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Abstract

The complexity classes P/log and Full-P/log, corresponding to the two
standard forms of logarithmic advice for polynomial time, are studied. Char-
acterizations are found in terms of Kolmogorov-simple circuits, bounded query
classes, prefix-closed advice, reduction classes of regular or Kolmogorov-regular
tally sets, and reduction classes of logarithmically sparse-capturable sets. The
proofs are based on the Shannon-Lupanov effect and on the novel technique of
“doubly exponential skip”. The techniques can be also applied to polynomial
time classes with sublinear advice and to classes based on different uniform

counterparts, such as NP, PSPACE, and many others.

1. Introduction

The study of nonuniform complexity classes stems from the comparison between uni-
form models of computation, which can be considered as models of software in the
sense that a program written for such a model is valid for arbitrarily long inputs, and
nonuniform models in which each program is valid only for inputs of a fixed length.
There are many well-known models for both. Typical examples of uniform models are
the Turing machine and other equivalent models such as the RAM; the most important
representative of the nonuniform family is the boolean circuit model, although there are

many others.
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There are several connections between them. Uniformity conditions can be set
on the nonuniform model to obtain uniform complexity classes, or vice-versa advice
functions can be used to extend uniform classes into nonuniform ones. Our framework
is this second approach.

In this context, the most widely studied class is P/poly of the sets decidable in
polynomial time with the help of polynomially long advice functions. This class can
be characterized in various manners (see below), one of them as the class of languages
decidable by boolean circuits whose size grows polynomially on the length of the input.
This important class has been studied in depth (see for instance [1] and the references
there).

Advice functions were introduced in [5], where two main classes were selected as
bounds for the length of the advice words: polynomial bounds and logarithmic bounds.
We consider here the class P/log corresponding to polynomial time with the help of
logarithmically long advice functions. Results regarding this class are more infrequent.
In [1] a characterization is given in terms of uniformly computable functions. Other
results were presented in [2]. One of the points we address here is the question of
finding a characterization of this class in terms of circuits.

For this purpose, [5] introduced the concept of languages having “small circuits
with easy descriptions”, and made an attempt to characterize P/log using them. Such
easy descriptions are again circuits, of logarithmic size, describing the interconnection
pattern of the circuit. However they only proved that this class lies between P /log and
P/O(logn *loglogn). Here we explain why this concept does not characterize precisely
P/log: we show that it corresponds exactly to P/O(logn *loglogn), and that it can be
proved to be a different class by a technique of [2].

Our proof shows that the reason for the circuits with easy descriptions not corre-
sponding to P/log is essentially the Shannon-Lupanov effect, by which boolean circuits
are able to encode a nontrivial amount of information into their interconnection pattern.
Thus, this suggests that in order to characterize P/log, Turing programs must be used
instead of logarithmic size circuits. This idea corresponds to the concept of resource-
bounded Kolmogorov complexity; indeed, we present here two characterizations of P/log
with circuits of low resource-bounded Kolmogorov complexity. The results of this sec-
tion were announced in the internal report [4].

Then we essay to characterize P /log as the reduction class of some form of particular
sets, in the spirit of the existing characterizations of P/poly. We will easily see that such
task is not possible since P/log is not closed under polynomial time Turing reducibility.

The natural answer (take the closure of the class) is not really an answer: it brings
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us back to P/poly. Thus we consider a modification of P/log proposed in [7] and also
studied in [2], in which the closure under polynomial time reductions is obtained via a
more restrictive condition in the definition. Departing from the original name (which
may mislead the reader due to its similarity to other different concepts of structural
complexity theory), we denote it Full-P/log. To our knowledge no characterization of
this class as a reduction class has been published.

We present here several such characterizations. The proofs are quite interesting
in that they require to define another technical variant of the class, based on prefix-
closed advice words, and to introduce a new proof technique, by which information is
selected at a doubly exponential rate, skipping all information corresponding to inter-
mediate advices. As applications of this technique, we obtain several characterizations
of Full-P/log as the reduction class of special sets: tally sets whose words follow a given
regular pattern, tally sets that are regular in a resource-bounded Kolmogorov complex-
ity sense, and logarithmically sparse-capturable sets. We obtain also characterizations

in terms of oracle Turing machines with bounded query tape.

2. Preliminaries

Complexity classes are sets of formal languages. A formal language is a set of words
over the alphabet {0,1}. By standard encoding methods, any other finite, fixed alphabet
could be assumed if necessary provided that it has at least two different symbols. We
denote by wi.x the word consisting of the first k symbols of w; this is valid too when
w is an infinite sequence. The length of a word w is denoted |w|, and overloading the
symbol we denote by |A| the cardinality of the finite set A.

For any alphabet ¥, <" is the set of all words of length at most n, and AS™ =
AN X7 similarly we have £=" and A=". Here we will use in particular ¥ = {0,1}
and ¥ = {0}. A tally set is a set of words over this single letter alphabet {0}. A sparse
set is a set having at most polynomially many strings of each length: |A<"| < p(n) for
some polynomial p.

If Ais a set of words, x4 € {0,1}* is the characteristic sequence of A4, defined
in the standard way: the it* bit of the sequence is 1 if and only if the #** word of &*
in lexicographic order is in A. Similarly, x <~ is the characteristic sequence of 4AS™
relative to £<™. In both cases ¥ is the smallest alphabet containing all the symbols
occurring in words of A4, so that for a tally set T', xT denotes the characteristic sequence

of T relative to {0}*.
Throughout this paper, logn means the function max(1, [log, n}).
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Many of our complexity classes can be defined in a completely standard way by
time-bounded or space-bounded multitape Turing machines. We will concentrate in the
class P solvable by deterministic polynomial time algorithms. Occasionally we mention
other classes such as PSPACE, which corresponds to deterministic polynomial space
algorithms, and NP, which corresponds to nondeterministic polynomial time algorithms.

Oracle Turing machines are used to define reducibilities between sets. These ma-
chines are furnished with an unbounded oracle tape, on which the machine writes down
a query word. In a single query step the machine is informed of whether the query
word is in the oracle and the query tape is erased. We denote P(A) the class of all sets
that can be decided in polynomial time with oracle A. Further details can be found
e.g. in [1].

Boolean circuits are finite directed acyclic graphs with nodes (“gates”) of indegree
up to 2. Nodes of indegree zero are the input nodes z;,z3,...,%, or constant gates
labelled 0 or 1; nodes with indegree one are labelled -, and nodes with indegree two
are labelled with a two-input boolean function. It is well-known that we can restrict
these functions to A and V if necessary. One of the nodes is specified as output node.
A circuit with [z| inputs accepts a word z if, after giving the values of the individual
bits of z to the inputs and evaluating the circuit, the output evaluates to 1. The size of
a circuit is the number of gates.

Each gate i of a circuit is described by a tuple (,7,k, B) specifying the name
or index i of the gate, the names of its input gates j, &, and the boolean function B
computed at gate 7. In this way we can associate to a circuit C its connection language
Bc defined as the finite set of all the tuples correctly describing gates of C. We identify
the circuit with the sequence of all tuples describing its gates.

The circuit value problem is the set CV P of pairs (z,c) where c is a circuit with
|z| inputs that accepts z. It is not difficult to design a polynomial time algorithm for
evaluating a circuit, so that CVP € P.

There are various forms of simulating the computation of a Turing machine by

means of a boolean circuit. In particular, we will use a simulation due to Savage:

Theorem 1. Given a Turing machine M bounded in time by the function T'(n) and an
input z of length n, there is a circuit of size T'(n)? which accepts z if and only if M

does.

More effective simulations exist, reducing the size of the circuit in a nontrivial
factor. The interest of this simulation is that the circuit is exceedingly regular, consisting

essentially of a two-dimensional array of replications of a fixed finite subcircuit obtained
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from the transition function of the Turing machine. See [1] and the references there for
more information regarding the connections between circuits and Turing machines.
Turing machines model uniform classes, in the sense that the same program can be
used for arbitrarily long inputs. Circuits model nonuniform classes, in the sense that
each program is valid for a single, fixed input length. In order to connect both concepts,
The notion of advice function was introduced in [5] to provide connections between
uniform computation models such as resource-bounded Turing machines and nonuniform

computation models such as bounded-size boolean circuits.

Definition 2. Given a class of sets C and a class of bounding functions F, the class
C/F is formed by the sets A4 such that

Vndw(|lw| < h(n))Ve(|z] =n),z € A < (z,w) € B

where B € C and h € F.

The words w mentioned in the definition are frequently called “advice words”. The
corresponding Skolem funcion mapping each n into an appropriate advice w, for length
n is called “advice function”. C is usually a uniform complexity class, most frequently
P, whereas the class poly = {n®"} of polynomials and the class log = O(logn) of
logarithms are the most frequent bounding functions. In particular, [5] focused on
the study of the classes P/poly and P/log, and proved that for certain problems, the
hypothesis of being in nonuniform classes has implications on the structure of uniform
classes.

Some interesting known facts about P/poly are the following:

Theorem 3. The following classes coincide:
i/ P/poly.
ii/ Ug P(S) where S is sparse.
iii/ Jp P(T) where T is a tally set.
iv/ (Ug P(B) where B is arbitrary and the length of the queries of the polynomial time
machines is bounded by O(logn).
v/ The class of sets A such that for all n the set A=" can be decided by a circuit of
size polynomial in n.
Other characterizations exist. Observe that as a consequence it immediately follows
that P/poly is closed under polynomial time Turing reducibility.
The goal of this paper is to try to obtain similar characterizations of P/log, for

which much less is known. A characterization in terms of uniformly generated circuits
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is given in (1], but no results similar to theorem 3. If we try to obtain them, we find
an immediate difficulty in the fact that P/log is not closed under polynomial time
Turing reducibility. Indeed, it is immediate to see that every tally set is in P/log, and
therefore the closure of P/log under this reducibility is already P/poly. It is easy to
prove (see below) that P/log and P/poly differ.

The need for a variant of P/log closed under this reducibility prompted Ko to

introduce the following class [7]:

Definition 4. A set A is in Full-P/log if
Vn3w(|w| < clogn)Ve(|z| < n),z € A < (z,w) € B

where B € P and c is a constant.

The name given to this class in [7] was STRONG-P/log; we prefer to avoid this
name since there are in complexity theory “strong nondeterministic machines” and their
definition has no relation whatsoever with the concept we study here.

The definition is quite natural. For instance, if the definition of P/poly is changed
according to this one, using polynomially long advices, one gets the same class P/poly
again. Note that now the advice corresponding to a length is valid also as an advice for
all the smaller lengths. It is easy to see that Full-P/log is closed under polynomial time
Turing-reducibility, so that it is different from P/log.

We have to introduce finally a tool we will use in this paper: resource-bounded
Kolmogorov complexity. Fix any universal Turing machine U. Denote by U(y) = z the
fact that on input y the machine U outputs = and halts. Define the sets of bounded
Kolmogorov complexity strings K[f(n), g(n)] and K S[f(n),g(n)] as follows:

Definition 5.
i/ ¢ € K[f(n),g(n)] if there exist y, |y| < f(|z|), such that U({|z|,y)) = z in at
most g(|z|) steps. If no condition is imposed on the running time we simply say

> € K[f(n).

ii/ ¢ € KS[f(n),g(n)] if there exist y, |y| < f(|z|), such that U({|z|,y)) = = using at
most g(|z|) space.

Observe that we provide the universal machine with the length of the word to be
constructed. This is required to work under certain bounds, although many of our results
in this paper would hold even if the machine does not know the length beforehand.

A simple counting argument shows that if f is sublinear then not all words are in
K[f(n),g(n)]. We can also talk of low Kolmogorov complexity of sets. We focus on the

two classes we will use in this paper.



Definition 6.
i/ A € K[log, poly] if there exist constants ¢ and k such that A C K[clogn,n*].
ii/ A € K S[log,log] if there exist constants c and d such that A C K S[clogn,dlogn)].

Observe that here we are defining classes of sets, as opposed to the sets of strings
presented in definition 5. Since logarithmic space implies polynomial time but not
vice-versa, K S[log,log] is more restrictive than K([log, poly].

As an easy example of application of this concept, let us sketch the proof of a
hierarchy theorem for nonuniform classes depending on the amount of advice available.
This result will be useful later on.

Proposition 7. Let C and D be recursive classes, with DTIME(O(n)) included in D.
Let F' and G be function classes such that there exists s € G, with s € o(2"), such that
for all » € F it holds » € o(s). Then D/G and C/F are different.

Proof . The proof is simple and is based on an argument from [2]. We define a set
A in D/G but not in C/F. Let vy, be a string such that |y,| = s(n) but v, ¢ K[n],
i.e. the universal machine cannot generate it from data shorter than 7, itself. Let the
characteristic string of A=" be ~4,10%" ~71-1,

It is easy to prove that A is in D/G; however, A is not in C/F, since otherwise
the universal machine could construct v, from an advice bounded by some r(n) plus a

program of constant length, contradicting the incompressibility of v,,. ]

As an immediate corollary we obtain that the classes P/O(1), P/O(log!™ n), P/log,
P/O(log n *log!™ n), P/O(log n xloglog n), P/O((logn)*), and P/poly are all different.

Here log(m) n denotes the m-fold iteration of the function logn.

3. Kolmogorov-simple circuits and easy descriptions

The purpose of this section is to discuss characterizations of the logarithmic advice
class P /log. Characterizations of Full-P/log will be presented in the next sections. Here
we show that a characterization of P/log exists using Turing descriptions, and prove
that a previous suggestion in terms of circuit descriptions cannot achieve the desired
characterization.

The idea from which we start is quite natural and was already put forward in [5]: if
polynomial advice corresponds to polynomial size circuits because the advice describes
the circuit, logarithmic advice requires such a circuit to be easy to describe. Thus they

propose the following definition:



Definition 8. [5] A language S has small circuits with easy descriptions if and only if
there are sequences of circuits {Cr} and {D,}, a polynomial p and a constant ¢ such
that:

i/ for all n, C, has size at most p(n) and accepts S=™;

ii/ for all n, D, has size at most clogn and accepts Bc, .

In this way it is required that the circuits for S can be described shortly by descrip-
tions that are again circuits. Notice that it makes no sense to require that the circuits
D,, have less than logarithmic number of gates since an input to D, is an instance of
Bc,, and thus simply the input gates already are logarithmically many.

We address below the reasons why this proposal is unsatisfactory for the purposes
of characterizing P/log. However, a natural alternative is to consider Turing programs
to describe the circuits, instead of using circuits again. Our characterization of P/log
follows this idea, by proving that resource-bounded Kolmogorov complexity provides
appropriate bounds on the descriptions of circuits. We obtain the following characteri-

zation of P /log in terms of resource-bounded Kolmogorov complexity:

Theorem 9. The following are equivalent:
i/ A €P/log.
ii/ A is accepted by a family {Cpn} of circuits of polynomial size such that {C,} €
K S[log,log].
iti/ A is accepted by a family {C,} of circuits of polynomial size such that {C,} €
Klog, poly].

Proof . To prove that i/ implies ii/, we start from a set A € P/log. Consider any
length n, with its associated advice w, with |w,| = clogn, so that for all = of length
n,z € A < (z,w,) € B where B € P. Consider the polynomial time machine M
which on inputs z and w, computes the pairing (z,w);|) and then checks whether it
is in B. Observe that |(z,w);|)| only depends on n. Applying to M the construction
described in theorem 1 in the preliminaries, and fixing the inputs corresponding to w,,
we obtain a circuit C, that accepts exactly the set A=".

Let us discuss the resources needed to construct this circuit. As indicated, given
the (fixed) polynomial time machine M and given n, it is possible to construct the
circuit within logn space. The construction needs to know also the actual values of the
bits of w, to substitute for the corresponding inputs. The total amount of information
required as seed to produce C,, is given by n and wy,, both of length O(logn), and since

O(logn) space suffices to perform the construction, {C,} € K S[log,log].
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It is immediate to see that ii/ implies iii/. To prove that iii/ implies i/, let {C,}
be the polynomial size family that accepts A. Since {C,} € K|[log, poly], there exists
for each n a logarithmically long seed wy, say |w,| < clogn, such that U(w,) = Cy, in
time bounded by n¥; both ¢ and k are constants independent of n. Change U into U’
by adding a clock that stops it after exhausting n* steps, so that still U'(w,) = C, but
now U’ is guaranteed to stop in polynomial time.

Define the following set:
B = {(z,y) I (z,z) € CV P where z =U'(y)}

Since CV P is in P and U’ halts in polynomial time, it is clear that B is in P. Now
z € A <= (z,w|;) € B and therefore we have A € P/log. "

Thus polynomial size circuits with Kolmogorov simple descriptions indeed charac-
terize the class P/log. Now, what is wrong with the easy descriptions of [5]? It can be

seen that, as stated there,

Theorem 10. [5] If S € P/log then S has small circuits with easy descriptions.

However, this is not a full characterization. When trying to prove the converse, it

seems that one has to be satisfied with the following partial achievemente:

Theorem 11. [5] Sets having small circuits with easy descriptions are in P/O(logn *
loglogn).

The problem is that the encoding of D, requires O(log n*loglogn) space, since the
number of gates is logarithmic but each gate needs O(loglogn) bits to be described. As
mentioned above, reducing still further the number of gates to accomodate the circuit
in a logarithmic description is infeasible.*

We will explain next why the converse of theorem 10 seemed difficult to achieve,
by actually proving that it does not hold. We do it by exactly characterizing the class
of sets having small circuits with easy descriptions as P/O(logn * loglogn), since we
show that the converse of theorem 11 holds. By proposition 7, we know that P/log and
P/O(logn * loglogn) differ.

Theorem 12. Let A € P/O(logn * loglogn). Then A has small circuits with easy

descriptions.

* The journal version of the paper of Karp and Lipton, [6], does not even mention

the concept of easy descriptions.



Proof .  The description of the polynomial time computation will be encoded into a
circuit appealing once more to theorem 1. Again, we simply hardwire the advice w,
into the circuit. In this way we obtain a circuit C,, accepting exactly A=". Assume that
|lwa| < clogn * loglogn). Assume also that the constant gates of Cp, corresponding to
the advice are easy to distinguish, for instance being tagged with the lowest numbers
in the enumeration of the gates.

Now we have to exhibit a new circuit D, describing the circuit C, using only
O(logn) gates. The parts of C, corresponding to the simulation of the computation
pose no problem: the circuit has an extremely regular structure, as mentioned before,
and given the name of a gate it is an easy task to find out its type and connections.
Thus given (3, j, k, B), if we identify that the ith gate is not a constant from the advice,
then we can easily decide whether it is in B¢, .

Let us see how to handle the advice, which might seem too long. We have to
make the encoding of the circuit “swallow” somehow the additional loglogn) factor.
Fortunately there is an important result in boolean complexity which comes to help
us: the Shannon-Lupanov effect, that states that boolean functions on m inputs, or
equivalently, truth-tables of size 2™, can be computed by circuits of size smaller than
2™. Let us state it as found in chapter 4 of 8] (theorem 2.2): Given a boolean function
f from {0,1}™ to {0,1}, the size of the smallest circuit C(f) computing it is bounded by
2™m~! + 0o(2™m™1). Actually a bound of O(2™m™1!) already suffices for our purposes.

Thus given (i,j,l::,B) where 7 is a constant gate from the advice, notice that
has only loglogn + logloglogn + ¢ significant bits, since advice gates had the lowest
numbers. The bits regarding gates j and k are irrelevant, but B indicates a value of

zero or one for the gate ¢ and we have to check whether this is correct.

So actually in this case D, has to compute a function
f . {0’ 1}loglog n-+logloglog n+tec SN {0, 1}

Appealing to the Shannon-Lupanov effect, it is possible to compute it by means of a

circuit of size bounded by

logn * loglogn
<0l
0 (Iog logn + log log logn> < O(logn)

Hence, the total number of gates of the corresponding circuit D, is logarithmic, so that

Cr has easy descriptions. =

10



Thus, essentially easy descriptions by means of circuits allow us to save in the
encoding exactly as much information as they additionally require to be written down.

From theorems 11 and 12 we obtain:

Corollary 13. The following are equivalent:
i/ A € P/O(logn *log(logn)).
ii/ A has small circuits with easy descriptions.

Since by proposition 7 in the preliminaries we know that P/log and P/O(logn *
log(log n)) differ, we have proved that small circuits with easy descriptions do not char-
acterize P /log, as they were intended for when proposed.

We can generalize these results using the same arguments, with small adjustments.
For instance, for sublogarithmic bounds the Kolmogorov complexity has to be taken
relative to n, as we have defined it, whereas for larger bounds a more standard notion

will do. We find the following coincidences between classes:

e P/O(1) is the class of sets having polynomial size circuits in
K[O(1),poly | n], resp. KS[O(1),log | ).
o P/O(logt™ n) is the class of sets having polynomial size circuits in
K[O(log™ n), poly | n], resp. K §[0O(log™ n),log l n].
o P/log is the class of sets having polynomial size circuits in
Klog, poly], resp. K S[log,log].
o P/O(logn xlog!™ n) is the class of sets having polynomial size circuits in
K[O(logn *log\™ n), poly], resp. K S[O(logn * log{™ n),log].
e P/O(logn xloglogn) is the class of sets having polynomial size circuits in
K[O(logn *loglog n), poly], resp. K S[O(logn xloglogn),log], and is also
the class of sets having polynomial size circuits with circuit descriptions of size
O(logn).
e P/O((logn)¥) is the class of sets having polynomial size circuits in
K[O((logn)*),poly], resp. KS[O((logn)*),log], and is also the class of
sets having polynomial size circuits with circuit
descriptions of size O((logn)*/loglogn).
e P/poly is exactly the class of sets having polynomial size circuits.
Results similar to theorem 9 can be obtained for many other nonuniform complex-
ity classes, such as PSPACE/ log, which corresponds to sets that can be described by
quantified boolean formulas of low Kolmogorov complexity, NP/ log, which corresponds

to small generators with low Kolmogorov complexity, and many others.
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4. Prefix-closed advice

This section discusses a technical variant of full logarithmic advice, in which the advice
words corresponding to the various lengths are not independent but highly correlated.
We prove here a simple but interesting characterization. This weaker notion will simplify

the discussion of the standard concept of full logarithmic advice in the next section.

Definition 14. A set A has prefix-closed logarithmic full advice, briefly A € Pref-P/log,
if A isin Full-P/log via an infinite sequence of advices w, having the additional property
that for all n < m, w, is a prefix of w,,.

Thus, each advice is simply an extension, with some extra bits, of the previous
advice. In the limit, therefore, the sequence of advice words converges towards a unique
infinite word w, so that, for all n, w, = wWi:cl0g n, the first clogn bits of w. Of course, the
definition can be straightforwardly rephrased to apply to other bounds on the advice
length or to other uniform complexity classes. For instance, a similar definition for
polynomial advice gives exactly P/poly.

Observe also that the advice length is so tightly bounded that, for most values
of n, the corresponding advice w, does not have room to include one more bit than its
predecessor. Indeed, clogn only increases by one when n increases by a factor of 2(¢™ "),
Thus, very frequently w, = wp+1, and only exponentially often can w, be a proper
prefix of wp 1.

Let us see how this somewhat artificially defined class can be characterized by
polynomial time Turing reduction classes of regular tally sets, as well as using bounded
query machines. Here (and later on as well) the symbol T will always denote a tally

set.

Theorem 15. The following classes of languages are the same:
i/ Up P(T) where T C {02 | ke IN}.
ii/ Uy P(T) via a polynomial time machine whose queries have length
at most O(logn).
iii/ |Jg P(B) via a polynomial time machine whose queries have length
at most loglogn + O(1).
iv/ Pref-P/log.

Observe that no constant factors are allowed on the term loglog n in part iii/: only
additive constants can be accomodated in the bound. Part i/ is quite interesting, in
that it shows that Pref-P/log is the reduction class of tally sets exhibiting a high degree
of regularity. All query bounds mentioned assume, as usual, that n is the length of the

input.

12



Proof .  The proofs that i/ implies ii/ and that ii/ implies iii/ are simple and similar:
both are tantamount to a change of scale in the oracle set. Let 4 be a set in P(T),
with T C {0%" | k € IN}. Define T' = {0* I 02* € T}. It is easy to see that A € P(T"),
querying 0% instead of 02" when required. Observe that the length of the queries is
now logarithmic, since k € O(logn) whenever 2¥ € n9(), Now essentially repeat the
argument: if A € P(T") with O(logn) length queries, define B = {k | 0F € T"}.
Again A € P(B), and the maximum length of the oracle queries is logO(logn) =
loglogn + O(1).

To prove that iii/ implies iv/, we will resort to the characteristic function of B as
an infinite word limiting the sequence of advice words. Let A be a set with 4 € P(B)
where the size of the queries is bounded as indicated. The number of different queries
that can be made is bounded by 2'°81°6 7+0(1) = O(logn), and moreover these are the
first O(log n) words. So we define the advice w, as the characteristic sequence of B up
to the element in place clogn for an appropriately selected constant ¢, and this proves
that A € Pref-P/log.

Finally, the proof of iv/ implies i/ is essentially a converse of the composition of
the three arguments. Suppose that A € Pref-P/log, where the infinite word w is the
limit of the sequence of advice words. Let T be the tally set

T = {0%" | the k** bit of wis 1}

Now 4 € P(T) by simply querying the words 02" for i = 1 to i = clog |z| to extract the

necessary advice of length clog |z| from the tally oracle, and then using it. n

5. The “doubly exponential skip” technique

This section presents one of the main contributions of the paper, both in results by relat-
ing Full-P/log to the classes already described, and in technical contents by explaining
a technique which consists of selecting information separated by a doubly exponential
gap. Two examples of application of this technique will be presented, both giving sur-
prising characterizations of Full-P/log. The first one shows that Full-P/log equals the
seemingly more restrictive class of sets with logarithmic prefix-closed advice, and the
second one will show that Full-P/log equals a class seemingly more powerful defined in

terms of Kolmogorov-regular tally sets.

Theorem 16. Full-P/log = Pref-P/log.

Equivalently, whenever a set is decidable in polynomial time with full logarithmic

advice, then it is possible to construct equivalent advice words for the set, within the
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same logarithmic length bounds, and obeying the restriction that each advice word
is a prefix of all the forthcoming ones. By the discussion in the previous section, it
hence turns out that in the context of advice information, constantly many bits added
exponentially often give as much computational power as logarithmically many bits

changed linearly often.

Proof . By definition, Pref-P/log is a subclass of Full-P/log. The relevant part of
the theorem is of course the converse inclusion. Suppose that A € Full-P/log. This
means that there is a set B € P and a sequence of advice words {w, | n € IN} with
wp < klogn so that Vz,Vm > |z|,2 € A < (z,w,) € B. We will use the result in
the previous section, characterizing Pref-P/log as (J; P(T) where T C {02:. l k € IN}.
Thus we will define a tally set T containing only words of length a power of 2, and will
prove that A € P(T).

It follows from results in [2] that the class Full-P/log is strictly smaller than P/log,
and therefore our proof now must unavoidably exploit the property that one advice can
help all the smaller lengths. The main ideais to keep only the information corresponding
with some selected advices instead of storing all of them in the oracle set. Of course,
we have to select for the oracle infinitely many advice words; but the fact that each of
them is good for all the words smaller than the length it is designed for allows us to

select them arbitrarily far apart.

We must find a balance between two contradictory restrictions. If we select advices
for the oracle too frequently then they will need too many bits, and some of them will
be encoded too far away in the oracle; but if we select them too separated, then for
some words the nearest valid advice would be too long to be extracted from the oracle

by a polynomial time machine.

It turns out that there is a way of skipping advice words for which the balance is
satisfactory. We will encode in the oracle all the advice words corresponding to lengths
22" for all m € IN and skip all the intermediate ones. Each bit of each of the selected

advices will be encoded as the presence or absence of a word of the form 02™ in the set T.

The advice corresponding to length 22° respectively 22" .. 22™ | has size k, respec-
tively 2k...2™k. We use the first k powers of two, from 02 until 02°, to encode the
advice for length 22° = 2. The second string to store has length 2k, so this information
needs 2k powers of two: use the next ones, from 02°"  until 02°***. In general, the
information of the advice corresponding to the length 22™ is encoded in the tally set T

02k+2k+22k+---+2""lk+x 02k+2k+22/¢+---+2"‘k

by the elements until
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So let T be
T = {0?
We prove first that A € P(T). On input z, find an integer m such that 227" <

lz] < 22™. This can be done in linear time. Observe that this selection ensures that

(Bigmosit) oo

| 1 < p £ 2™k such that the p** bit of wy.m is 1}

loglog |z] < m < loglog(|z|?). Now, for each value of p from 1 to 2™k, ask whether
02(2"5"‘-12;")'“’

can be used to decide whether z € A in polynomial time. It remains to see that the

€ T and, in this way, obtain all the bits of the advice wyzm , which now

queries can be asked in polynomial time; it suffices to see that they are polynomially
long.

The number of queries is bounded by klog(|z|?). A bound on the length of the
oracle queries is 28F2k+2%kt 2™k = g(14+242% 442"k  92™HE Ag i < loglog(|z|?),

glog log(l=]?) _ (22'°s losuzl‘))k Id’

the queries have length at most 2* = |¢|* for appropriate,

small constants d and d'. So 4 € P(T). =

We have chosen to keep exactly the advices corresponding to the length 22™. Let
us briefly describe how crucial the arithmetic properties of the double exponential are
for this proof. Naively it may seem that a single exponential separation should suffice;
but this fails because for each advice there are logarithmically many smaller advices of
logarithmic length to be encoded, i.e. log?n bits: when distributed over the tally set,
they cover a broad region up to length n!°8™ which cannot be scanned in polynomial
time. Surprisingly, as described above, a double exponential works. However, if we
would try to select advices with triply exponential gaps, skipping all advices but those
corresponding to lengths 222m, then these advices are too large although there are
less of them: the first appropriate m would be such that 92*" ™" < lz| < 222m, and
straightforward computation shows that it is n!°8 " long.

We give now a second application of the doubly exponential skip technique. Con-
sidering the previous results, it is clear in what sense the tally sets used are regular:
their words can appear at only selected, specific places such as powers of two. Many
other similar notions of regular tally set can be proposed, but among them there is one
very natural after the results we have presented in previous sections: regularity could be
defined in terms of resource-bounded Kolmogorov complexity. We could consider tally
sets that are regular in the sense that there is a short, say logarithmic, way of describing
their characteristic function and a resource-bounded, say polynomial time, algorithm to
recover it. Observe that we are selecting again the bounds that made the characteriza-
tion work in section 3, and that the tally sets used in the proof of theorem 16 fulfill this
regularity property.
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In principle the class obtained would be larger, since it is conceivable that some
tally sets are Kolmogorov regular but encode more information than a set having such
an extreme regularity as implied by the superset {02" I k € IN}. We will show that,
modulo polynomial time Turing reducibility, this is not the case: the reduction class of
Kolmogorov-regular sets is again Full-P/log.

As before, T denotes always a tally set.

Theorem 17. The following two classes coincide:
i/ Full-P/log.
ii/ Uy P(T) where there exist positive constants ¢ and d such that, for all n, <~ €
K(clogn,nd.

Proof . We use again the characterization of the class Full-P/log as | J; P(T') where
T C {0%* | £ € IN}, which follows from the previous result. Then it is easy to see that
i/ implies ii/: to construct the characteristic sequence of T up to a fixed length we only
need to know which ones among the logarithmically many words of the form 02" are in
T; these are the only potential nonzeros in x7. Thus given as a logarithmically long
seed the characteristic function of T relative to {02 I k € IN}, we can easily print out
an initial segment of x7 in time polynomial on the output.

To see that ii/ implies i/, we apply again the doubly exponential skip technique.
Observe first that an easier proof seems possible. Consider A € P(T) where T is
Kolmogorov-regular; we can show that A can be accepted with the help of a short
advice. On input z, the maximum oracle query is 0/%I° for some g. To decide whether
z € A it suffices to know an initial segment of the sequence x7 up to |z|? bits (recall
that the characteristic sequence of a tally set is taken with respect to {0}*). We can
obtain this sequence in polynomial time from a seed of size log(|z|?) = O(log |z|), which
we take as advice word. It follows that A € P/log. However, this does not prove that
A € Full-P/log. The characteristic sequence obtained is good to decide any shorter
string, but it may require too long to be constructed. It may be the case that together
with z we get a seed for an advice creating an exponential part of the characteristic
function, and then there is no way to decide z in polynomial time.

We resort to a doubly exponential skip: for a given length n, select as advice not
a single seed but a sequence of them, corresponding to lengths of the form 22", up to

the smallest one allowing us to construct n? bits of xr. This one corresponds to
22"
so that m < loglog(n?) = loglogn + O(1). For length 22', the length of the seed is

clog 22" = 2 for some constant ¢, and thus as before the total length of the sequence

-1

<n?<2?”

16



of seeds selected for the advice is Y, ¢2' = c2™*! € O(logn). Now the difficulty

explained above can be avoided. If together with z we get the advice for a much longer

i<m

length, we can scan it and select a seed large enough to create xr up to |¢|? but not
much more: there is one for 22” with 22" < [z|? < 22", which implies 22" < |z|%9,

only quadratically longer. Therefore 4 € Full-P/log. B

Thus, for polynomial time machines, regular tally oracle sets in the sense that their
words are all of length a power of 2 have exactly the same power as Kolmogorov-regular
tally oracle sets. Again we have a phenomenon like the one discussed previously: longer
and longer prefixes of the characteristic function of the tally oracle, which require logn
new bits linearly often, can be replaced by a much simpler oracle which adds constantly
many bits exponentially often.

Now we have several ways of characterizing Full-P/log in terms of tally oracles.
Comparing with theorem 3, it is natural to ask whether there is a restriction on sparse
oracles achieving the analogous results. The answer is affirmative, although the notion

we have to use to restrict sparse sets is somewhat artificial. Let us define some terms.

Definition 18. A set A is p-printable if and only if there is a polynomially computable
function f from {0}* to X* such that f(0") is a word coding the subset A<™,
Polynomial printability was introduced in {3]. Printability obviously implies sparse-
ness. It is is not the appropriate notion to characterize P/log since every printable set
is in P. However, it allows us to define a special kind of sparse sets which will give us

the characterization:
Definition 19. A set S is logarithmically sparse-capturable (briefly, log-capturable) if
and only if S is a subset of a p-printable set R such that |R<"| < clogn for a constant c.

Immediate examples of log-capturable sets are the tally sets T used frequently up to
now, for which T' C {02" | k € IN}. Here {02" | k € IN} plays the role of the p-printable
set R. We prove next that, up to polynomial time Turing equivalence, these tally sets
are representatives of all log-capturable sets. From this fact we will immediately obtain

a characterization of Full-P/log in terms of log-capturability.

Proposition 20. For every log-capturable set S, there is a tally set T C {02* | k € IN}
such that § € P(T).

Proof. Let S be log-capturable, being R a p-printable superset of S with logarithmic
density. It suffices to define the following tally set:

T = {0*" | the k** element of R isin S}
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Now it is easy to check that instead of the sparse set S we can use T as oracle for any

arbitrary polynomial time Turing machine. s

Corollary 21. The following two classes coincide:
i/ Full-P/log.
ii/ |Js P(S) where S is log-capturable.
Proof .  Use again the characterization of Full-P/log as | Jp P(T') where T' C {0?* l
k € IN}, and apply the fact that every such tally set is log-capturable and the previous

proposition. #
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