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ABSTRACT

The combined analysis of haplotype panels with phe-
notype clinical cohorts is a common approach to ex-
plore the genetic architecture of human diseases.
However, genetic studies are mainly based on sin-
gle nucleotide variants (SNVs) and small insertions
and deletions (indels). Here, we contribute to fill this
gap by generating a dense haplotype map focused
on the identification, characterization, and phasing
of structural variants (SVs). By integrating multiple
variant identification methods and Logistic Regres-
sion Models (LRMs), we present a catalogue of 35 431
441 variants, including 89 178 SVs (≥50 bp), 30 325
064 SNVs and 5 017 199 indels, across 785 Illumina

high coverage (30x) whole-genomes from the Iberian
GCAT Cohort, containing a median of 3.52M SNVs,
606 336 indels and 6393 SVs per individual. The
haplotype panel is able to impute up to 14 360 728
SNVs/indels and 23 179 SVs, showing a 2.7-fold in-
crease for SVs compared with available genetic varia-
tion panels. The value of this panel for SVs analysis is
shown through an imputed rare Alu element located
in a new locus associated with Mononeuritis of lower
limb, a rare neuromuscular disease. This study rep-
resents the first deep characterization of genetic vari-
ation within the Iberian population and the first oper-
ational haplotype panel to systematically include the
SVs into genome-wide genetic studies.
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INTRODUCTION

One of the central aims of biology and biomedicine has been
the characterization of genetic variation across humans to
answer evolutionary questions and to explain phenotypic
variability in relation to disease. From the first genotyp-
ing and sequencing efforts, scientists have been gradually
identifying specific genomic regions that vary within and
across different populations, elaborating the first maps of
human genetic variation (e.g. the HapMap Phase I (1)).
Next-generation sequencing (NGS) technologies are now
allowing to systematically evaluate the genetic variability
across the entire genome of hundreds and thousands of
individuals. This has increased >200-fold the number of
known genomic variants over the past 10 years, resulting in
much richer reference catalogues of genetic variability. One
example is HRC (2) or Trans-Omics for Precision Medicine
(TOPMed) (3), listing more than 39.2M and 410M poly-
morphic positions, respectively, from several human popu-
lations. The extensive genetic and phenotypic characteriza-
tion of cohorts using rich variability reference panels is now
fuelling up Genome-Wide Association Studies (GWAS). A
total of 151 703 unique genetic variants are already re-
ported to be associated across 5193 unique traits (GWAS
catalog, version1.0.2 release 05/05/2021, https://www.ebi.
ac.uk/gwas/). Despite these advances, a large fraction of the
genetic variability underlying complex diseases still remains
unexplored, as studies have been mostly restricted to single
nucleotide variants (SNVs) and small insertions and dele-
tions (indels) (<50 bp). Large structural variants (SVs) are
known to play an important role in disease (4–7) and could
actually explain part of the well-known missing heritability
paradox (8,9). However, the technical and methodological
challenges associated with the identification and classifica-
tion of this type of variation from whole-genome sequences
(WGS) have left this type of variation out of GWASs.

Large-scale efforts combining improved sequencing
methodologies are now identifying a much larger and richer
spectrum of structural variation in humans. For exam-
ple, by increasing the sequencing coverage and sample size
across different populations, the gnomAD-SV project (10)
detected a median of 7439 SVs per individual, generating
one of the most extensive catalogues of structural variation
so far. Other whole-genome studies have gone a step further
by phasing the variants and constructing haplotype panels,
such as the 1000 Genomes project (1000G) (11), becoming
a reference within the GWAS community. However, the SVs
are less represented in the current 1000G phase3, including
a median of 3441 SVs per individual (11). The use of costly
family trios and an increase in the sequencing coverage, al-
lowed the Genome of the Netherlands consortium (GoNL)
to increase a median of 7006 SVs per individual (12). In par-
allel, the recent inclusion of long-read sequencing technolo-
gies has made it possible to uncover many new SVs, reach-
ing >20 000 per individual (13–16), including repeat-rich re-
gions, where short-read sequencing has traditionally shown
low call rates.

Genome-wide imputation from SNP-genotyping array
data is still the most practical and powerful strategy to pre-
dict SVs, and test them for association with particular phe-
notypes. Current haplotype reference panels allow a high-

quality imputation (info score ≥ 0.7) of ∼9000–14 000 SVs
(≥50 bp), but considering the ranges of SVs that the com-
munity is now reporting across individuals, this is still in-
complete. Therefore, it is necessary to generate improved
variability reference panels of controlled populations by in-
cluding SVs in the discovery and functional interpretation
of associated variants to power-up current genetic studies.

In this study, we contribute to fill this gap by generat-
ing a new SV-enriched haplotype reference panel of human
variation, through the analysis of whole-genome sequences
(30×) of Iberian individuals from the GCAT|Genomes for
Life Cohort (www.genomesforlife.com) (17,18). For this, we
developed and applied a comprehensive genomic analysis
pipeline based on the weighted integration and orthogonal
validation of the results of multiple variant callers to gen-
erate a robust catalogue of genetic variability that covers
from SNVs to large SVs. These variants were further phased
and converted into haplotypes that can be incorporated into
GWAS. This study represents an important step towards the
completion of the annotation and characterization of the
human genome and provides a unique resource for the in-
corporation of SVs into genetic studies.

MATERIALS AND METHODS

Benchmarking samples

To benchmark our variant calling strategy, an in-silico sam-
ple genome was generated, by inserting a controlled set of 5
334 669 variants into the hs37d5 reference genome (exclud-
ing telomeres and centromeres). These variants cover from
single nucleotide variants (SNVs) to large structural varia-
tions (SVs). The majority of them correspond to variants
identified in real samples of the 1000G (11) and the ICGC-
PanCancer (19) projects. In addition, to have a wider and
more complex range of benchmarking variants, we designed
and inserted randomly an additional set of 3925 Structural
Variants (SVs) (Supplementary Table S2), reinforcing the
support for insertions and translocations, among others
(Supplementary Figure S1). We then used the in-silico se-
quencing ART software (ART-Illumina version 2.5.8) (20)
to obtain simulated FASTQ files (Supplementary Table S1)
that were further aligned to the hs37d5 reference genome
using BWA (21) (version 0.7.15-r1140) and Samtools (22)
(version 1.5). Best Practices of GATK (23) were followed
for marking duplicates (PICARD version 1.108) and recal-
ibrating Base Quality Scores of the BAM file with the Vari-
antRecalibrator and ApplyVQSR modules of GATK4 (ver-
sion 4.0.11). A detailed description is available at Supple-
mentary Information Material.

The sample NA12878 from the genome in a Bottle
(GIAB) Consortium (24) and the in-silico were used to val-
idate SNVs and indels detection. BAM files were recon-
structed using the hs37d5 reference genome and following
the GATK Best Practices guidelines.

Variant calling

We originally selected 17 candidate programs for variant
identification and classification, representing different call-
ing algorithms and strategies: Split Read, Discordant Read,
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de novo Assembly and Read-depth. Variant callers were
Haplotype Caller (25) (version 4.0.2.0), Deepvariant (26)
(version 0.6.1), Strelka2 (27) (version 2.9.2), Platypus (28)
(version 0.8.1), and VarScan2 (29) (version 2.4.3) for SNVs
and indels and Delly2 (30) (version 0.7.7), Manta (31) (ver-
sion 1.2), Pindel (32) (version 0.2.5b9), Lumpy (33) (version
0.2.13), Whamg (34) (version v1.7.0-311-g4e8c), SvABA
(35) (version 7.0.2), CNVnator (36) (version v0.3.3), PopIns
(37) (version damp v1-151-g4010f61), Genome Strip (38)
(Version 2.0), Pamir (39) (version 1.2.2), AsmVar (40) (ver-
sion 2.0) and MELT (41) (version 2.1.4) (Supplementary in-
formation section 3) for SVs. To keep consistency on the
type of variables provided by these callers that will later
be used by the Logistic Regression Model (LRM), we have
only considered mapping-based methods, despite mapping-
free methods can also identify SV efficiently.

Recall, precision, and F-score metrics were calculated to
evaluate the performance of each variant caller for each
variant type. The NA12878 sample was used as a gold stan-
dard to calculate performance metrics for SNVs and indels,
and the in-silico was used to benchmark SVs. For SNVs
and indels, a variant was considered a true positive when
the calling matched with the exact position and alternative
allele shown on the benchmarking set. The criteria to clas-
sify SVs as true positives were: (i) the chromosome and the
breakpoint position ± the breakpoint-error of the variant
caller overlaps with the gold standard (Supplementary Ta-
ble S4), (ii) the SV type label matched with the gold stan-
dard, and (iii) the variant length reported by the caller has
a ≥80% reciprocal overlap with the variant length in the
gold standard sample. In addition, for SVs, we also captured
information from the callers regarding breakpoint resolu-
tion, the size effect on variant calling, and the genotyping
accuracy. Platypus, Varscan2, Genome Strip, Pamir and As-
mVar (Supplementary Information section 4.2) were finally
discarded due to either technical incompatibilities with our
computing environment or the low performance in bench-
marking, leaving 12 final variant callers to be applied to the
GCAT–WGS samples.

The effect of the coverage on the variant calling was done
by read downsampling of a group of 10 randomly selected
individuals from our cohort, reproducing 5×, 10×, 15×,
20× and 25× coverage. We applied the complete variant
calling strategy to the resulting samples.

Logistic regression model

Logistic Regression Model (LRM) was used on indels and
SVs to merge and filter the results from all callers, generat-
ing a final set of high-quality variants with the highest re-
call and precision values. This method is proposed as an im-
proved alternative to other strategies based on the number
of coincident callers, which were also included for compar-
ison and evaluation purposes. As discriminative variables,
LRM used variant and calling-related parameters, like size,
reciprocal overlap and breakpoint resolution (Supplemen-
tary Table S5).

Logistic regression model for indels. LRM was trained us-
ing indels of the NA12878 sample and tested using the in-
silico sample. The LRM input was a merged dataset of the

VCF outputs from all included callers, a matrix of unique
variants and variant callers together. The criteria to obtain
this dataset is described in the ‘Variant calling, filtering and
merging’ section. True positive detection of the variants was
assessed via logistic regression as follows: Y ∼ Xc1 + Xc2
+ . . . + Xcn, where Y is the presence (true positive) or ab-
sence (false positive) of the variant in the training set, and
Xc1, Xc2, .., Xcn are the genotypes reported by each variant
caller respectively. Predictions derived from the LRM were
converted into a binary variable, indicating if the variant
was considered a true (PASS, if predicted probability ≥ 0.5)
or a false positive (NO PASS). The genotype considered in
the LRM is a consensus genotype reported by Haplotype
caller, Deepvariant, and Strelka2 (Supplementary informa-
tion section 5.1). The LRM was developed using R software
(version 3.3.1) and the ISLR package.

Logistic regression model for SVs. For SVs, we randomly
splitted the in-silico sample into training, with 70% of the
variants, and the test set, with the rest. True positive de-
tection of the variants was assessed via logistic regression
using 10-fold cross-validations as follows: Y ∼ Xc1 + Xc2 +
. . . + Xcn + G1 + G2 + G3 + G4, where Y is the presence
(true positive) or absence (false positive) of the variant in
the training set Xc1, Xc2, .., Xcn are the genotypes reported
by each variant caller; and G1, G2, G3 and G4 are the ge-
nomic covariates such as size, number of callers, number of
strategies and reciprocal overlap (Supplementary Table S5).
Similar to indels, the input of the LRM for SVs is a merged
dataset of the VCF outputs from the callers (‘Variant call-
ing, filtering and merging’ section). Prediction is a binary
variable depending on the predicted probability (PASS, if
predicted probability ≥ 0.5; NO PASS otherwise). Using
stepwise backward criteria for determining which genomic
covariates contribute to the true positive detection of the
variants, we fitted an LRM for each SV type using the caret
(version 6.0–85) and e1071 (version 1.7–3) R packages. Fi-
nally, to determine the performance of the model, the re-
ceiver operating characteristic (ROC) curves and area un-
der the curve (AUC) of the LRM were computed for the
test sets of each SV type using the ‘ROCR’ R package. The
largest AUC values correlate with the highest F-scores sug-
gesting that the LRM predictions are close to the 0 (false
positive) and 1 (true positive) values.

The strategy to determine the position of a variant in
the LRM was different for each SV type. First, variant
callers were ranked according to the accuracy in resolv-
ing the breakpoint (with an interval of error of ±10 bp;
Supplementary Table S6) and the number of variants de-
tected. This was used to select unique variants according
to the position of the caller for that particular variant. In
the case that a variant was not detected by the best-ranked
algorithms (Supplementary Table S6), the final position of
the variant was considered as the median position and the
length reported by the rest of the callers.

The strategy to determine the genotype of a variant in the
LRM was adapted to each SV type (Supplementary Fig-
ure S3). For Deletions and Insertions, we selected the fi-
nal genotype based on the highest recurrence across callers
that identified a particular variant. For Inversions, we di-
rectly reported the genotype obtained from the caller with
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the smallest genotyping error in the benchmarking analysis.
For Duplications and Translocations, which show the low-
est genotyping accuracy in the benchmarking, we applied a
customised genotyping method strategy. This is based on
the proportion of altered reads from the in-silico sample
around the breakpoint: if the proportion of altered reads
was <0.20, the genotype was 0/0; if the proportion was be-
tween 0.20 and 0.80, the genotype was 0/1; and if the pro-
portion was > 0.80, the genotype was 1/1 (Supplementary
information section 5.2.3).

Quality control

The GCAT Cohort is a prospective cohort study that in-
cludes 19 267 volunteers from Catalonia, in the North-
east of Spain (http://www.genomesforlife.org/). The partic-
ipants were recruited from the general population (2014–
2017) with the only restriction to live at least five years
in Catalonia and aged between 40 and 65 years. All par-
ticipants who agreed to be part of the study provided in-
formed consent and were asked to sign a consent agree-
ment. Whole-genome sequencing data from 808 individu-
als using HiSeq 4000 sequencer (Illumina, 30× coverage,
read length 150 bp, insert size 600 bp) was obtained in
FASTQ format (Supplementary Tables S7 and S8). BAM
files were built using the hs37d5 reference genome and fol-
lowing the GATK Best Practices (Supplementary Figure
S4). FASTQ and BAM files corresponding to these samples
were deposited to the European Genome-Phenome Archive
(EGA, EGAS00001003018). The GCAT cohort protocol,
including sampling and processing, data generation and
health status is described elsewhere (www.genomesforlife.
com) (17,18).

Quality control was applied by assessing the quality
alignment of the BAM files, the presence of contamina-
tion traces, possibly swapped samples, population struc-
ture and relatedness (Supplementary information section
6.3). Alignment quality was analysed using PICARD (ver-
sion 2.18.11), Biobambam (42) (version 2–2.0.65), and Al-
fred (43) (version 0.1.16). Contamination or swapped ID
samples was determined by VerifyBamID (44) (Supplemen-
tary Table S9 and Figure S6). Population structure was as-
sessed using reference ancestry populations. Identity by de-
scent (IBD) estimates was used to remove up to third-degree
relatives.

The GCAT sample was characterized by Principal Com-
ponent Analysis (PCA). Firstly, we ran the Haplotype
Caller tool and only PASS variants from the VCF file were
retained. Then, SNVs with minor allele frequency (MAF)
>0.01 and independent variants (LD, r2 < 0.2) were selected
with PLINK (version 1.90b6.7 64-bit). Finally, on retained
variants (∼1M) we ran PCs together with reference samples
of known ancestry (i.e. 1000G project sample and the Pop-
ulation Reference Sample (45) (POPRES)). The genetic ho-
mogeneity of the GCAT sample was confirmed by PCA in
the retained cohort samples (Figure 1 and Supplementary
Figure S7).

Variant calling, filtering and merging

Each of the 12 selected variant callers was first executed
independently on all samples (Supplementary information

section 7, Supplementary Figure S8), then merged by call
and individual according to our benchmarking strategy to
produce the VCF.

SNVs and indels calls were merged by (i) the chromo-
some, (ii) position and (iii) REF/ALT allele. SVs were
merged by (i) variant type, (ii) chromosome, (iii) position,
considering the breakpoint error estimated for each vari-
ant caller (Supplementary Table S4) and finally (iv) recip-
rocal overlap ≥80% between callers (Supplementary infor-
mation section 8.2) and individuals (Supplementary infor-
mation section 8.3). Given the consistently high accuracy
in detecting SNVs for most callers, we considered one of
these variants as a true positive if it was detected by at least
two callers. For indels and SV, we applied LRM consider-
ing a variant as true positive if the prediction probability
was ≥0.5.

We calculated the true positive proportion for each vari-
ant determined by the LRM prediction in all GCAT sam-
ples. We referred to this proportion as the quality score of
the merged variant. Then, we considered a variant as PASS
if the quality score was ≥0.5. We reported the length and
position of each SV as the median length and median po-
sition of all the samples that have that SV (Supplemen-
tary methods). Finally, monomorphic variants, variants out
of Hardy-Weinberg equilibrium (Bonferroni correction P-
value < 5 × 10−8), and variants with ≥10% of missingness
were excluded from subsequent analysis. Data and Code
availability is described below. Summarized later at the re-
source availability section.

Variant validation

Comparison with public datasets. SNVs and in-
dels from the GCAT dataset were compared with
the NCBI dbSNP database (46) (Build version 153)
(https://ftp.ncbi.nlm.nih.gov) to determine the number
of unique/shared variants between them. GCAT SVs
were compared with the following public databases:
(i) The Genome Aggregation Database (gnomAD.v.2)
(10) (https://gnomad.broadinstitute.org/downloads),
(ii) the Database of Genomic Variants (DGV) (http:
//dgv.tcag.ca/dgv/app/downloads?ref=GRCh37/hg19) (47),
(iii) the Human Genome Structural Variation Consortium
set (HGSVC) (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
data collections/hgsv sv discovery/) (13), (iv) the Ira M
Hall dataset (https://github.com/hall-lab/sv paper 042020)
(48), (v) the 1000G project (Phase3) (ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/phase3/) (11) and (vi) GoNL (release
6.2) (on request) (12). Finally, we determine the number
of shared variants between the GCAT and at least one
other public dataset and the number of unique vari-
ants in the GCAT derived (Supplementary Information
section 9.1.2).

We also carried out a comparison with the emerging
long-read sequencing technologies. We analysed with our
pipeline 30× short-read sequencing information from a
1000G sample (id: NA12878) that had been also indepen-
dently sequenced and analysed using long-read technolo-
gies. We ran our variant calling and filtering strategies in
this sample and matched the results obtained with those re-
ported in Audano’s study (15) (long-read sequencing) and
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Figure 1. Overview of data and overall strategy. (A) Distribution of genetic data (SNVs) based on principal component analysis (PCA) (adapted from
Novembre et al. (45)). The PC grouped by geographic localization (coloured in grey) the individuals of the GCAT cohort (blue dots) with Iberian samples
from 1000G (asterisk) and POPRES (letters) projects in the context of other European samples. (B) Flowchart of the overall strategy followed in this
study, covering from the quality control of the initial data, to the final generation of the GCAT haplotype panel, with particular focus on SVs. Overall,
the complete strategy consumed ∼3.5 million CPU/hour, which highlights part of the computational challenges associated with this type of analysis
(Supplementary Table S11) (See also Supplementary Figure S7).

1000G Phase 3 (3–7× coverage), obtaining the number of
variants shared between projects.

Experimental validation. The validation of SNV and in-
del calling was performed using the SNP-array data avail-
able from 570 of the 785 individuals analysed in this study.
We include QCed genotypes generated in the GCAT cohort
with the Infinium Expanded Multi-Ethnic Genotyping Ar-
ray (MEGAEx) (ILLUMINA, San Diego, CA, USA) as
described elsewhere (18) (i.e. 732 978 SNPs and 1168 in-
dels). Genotypes from both strategies were compared by (i)
chromosome and position at base-pair resolution and (ii)
REF/ALT alleles; the recall and genotype concordance for
each individual sample was calculated.

Inversions were validated using a recent benchmark
dataset, consisting of 59 validated human polymorphic in-
versions from the InvFEST project (49). Allele frequency
(using CEU and TSI European populations) and length
concordance was determined using an overlapping window
of ±1 kb around the inversion breakpoints. Accuracy of
inversion genotyping was assessed for the 785 WGS sam-
ples, using the available reference panel of experimentally-

resolved genotypes (49). GCAT genotypes were imputed
with IMPUTE2 (50) with a genotype posterior probabil-
ity ≥0.8 and classified as missing otherwise. Missing geno-
types were recovered if they had a perfect tag SNP in the
reference panel (r2 = 1).

Comparative genomic hybridization (CGH) method was
used to validate deletions and duplications using the
NA12878 sample from 1000 Genomes project as reference,
for which the lists of variants had been previously described
(51). For each sample, we determined gains and losses and
compared them with those reported from our variant call-
ing analysis.

Phasing and imputation performance

In order to analyse the performance of the phasing and im-
putation processes, all 785 GCAT samples were divided into
two subsets, (i) a subset including 690 samples were first
used to construct a pilot reference panel and (ii) the remain-
ing 95 samples, with WGS and SNP-genotyping array data
available, were then used as a test sample in the different
analyses.
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The evaluation of phasing strategies was carried out by
determining the imputation accuracy of SVs, using the
genotypes independently generated by WGS and imputa-
tion techniques across the 95 test GCAT samples, and with
the pilot reference panel of 690 individuals (Supplemen-
tary Information section 10.1). Accuracy was determined
for chromosome 22, and the quality score of imputed vari-
ants was considered as a validation proxy of the best phas-
ing strategy. Each phasing strategy was evaluated by count-
ing the number of variants with an info score ≥0.7, and
by calculating the genotype concordance between imputed
data and the calling. The phasing algorithms evaluated were
ShapeIt2 (52) (version v2.r904), MVNcall (53) (version 1.0),
ShapeIt4 (54) (version 4.1.3) and WhatsHap (55) (version
0.18). We used IMPUTE2 (50) (version 2.3.2) for imputa-
tion analysis (Supplementary methods).

In order to evaluate the imputation performance of the
GCAT|Panel for distant ethnicities, we used the 1000G
SNP-genotyping array data covering 2318 samples from 19
populations (56) (Supplementary Table S13). First, quality
control was applied to the 1000G SNP-genotyping array per
population by removing variants the met the following cri-
teria: (i) ≥10% of missingness; (ii) matching A–T, C–G sites;
(iii) in Hardy–Weinberg disequilibrium (P-value < 0.05);
and by discarding samples with (i) ≥10% of missing, (ii)
Kinship coefficient ≥0.05 and (iii) an excess of heterozy-
gosity ±2SD, obtaining finally 1880 individuals covering
19 populations. Each population group was pre-phased
with ShapeIt4 and imputed separately using IMPUTE2.
Then, we compared the allele frequency, type of variant
distribution, and the quality of the imputed SVs across
populations.

To evaluate the imputation of SVs, we used as refer-
ence the Audano et al. (15) study that includes SVs identi-
fied using long-read sequencing. Imputed SVs with an info
score ≥0.7 were compared considering a window of ±50 bp
around the breakpoint. Furthermore, we evaluated the con-
cordance of SV type and SV length error reported by WGS
calling. On the other hand, we also evaluated the concor-
dance of the genotype of our imputed SVs, using the SV list
generated on the same samples, by Hickey et al. (57).

Benchmarking different panels of genetic variability

QCed genotypes generated in the GCAT cohort with
the Infinium Expanded Multi-Ethnic Genotyping Array
(MEGAEx) (i.e. 756 773 SNVs) were used to impute 4448
individuals (e.g. excluding those 785 with WGS) using the
GCAT|Panel and the publicly available 1000G phase3 (11),
GoNL-SV (12), UK10K (58) and HRC (2) reference pan-
els. Multiple reference panel imputation was conducted us-
ing GUIDANCE (59). For comparative purposes, we con-
sidered imputed variants with info imputation score ≥0.7
and MAF >0.001. For SNVs and indels, variants were con-
sidered coincident when the position and change matched.
For SVs, matching variants were considered if their posi-
tions were within a ±1 kb window, and the variant type
was the same. Since allele frequency impacts imputation,
we calculated the average of the info imputation score (r2)
by frequency categories: rare (MAF < 0.01), low frequency
(0.01 ≤ MAF < 0.05), and common (MAF ≥ 0.05).

Functional impact of structural variants

Variant annotation. Functional, regulatory, and clinical
annotations of SVs were predicted using AnnotSV (60). The
functional impact of SVs was evaluated by considering (i)
the level of overlap with known genes, (ii) the level of over-
lap with regulatory regions (61), (iii) the predicted loss of
function intolerance (pLI) effect and (iv) the reported dis-
ease association studies. In addition, we used SVFX (62),
a mechanism-agnostic machine learning-based workflow,
to evaluate the potential pathogenicity of large deletions
and duplications (>50 bp), in four major cardiometabolic
conditions from the GCAT cohort; diabetes, obesity, car-
diovascular diseases, and hypertension. SVs were classified
using the annotations of the SVFX tool into pathogenic
(SV pathogenic score ≥ 0.9) or benign (SV pathogenic
score ≤ 0.2). Finally, SNVs and indels (up to 50 bp) were
annotated using SnpEff (63) and SnpSif (64) (v5.0e) tools,
covering LoF and pathogenicity descriptors from ClinVar
(65) and CADD (66) resources.

Comparison with the GWAS catalog. GWAS catalog ver-
sion 1.0.2 (r2021-05-05) was downloaded from https://www.
ebi.ac.uk/gwas/docs/file-downloads. First, we selected 106
906 variant-phenotype associations of 72 849 unique au-
tosomal entries identified in European ancestry. Second,
we intersected with PLINK2.0 (67) 68 323 unique variant-
phenotype associations (MAF > 0.01) with the GCAT
dataset (∼30M variants) by breakpoint coordinates. Fi-
nally, we identified 1374 unique SVs (MAF > 0.01) in strong
linkage disequilibrium (r2 > 0.80) with variant-phenotype
associations in 1Mb window (Supplementary Figure S27).
From these 1374 SVs, we evaluated the SV type, as well as
the overlap with genes and regulatory regions.

Genome-wide association analysis. Association analysis
was performed by 70 independent GWAS of chronic con-
ditions. Phenotype selection was derived from the Elec-
tronic Health Records registry from the cohort (2012–
2017) and chronicity was defined using public guidelines
for chronic condition definitions (68), and the Chronic
Condition Indicator (CCI) (http://www.hcup-us.ahrq.gov/
toolssoftware/chronic/chronic.jsp) (69,70), then grouped
considering ICD-9 codes and chapter descriptions. Condi-
tions with more than 50 cases were retained for the GWAS
analysis (i.e. 70). Each association test was performed as
independent logistic regression for each cohort, under the
assumption of an additive model for allelic effects, with
adjustments made for age, sex and the first five principal
components. Gender-specific conditions were analysed only
for a specific gender. The analysis was performed using
PLINK2.0 (67) for autosomal chromosomes. A Bonferroni
correction accounting for the 10 ICD-9 categories used (i.e.
body systems) was applied. Locus Zoom was derived for
specific regions, and suggestive tower profiles were analysed,
based on LD patterns and gene-centered impact.

Experimental validation of the Alu element. PCR ampli-
con analysis was designed using Primer 3.0 software us-
ing the hg19 dna range = chr3:49 492 813–49 496 062 se-
quence, including the Alu element. Sequence primers are
for F-primer (5′CATTGACTCATTCAGCAAGCA 3′) and
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for R-primer (5′AAATTAAGCCCCACCCTAG3′). Using
standard conditions (35×, Tm = 60ºC) in a Veriti™ 96-Well
Thermal Cycler (Thermo Fisher Scientific), we obtain a 515
bp fragment corresponding to the control-allele and an 848
bp one for the Alu-allele. Fragments were resolved by e-
agarose gel, in a TapeStation (Agilent). Further, the am-
plicon of a non-ALU allele carrier was analysed by Sanger
Sequence Method to verify the insertion point (i.e. at hg19
Chr3:49 494 280) and the ALU sequence insertion (324 bp).

Statistical analyses

R software was used for data visualization and statistical
analyses. 95% confidence intervals (CI) for recall, preci-
sion, and genotype error metrics were assessed as point es-
timation ±1.96SD. Risk ratios with 95% CI and two-tailed
P-values from the functional enrichment of common and
rare SVs were calculated using the risk ratio function from
the epitools R package. Pearson correlation coefficient with
95% CI and two-tailed P-value were estimated using the
cor.test() function implemented in R.

RESULTS

Evaluation of cohort data quality and consistency

From the GCAT cohort (17) we randomly selected 808 indi-
viduals (gender-balanced) for new Illumina whole-genome
sequencing at 30× coverage. Twenty three samples were ex-
cluded based on sequence quality, ethnicity, and related-
ness parameters (see Methods, Supplementary Table S10).
Principal component analysis (PCA) on the remaining 785
individuals identified a unique and separated cluster com-
pared with neighbouring populations (Figure 1A, Supple-
mentary Figure S7), in agreement with their geographic
origin (45).

Generation of a comprehensive variant identification strategy

We designed, benchmarked, and implemented a compre-
hensive strategy for capturing, classifying, and phasing a
wide range of germline variants from short-read Illumina
sequences, with particular efforts devoted to the identifica-
tion and subclassification of larger structural variants (Fig-
ure 1B). Using sequencing data from an in-silico genome
(Supplementary information 1, Supplementary Table S2),
and a real sample (NA12878, from the Genome In A Bottle
(GIAB) project (24)), we assessed the performance (i.e. re-
call, precision and F-score metrics) of 17 variant callers cov-
ering SNVs, small indels (<50 bp), and large SVs (≥50 bp)
(see Materials and Methods), and retained the best twelve
(Supplementary Table S3). SNVs were first filtered based
on a minimum constraint of having the support from at
least two callers, which provided high recall (>95%) and
precision (>96%) values. On the other hand, for the fil-
tering of small indels and SVs, which show high levels of
discrepancy across individual callers and their combina-
tions (Figure 2A), we built a Logistic Regression Model
(LRM), to prioritize caller results through a reliability score
from the weighted combination of different calling param-
eters (Figure 2B, Supplementary Figure S2) (see Materials

and Methods), accordingly higher F-scores correlated with
larger AUC values (Supplementary Figure S30). This ap-
proach outperformed other typical curation strategies over
the entire spectrum of SV sizes (Figure 2C, Supplementary
Figure S5). Furthermore, because accurate genotype calling
is also key for downstream analyses, on top of this LRM, we
prioritized those callers that best resolved the heterozygos-
ity (i.e. genotypes) (see Materials and Methods), resulting in
a lower rate of genotype error (<6%) across all variant types
when compared to the in-silico sample (Figure 2D, Supple-
mentary Figure S3).

Genome-wide variation analysis of the GCAT cohort

The application of this strategy to the selected 785 whole-
genome Illumina sequences (30×), let us identify 35 431 441
unique variants across the cohort. Of these, 85.6% corre-
spond to SNV, 14.1% to indels (<50 bp) and 0.3% (n = 89
178) to SVs (≥50 bp) (Figure 3A). Median values of vari-
ants per individual were 3.52M SNVs (SD = 24 983), 606
336 indels (SD = 8060) and 6393 SVs (SD = 222), show-
ing good consistency across the cohort (Figure 3B). SV
sizes ranged from 50 bp to 197MB (duplication), with me-
dian values of 291 bp and a different distribution for each
type of variation (Figure 3C), affecting globally a median of
7% of the entire genome per individual. Frequency ranges
across all SVs were in agreement with other public WGS-
based studies (Figure 3D), with 31% of them being com-
mon or low-frequency (MAF ≥ 0.01), and 69% being rare
(MAF < 0.01), including a large fraction (50%) present only
in one or two individuals (i.e. MAF ≤ 0.0025).

The robustness of these results was evaluated using com-
parative and experimental approaches. A large fraction
of SNVs and indels (i.e. >79% and >93% respectively)
matched with dbSNP (Build 153.v) (46) entries (Supple-
mentary Figure S9a, b). Regarding SVs, the comparison
against different public databases (i.e. gnomAD-SV (10),
1000G (11), GoNL (12), HGSVC (13), DGV (47), dbVar
(47), Ira M. Hall Lab dataset (48); see Materials and Meth-
ods) highlighted 49,333 novel SVs (i.e. 61% of all SVs),
of which 27% were present in more than two individuals
(Supplementary Figure S9). As to the type, 26% of these
novel variants correspond to deletions, 8% to duplications,
20% to insertions, 20% to inversions, 4% to LINEs, 1% to
SVAs, and 21% to Alu elements. The comparison of our
results with array-based genotypes in a fraction of our co-
hort (n = 570 individuals) validated 96% and 87% of SNVs
and indels, respectively, with a genotype concordance of
97% and 96% (Supplementary Figure S10). Furthermore,
we also used a benchmarking set of 59 manually-curated
and experimentally-genotyped inversions with MAF >0.01
from the InvFEST project (49) to evaluate this type of
variants within our catalogue. Of these 59 inversions, we
detected 51 (86%), with concordant size and allele fre-
quency values (Supplementary Figure S11a, b; see Materi-
als and Methods). This validates ∼38 000 of ∼40 000 inde-
pendent inversion calls across the entire cohort, with an av-
erage genotype concordance of 95% (Supplementary Figure
S11c). In addition, we have applied CGH, which best targets
duplications, as well as large deletions (>20 kb). Using this
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Figure 2. Benchmarking of the structural variant identification and classification pipeline. (A) Structural variant (SV) detection patterns according to the
programs used. Lines and dots indicate the programs used and bars the number of overlapping calls resulting from that combination. The first 30 patterns
with more coincident SV calling are shown. Right coloured horizontal bars indicate the total number of SVs detected by each caller. Variant callers that
detect all SV types and sizes tend to recover more SVs than those that detect specific SV types (i.e. CNVnator) and smaller SVs (i.e. Strelka2). (B) Overview
of the detection performance of different strategies and filtering results from multiple variant callers. Each strategy is plotted according to the recall and
precision ratios (F = F-score) using the benchmarking dataset. The logistic regression model (LRM), with a F-score of 0.9, outperformed other commonly
used strategies that are based on the number of coincident callers (logical rules). The confidence interval for each case is represented by coloured area
of each strategy. (C) Comparison of performances (F-score) of different merging and filtering strategies according to the size of the structural variant.
(D) Comparative overview of the genotype error, associated to each strategy for each allelic state. Error values and their intervals were inferred from the
benchmarking dataset (see supplementary Figures S2, S3 and S5 for the information across the different SV types).

technique, we could validate 76% of our deletions, as well
as 20% of the duplications (Supplementary Table S16). Fi-
nally, we contextualized our results in the frame of other SV
identification efforts, through the analysis of the NA12878
sample from the 1000G project that has been sequenced and
analysed using long and short read technologies at differ-
ent coverages. From all SVs identified with long-read tech-
nology (15), our strategy was able to identify 24% of them
when applied to NA12878 at 30× short-read sequence. This
overlap is different across different SV types, as we detected
14% of the insertions and duplications, but up to 48 and
57% of the inversions and deletions, respectively. The same
comparison using the 1000G annotation of NA12878 at 3–
7× coverage showed a coincidence with long-read results
of 4, 2 and 0.1% for deletions, inversions, and duplications
respectively (Supplementary Table S17), showing a signifi-
cant detection improvement when using higher coverages,
identifying between a 2- and 7-fold the number of variants
with 30× coverage, compared with 15× and 5× coverages,
respectively (Supplementary Figure S31).

Predicted functional impact of SVs

A first assessment of the potential functional impact and
pathogenicity of our SVs was obtained using AnnotSV
(60). 46% of all SVs overlapped with genes, affecting a
median of 2868 per individual, whereas 18% overlapped
with gene regulatory regions (see Data and Code Avail-
ability at the resource availability section for the corre-
sponding gene lists). While the majority (88%) of gene-
overlapping SVs mapped within intronic regions (Supple-
mentary Figure S24a), 9% of them affected coding sequenc-
ing regions (CDS). In agreement with known variant fixa-
tion patterns within populations, we observed that rare SVs
(MAF < 0.01) tend to be more disruptive, compared to
common variants (MAF ≥ 0.05), as 13% of rare SVs are
overlapping coding regions, compared to 5% of the com-
mon ones (RR = 0.13/0.054 = 2.4, 95% CI = [2.14,2.69], P-
value = 2.6 × 10−67, Supplementary Table S15a, b). Of the
affected genes, 28% (10 600 SVs) are related to disease, as
indicated by the predicted loss-of-function intolerance pa-
rameter (pLI) (71) (Supplementary Figures S25a, S26 and
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Figure 3. Overview of the GCAT variant catalogue. (A) Table with the numbers of identified and accepted variants after applying the filters ‘at least two
callers detecting the same variant’ for SNVs, the LRM for indels and SVs, Hardy–Weinberg equilibrium, and discard monomorphic variants and those
with >10% missingness within the GCAT cohort, according to their class. (B) Overview of the variant distribution within an average individual in the
GCAT cohort, according to their observed minor allele frequency (MAF). (C) Distribution of SV type according to their genomic sizes. (D) Comparative
overview of the SV type number and distribution across the GCAT, 1000G, GnomAD and GoNL catalogues.

Table S14). Additionally, when we analysed the putative
causal role of our SVs variants across multiple phenotypes,
we observed that 1374 SVs (MAF ≥ 0.01) are in strong link-
age disequilibrium (LD) (r2 ≥ 0.8) with loci associated with
human traits from the GWAS Catalog (version1.0.2 release
05/05/2021), tagging mainly deletions (Supplementary Fig-
ure S27), with more than half of them (799) directly overlap-
ping genes or regulatory regions. Finally, we further refined
these results with annotations from the SVFX tool (62) for
four major cardiometabolic conditions; obesity, cardiovas-
cular traits, hypertension, and diabetes. Our analysis iden-
tified 106 GWAS catalog (P-value < 10−8) hits (i.e. 8% of
total hits) that overlap with pathogenic annotated variants
in the four analysed traits; 55% variants overlap with obe-
sity and related obesity traits, 20% with diabetes, 16% with
cardiovascular-related diseases and 9% with Hypertension
and related traits. Of these, 95% were common and 5% were
low-frequency variants. We observed a ratio of pathogenic
to benign deletions of 0.95, 1.93, 1.85 and 0.40 for dia-
betes, hypertension, obesity, and cardiovascular traits, re-
spectively. In the case of duplications, these ratios were 2.06,
4.42, 4.06 and 0.82 for diabetes, hypertension, obesity, and

cardiovascular traits, respectively, suggesting that duplica-
tions are twice more likely to be involved in these traits.

From the annotation obtained using SnpEff (63) we ex-
tracted 2855 variants that were classified as LoF and ob-
tained their pathogenicity using ClinVar (65) and CADD
(66) data. ClinVar data was available for 243 variants 70 of
which were reported as pathogenic or likely pathogenic, and
CADD data was available for 2850 variants, 2330 of which
were classified as deleterious (CADD PHRED score > 20).

Iberian Haplotypes estimation

As a resource for the enrichment of SVs within genome-
wide association studies, we built a haplotype reference
panel by phasing together all the variants identified within
all GCAT samples. We first generated a cross-validation
framework to identify the best available phasing strategy
for SV (see Materials and Methods), using downstream
imputation results as the evaluation and ranking criteria
(Supplementary Figures S12 and S13 and Table S12). In
our hands, the combination of ShapeIt4 (54) and What-
sHap (55), which include phase informative reads (PIRs),
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Figure 4. Phasing and Imputation performance of the GCAT|Panel. (A) Ternary diagram of the genotype imputation accuracy by variant type and fre-
quency, considering the genotype calling as reference. Three dots evaluate each genotype state per sample. The samples with high concordances between
genotype imputation and genotype calling were located at ternary diagram vertices. (B) Number of SNVs and indels imputed (info score ≥ 0.7) using dif-
ferent reference panels and combining their imputation results. More indels were recovered by GCAT|Panel. (C) Number of SVs imputed (info score ≥ 0.7)
using different panels, and combining the imputation results with and without GCAT|Panel. (See also Supplementary Figure S21).

provided the best results. Using this protocol (Supplemen-
tary Figure S14), the resulting haplotype panel allowed the
imputation (info scores > 0.7) of 98%, 92%, and 90% of
our common SNVs, indels and SVs, respectively, recover-
ing a median of 5120 SVs (SD = 50), from a maximum of
6393 SVs estimated per individual. While the best impu-
tation results came from de novo insertions and deletions,
with 96% and 95% recovery rates, respectively, duplications
and translocations were imputed at lower rates, i.e. 48% and
19%, respectively (Supplementary Figure S15). Overall we
imputed common SNVs, indels and SVs with a genotyping
concordance of 99% (SD = 0.4), 97% (SD = 0.6) and 98%
(SD = 1.2) (Figure 4A), respectively. The lowest values were
observed for duplications and translocations, with genotype
concordances of 84% (SD = 9.2) and 73% (SD = 27.6), re-
spectively (Supplementary Figure S16).

As the possibilities of accurately imputing SVs are ex-
pected to correlate with the number of neighbouring SNVs
and indels in LD, we next analysed the variation context
of our SVs. Using one megabase window, we observed that
the number of SNVs and indels in strong LD (r2 ≥ 0.8)

with common deletions, insertions, inversions, and mobile
element insertions (MEIs) was in the range of 39–42, in
contrast to duplications and translocations, which showed
mean values of 12 and 8 variants respectively (Supplemen-
tary Figure S17a). In fact, as expected, a positive significant
correlation was observed between the number of variants
in LD and the score of imputation for common SVs (Pear-
son’s r = 0.38, 95% CI = [0.37, 0.40], P-value < 2 × 10−16)
(Supplementary Figure S17b), and for all SV types (except
translocations) (Supplementary Figure S18).

Imputation performance of the haplotype panel

Following this strategy, we generated a complete and op-
erational panel of Iberian haplotypes, with all the variants
of our 785 individuals. To assess the value and benefits of
the resulting GCAT|Panel, as an imputation resource for
enriching genetic association studies with SVs, we first im-
puted the genotyping array data of 4448 GCAT individuals
and compared the results with those of other reference pan-
els, such as 1000G (11), GoNL (12), HRC (2), and UK10K
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Figure 5. Genome-wide association analysis using GCAT|Panel and experimental validation of an AluYa5-element. (A) Locus zoom plot of the lo-
cus associated with mononeuritis of lower limb (ICD-9 355) (P-value = 9.84 × 10−7), showing the lead variant in purple. The AluYa5-element
(g.49494276 49494600ins (hs37d5) maps in an enhancer element upstream of the DAG1. (B) Experimental validation of an AluYa5-element, agarose e-gel
electrophoresis of PCR products after amplification of Alu-insertion-specific DNA fragments from blood DNA Lanes: 1, 100 bp DNA ladder marker
(Life Technologies), expected sizes of both states are shown to the left; 2–5 Alu carriers (EGA 04200, EGA 01901, EGA 13378, EGA 03940); six control
individual (EGA 01399). The numbers to the left refer to the size (bp) of marker DNA fragments. Electrophoresis analysis of Alu carriers show two-band
amplicons (515 bp and 848 bp) detected in Alu carriers (lanes 2–5) and one-band amplicon (515 bp) in control non-Alu-allele individuals (lane 6) (See also
Supplementary Figure S29).

(58). With IMPUTE2 (50), the GCAT|Panel was able to
impute a total of 14 383 907 variants with MAF > 0.001
and high quality (info score ≥ 0.7). Across different refer-
ence panels, the overall imputation performance for SNVs
and indels (<50 bp) was generally high (Figure 4B), with
slight overperformances of the GCAT|Panel on indels, and
of 1000G and HRC panels on SNVs. While HRC and
1000G recovered rarer SNVs, likely because of their larger
sample sizes, the GCAT|Panel was able to recover rarer
indels (Figure 4B). At the structural variation level, the
GCAT|Panel was able to impute a total of 23, 179 SVs
with info scores ≥0.7, resulting in a 1.6-, 2.7- and 1.3-fold
increase, compared with the 1000G, the GoNL, and both
panels combined, respectively (Figure 4C). For common
SNVs/Indels (MAF > 0.05) the GCAT|Panel showed simi-
lar performance as HRC, 1000G, GoNL and UK10K refer-
ence panels (mean r2 > 0.96, Supplementary Figure S21a).
For common SVs, the GCAT|Panel outperformed (mean
r2 = 0.91, SD = 0.15) 1000G (mean r2 = 0.80, SD = 0.21)
and GoNL-SV reference panels (mean r2 = 0.82, SD = 0.21,
Kruskal–Wallis P-value < 2.2 × 10−16, Supplementary Fig-
ure S21b).

In an exploratory analysis, structural variants imputed by
the GCAT|Panel were also tested (together with SNV and
indels) for association across 70 identified chronic condi-
tions within the cohort. Conservatively, only structural vari-
ants with an info score >0.7 and conditions with >50 cases
were included in this analysis. Forty six SV loci showed sug-
gestive association with 26 conditions after Bonferroni cor-
rection (P-value ≤ 1 × 10−6) (Supplementary Figure S28).
Of all these associations, 63% could potentially be function-
ally explained through SVs, as they either lead the associa-
tion (37%) or are in strong LD (r2 ≥ 0.8) with the lead vari-
ant (26%). A notable example is a rare AluYa5-element in
chr3 (g.49494276 49494600ins (hs37d5), MAF = 0.0013),
located near the dystroglycan gene (DAG1) and associated
(P-value = 9.84 × 10−7) with Mononeuritis of lower limb
(ICD-9 355) (Figure 5A). The presence of this Alu element,
imputed only with the GCAT|Panel (info score = 0.98), was
experimentally confirmed in all carrier individuals (Figure
5B, Supplementary Figure S29).

Finally, we evaluated the portability of the GCAT|Panel
to infer SVs across 19 different ethnic groups using 1880
individuals from the 1000G project. While the imputation
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Figure 6. Structural Variant imputation performance using GCAT|Panel across all continents. European and Latin American populations recover more
low frequency and rare SVs at high info scores (≥0.7) than African and Asian populations (see also Supplementary Figures S22 and S23).

quality of SVs was higher within the European populations
(Supplementary Figure S22), the GCAT|Panel was also able
to impute a large fraction of SVs across all other ethnici-
ties (Figure 6, Supplementary Figure S23a). Of nearly 50K
unique SVs imputed across all groups, 25%, 35% and 40%
of them were detected within the Asian, African and Latin
American populations, respectively (Figure 6, Supplemen-
tary Figure S23). In agreement with the mixed origin of
Latin Americans, nearly half of all imputed variants within
this group showed low-frequency values (MAF < 0.05),
compared with other non-European groups, where the im-
putation covered predominantly common variants (Figure
6). In addition, 73% of all the structural variants identi-
fied and genotyped in previous studies, using long and short
WGS (15,57) were also imputed by our panel on the same
individuals, with 88% of matching genotypes (Supplemen-
tary Figures S19b and S20a).

DISCUSSION

Here, we present the GCAT|Panel, the first Iberian Hap-
lotype reference panel derived from high-coverage whole-
genome sequencing. The strategy developed for variant
identification, classification, and phasing, has provided a
comprehensive and high-quality catalogue of genetic vari-
ants, with low rates of false-positive calls and genotyping
errors for all variant types, including SVs. This is due to the
combination of high sequencing coverage (30×) with a com-
prehensive analysis strategy that integrates multiple variant
callers and a Logistic Regression Model for maximzing re-
call and precision for each SV type and size.

Increasing the sequencing coverage to 30× allowed us to
resolve a large fraction of SVs and accurately define the
genotypes that cannot be properly defined with lower se-
quencing depths. In addition, while previous projects in-
ferred SVs into phased haplotype scaffolds (11,12), our se-
quencing coverage allows us, for the first time, to phase SVs
together with biallelic SNVs and indels, and to use phase in-
formative reads (PIRs), which are expected to improve the
imputation of rare variants (72). With this sequencing tech-

nology, we also expect a slight detection bias against low
complexity (repeated) regions of the genome, where short-
read sequencing tends to be less informative, in contrast
to long-read sequencing technology (13–16). This is further
highlighted by the high portion (54%) of our SVs affecting
genes or regulatory regions, which also tend to be within the
non-repetitive portion of the genome.

Given the increasing incorporation of whole-genome se-
quencing into genetic studies, it is crucial to highlight the
importance of accurately identifying and resolving SVs with
the correct genotype, to then obtain robust and meaningful
results during the imputation in a different cohort. Here, we
found a positive correlation between the number of neigh-
bouring variants in LD with SVs and their quality of im-
putation, suggesting that variants with a high genotyping
error show a lower number of variants in LD, which trans-
lates into a lower imputation accuracy for those variants
(Supplementary Figure S17). On the other hand, software
limitations (PLINK or ShapeIt4), can translate into poor
estimations of haplotypes and LD, directly hampering the
association test, which relies on accurate counts of vari-
ant allele frequencies and states. Improved variant calling
strategies that can accurately identify and define complex
structural variation events are still needed, together with
new and dedicated analysis frames (e.g. phasing and LD) for
SVs, where the actual size and type of the variant is consid-
ered, in contrast to the current scenario where SVs are taken
as SNVs.

In our cohort, the GCAT|Panel led to the identifica-
tion of potential risk SV, including those within the rare
spectrum. Here, we highlight the identification of a rare
polymorphic 324 bp-long AluYa5 element in chromosome
3 (g.49494276 49494600, MAF = 0.0013) associated with
Mononeuritis of the lower limb (ICD-9 355). This SV is
located within a multi enhancer-elite element (GeneCards)
(73), proximal to DAG1, a gene involved in pathways re-
sponsible for neuromuscular diseases, and already causing
severe limb-girdle muscular dystrophy type 2P (LGMD2P)
through missense point mutations (74). Further studies are
now needed to validate the resulting hypothesis, in which
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this Alu element could be affecting the expression of the
DAG1 gene in this disease.

This study also provides detailed guidance for the com-
prehensive analysis of whole-genome sequences, including
the identification, classification, and phasing of SVs. We ex-
pect that this type of analysis will soon become the stan-
dard within large genetic studies that are already incor-
porating whole-genome Illumina sequences and combining
them with existing genotyping array information.

Taken together, the availability of a high-quality haplo-
type panel, including a comprehensive fraction of struc-
tural variability, will significantly impact evolutionary and
biomedical studies at different levels. The possibility of
enriching current genome-wide association studies (e.g.
GWAS and eQTL) with SVs through imputation, directly
increases the chances of variant discovery, as well as of their
functional interpretations. Our analysis evidence the poten-
tial of using population-matched reference panels, for the
identification of rare structural variants involved in disease,
and the important contribution to the understanding of the
underlying genomic architecture of genetic diseases.
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Ramos,L., Aussó,S. et al. (2018) Multitrait genome association
analysis identifies new susceptibility genes for human anthropometric
variation in the GCAT cohort. J. Med. Genet., 55, 765–778.

19. Weinstein,J.N., Collisson,E.A., Mills,G.B., Shaw,K.M.,
Ozenberger,B.A., Ellrott,K., Shmulevich,I., Sander,C., Stuart,J.M.
and Cancer Genome Atlas Research Network. (2013) The cancer
genome atlas pan-cancer analysis project. Nat. Genet., 45, 1113–1120.

20. Huang,W., Li,L., Myers,J.R. and Marth,G.T. (2012) ART: a
next-generation sequencing read simulator. Bioinformatics, 28,
593–594.

21. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment
with burrows-wheeler transform. Bioinformatics, 25, 1754–1760.

22. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N.,
Marth,G., Abecasis,G. and Durbin,R. (2009) The sequence
alignment/map format and SAMtools. Bioinformatics, 25,
2078–2079.

23. Van der Auwera,G.A., Carneiro,M.O., Hartl,C., Poplin,R., Del
Angel,G., Levy-Moonshine,A., Jordan,T., Shakir,K., Roazen,D.,
Thibault,J. et al. (2013) From FastQ data to high confidence variant
calls: the genome analysis toolkit best practices pipeline. Curr. Protoc.
Bioinformatics,43:11.10.1–11.10.33.

24. Zook,J.M., McDaniel,J., Olson,N.D., Wagner,J., Parikh,H.,
Heaton,H., Irvine,S.A., Trigg,L., Truty,R., McLean,C.Y. et al. (2019)
An open resource for accurately benchmarking small variant and
reference calls. Nat. Biotechnol., 37, 561–566.

25. Poplin,R., Ruano-Rubio,V., DePristo,M.A., Fennell,T.J.,
Carneiro,M.O., Auwera,G.A. Van der, Kling,D.E., Gauthier,L.D.,
Levy-Moonshine,A., Roazen,D. et al. (2017) Scaling accurate genetic
variant discovery to tens of thousands of samples. bioRxiv doi:
https://doi.org/10.1101/201178, 24 July 2018, preprint: not peer
reviewed.

26. Poplin,R., Chang,P.C., Alexander,D., Schwartz,S., Colthurst,T.,
Ku,A., Newburger,D., Dijamco,J., Nguyen,N., Afshar,P.T. et al.
(2018) A universal snp and small-indel variant caller using deep
neural networks. Nat. Biotechnol., 36, 983.

27. Kim,S., Scheffer,K., Halpern,A., Bekritsky,M., Enhuo,N.,
Källberg,M., Chen,X., Yeobin,K., Beyter,D., Krusche,P. et al. (2018)
Strelka2: fast and accurate calling of germline and somatic variants.
Nat. Methods, 15, 591–594.

28. Rimmer,A., Phan,H., Mathieson,I., Iqbal,Z. and Twigg,S.R.F. (2014)
Integrating mapping-, assembly- and haplotype-based approaches for
calling variants in clinical sequencing applications. Nat. Genet, 46,
912–918.

29. Koboldt,D.C., Larson,D.E. and Wilson,R.K. (2013) Using varscan 2
for germline variant calling and somatic mutation detection. Curr
Protoc Bioinforma., 44, 15.4.1–15.4.17.

30. Rausch,T., Zichner,T., Schlattl,A., Stütz,A.M., Benes,V. and
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