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1 Introduction

It is well-known in image processing that, by varying the wavelength, any material reflects and absorbs
in a different way the solar radiation. This is registered by hyperspectral sensors, which collect
multivariate discrete images in a series of contiguous wavelength bands, providing the spectral curves,
which can distinguish between materials.

In order to partition a multivariate image in regions belonging to different materials, we need to
compare these regions which are previously modelled by using compositional data matrices, where the
entries in each row is a statistical discrete distribution of the radiance values (columns). These rows
correspond to distinct but contiguos wavelengths. Thus the distribution in a row is very similar to the
distribution in close rows. To measure this proximity, we use Hellinger distance between rows, which
provides a distance matrix.

Given two hyperspectral regions of an image providing two compositional data matrices, we ob-
tain the corresponding distance matrices and, by using metric multidimensional scaling, we compute
two sets of principal coordinates, which are related by a multivariate association measure based on
canonical correlations.

We ilustrate this approach comparing some multivariate regions of images captured by hyperspec-
tral remote sensors.

2 Transforming hyperspectral images to compositional data matri-

ces

Any data matrix, representing a region, is obtained by considering a set of spectral curves depicting
the radiation (number of photons) at different wavelengths. As a simple illustration, suppose 3 spectra
corresponding to 3 pixels:

Wavelength
780nm 50µm 1mm

S1 22 12 80
S2 20 12 89
S3 18 12 89

Each spectrum reflects photons, for instance S1 reflects 22 at wavelength 780nm, and S3 reflects 89 at
wavelength 1mm. This information is transformed into a data matrix, where the columns correspond
to radiance (number of photons) and the rows to wavelengths. Any row sums up to 1 and represents
the observed statistical distribution of the radiance for a given wavelength. The above data gives:

Radiance
1 · · · 12 · · · 18 · · · 20 · · · 22 · · · 80 · · · 89 · · · 100

780nm 0 · · · 0 · · · 1/3 · · · 1/3 · · · 1/3 · · · 0 · · · 0 · · · 0
50µm 0 · · · 1 · · · 0 · · · 0 · · · 0 · · · 0 · · · 0 · · · 0
1mm 0 · · · 0 · · · 0 · · · 0 · · · 0 · · · 1/3 · · · 2/3 · · · 0

In general, given a set of spectra belonging to a hyperspectral region of an image, we have a
continuous range of wavelengths, conveniently discretized in n equidistant values in order to obtain
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a finite radiance table. Thus we have n wavelengths and p radiances and the transformed data is
represented by a n× p matrix P, with non negative entries pij such that

p
∑

j=1

pij = 1, i = 1, · · · , n,

i.e., P1p= 1n. Since the n wavelengths represent discrete contiguous values, the distribution in a row
is very similar to the distribution in close rows. To measure this proximity, we may use Aitchison’s
distance. However, each row of P contains a relatively large sequence of zeros and our aim is not to
represent the data in a low dimensional space (Aitchison and Greenacre, 2002). Hellinger distance
between rows

δ2ii′ =

p
∑

j=1

(
√
pij −

√
pi′j )

2 = 2(1−
p

∑

j=1

√
pij

√
pi′j).

may be more suitable for our study and can be handled easily by using matrix algebra. This gives a
n× n (squared) distance matrix:

∆(2) = 2(1′n1n −
√
P
√
P′),

where
√
P = (

√
pij).

Next, we use metric scaling to find the principal coordinates for ∆(2), i.e., the spectral decompo-
sition H(−1

2∆
(2))H = UΛ2U′, where Λ is diagonal and H = In − (1/n)1n1

′

n is the centring matrix.
As H1′n = 1nH = 0, we have

H
√
P
√
P′H = UΛ2U′,

and the principal and standard coordinates of the n wavelengths are the rows of X = UΛ and U,
respectively. As it has been noted above, we are not interested in representing the n wavelengths in
low dimension. Our aim is to compare two regions of an image.

3 Comparing regions of hyperspectral images

Given two hyperspectral regions of an image providing two data matricesP andQ, fromH
√
P
√
P′H =

UΛ2
xU

′, and H
√
Q
√
Q′H = VΛ2

yV
′, we obtain the matrices of standard coordinates U,V and the

association matrix A = V′UU′V. Notice that the entries u′

ivj in the p × q matrix U′V are the
correlation coefficient between the i−th and j−th principal coordinates obtained from P and Q,
respectively. We choose the so-called Wilks multivariate association measure

AW = 1− det(I−A) = 1−
s
∏

i=1
(1− r2i ),

where ri, i = 1, . . . , s ≤ min(p, q) are the first s canonical correlations between X and Y. This measure
satisfies 0 ≤ AW ≤ 1 and comes from considering a multivariate regression model relating X and Y.
See Cramer and Nicewander (1979) and Cuadras (2008).

4 Choosing the predictive dimensions

In general, since the column dimensions p, q of P,Q are quite large, the coefficient AW could be very
close to 1. To determine how many dimensions (or coordinates) K and L should be taken from X,
and Y, respectively, where K < p, L < q, we choose the (provisional) values K,L suggested by the
data. Next, by extending a coefficient defined in Cuadras et al. (1996), we propose the sequence

ckl =

∑k
i=1

∑l
j=1 λ

2
ix(u

′

ivj)
2λ2

jy
∑K

i=1

∑L
j=1 λ

2
ix(u

′

ivj)2λ2
jy

, k, l = 1, . . . , K, L, (1)
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where λ2
ix, λ

2
jy are eigenvalues ofH

√
P
√
P′H andH

√
Q
√
Q′H. Thus the numerator in ckl is a weighted

average of the relationships between principal axes. Clearly

0 < c11 ≤ ckl ≤ · · · ≤ ck′l′ ≤ · · · ≤ cKL = 1, if k ≤ k′, l ≤ l′.

We should choose dimension s = min(k, l) if 100× ckl is high, for example, 90%.

5 Two examples

Firstly, we consider two data sets, Tree1 and Tree2, captured from landscapes containing trees. The
data used here consists of n = 103 wavelengths and p = 200 radiance values, providing two matrices
of order 103× 200. We choose K = L = 3 and from (1) we obtain the [100ckl] table





96.2 96.32 96.4
96.3 96.4 99.4
96.5 96.8 100



 .

We take s = 1 and the association measure is

AW (Tree1,Tree2) = 0.9510.

As AW is close to 1, both data sets represent similar trees, belonging to the same cluster, i.e., the
same class of material.

Secondly, we consider two data sets, Building and Street, captured from a city. Now we have
n = 103 wavelengths and p = 100 radiance values. We also choose K = L = 3 and obtain the [100ckl]
table





63.9 81.9 82.3
75.1 93.4 95.1
79.6 98.2 100



 .

We take s = 2 dimensions. The association measure is

AW (Building, Street) = 0.8157,

indicating that both data sets are relatively dissimilar, representing urban objects belonging to different
clusters, i.e., different classes of material.
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