean and standard deviation of the composition 
in terms of the basis statistics. By dividing the latter by the former, we finally obtain the formula that 
addresses the coefficient of variation of the composition: namely, 

 

  
Vxi =
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From this equation, we can see that even if wi  is the unchanging component, Vxi  is not equal to zero. 

Moreover, the component that gives the smallest coefficient of variation is not always the unchanging 
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component. For this reason, the unchanging component cannot be detected directly from the compositional 
data. 
 To demonstrate the accuracy of Equation (5), we generated 100 sets of data that each contains 
five normally distributed variables with 100 cases in each. For these 500 variables, the means were fixed to 
100 and the standard deviations were randomly selected from a value ranging from 1 to 40, thereby allowing 

a 40 times of differences in the value of the coefficient of variation. Then, actual Vxi , and Vxi  calculated 

by Equation (5) were compared against the averaged ratio of deviation to the mean (
 
εwi

w
i

) for each 

variable in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Prediction errors for Equations (5) in analyses of random data sets. 
 
 
 Although the Equation (5) was derived assuming a small value for the ratio of deviation to the 

mean, the prediction error does not increase significantly even for the variables with high 
 
εwi

w
i

. 

Therefore, as long as variables do not contain significant outliers, we consider that this equation generally 
holds. 
 
3.4 Coefficient of variation of ratios 
 
 If we consider the ratios of compositions, it is clear that  xi x j =wi wj ; thus, Equation (5) can 

be rewritten as follows: 
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Vwi
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Supposing that wj  is an unchanging component, then Vwj
 is zero and we have 

 
Vxi /x j =Vwi

. However, 

if the denominator and numerator are replaced, then 
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Vxj /xi =

Vwi

2 −2αwi
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Accordingly, the coefficient of variation of ratios is subject to change when the unchanging component is 
switched between the denominator and numerator. 

 Figure 2 compares the values of Vxi /xp  and Vxp /xi  in the case that wp  is the unchanging 

component. The shaded area in Figure 2a shows the value range when the kurtosis of wi  is changed from 

1.8 to 3.0 (from a uniform to normal distribution), and those in Figure 2b shows the value range when the 
skewness of wi  is changed from 0.99 to –0.99 (from positively to negatively skew-normal distributions). 

For Figure 2a, the value range suggests that Vxp /xi  is always greater than Vxi /xp . This is also true for 

Figure 2b; however, the opposite relationship can occur when wi  is highly positively skewed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Comparison of the coefficients of variation of ratios when the unchanging component is the 
denominator (horizontal axis) and numerator (vertical axis). xp  and xi  represent the unchanging 

component and arbitrary component, respectively. (a) The shaded area represents the value range with 
changing kurtosis of the counterpart component ( xi ). (b) The shaded area represents the value range with 

changing skewness of the counterpart component. 
 
 
 The above findings suggest that if wp  is the unchanging component, then for every component i, 

Vxi /xp  will tend to be smaller than Vxp /xi . This relationship also holds when 
 
Vwp

<Vwi
, indicating that 

wp  need not be a completely unchanging component. Therefore, this proposition can serve as one criterion 

for finding the unchanging or least-changing component in compositional data (Property 1). However, 
Property 1 is not a necessary and sufficient condition for finding the unchanging component, as components 
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that give a highly positively skewed distribution can distort this condition (Fig. 2b). Consequently, 
additional diagnostic properties are necessary to uniquely define the unchanging component. 

 In the case of two unchanging components in the data (wp = wq = constant), then 
 
Vwp

=Vwq
= 0  

and Vxp /xq  is equal to zero. Accordingly, the component pair that gives the lowest coefficient of variation 

of the ratio is most likely to represent the two unchanging components (Property 2). However, a problem 

with Property 2 is that it requires two unchanging components in the data. Another concern is that Vxi /x j  

can attain small values depending on the combination of Vwi
, Vwj

 and rwi ,wj
. In particular, in the case 

that 
 
Vwi

=Vwj
 and 

 
rwi ,wj

=1 , that means if there are two components behaving similarly, then Vxi /x j  

decreases to: 

 

  

3αwj

4 Vwj

4 −2αwj

3 Vwj

3

1+αwj

3 Vwj

3  

Therefore, like Property 1, Property 2 is not a necessary and sufficient condition for finding the unchanging 
component. 
 

4. Tests for identifying the unchanging component 
 
 As noted above, the presence of a component with a highly positively skewed distribution can 
distort Property 1 but not Property 2. Similarly, the presence of components that behave similarly may 
distort Property 2 but not Property 1. Consequently, the component that satisfies both Properties 1 and 2 is 
the most likely candidate for the unchanging component. On this basis, we propose two tests for identifying 
the unchanging component. 
 Test 1 is based on Property 1. First, compare the coefficients of variation for pair-wise ratios. 

Then, count the numbers of components for which 
 
Vxi /xp <Vxp /xi . If wp  is the most invariant component 

in w, then the count number would logically be D–1, where D is the number of components. Thus, the 
component with the largest count is the most likely candidate for the unchanging component. 
 Test 2 is based on Property 2. Compare the coefficients of variation for all ratio combinations. 
Select the four or five lowest coefficients of variation. The component that appears repeatedly in these four 
or five ratios is the candidate for the unchanging component. Logically, it may be sufficient to consider only 
the denominator of the ratio that returns the lowest coefficient of variation. However, some leeway is given 
in this regard because there might be a low probability of two unchanging components being simultaneously 
present in the same data set and a high probability of two components behaving similarly in the data set. 
 

5. Application of the tests to artificial data sets 
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 Five artificial data sets, each consisting of eight components (100 cases) with the last component 
being invariant (w8 ), were generated to verify the effectiveness of Tests 1 and 2. These data sets were 

designed to represent extreme cases, with the intention of assessing the conditions under which the two tests 
are successful or unsuccessful in detecting the unchanging component ( x8  in these cases). The components 

of the first four data sets are designed to represent four different independent distribution classes; normal 
(Table 1), uniform (Table 2), negatively skew-normal (Table 3) and positively skew-normal distributions 
(Table 4). For these four data sets, the means of w1  to w7  were fixed to 100 and the standard deviations 

were randomly chosen from 1 to 40, thus. The fifth data set consists of normally distributed and correlated 
components (Table 5). The coefficient of correlation between w1  and other variables were designed to 

change sequentially (0.99, 0.75, 0.30, –0.30, –0.75 and –0.99). In this case, the means and standard 
deviations of w1  to w7  were approximately 90—110 and 25—35, respectively. 

 Tables 1 to 5 summarize the average statistics after 100 replicated runs. The rows Test 1 and Test 
2 in the tables show the number of runs for which variables x1  to x8  passed the tests after 100 runs. Note 

that these test results do not always sum up to 100 because in some of the runs, there were two or more 
variables simultaneously passed the test with equal counts for Tests 1 and 2. 
 
 
Table 1. Statistics of normally distributed data sets (mean values after 100 runs). 
BASIS w1 w2 w3 w4 w5 w6 w7 w8 
Coefficient of variation 0.353 0.294 0.253 0.207 0.156 0.111 0.059 0.000 
Skewness -0.024 -0.004 -0.005 0.004 0.000 -0.003 0.007 — 
Kurtosis 2.759 2.911 2.877 2.783 2.833 2.907 2.911 — 
Correlation with w1 1.000 0.016 -0.005 0.001 0.001 0.001 -0.007 — 
COMPOSITION x1 x2 x3 x4 x5 x6 x7 x8 
Coefficient of variation 0.322 0.270 0.235 0.198 0.158 0.127 0.097 0.077 
Skewness -0.194 -0.097 -0.086 0.023 0.127 0.200 0.366 0.466 
Kurtosis 2.864 2.982 2.947 2.897 3.005 3.006 3.146 3.298 
Correlation with x1 1.000 -0.227 -0.257 -0.261 -0.292 -0.331 -0.374 -0.431 
TEST RESULTS x1 x2 x3 x4 x5 x6 x7 x8 
Test 1 0 0 1 0 2 14 25 70 
Test 2 (lowest 5 pairs) 0 0 0 0 0 0 7 93 

 
 
Table 2. Statistics of uniform distributed data sets (mean values after 100 runs). 
BASIS w1 w2 w3 w4 w5 w6 w7 w8 
Coefficient of variation 0.336 0.285 0.243 0.195 0.141 0.095 0.049 0.000 
Skewness 0.022 0.012 0.007 -0.010 -0.040 -0.003 0.006 — 
Kurtosis 1.782 1.778 1.771 1.772 1.804 1.812 1.786 — 
Correlation with w1 1.000 -0.003 0.001 -0.005 -0.017 -0.001 -0.003 — 
COMPOSITION x1 x2 x3 x4 x5 x6 x7 x8 
Coefficient of variation 0.305 0.260 0.223 0.185 0.144 0.112 0.086 0.073 
Skewness -0.009 0.005 0.018 0.089 0.132 0.182 0.249 0.340 
Kurtosis 1.888 1.929 1.976 2.118 2.339 2.549 2.689 2.817 
Correlation with x1 1.000 -0.246 -0.245 -0.265 -0.297 -0.334 -0.379 -0.412 
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TEST RESULTS x1 x2 x3 x4 x5 x6 x7 x8 
Test 1 0 1 0 2 5 22 28 62 
Test 2 (lowest 5 pairs) 0 0 0 0 0 0 5 95 

 
 
 The data sets shown in Tables 1 and 2 represent a case in which every component is normally and 
uniformly distributed, respectively. For both the normal and uniform cases, the detection ability of Test 1 in 
selecting the true unchanging component ( x8 ) was better than 60%. This result may appear to be 
unsatisfactory, but Test 1 chose x6  and x7  in the cases when these were nearly invariant variables. 

Therefore, Test 1 detected the true or nearly unchanging components in majority of the 100 replicated runs. 
The detection ability of Test 2 was almost perfect (>90%; Tables 1 and 2). These results suggest that 
although both tests successfully detected the unchanging and/or least changing components, Test 2 generally 
performed better than Test 1. 
 
 
Table 3. Statistics of negatively normal-skew distributed data sets (mean values after 100 runs). 
BASIS w1 w2 w3 w4 w5 w6 w7 w8 
Coefficient of variation 0.190 0.173 0.174 0.162 0.169 0.154 0.154 0.000 
Skewness -0.192 -0.512 -0.611 -0.767 -0.787 -0.861 -0.879 — 
Kurtosis 2.944 3.231 3.057 3.367 3.271 3.447 3.492 — 
Correlation with w1 1.000 0.004 -0.013 -0.004 0.004 -0.000 0.006 — 
COMPOSITION x1 x2 x3 x4 x5 x6 x7 x8 
Coefficient of variation 0.181 0.171 0.172 0.163 0.171 0.158 0.156 0.060 
Skewness -0.045 -0.246 -0.308 -0.416 -0.411 -0.378 -0.443 0.657 
Kurtosis 3.126 3.368 3.206 3.492 3.448 3.567 3.416 3.667 
Correlation with x1 1.000 -0.172 -0.194 -0.162 -0.113 -0.171 -0.161 0.002 
TEST RESULTS x1 x2 x3 x4 x5 x6 x7 x8 
Test 1 2 2 0 0 0 0 0 96 
Test 2 (lowest 5 pairs) 0 3 0 0 2 5 1 89 

 
 
 Table 3 shows the case in which the basis artificial data set has varying degrees of negative 
skewness (from 0.0 to –0.9) and varying coefficient of variation (from 0.01 to 0.40). Both Test 1 and 2 were 
almost perfect in detecting x8  (Table 3). The performance of Test 1 was improved compared with the 

cases in Tables 1 and 2, because the differences between Vxi x8  and Vx8 xi  becomes more apparent when 

the data are negatively skewed (see Fig. 2). 
 
 
Table 4. Statistics of positively normal-skew distributed data sets (mean values after 100 runs). 
BASIS w1 w2 w3 w4 w5 w6 w7 w8 
Coefficient of variation 0.161 0.119 0.117 0.117 0.105 0.109 0.102 0.000 
Skewness 0.246 0.483 0.690 0.829 0.824 0.902 0.892 — 
Kurtosis 3.031 3.122 3.490 3.566 3.404 3.577 3.652 — 
Correlation with w1 1.000 -0.005 0.002 -0.008 0.006 -0.014 -0.007 — 
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COMPOSITION x1 x2 x3 x4 x5 x6 x7 x8 
Coefficient of variation 0.151 0.115 0.113 0.111 0.103 0.106 0.100 0.046 
Skewness 0.114 0.296 0.453 0.577 0.541 0.581 0.574 -0.017 
Kurtosis 2.941 2.931 3.114 3.245 3.147 3.187 3.257 2.837 
Correlation with x1 1.000 -0.208 -0.204 -0.214 -0.157 -0.188 -0.184 -0.048 
TEST RESULTS x1 x2 x3 x4 x5 x6 x7 x8 
Test 1 4 8 18 20 22 31 28 0 
Test 2 (lowest 5 pairs) 1 0 0 1 1 0 1 96 
 
 
 Table 4 shows the case in which the basis has a positive skew-normal distribution with varying 
degrees of skewness (from 0.0 to 0.9). This is a case in which Test 1 was assumed to be ineffective in 
detecting the unchanging component, as expected, Test 1 failed to detect x8 ; instead, strongly positively 
skewed variables such as x5 , x6  and x7  erroneously passed the test. However, in most of the 100 runs, 

Test 1 detected x8  as a second candidate. That is, 
 
Vxi /x8 <Vx8 /xi  count numbers were large, but not the 

largest. 
 
 
Table 5. Statistics of correlated normal distributed data sets (mean values after 100 runs). 
BASIS w1 w2 w3 w4 w5 w6 w7 w8 
Coefficient of variation 0.298 0.289 0.294 0.298 0.299 0.297 0.298 0.000 
Skewness 0.006 0.013 -0.004 -0.010 0.040 0.003 -0.001 - 
Kurtosis 2.956 2.950 2.854 2.840 2.923 2.862 2.896 - 
Correlation with w1 1.000 0.990 0.747 0.285 -0.281 -0.751 -0.990 - 
COMPOSITION x1 x2 x3 x4 x5 x6 x7 x8 
Coefficient of variation 0.272 0.263 0.262 0.265 0.285 0.317 0.339 0.073 
Skewness -0.126 -0.116 -0.170 -0.172 -0.006 0.166 0.278 0.441 
Kurtosis 2.995 2.985 2.917 2.948 2.950 2.967 3.079 3.287 
Correlation with x1 1.000 0.987 0.680 0.098 -0.498 -0.814 -0.911 -0.309 
TEST RESULTS x1 x2 x3 x4 x5 x6 x7 x8 
Test 1 0 0 0 0 0 0 0 100 
Test 2 (lowest 5 pairs) 67 70 1 0 0 10 10 7 

 
 
 Table 5 shows normally distributed data with varying degrees of correlation with x1  (ranging 

from 0.99 to –0.99). In this case, the coefficient of variation was fixed to around 0.3. Test 1 succeeded in 
detecting x8  uniquely. Meanwhile, Test 2 failed to detect x8 ; instead, variables with high positive 
correlations ( x1  and x2 ) erroneously passed Test 2, as expected from the mathematical arguments. 

 In summary, Tests 1 and 2 appear to represent a powerful tool in detecting the unchanging 
component. However, the results suggest that the accuracy of Test 1 tends to decrease when there is a 
positively skewed component (greater than 0.5) and the result of Test 2 is doubtful when there are 
components with a high coefficient of correlation (greater than 0.75). We found that Test 2 returns a more 
robust result than Test 1 in the case when nearly unchanging component is present in the data set. 
 Based on these results and given that priority should be given to the results of Test 2, the 
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following steps are proposed for identifying the unchanging component. Step 1: In the case that both tests 
identify the same component, this component is chosen as the reference component. Step 2: In the case that 
the two tests return different results but with some common points, the first candidate is the component that 
passed Test 2 and that also returns a relatively large number in the result obtained using Test 1. Step 3: In 
the case that the results of Tests 1 and 2 are completely different, we should take into account geological and 
empirical knowledge in making a final decision. That is, Step 3.1: when the researcher is certain that the 
data set does not contain multiple unchanging components and/or does not include highly correlated 
components, the component identified by Test 1 is the first candidate regardless of the result of Test 2. Step 
3.2: If, however, one is certain that the data set includes multiple unchanging components and/or if the data 
set definitely includes a highly positively skewed component, priority should be given to the results of Test 
2. 
 The artificial examples presented in this study indicate that the two tests represent powerful yet 
simple criteria for identifying the reference component in compositional data. However, given that the 
effectiveness of the tests was assessed based on somewhat simple cases, it is necessary to further assess the 
reliability of this approach based on analyses of natural and simulated data sets. 
 

6. Conclusions 
 
 The selection of a suitable reference component is important in undertaking an analysis of a 
single variable in isolation for compositional data. The tests introduced in this paper represent criteria for 
detecting the unchanging component, based on a new approach that utilizes the coefficient of variation. The 
tests constitute a promising method for determining the unchanging component, as demonstrated by analyses 
of artificial data sets. 
 The performances of the tests are limited in that they are not necessary and sufficient conditions 
for detecting the unchanging component. This problem can be overcome by using the results of the two tests 
in a complementary manner. Another important aspect of the proposed approach is that the researcher 
should take into account geological and empirical knowledge when considering the final decision regarding 
identifying the unchanging component. 
 Another limitation is that the mathematical development of the present argument assumed a small 
value for the ratio of deviation to the mean, in order to conduct the McLaurin expansion. Therefore, it is 
highly probable that the equations introduced in this paper do not hold in the case that outliers occur in the 
given data. This limitation should also be investigated in further works. 
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