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Abstract: Over the last few years, new materials have been developed which a priori, appear to
improve passive energy efficiency in buildings. This article focuses on chromogenic devices that
allow changing their optical properties in a reversible manner through some external stimulus. The
covering of the envelopes may have different textures or colors, which determine the amount of
solar radiation absorbed by the material compared to the incident radiation. In buildings with a high
percentage of roof relative to façade, the surface finish plays an interesting role in the energy demand.
In the present work, the influence of the application of thermochromic materials to the roofs of
commercial buildings is analyzed. It has been demonstrated that the application of a thermochromic
surface finish can produce savings of annual energy demand between 1% and 12% in kilowatt-hours
and kilograms of CO2 and they become more significant for construction solutions with higher
transmittances values. Then, the impact of applying a thermochromic finish per day is analyzed
and which transition temperature range will be the most optimal to the highest energy performance
is discussed. At the same time, an assessment is made of the optimal cost; although economic
investment is not currently amortized, it is a good resource for reducing energy demand in buildings.

Keywords: thermochromic; roof coating; energy efficiency; reflection; absorption; color; surface
temperature

1. Introduction

In recent years, as a consequence of the need to mitigate climate change, an ideological
current has been developed that seeks to establish a new, more efficient, and environmen-
tally friendly constructive model. Due to the industrial revolution legacy, we know that
fossil resources are finite, that our production model has an expiration date, and that there
has been an increase in annual temperature due to the amount of generated waste and
greenhouse gas emissions.

According to the European Commission, buildings are responsible for about 40% of
energy demand and cause 36% of the CO2 emissions, being the greatest energy consumer
in Europe [1]. In the area of energy consumption of buildings, directive 2010/31/EU of
19 May on the energy efficiency of buildings established that from 31 December 2020, all
new buildings must have nearly zero energy consumption (nZEB). This has developed new
vectors of innovation in architecture, such as “Smart cities”, “Smart Buildings”, or some
materials for reducing cooling needs in buildings [2,3].

The energy performance of buildings directive (EPBD) requires that EU countries set
some cost-optimal energy performance requirements for new buildings, for existing build-
ings undergoing major renovation, and for the replacement or retrofit of building elements
(e.g. heating and cooling systems, roofs and walls). Each Member State should establish a
long-term renovation strategy to support the renovation of the national stock of residen-
tial and non-residential buildings, both public and private, into a highly energy-efficient
and decarbonized building stock by 2050, facilitating the cost-effective transformation of
existing buildings into nearly zero-energy buildings [4].
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Nowadays, due to the new technological advances, new fields of research have been
developed around intelligent materials, whose properties can contribute to the improve-
ment in the energy performance of the building. An example is the chromogenic materials
that change technical behavior according to the external stimulus. This type of material
opens up a wide range of new possibilities when applied to construction [5–7].

In recent years, there have been discussions with regard to a new roof concept called
“cool roofs” [8], where, thanks to a high level of reflectance, they prevent overheating in
summer. The reduction of the energy consumption of cool roofs has been widely reported
in different climate zones and building typologies [9]. Cool roofs reduce cooling energy
in buildings during the summer and improve thermal comfort in buildings with no air
conditioning buildings [10–13].

A few studies show that [14,15] cool roofs are the best solution in temperate and
Mediterranean climates, especially in comparison to traditional roofing because they re-
duce the surface temperature. Similar studies compare the effect of cool materials with
thermochromic materials on the energy efficiency of buildings [16,17] and they show that
static cool roofs cause significant heating penalties during cold seasons but provide cool-
ing energy savings during summer seasons. This last review shows the importance of
understanding the climate in order to apply one system or another.

The chromogenic materials that make it possible to change from light to dark colors
and return to light, in response to external stimuli (temperature increase) are those that
have aroused the interest of the research. These types of dynamic materials lend properties
that a priori can offer improvements in the energy efficiency of buildings in a passive
way [18].

A previous study compared the properties of thermochromic paints exposed to solar
radiation at an ambient temperature of 35 ◦C. It was shown that a thermochromic paint
after it changes color, manages to absorb the same as a conventional paint [19].

The skin of the building is the element that is in contact with the exterior environment;
it forms the envelope in charge of guaranteeing the interior comfort of users, as well as
energy efficiency, and at the same time, has a landscape connotation. The reflectance and
absorptance of the exterior surface of the building make a significant contribution to energy
efficiency [20,21].

There are some reported analyses on the potential energy savings for switchable
reflectance roofs. The effect of the application of a thermochromic façade was simulated
in a single-family house [22], in a case located in Madrid with a 1.29 W/m2·K thermal
transmittance of the wall (Uwall) and absorptances (α) between 0.65–0.70. Results showed
a reduction in total energy demand values for the use of thermochromic materials. Some
other studies have evaluated the impact of this technology in windows, and it was observed
that the energy performance can be improved by around 6.14% compared to an ordinary
single window [23].

An energy performance analysis of a variable reflectivity envelope system for com-
mercial buildings has been evaluated in four different climates in the USA [24]. It has been
reported that dynamic cool roofs save an additional 7% in annual heating and cooling
energy cost as compared to static roofs. Moreover, it has also been reported that dynamic
cool roofs provide the same savings in cooling energy use as static ones. However, this
conclusion focuses the attention on dynamic roofs, which leaves cool roofs behind in terms
of energy consumption. Nowadays the studies of thermochromic materials applied in
opaque surfaces to reduce the energy demand are mostly paints [19,25] and cement [26,27].

Other studies have tested energy savings by integrating a thermochromic thin film
in windows [23,28–30]. Some others demonstrated annual energy consumption can be
reduced by introducing thermochromic windows in Mediterranean climates [31,32]. For
this reason, the aim of this study is to provide more scientific data, which contributes to
reinforcing the need to continue research into the commitment to thermochromics in the
construction sector.
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Some studies reported the analysis of a thermochromic coating in five different cities
in China. The thermochromic coating evaluated has a transition temperature of 25 ◦C, the
color range in yellow, and the absorptances (α) between 0.46 and 0.84. Results showed
energy savings in the annual consumption, but not in one of the samples. In a mild climate,
the temperature never becomes higher than 25 ◦C and the coating stays in the same color
the whole year [23]. It is interesting to study the monthly affectation to define a transition
temperature for each climate.

Most of the main findings of the thermochromic application as a roof system are
energy and cost savings as a common denominator [22,33–35]. Cost savings in the long
term have not been tested.

The purpose of this paper was to assess the energy impact emerging from the applica-
tion of thermochromic materials as roof cover (opaque envelope) in tertiary-use buildings in
Spain. No specific thermochromic material was simulated, instead, extreme reflective coat-
ing characteristics for the cover were considered. In other words, the study proposes to take
a step back from the characteristics of simulated materials in previous studies [22,33–35] to
define in what range of thermal transmittances and climates make more sense for it to be
applied. Therefore, conclusions will be drawn if it makes more sense for it to be applied in
new construction or energy rehabilitation.

In the first part of the paper, climate zone, building typology, and constructive sys-
tems (materials and technical performances) are described. Subsequently, a preliminary
assessment is made in two Spanish climates using white and black colors (colors with high
extreme opposite absorptances) to detect in which thermal transmittance the color change
has more affectation to focus the investigation on one. Then, the results of the simulation
analysis by month are discussed to determine which surface color is more suitable for
minimizing the energy demand of the building. Previous studies have analyzed similar
aspects in other building uses with thermal transmittances around 1.29 W/m2·K, and in
buildings with the same use with thermal transmittances of Uvalue 0.19 W/m2·K [22–35].
After monthly application analyses, a summary of the annual demands for the study cases
is offered. After monthly and annual analyses, a daily simulation for black and white
surfaces has been made, to detect when the transition temperature will be more optimal
in terms of energy performance. Finally, the calculation of the optimal cost is provided to
determine whether it is worth applying this technology nowadays, instead of using the
cool roofs method. In addition, a long-term view is offered to discuss the optimal cost.

The study methodology has been based on Spanish regulations, but the methodology
is replicable in other climates and countries.

2. Methodology and Calculation

The energy demand analyses of the case study were based on simulations using the
simulation tool DesignBuilder version 6 software [36]. DesignBuilder is one of the most well-
known and advanced user interfaces in relation to EnergyPlus [37], the industry-standard
Building Energy Simulation tool. It provides access to the most commonly required simu-
lation capabilities covering building fabric, thermal mass, glazing, shading, renewables,
HVAC, and financial analysis. EnergyPlus has been repeatedly validated through analytical,
comparative, and empirical tests through ASHRAE 14-2002 guidelines [38] and the HVAC
simulation results have shown a good agreement with other well-known simulation tools,
such as DOE-2.1E, TRANSYS, and ESP-r [39].

The case study considered the two most representative climates of two cities in Spain,
namely Barcelona and Madrid, with tertiary-use buildings.

In the investigation, the two most reflective coating values of the roof were considered
to test whether it really makes sense to apply a color change to the cover. The same
construction system was applied to these different characteristics, but with different thermal
transmittance values depending on the regulations of the year of application.

Finally, the optimal cost was calculated according to the European Union method-
ology ‘’cost-optimal” as stated in the Energy Performance of Buildings Directive (EPBD,
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2010/31/EU) [40]. To assess the technology and its economic impact, to obtain data that
promote new lines of research in the creation of new materials.

2.1. Climate Zone

The two most representative climates of the two cities in Spain with tertiary-use
buildings were considered. According to Spanish state regulations (CTE), the climatic
classification for Barcelona is C2, the difference in temperatures between summer and
winter is moderate and the temperature in summer is normally high, which means that
there is a Mediterranean climate. The climate in Madrid is Continental (D3 according to
CTE) and it means higher average temperatures in summer and lower average temperatures
in the winter.

The optical properties of materials can significantly influence their surface tempera-
tures depending on how these properties affect the relationship between the surfaces and
solar radiation. The surface finish temperature depends on the location and is related to
building energy consumption [41]. A previous study developed a cementitious finish with
phase change materials and thermochromic pigments. Results showed that the it is possible
to control high surface temperatures with high emissivity, and low surface temperatures
with low emissivity [27].

The surface temperature also changes according to the climate and the optical prop-
erties of the surface finish. As shown in Figure 1, for Barcelona, the surface temperature
of white roofs reached temperatures of 32.10 ◦C in July, approximately 20 ◦C below that
of black roofs. Meanwhile, in December, black roofs reached temperatures of 23.82 ◦C,
approximately 10 ◦C above that of white roofs.
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temperature [42].

For Madrid, Figure 2 shows that the surface temperature for black roofs varied by
approximately 10 ◦C from that of white roofs in January–May.
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Figure 2. Surface temperatures of black and white roofs in Madrid and the average monthly
temperature [42].

2.2. Building Description

An isolated tertiary building with a large roof area was chosen for the case study,
with the typical one floor and without shadow affectation on its roof. It is part of the most
replicated built heritage of industrial areas, such as Besós and Zona Franca in Barcelona or
Villaverde in Madrid.

The commercial sector institutions have great potential because they consume energy
for long periods and in many different ways (i.e., heating, cooling, and lighting) and because
they host a large number of consumers. The energy consumption of these establishments
shows that 45% of the consumption belongs to lighting, 45% to air conditioning, and
the remaining 10% to other uses, such as mechanical transport, industrial cooling, and
others [43].

A prototypical commercial building is considered in this study. A building typology
with a 70 × 40 m floorplan with a total conditioned floor area of 2800 m2 (Figure 3). A
building with a single floor of 8 m height was considered and in total a conditioned volume
of 22,400 m3. The building window-to-wall ratio was 10% for the west orientation. Table 1
summarizes the areas per façade and roof used for the simulation.
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Table 1. Summary of areas per façade and roof.

Roof North Façade East Façade South Façade West Façade

Opaque surface Glass surface

Area (m2) 2800 320 560 320 450 110

2.3. Roof Coating—Thermal Transmittance

In Spain, the construction of tertiary buildings in industrial areas is characterized by
light elements and dry execution for rapid construction. Sandwich panels on the façade
and roof are considered the most replicable construction model in this sector.

The thermal transmittance of the enclosures was considered according to the evolution
of state regulations in order to be able to compare a wider range of behaviors of the
thermochromic materials (Table 2).

Table 2. Thermal transmittance according to the Spanish regulations of the year of application.

NBE-CT-79 CTE DB-HE 2006 CTE DB-HE 2017 (nZEB) 1

Climate Barcelona (C2) Madrid (D3) Barcelona (C2) Madrid (D3) Barcelona (C2) Madrid (D3)

Roof U (W/m2K) 1.2 0.77 0.53 0.49 0.23 0.22

Façade U (W/m2K) 1.03 1.03 0.95 0.86 0.29 0.27

Flooring U (W/m2K) 1.03 1.03 0.65 0.64 0.36 0.36

Openings U (W/m2K) 5 5 4.4 3.5 1.6 1.6

Permeability (m3/h·m2) - - 27 27 25 25
1 Nzeb, nearly zero energy consumption.

For buildings constructed before 2006, the NBE-CT-79 standard was considered. Mean-
while, for buildings constructed between 2006 and 2017, the CTE DB-HE 2006 was used
(although CTE may have had different updates, a simplification has been made). Finally,
for newly constructed buildings the values of Appendix E of the CTE DB-HE 2017 (values
closer to European standards, such as the Pasivhouse) were used [6]. Existing studies have
already tested the benefits of thermochromic surface finishes in low Uvalues with positive
solar gains [44].

2.4. Optical Properties

Extreme reflective coating characteristics for the cover were considered in order to
test whether it really makes sense or not to apply a color change. For all simulations, quite
a “pure” absorptance and emittance were considered, without taking into account how
durability or maintenance can affect these final values, as follows in Table 3.

Table 3. Solar absorptance of different coating.

Surface Finish
Absorptance

Thermal Solar Visible

Highly reflective material (white) 0.02 0.02 0.02

Highly absorbent
material (black) 0.98 0.98 0.98

Thermochromic 0.02 (white) and
0.98 (black)

0.02 (white) and
0.98 (black)

0.02 (white) and
0.98 (black)

The aim is to define in which months should change the color to make the technology
more efficient and reduce the energy demand. Existing studies have tested some ther-
mochromic materials with real values of absorptance around 0.3–0.7 [22,24], values less
extreme that have already shown trends in energy savings in annual demand.
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2.5. Building Parameters

The thickness and building components of the enclosures were considered according to
the evolution of state regulations (Table 4). The properties of standard materials used in the
simulations were taken from the software defaults (Table 5). Sandwich panels on the façade
and roof were considered with the composition of three layers: steel, foam-polyurethane,
and steel.

Table 4. Thickness and building components per layer.

NBE-CT-79 CTE DB-HE 2006 CTE DB-HE 2017

Thickness Barcelona
(C2) Madrid (D3) Barcelona

(C2) Madrid (D3) Barcelona
(C2) Madrid (D3)

Façade (m) 0.045 0.06 0.08 0.075 0.14 0.14
Layer Composition

(cm) * 1S+2.5P+1S 1S+4P+1S 1S+6P+1S 1S+5.5P+1S 1S+12P+1S 1S+12P+1S

Roof (m) 0.05 0.05 0.052 0.05 0.115 0.12
Layer Composition

(cm) * 1S+3P+1S 1S+3P+1S 1S+3.2P+1S 1S+4P+1S 1S+9.5P+1S 1S+10P+1S

* Considering S as steel and P as Polyurethane. Layer composition arranged from outside to inside.

Table 5. Modeling construction materials and properties used for the building simulation.

Acronym Layer Property

Density
(Kg/m3)

Specific Heat
(J/kg K)

Conductivity
(W/mK)

S Steel 7800 450 16
P Foam-polyurethane 30 1470 0.028

2.6. Internal Loads

To ensure the simulations were as real as possible, occupancy data were introduced
according to CTE-DB-SI regulations [45], such as operating hours of the chosen building
and its equipment [42]. According to the building typology, a commercial building is
occupied between 10 am through 22 pm, Monday to Saturday with a different occupation
range during the day (Figure 4). The internal loads’ range increases from 4 W/m2 for
hours with lower occupancy to 20 W/m2 for hours with higher occupancy from Monday
to Friday. For Saturday the values range is from 4 W/m2 to 45 W/m2.
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For lighting loads, the year of application was considered according to the Spanish reg-
ulations (Table 6). A value of 3.71 W/m2 of internal loads by machinery and technological
elements was considered.
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Table 6. Lighting power density according to the year of application.

W/m2

NBE-CT-79 4.4
CTE DB-HE 2006 3.3

CTE DB-HE 2017 (nZEB) 1 2.5
1 Nzeb, nearly zero energy consumption.

3. Results

The simulations of the case study detailed below were developed with DesignBuilder
software. For each case, two cover simulations were carried out, the first with a highly
reflective surface finish (white) and the other with a highly absorbent finish (black). Each
simulation was based on the same time but in two different climate zones (CZs), namely,
Barcelona and Madrid. The intention was not only to find the percentages of energy savings
but also to be able to establish in which months a value of absorption is required to optimize
the demands.

The objective of the current study was to detect in which months, depending on
the color (i.e., black or white), the demands were less in order to establish a range of
applications for a thermochromic surface finish.

3.1. Preliminary Conclusions of the Color Change on Cover

A previous study was undertaken, to detect in which situations the color change has
more affectation. Figure 5 shows the summary of the annual demands for each case study
in the two CZs with black and white surface finishes, observing that the values were always
higher in the case of a black rather than a white surface finish.
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In relation to the CZ in the Barcelona case, the surface color change on the roof had
an impact on the annual demand for values ranging from 0.56% to 9%, according to the
thermal transmittance of the enclosure. In the case of Madrid, the range of percentages of
savings was more limited and the maximum value was half that of Barcelona; despite this,
the absolute value of savings in kilowatt-hours was higher in Madrid.
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It is appreciated that for buildings with low thermal transmittance, the color change
will have less of an effect than those with high thermal transmittance. Given that in the
two CZs there is demand for both cooling and heating [43], it was considered interesting to
focus on the behavior of the thermochromic surface finish by month in order to establish
which surface color is more suitable for minimizing the energy demand of the building
according to the time of the year.

In previous studies [46], a thermochromic coating with five different colors has been
analyzed. In this case, the thermochromic changed its color from dark to light. The results
showed that thermochromics with a low absorptance of 0.3 (yellow) are the ones with the
highest energy consumption. Moreover, thermochromic coatings with a high absorptance
of 0.6 (i.e., green, blue, black) are the ones with less energy consumption. This is because,
during the color change, its optical properties also change significantly and make the
material absorb or reflect solar radiation when it is needed.

3.2. Thermochromic Monthly Demand Assessment
3.2.1. NBE-79 Assessment of the Monthly Demand in the Barcelona Climate Zone

As seen above, the results are more favorable for buildings with high thermal trans-
mittance; therefore, monthly simulations are shown for this case study to see the influence
of the thermochromic finish month by month.

The main goal of the analysis was to determine the best area to apply the ther-
mochromic technology. As previously mentioned, detecting the months of color change in
each case of study is important in order to understand where energy savings are produced.

In Figure 6, for a white surface finish, the heating demands were higher for the months
of September–May, while for the months of June–August, the cooling demands were lower.
Therefore, thermochromic materials would work from September to May with a black
surface finish, and from June to August with a white surface finish.
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Although Figure 7 shows that the percentage of savings was higher than 70% in
September and June, the monthly demands were very small compared to the total. This
is why the application of thermochromic materials would achieve energy savings in the
months of July and August, with approximately 77% of the color changed to white. In the
months of September–May, a black surface finish would be preferable, with a savings range
from 1.65% in January to 15.8% in May.
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3.2.2. NBE-79 Assessment of Monthly Demand in the Madrid Climate Zone

It is observed from Figure 8 that for the months of June–September, the demands
for cooling were smaller with the white surface finish, while for the months of October–
May the demands for heating were smaller for the black surface finish. This is why the
thermochromic surface finish in Madrid should be white from June to September and black
from October to May.
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Although Figure 9 shows that in September and May, the percentage of savings was
higher than 88%, the monthly demands were very small compared to the total. This is why
the application of thermochromic materials would achieve energy savings in the months of
July and August, with almost 30% color changed to white. In the months of October–May,
a black surface finish is preferable, with a savings range from 2.86% in October to 13.72%
in April.
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3.3. Annual Simulations with Thermocromic Surface Finishes

Below is a summary of annual heating and cooling demands for each case study in
the two CZs with black, white, and thermochromic surface finishes.

After analyzing the monthly application, it is interesting to understand what happens
annually with different thermal transmittance values. For this reason, below are summaries
of the annual demands for the three cases, i.e., a black, a white, and a thermochromic
surface finish.

In this case, the thermochromic surface finish was not simulated but was instead based
on the union between the black surface finish in the months with lower demand for heating
and the white surface finish in the months with lower demand for cooling.

3.3.1. Evaluation of the Annual Demand in the Barcelona Climate Zone

As expected, the case of the thermochromic surface finish had a lower demand than
the others. To be more precise, this represented a saving of 1% with respect to the white
surface finish and 2% with respect to the black surface finish for transmittance values of
0.23 W/m2 K in the case of CTE 2017.

These a priori values seem very small, but the 1% reduction in demand for this case
was 1436.2 kWh, which translates into 531.4 kg of CO2, which equals the annual CO2
absorption of 27 trees [47]. Thus, a small percentage of savings could become of significant
value if global repetition was added (Figure 10).

The energy savings for a thermal transmittance of 0.53 W/m2 K (CTE-2006) increase
in both cases, i.e., the energy-saving of the thermochromic material with respect to a black
surface finish was 4%, and with respect to a white surface finish was 2% (Figure 11).
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Finally, in the case of a higher transmittance of 1.2 W/m2 K (NBE-79), there were more
energy savings (which is an important fact to consider for the existing building stock): 12%
for a black to thermochromic finish and 5% for a white to thermochromic finish (Figure 12).
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Figure 12. (a) Energy demand for heating and cooling in the case of Barcelona NBE-79. (b) Ther-
mochromic vs. black surface finish energy savings. (c) Thermochromic vs. white surface finish
energy savings.

Therefore, the scope of thermochromic materials can be intuited as having some
competitiveness in energy rehabilitation for buildings with transmittance values similar to
those in NBE-79.

3.3.2. Evaluation of the Annual Demand in Madrid Climate Zone

In the CZ of Madrid, the demands with respect to Barcelona were higher, almost
double. The application of a thermochromic surface finish meant a saving of 1% compared
to the white cover and 2% compared to the black one for transmittance of 0.22 W/m2 K
(CTE 2017). The 1% of saving was equivalent to 2220.91 kWh, which is 821.7 kg of CO2
equivalent to the annual CO2 absorption of 41 trees (Figure 13).
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For the case of transmittance, 0.49 W/m2 K (CTE-2006) increases the savings in both
cases. The energy savings of the thermochromic material with respect to a black surface
finish was 5%, and 2% with respect to a white surface finish (Figure 14).

Energies 2022, 15, x FOR PEER REVIEW 14 of 26 
 

 

3.3.2. Evaluation of the Annual Demand in Madrid Climate Zone 
In the CZ of Madrid, the demands with respect to Barcelona were higher, almost 

double. The application of a thermochromic surface finish meant a saving of 1% compared 
to the white cover and 2% compared to the black one for transmittance of 0.22 W/m2 K 
(CTE 2017). The 1% of saving was equivalent to 2220.91 kWh, which is 821.7 kg of CO2 
equivalent to the annual CO2 absorption of 41 trees (Figure 13). 

 

Figure 13. (a) Energy demand for heating and cooling in the case of Madrid CTE 2017. (b) Thermo-
chromic vs. black surface finish energy savings. (c) Thermochromic vs. white surface finish energy 
savings. 

For the case of transmittance, 0.49 W/m2 K (CTE-2006) increases the savings in both 
cases. The energy savings of the thermochromic material with respect to a black surface 
finish was 5%, and 2% with respect to a white surface finish (Figure 14). 

 

Figure 14. (a) Energy demand for heating and cooling in the case of Madrid CTE 2006. (b) Thermo-
chromic vs. black surface finish energy savings. (c) Thermochromic vs. white surface finish energy 
savings. 

Figure 14. (a) Energy demand for heating and cooling in the case of Madrid CTE 2006. (b) Ther-
mochromic vs. black surface finish energy savings. (c) Thermochromic vs. white surface finish
energy savings.

In the case of transmittance, 0.77 W/m2 K (NBE 79) the energy savings of 8% was
achieved using a thermochromic finish with respect to a black one, and 4% with respect to
a white one (Figure 15).
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Although it seems a priori that the case of Madrid had a lower percentage of energy
savings than Barcelona, its savings in absolute value were greater than those of Barcelona.
In Table 7, absolute values of the annual energy savings can be observed for each case of
the study. For example, in the case of Barcelona NBE-79, energy savings values between
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18,245.16 kWh and 5823.50 kWh were achieved, while in Madrid NBE-79 the highest energy
saving value was 24,689.35 kWh.

Table 7. Summary of the annual energy savings and economic savings for each case study when a
thermochromic was applied vs. black and white surface finish.

Barcelona

CTE 2017 CTE 2006 NBE-79
Thermochromic

vs. Black
Thermochromic

vs. White
Thermochromic

vs. Black
Thermochromic

vs. White
Thermochromic

vs. Black
Thermochromic

vs. White

Annual energy
savings (kWh) 2159.34 1435.2 5601.3 3015.49 18,245.16 5823.5

Annual
Economic

Savings (€)
245.52 163.18 636.87 342.86 2074.47 662.13

Madrid

CTE 2017 CTE 2006 NBE-79
Thermochromic

vs. Black
Thermochromic

vs. White
Thermochromic

vs. Black
Thermochromic

vs. White
Thermochromic

vs. Black
Thermochromic

vs. White

Annual Energy
savings (kWh) 6184.95 2220.91 13,707.88 4624.71 24,689.53 11,025.34

Annual
Economic

Savings (€)
703.23 252.52 1558.59 525.83 2807.20 1253.58

Each year the price of energy increases in Spain. For this reason, the economic savings
of the thermochromic application was considered. According to data from “Red Eléctrica
de España” (Spanish Electrical Network), the price of energy for non-domestic consumers is
0.1137 €/kWh (price accessed on 18 July 2019). In the most favorable case (Madrid NBE-79)
the values of the economic savings would amount to 2807.20 €/year.

Changing color according to the temperature suggests the possibility that within the
same day further optimization of the energy performance could be achieved. This means
that the material would not only change from one color to another from winter to summer
but in intermediate seasons would be adapted. The advantage of thermochromics is that
they change color with external input, without additional effort. That is why it is important
to determine and specify the transition temperature so that economic investment is even
more justified.

3.4. Daily Simulations for Black and White Surface Finish

In this chapter, in which range of temperatures the color should change from white to
black and vice versa will be discussed. The aim was to detect the transition temperature
in each CZ and detect at which hour the color change would make the technology more
efficient and reduce the energy demand.

In this type of material, the color-change temperature is very important, i.e., the
temperature at which the material will change from one color to another. For this reason, it
was necessary to analyze the behavior of the material by day.

The study case of Barcelona and Madrid for the NBE 79 regulations was considered,
as they were the ones with the highest energy savings performance. At the same time, the
hourly demands from 10:00 to 22:00 were considered, as they are the hours with the highest
activity in the studied Building.

It should be mentioned that the studied days were the ones with the highest solar
radiation for summer and winter. Therefore, the final energy performance values are not
representative and daily values may change.
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Needless to mention, the study cases were on Saturday, which was the day with the
highest occupancy according to the studied Building.

3.4.1. Saturday, 9 January 2002, Assessment for NBE-79 in Barcelona Climate Zone

As mentioned above, to achieve more favorable energy performance for buildings in
winter, the cover should be black; despite this, simulations by days were made to see the
hourly influence of the thermochromic application.

It is observed in Figure 16 that the energy savings for 9 January 2002 were achieved
for a black surface finish. Therefore, energy savings of 2% were achieved for a black surface
finish versus a white. However, if the figure is zoomed in, in the early hours of the morning,
from 10:00 to 12:00 the demand was higher in the case of black surface finish. Although
from 18:00, there was no solar incidence, there was still a benefit from the black color
compared to white due to thermal inertia.
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Figure 16. (a) Surface temperature and energy performance for 9 January 2002, in Barcelona. (b) White
vs. black surface finish energy savings.

The surface temperature also changes according to the surface finish. As shown in the
figure for black roofs temperatures between 12 and 25 ◦C were reached, while for the white
roofs, between 11 and 17 ◦C.

3.4.2. Saturday, 3 August 2002, Assessment for NBE-79 in Barcelona Climate Zone

To achieve more favorable energy performance for buildings in summer the cover
should be white. It is observed in Figure 17, that the energy savings for 3 August 2002,
were achieved for a white surface finish. Therefore, energy savings of 66% were achieved
for a white surface finish versus a black. For this case, in summer, a black cover was not
favorable at any hour.

It has been mentioned in a previous section that the monthly energy saving in August
when changing from white to black was 72.26% (Figure 7). For this case, 3 August 2002, the
total savings when changing from a white to black finish were 66%, which means that on
other days of the month the energy performance will be more optimal.
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The temperature range between colors in summer changes compared to winter. As
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was no solar incidence, there was still a benefit of black color compared to white due to
thermal inertia.

As shown in the figure for black roofs temperatures between 10 and 18 ◦C were
reached, while for the white roofs, between 10 and 15 ◦C.

3.4.4. Saturday, 27 July 2002, Assessment for NBE-79 in Madrid Climate Zone

As mentioned above, to achieve more favorable energy performance for buildings in
summer, the cover should be white. It is observed in Figure 19, that the energy savings for
27 July 2002, were achieved for a white surface finish.

It has been mentioned in a previous section that the monthly energy saving in July
when changing from white to black was 28.05% (Figure 9). For this case, 3 August 2002, the
total savings when changing from a white to black finish were 35%, which means that on
other days of the month the energy performance will be less optimal. For this case, as in
Barcelona, a black cover is not favorable at any hour in summer.

The temperature range between colors in summer changes compared to winter. As
shown in Figure 19 for black roofs, temperatures between 30 and 62 ◦C were achieved,
while for the white roofs, between 30 and 35 ◦C.
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Therefore, it is intuited that for the case of NBE-79 in Madrid the transition temperature
will be around 18 ◦C in winter and 30 ◦C in summer. As can be seen, the transition
temperature range is very wide for Madrid. For this reason, a day of an intermediate season
will be analyzed.
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3.4.5. Saturday, 27 April 2002, Assessment for NBE-79 in Madrid Climate Zone

The days of an intermediate season are interesting, because during the same day,
heating and cooling loads are needed. As shown in Figure 20, in the early hours of the
morning, from 10:00 to 12:00 the demand was lower in the case of black surface finish,
while in the evening hours, from 17:00 to 20:00 the demand was lower in the case of the
white surface because of the sun radiation.
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Thus, in order to achieve optimal behavior during the morning hours, the surface
should be black (temperatures around 40 to 50 ◦C), while in the afternoons the surface
should be white (temperatures around 25 to 30 ◦C).

However, as already mentioned above, in the month of January (more restrictive for
heating demand), the transition temperature from black to white is around 18 ◦C, so a black
surface will never reach a surface temperature of 44 ◦C in April. As can be shown with a
red line in Figure 20, the hypothetical temperature for a black and white thermochromic
will never happen. Therefore, on 27 April 2002, the surface finish would be white the whole
day for optimal energy performance.

However, for this article, the application of a black and white surface finishes by
day was analyzed. It would be interesting to do daily simulations with different colors
and different days, which would further increase the effectiveness of the application of
thermochromic materials in minimizing energy demands.

In this paper, thermochromics have always been considered with one transition tem-
perature. However, for the case of 27 April 2002, it is intuited that to optimize energy
performance, there should be two transition temperatures. The first one for winter and
summer seasons, changing from black to white when the surface temperature achieves
30 ◦C, and the other for intermediate seasons, changing from white to black when tempera-
ture surface achieves temperatures higher than 45 ◦C.

It should be mentioned that analysis per day should be more extensive in order to
obtain a final value. For future studies, it would be interesting to analyze more inter-
mediate season days, as it offers a new challenge to achieve a thermochromic with two
transition temperatures.
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3.5. Optimal Cost

In order to calculate the optimal cost [40], the application of paint was considered
because it is the most commercialized thermochromic application nowadays. Therefore, it
is more accessible and has a more competitive cost. In the calculation of the optimal cost,
the application was evaluated for three different situations:

• Case 1: White paint applied to an existing black cover which subsequently becomes a
cool roof.

• Case 2: Thermochromic paint applied to an existing black cover.
• Case 3: Thermochromic paint applied to an existing white cover.

A 1.20 W/m2·K transmittance value was applied on a lightweight construction solu-
tion for the Barcelona case study, while a 0.77 W/m2·K transmittance value was applied
for Madrid (NBE-79) due to its higher savings in energy demand.

In order to calculate the optimal cost of applying a surface finish of thermochromic
paint, a time interval of 30 years was considered. As the 30-year market price for energy
cannot be predicted, the conclusion drawn from Eurostat [48] was considered as a 3%
annual increase in the price of electricity.

By applying this time interval, the cover would need some maintenance during the
30-year period, which was considered as an annual increase of 0.5% of the total price.

It can be seen that the thermochromic paint on the market currently has two factors
against it compared to white paint. The first one is the price because it is not very com-
mercialized yet. The second is the coating power since thermochromic paint has half the
coating power with respect to normal paint (Table 8).

Table 8. Price of thermochromic and white paint application. Source: Prices consulted with Amazon
(18 July 2019).

Paint Price

Surface
Covered (m2) Price (€/L) Coating Power

(m2/L)
Final Price of the
Application (€)

White paint 2800 4.83 8.7 1554.48
Thermochromic

paint 2800 115.01 4 87,507.00

For the calculation of the optimal cost, the workforce was considered according to the
database of ITeC BEDEC (Institute of Construction Technology of Catalunya, 2019) and the
cost of a surface finish with thermochromic paint was considered double since it requires
the application of a double layer (because of the coating power).

3.5.1. Barcelona Climate Zone

In the case of thermochromic paints (cases 2 and 3), their current market price cannot
compete against conventional paint, so the initial investment reaches € 80,000. As shown in
Figure 21, for case 2, it is not until year 29 that the initial investment begins to be amortized.
That is why, nowadays, for the case of Barcelona, painting an existing black cover to white
(case 1) generates economic returns from the first year. For case 3, in 30 years, there would
be no economic return, so it is better to leave the existing white cover than to paint it with
thermochromic paint.

If the demand for thermochromic materials were to be globalized, the market price
would be drastically reduced, and competitive economic returns would occur. If mar-
ket prices were equal to conventional paint, returns would occur from the first year
of application.
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Figure 21. Calculation of the optimal cost of thermochromic paint for the case of Barcelona.

However, despite the percentage of maintenance having been considered for the
calculation, the manufacturer does not specify the durability of the material, or whether its
function remains unchanged over time. That is why, in the 30-year time interval, the cover
may have to be repainted, and thus, an economic return would not be generated.

3.5.2. Madrid Climate Zone

The case of Madrid was similar to that of Barcelona. As shown in Figure 22, case
1 was still the most cost-effective, and for case 2, economic returns began after year 22.
Comparing both cases, the percentage of energy savings in Barcelona was higher than
in Madrid; however, in Madrid, economic returns were reached before that in Barcelona
because the demands were much higher.
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Although it is appreciated that the economic returns were not amortized until a rather
long period of time, it is interesting to understand the affectation of the behavior of energy
performance and CO2 emissions associated with the useful life of buildings. Therefore, an
annual comparison of kilograms of CO2 savings was made (Tables 9 and 10).

As a priori, these kilograms of CO2 values were not significant, and they were com-
pared to kilograms of CO2 that a tree can absorb per year. In Table 5, we can see that for
case 2, which had the highest energy savings, the application of thermochromic paint on a
black cover would compensate 9135.13 kg of CO2 per year.
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Table 9. Conversion of annual savings from kilowatt-hours to kilograms of CO2 in the Barcelona
case study.

Demand (kWh/a) CO2 Emissions (Kg CO2/a) 1 Trees Equivalent to
CO2 Emissions 2

Case 1 12,421.66 4596.01 230
Case 2 18,245.16 6750.71 338
Case 3 5823.5 2154.7 108

1 Values obtained from the DesignBuilder simulation. 2 Considering that a tree absorbs approximately 10–30 kg of
CO2 per year [47].

Table 10. Conversion of annual savings from kilowatt-hours (kWh) to kilograms (kg) of CO2 in the
Madrid case study.

Demand (kWh/a) CO2 Emissions (Kg
CO2/a) 1

Trees Equivalent to
CO2 Emissions 2

Case 1 13,664.19 5055.75 253
Case 2 24,689.53 9135.13 457
Case 3 11,664.19 4315.75 215

1 Values obtained from the DesignBuilder simulation. 2 Considering that a tree absorbs approximately 10–30 kg of
CO2 per year [47].

This is equivalent to the amount that 457 trees would absorb in a year, which would
correspond to 3 hectares of Spanish forest. As an illustration of this according to data
from Spain’s National Institute of Statistics in 2017, the national forest inventory was
7500 million with an average of 14,880 trees per square kilometer, i.e., 148.8 trees per
hectare. Nonetheless, tree density is difficult to calculate, since it depends on the type of
tree and the location, so it helps to have metric dimensions of national energy savings.

4. Discussion

As has already been mentioned in previous articles, the implication in the energy-
saving involved in the application of a thermochromic surface or variable reflectivity
coating (VRC) is clear [19,21,30]. In a previous study [23], it was concluded that for a
commercial building in Chicago, a 7% energy saving is reached if a VRC finish was applied
to the roof. This reinforces the conclusions of this article, even though the CZ is in different
places. Despite this, the article mentions that the payback of its application was amortized
in less than a year if the installation costs of the VRC were 0.25 $/m2. The installation price
of the finish mentioned is lower than the current price of the application of conventional
paint in Spain (0.55 €/m2), which is the cheapest way to apply a surface finish. That is why
the current market price of the application of a thermochromic surface finish was evaluated.

The study showed two critical values, the current market price, and the lack of
information about the aging of the product. The industry must obtain a product that allows
economic returns and optimal maintenance, in order to obtain a useful technology at an
environmental and economic level.

For future research, it would be interesting to determine the most optimal transition
temperature for the thermochromic materials in an attempt to make the systems as efficient
as possible.

5. Conclusions

The energy performance of a building with variable reflectivity coatings and thermal
transmittances was evaluated when applied to roof surfaces in commercial buildings
located in two distinct climates in Spain (C2 and D3). Finally, an optimal cost study was
undertaken to determine the effectiveness of its application. The main findings from the
analysis include:

(1) Based on the evaluated case studies, the results obtained in this study showed that
there is always a reduction in energy demand when applying a thermochromic surface
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finish, which becomes more significant for construction solutions with higher thermal
transmittance values (NBE-79).

(2) Likewise, in the application of a thermochromic surface finish to roofs, the greatest
percentage of energy savings would take place during seasons with demand for cooling,
i.e., the summer. The heating demand decreases through solar radiation in buildings
with a high thermal transmittance value. Conversely, the reflection of solar radiation
for buildings with low thermal transmittance values generates a lower cooling demand.
Therefore, it is indicated that for the Barcelona CZ, energy savings of 1–4% are achieved for
a thermochromic finish versus a white surface finish, and of 2–12% for a thermochromic
surface finish versus a black surface finish. Meanwhile, this study suggested that for the
Madrid CZ, energy savings of 1–4% are achieved for a thermochromic surface finish versus
a white surface finish, and of 2–8% for a thermochromic surface finish versus a black
surface finish. Although the percentage of reduction in annual energy demand was higher
in Barcelona, the savings in the absolute value of kilowatts were higher in Madrid, given
that the demand for heating was almost doubled.

(3) The range of months in which a highly reflective (i.e., white) or highly absorbent
(i.e., black) cover is suitable for energy savings according to the CZ and for buildings with
high transmittance values (i.e., NBE-79) are the following results. For the Barcelona CZ,
between the months of June to August, the surface finish should be white, while it should
be black from September to May. Meanwhile, for the Madrid CZ, between the months
of May to September, the surface finish should be white, while it should be black from
October to April. Therefore, it is concluded that in Barcelona, it is convenient for the roof to
be black for more months than white with respect to Madrid.

(4) The transition temperature for Barcelona CZ has been detected for buildings with
high transmittance values (i.e., NBE-79) and results showed that the transition temperature
for a thermochromic should be around 25 ◦C from black to white, to achieve optimal
energy performance in both summer and winter. On the other side, for the Madrid CZ,
the transition temperature for a thermochromic should be around 18 ◦C and 30 ◦C from
black to white, to achieve optimal energy performance in both summer and winter. For
intermediate seasons in Madrid, it was observed that to optimize energy performance there
should be two transition temperatures. The first one, changing from black to white when
the surface temperature achieves 30 ◦C, and the other, changing from white to black when
the surface temperature achieves temperatures higher than 45 ◦C. However, at present, no
thermochromic material is known to allow this. Otherwise, the technology would not be
optimized in days with loads of heating and cooling.

(5) The results of the economic investment study indicated that for the case of high
thermal transmittance values (NBE-79), in both CZ, the most optimal solution would be to
paint the roof in white (cool roofs). Currently, the cost of applying thermochromic paint
cannot compete with conventional.

In summary, it was concluded that an interesting area for the application of ther-
mochromic materials could be for energy deep renovation, due to energy savings in
buildings with higher thermal transmittance and for its fast and easy application. Al-
though currently, the economic returns would not be amortized until after a long when
thermochromic was applied, it is considered that this technology should be invested in to
reduce the economic costs of production, since it is a good method to reduce the energy
demand of buildings and, therefore, to contribute to the mitigation of climate change.
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