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ABSTRACT Community Microgrid offers effective energy harvesting from distributed energy resources
and efficient energy consumption by employing an energy management system (EMS). Therefore, the
collaborative microgrids are essentially required to apply an EMS, underlying an operative control strategy
in order to provide an efficient system. An EMS is apt to optimize the operation of microgrids from
several points of view. Optimal production planning, optimal demand-side management, fuel and emission
constraints, the revenue of trading spinning and non-spinning reserve capacity can effectively be managed
by EMS. Consequently, the importance of optimization is explicit in microgrid applications. In this paper,
the most common control strategies in the microgrid community with potential pros and cons are analyzed.
Moreover, a comprehensive review of single objective and multi-objective optimization methods is per-
formed by considering the practical and technical constraints, uncertainty, and intermittency of renewable
energies sources. The Pareto-optimal solution as the most popular multi-objective optimization approach
is investigated for the advanced optimization algorithms. Eventually, feature selection and neural network-
based clustering algorithms in order to analyze the Pareto-optimal set are introduced.

INDEX TERMS Control strategy, energy management, microgrid community, multi-objective optimization,
optimization methods, Pareto solution.

NOMENCLATURE

ACO Ant Colony Optimization.
AI Artificial Intelligence.
ANN Artificial Neural Network.
ARIMA Auto-regressive Integrated Moving Average.
ARIMAX Autoregressive Integrated Moving Average

with Explanatory Variable.
BE Bee Algorithm.
BF Bacterial Foraging.
CARIMA Cross Correlation ARIMA.
CMPC Centralized Model Predictive Control.
COE Cost of Electricity.
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DE Differential Evolution.
DER Distributed Energy Resource.
DG Diesel Generator.
DMPC Decentralized Model Predictive Control.
DRM Demand Response Management.
EMS Energy Management System.
ESS Energy Storage System.
FC Fuel Cell.
FCM Fuzzy C-means.
FEMS Fuzzy logic based EMS.
GA Genetic Algorithm.
GPC Generalized Predictive Control.
IPM Interior Point Method.
KM K-means.
LP Linear Programming.
LPSP Loss of Power Supply Probability.
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MAS Multi-agent System.
MCDA Multi-Criteria Decision Analysis.
MCS Monte-Carlo Simulation.
MF Membership Function.
MG Microgrid.
MGC Microgrids Community.
MILP Mixed Integer Linear Programming.
MINLP Mixed Integer Non-linear Programming.
MLP Multilayer perceptron.
MOEA/D Multi-Objective Evolutionary Algorithm

based on Decomposition.
MOPSO Multi-Objective Particle Swarm

Optimization.
MPC Model Predictive Control.
NLP Non-linear Programming.
NSGA Non-dominated Sorting Genetic Algorithm.
O&M Operation and Maintenance.
P2P Peer-to-Peer.
PCC Point of Common Coupling.
PE Partial Equilibrium.
PEM Point Estimation Method.
PESA Pareto Envelope based Selection Algorithm.
PF Power Factor.
PSO Particle Swarm Optimization.
PV Photovoltaic.
RBF Radial Basis Function.
RE Renewable Energy.
RES Renewable Energy Sources.
SG Synchronous Generators
SOC State of Charge.
SOM Self-organized Map.
SPEA Strength Pareto Evolutionary Algorithm.
SVM Support Vector Machine.
VEGA Vector Evaluated GA.
VMG Virtual MG.
WT Wind Turbine.

I. INTRODUCTION
As a response to rapid energy consumption in recent years,
microgrids (MGs) appear as an alternative solution in order to
reduce the adverse effect of using fossil fuels in conventional
power plants and their adverse consequences on the envi-
ronment. The significant advances in the power electronics
interfaces in MG applications led to integrating renewable
energies (REs) such as PV, WT, and FC into MGs [1]–[3].
Therefore, MGs develop great changes in the paradigm
of conventional power systems. The unilateral power flow
between power plants and consumers has changed to the
reciprocal power flow between the power system and
MGs [4], [5].

Harvesting energy from renewable energy sources (RES)
brings out multiple difficulties associated with the opera-
tion and reliability of MGs. Uncertainty and the intermit-
tent nature of REs disrupt the conventional methods for
planning the MGs operation. The investigation to suppress

the difficulties has commenced from the first moments
of MG’s emergence. Utilizing an energy storage sys-
tem (ESS) can effectively improve employing REs due to the
controllability of energy storage units such as batteries and
fuel cells (FC). The controllable energy generator units such
as capacity storage and backup units like diesel generators
(DGs) efficiently can maintain the balance between electric-
ity supply and demand in MGs integrated with REs [6], [7].

MGs clustering is an advanced concept to take advantage
of the cooperative operation of adjacent MGs. The possi-
bility of mutual power-sharing among a community micro-
grid provides a number of interests for MGs. Increasing
the penetration ratio of REs into the MGs and distribution
network, achievingMGs’ reliable and efficient operation, and
providing backup power to prioritized critical loads are some
features that can offer by the microgrid community (MGC)
concept [8]–[10]. Moreover, MGC can provide certain profits
from the distribution network and utility grid perspective.
Providing convenient replication and scaling across any dis-
tribution network and surrounding the distribution and sub-
station area to provide reliable service for customers are the
benefits can gain by MGC [11].

In order to achieve the expected goals, which are conceiv-
able by MG and MGC concept, applying an energy manage-
ment system (EMS) is inevitable [12]. EMS has to ensure the
optimal and economical operation of MGs according to the
defined MGs plan and schedule. The planning process must
be addressed to economic feasibility regarding the geograph-
ical conditions, allocated area, and the existence of energy
resources (PV, WT, DG, and ESS) [13], [14]. On the other
hand, scheduling concentrates more on the available energy
resources in order to minimize operational costs [15].

The EMS has to solve the optimization problem consider-
ing the short-term and long-term attributes in planning and
scheduling program. From a short-term perspective avoid-
ing mismatch in power demand and supply is the primary
purpose. In grid-connected operation mode, the active and
reactive power has to be controlled in order to balance the
demand and supply, and voltage and frequency are deter-
mined by the main grid. However, in stand-alone operation
mode, voltage and frequency also have to be controlled as
well as active and reactive power to stabilize the system.
Therefore, the control strategy in stand-alone operation is
more intricate [16]. From a long-term perspective, economic
issues play a more prominent role [17].

The optimization problem ascertains the optimal solu-
tions for specific decision variables in EMS considering the
practical and technical constraints, uncertainties, goals, and
alternatives. Moreover, solving the optimization problemwill
be the more involved procedure by taking network communi-
cation delays into consideration [18], [19]. A wide variety of
optimization methods could be exploited for EMS. However,
using an appropriate method in order to fulfill the require-
ments is a challenging issue.

Various researches have been carried out associ-
ated with MG and MGC application in respect of the
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MGC architecture [20], control strategies [21], computa-
tional optimization [22], and communication strategies [23].
A comprehensive review of MG and virtual power plant
concepts was conducted in [24], and scheduling problems
associated with the formulation and objective functions,
solving methods, uncertainty, reliability, reactive power, and
demand response are studied. Samir et al. in [25] conducted
a review on hybrid renewable MG optimization techniques
considering the probabilistic, deterministic, iterative, and
artificial intelligence (AI) methods. A survey on significant
benefits and challenges related to the MGC operation and
control is presented in [8]. Carlos et al. reviewed the computa-
tional techniques applied to MG planning in [26]. Distributed
communication network characteristics, classification of dis-
tributed control strategies, and communication reliability
issues are discussed in [27]. A comprehensive study on the
classification of optimized controller approaches concerning
the RES integration into MGs and analyzing advanced and
conventional optimization algorithms in MG applications is
performed by M. A. Hannan et al. in [28].
According to the previous academic literature, with respect

to the control strategies and EMS framework, the optimiza-
tion technique and computational approaches play an impor-
tant role in the efficient and reliable operation of MGs and
MGC. Optimization problems cover a wide variety of meth-
ods and techniques in mathematics. In recent years, advanced
algorithms have been applied to MGs optimization problems
to gain the exquisite feathers of these algorithms. Evolu-
tionary and co-evolutionary optimization methods are smart,
reliable, accurate, and problem-independent approaches fre-
quently apply in MG and MGC applications [29]. However,
in most academic papers brief explanation of the applicable
method is provided, and in some cases, essential information
is skipped. This article focuses on the most practical and
advanced algorithms applied in previous studies or are prone
to exploit in future researches. The main contributions of the
paper can be highlighted as:

- The comparison of the most practical control strate-
gies in MGC and the inverter operation of the control
schemes,

- Surveying the possible scheduling and planning prob-
lems in MGC,

- Studying applicable optimization methods in MG and
MGC considering the planning problems.

- Overview of the advanced optimization algorithms in
order to optimize the MG and MGC operation.

In this paper, the control strategies in MGC are reviewed,
and the inverter control schemes are investigated in section II
by considering the most well-known control strategies. Then,
the planning and scheduling programs in theMGs application
are discussed in order to define the proper optimization prob-
lem. Section IV introduces the classification of optimization
methods and analyzes the most relevant algorithms in the
MG application. Single-objective and multi-objective opti-
mization algorithms are expressed. Section V is dedicated
to investigating the artificial intelligence (AI) application

on feather selection and clustering analysis. Eventually,
section VI is expanded to conclude the paper.

II. CONTROL STRATEGIES
Stability and efficiency are twomain requirements in the con-
trol strategies, which are basically related to the dynamic of
the systems. In conventional power systems, the synchronous
generators (SGs) are the most crucial part of the system
from the aspect of system stability [30]. Rotor angle, voltage,
and frequency stability in conventional power systems are
three main stabilities to maintain the regular operation of
the system facing potential disturbances [31]. Identically, the
inverters in MGs are the most significant part of keeping
the system stable in transients. Compared with conventional
power systems with inherent large inertia of SGs, especially
in high power scale, the fast response and low overcurrent
capacity of inverters resulted in significant changes in opera-
tion, control, and protection of MGs [32], [33].

The control of individual MG is studied in multiple
manuscripts. Among various proposed control approaches
such as predictive control, intelligence control, the perfor-
mance of slidingmode control, andH∞ control provingmore
robust operation [34]. However, MGC control has received
more attention recently due to increasing interest in the MGC
concept. According to the researches, the MGC control strat-
egy can be categorized as master-slave [35]–[37], peer-to-
peer (P2P) [38]–[40], and hierarchical control [41]–[43].

In master-slave control, the master converter in voltage
source mode is responsible for controlling the DC bus volt-
age, and slave converters in current source mode share the
current according to the total load current [44]. Fig. 1 demon-
strates the master-slave control strategy. The V/f controller in
Fig. 1 is applied when the MG is in islanded operation mode,
and the P/Q controller is for grid-connected mode. Droop
control and V/f control are two voltage control strategies for
master converter [45]. Different droop control methods with
their potential advantages and disadvantages are discussed
in [46]–[48]. The V/f control method, in comparison with
droop control, suffers from a slow dynamic response [45].
The main disadvantage of master-slave control is the reliabil-
ity dependency of the whole system to the master converter
and consequently interruption of the whole system in case of
master converter failure [35].

Unlike master-slave control, the P2P control strategy does
not hire a hierarchy or central controller. The P2P control
method is based on a computer network with a certain num-
ber of agents. Fig. 2 shows the control structure controlled
by the P2P strategy. In [49], the unstructured centralized,
unstructured decentralized, hybrid, and structured decentral-
ized models of P2P architecture are discussed. Droop control
is adopted in the voltage control scheme when the MGs are
dominated by the P2P paradigm [45]. Several papers based
on distributed control methods are performed to improve the
performance and reliability of P2P control. In [50], a dis-
tributed gossip-based voltage control algorithm for P2P MGs
is proposed to keep all control local and improve reliability
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FIGURE 1. Master-slave control structure.

FIGURE 2. P2P control structure.

by eliminating any single point of failure. Moreover, a fully
distributed P2P control scheme employing the broadcast gos-
sip communication protocol is proposed for voltage regula-
tion and reactive power sharing of multiple inverter-based
DERs [51]. As it can be seen from Fig. 1, due to the existence
of an integrator in the PI controller, the seamless transfer
between grid-connected and islanding operation mode is
under-effect. Therefore, the master-slave control is typically
used in the islanded state, and the P2P control scheme is
mainly used in the grid-connected operation mode. Multiple
studies in order to improve the performance of master-slave
control are done. In [44], by considering the advantages of
P2P control, an improved control strategy based on I-1V
droop is applied to master-slave control to control the smooth

transition between two operation modes ofMG. An improved
V/f control strategy consists of feed-forward compensation,
and robust feedback control is proposed in [45] to suppress
the slow dynamic response of the V/f controller. In addition,
a simple mixed droop-V/F control strategy for the master
inverter is proposed in [52] to achieve seamless mode transfer
in MG operation modes.

The hierarchical control strategy is the most adopted con-
trol structure due to providing seamless operation in tran-
sient between islanded and grid-connected modes. The hier-
archical structure consists of primary, secondary, and tertiary
control levels to manipulate the static and dynamic stabil-
ity of MGs. Fig. 3 shows an overview of the incorporation
of hierarchical control in a grid-connected individual MG.
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FIGURE 3. Hierarchical control structure.

The primary control is in charge of voltage and frequency
stability by regulating the active and reactive power. The
deviation of output voltage and frequency in primary control
compensates in secondary control. Eventually, the optimum
power flow between the MGs and the utility grid is under
control at the tertiary control level [53], [54].

The secondary control level in hierarchical control could
hire centralized, decentralized, hybrid, and distributed con-
troller architecture based on the communication topolo-
gies [55]. In the centralized framework, the central controller
has to handle large amounts of data from other MGs to ana-
lyze the optimum operation of the whole system [56]. Time-
consuming data analysis, complex communication network,
and low reliability of system operation by a single-point
failure in communication are some important drawbacks that
make the centralized approach appropriate only for small-
scale MGC. On the other hand, the decentralized approach
is proposed to optimize the individual MG operation with

no dependency on other adjacent MGs [57]. Although in
this approach, the optimization calculations reduce signifi-
cantly, independent optimization of units cannot guarantee
the optimum status of the whole system. In order to take
advantage of the centralized and decentralized approaches,
the hybrid method is introduced. Nevertheless, the drawbacks
mentioned for the centralized framework is still persisted
in the hybrid approach [58]. In recent years, the distributed
control has drawn attention as a control scheme in MGC
to tackle problems related to centralized and decentralized
frameworks. In the distributed scheme, the computing burden
is reduced significantly by sharing key information among
MGs [59], making this control scheme appropriate for large-
scale MGC.

Model predictive control (MPC) can effectively apply
to the hierarchical architecture to handle the stochastic
nature of REs and variable power demand based on the
prediction [60]–[64]. In [60], [61], an overview of MPC in
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TABLE 1. Control strategies in MGC application. TABLE 1. (Continued.) Control strategies in MGC application.
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TABLE 1. (Continued.) Control strategies in MGC application.

individual MGs and MGC corresponding to three levels of
hierarchical strategy for converter-level and grid-level con-
trol is presented. MPC ordinarily is based on the system’s
future behavior and can make the system more robust against
uncertainties by the feedback mechanism. Centralized MPC
(CMPC) requires complete information and an accurate cen-
tralizedmethod. On the other hand, distributedMPC (DMPC)
is proposed in order to reduce the data evaluation by sharing
essential global information. In [65], a DMPC is applied
to MGC to optimally coordinate the energy among MGs
and DERs. The main contribution of this article is intro-
ducing a virtual two-level MGC, which DERs consider a
virtual MG (VMG) with the possibility of power exchange
with the main grid, and other MGs are virtually located in
the lower level communicate with VMG. In this case, the
MGs cannot directly exchange power with the utility grid;
therefore, the decision variables are reduced, and computing
speed increases.

The multi-agent system (MAS) is another control scheme
that effectively can adopt the hierarchical structure in order
to enhance the voltage and frequency reliability, intelligence,
scalability, redundancy, and economy in MGC. The main
idea of MAS-based distributed control is dividing the com-
plex and large-scale system into several subsystems with the
possibility of mutual interaction. In [32], a comprehensive
overview of MAS-based distributed coordination control and
optimization in MG and MGC is surveyed. In addition, the
control strategies inMAS, topologymodel, andmathematical
model are discussed, and the pros and cons of these methods
are compared.

The optimal configuration and control strategy in the MAS
control approach requires a proper model. In recent pub-
lications, the graph model as a topology model and the
non-cooperative game model, GA, and PSO algorithm as
mathematical models are overviewed in [32]. The graph

model is widely adopted in MAS due to its simple model
structure and high redundancy. However, the system robust-
ness is significantly affected by the graph [66]. Non coopera-
tive and cooperative game theory approaches can also exploit
in MGC optimization. Nash equilibrium in non-cooperative
game theory is used as a stable strategy solution [67]. In [68],
the game model analyzes the interactions between the agents
and their actions to enhance the economic interest between
MG and the utility grid by considering the uncertainty of RE
power generations. The comparison of the non-cooperative
and cooperative game model results in decreasing the total
configuration capacities by 10% in a cooperative game.
Despite non-cooperative games, players or agents in cooper-
ative games are able to coordinate with each other to increase
their profit from the game by constructing alliances among
themselves [69]. In [70], cooperative game theory applica-
tions such as cost and benefit allocation, transmission pricing,
projects ranking, and allocation of power losses in power
systems are overviewed.

In Table 1, an overview of the different control strategies
in MGC applications is listed.

III. MICROGRID PLANNING
Planning and scheduling problems arise for economic pur-
poses. Therefore, MG planning is no exception to this prin-
ciple. The main goal in MG planning is to minimize the
system’s operation cost considering the practical and techni-
cal constraints. Practical constraints refer to some obligatory
limitations with no alternatives. For example, the location
and area of the construction site may not be debatable.
In addition, the maximum solar irradiance and wind speed
restrict the maximum harvesting energy from PV and WT.
On the contrary, technical constraints are related to the incen-
tive or punitive policies regarding the environmental impact,
power quality, and reliability. Consequently, MG planning
and scheduling can infer as an optimization problem subject
to the corresponding constraints. In [26], the MG planning
problem is examined firstly for possible configuration of
different power generation types to meet the objectives such
as cost-effectiveness, environmental concerns, and reliability.
Secondly, the siting problem is discussed as a strategic level
problem for the actual and potential customers. Eventually,
scheduling as a tactical level problem is considered to mini-
mize the operational costs according to the available energy
sources. In [24], scheduling problem from various points of
view is discussed. Fig. 4 depicts the correlation of explained
scheduling problem in [24] and the MG planning problem
defined in [26].

The optimization problem is referred to as the minimiza-
tion and maximization problem. In an optimization problem,
costs tend to be minimized, and profits tend to be maximized.
Fig. 5 represents a general categorization of optimization in
MGs and MGC. As it can be seen from Fig. 5, most of the
literature researches are related to the minimization problem
by introducing a cost function. In [71], [72], the cost function
is defined in order to minimize fuel cost. The operation cost
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FIGURE 4. Planning and scheduling program in MGs.

FIGURE 5. Cost and profit functions in MGs.

is the primary concern of MGs in order to reduce the capital
cost [73]–[75], replacement cost [76], [77], and operation and
maintenance (O&M) cost [78], [79].

Moreover, capital cost as a strategic planning program
in association with the size and the efficient combination
of the generation units is one of the important optimiza-
tion problems related to the component size [80]. Reserve
power is another important topic, especially in islandedMGs,
to optimize the time-of-use of stored energy in ESS [81].
In [82], [83], the spinning and non-spinning reserves are the
main objective function to be minimized. In [84], an algo-
rithm is proposed to minimize the unmet load and conse-
quently reduce the load shedding. Eventually, the cost of
expected interruption and lost opportunity is considered a
cost function in [85] to increase the system’s reliability.
On the other hand, the maximization problems are mostly
related to maximizing the revenue from selling the spinning
or non-spinning reserve power [86] or from a bilateral power
exchange between MGs and the main grid [87]. Due to cost
and profit functions similarity among articles, the most dom-
inant objectives are mentioned in this section. A comprehen-
sive study on cost and profit functions is surveyed in [88].

In addition, in recent years, several commercial software
have been emerged in order to evaluate the MG’s plan-
ning. HOMER, RETScreen, H2RES, DER-CAM, MDT, and
MARKAL/TIMES are the most well-kwon software used

in MG application. The scheduling program related to the
RE accessibility, uncertainty, and technical limitation are
considered and the optimal planning will be evaluated [27].
In Table 2, the capabilities and characteristics of the most
well-known software in this field are compared.

IV. OPTIMIZATION TECHNIQUES FOR MICROGRIDS
According to the planning and scheduling problem, MG and
MGC optimize operation is subjected to specify an objective
function optimization problem. Optimization problems are
widely used in computer science, economics, and engineering
in order to find the minimum ormaximum value among feasi-
ble solutions. Over the years, enormous optimizationmethods
depending on the problem have been introduced. However,
the most practical optimization methods regarding the MGs
application are analyzed in this article. Linear programming
(LP), non-linear programming (NLP), mixed-integer linear
programming (MILP), mixed-integer non-linear program-
ming (MINLP), quadratic programming, and linear least-
square programming are the most popular optimization prob-
lem according to the features that can be extracted from
MGs application. To obtain the optimal solution of these
programming, various commercial modeling platforms such
as GAMS [89], AMPL [90], and AIMMS [91] have been
nominated in recent years. These modeling platforms are
armed with deterministic solvers such as IPOPT, CPLEX,
SCIP, BARON, CONOPT, etc. [92]. MATLAB and Python
environments also provide modeling platforms for some
specific optimization problems, but this software provides
the possibility of implementing optimization algorithms by
programming.

Principally, optimization problems can be classified as
unconstraint single-objective, constraint single-objective,
unconstraint multi-objective, constraint multi-objective opti-
mization. Fig. 6 shows these classifications. The planning
and scheduling program inherently imposes constraints to the
problem; hence the unconstraint single-objective optimiza-
tion is not a practical problem in MGs optimization.

Accordingly, except for the unconstraint single-objective
optimization, the other optimization methods can be con-
verted to each other, i.e., there is the possibility of reducing
the constraints space and add to the objective space and
vice versa. The usual constraint optimization approaches in
MGs application are investigated in this article. Fig. 7 shows
the general classification of constraints problem approaches.
As shown in Fig. 7, the constraint problems considering
the scheduling programming in MG applications can be
discussed in two distinct procedures: the probabilistic or
stochastic problems or the deterministic or robust prob-
lem [24], [25], [93].

A. PROBABILISTIC METHODS
The probabilistic procedure could be applicable in systems
with uncertainties. Principally, the uncertainties in power
systems and MGs can be considered uncertainties regard-
ing future conditions and uncertainties in computational
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TABLE 2. Commercial software for MG’s planning.

FIGURE 6. Optimization problem classification.

FIGURE 7. Constraint optimization classification.

modeling [94], [95]. Therefore, forecasting methods such
as generalized predictive control (GPC) in model predictive
control (MPC) like ARIMA, CARIMA, and ARIMAX can
play an important role in diminishing the uncertainties related
to wind speed, solar irradiance, load, and price forecasting.
In addition, the more precise models of MG components,
the more accurate estimation will be possible. Point esti-
matedmethod (PEM) andMonte-Carlo simulation (MCS) are
two statistical methods facing probabilistic problems, Fig 7.
Nevertheless, linear discriminant and linear regressions are
based on linearization and approximation methods. In [96],
the PEM is applied for modeling the wind and solar power
uncertainties, and a robust optimization technique is utilized
to optimize an individual MG. Conventional MCS is an
accurate method but time-consuming approach for uncer-
tainty modeling. In [97], a new approach based on MCS
with high precision and lower calculation time is proposed
to optimize the investment and reliability of an islanded MG.
The linearization and approximation methods are primarily
used to discriminate or categorize the objectives to investi-
gate linear combinations of variables that best explain the
data [98], [99].

B. DETERMINISTIC METHODS
Deterministic methods are divided into classical methods and
heuristic methods, Fig. 7. The classical methods are able to

find the optimum solutions by means of analytical methods.
Although these methods can guarantee the optimal solution,
for large-scale and complex problems largely are not able to
find the feasible solution (problem-dependent). Regardless
of the single variable or multivariable functions in classical
methods, equality and inequality constraint problems can be
handled effectively considering the objective functions. For
equality constraints problem the Lagrange multiplier meth-
ods, and for inequality constraints, the Kuhn-Tucker condi-
tions can be used to identify the optimum solution [100].
Furthermore, classical methods suffer from the initial point
dependency, whichmakes divergence in case of inappropriate
initial point selection.

On the other hand, the heuristic and meta-heuristic meth-
ods are faster methods, specifically in complicated large-
scale problems. The performance of these methods is
to explore the search space to find the optimum solu-
tion. Therefore, these methods cannot guarantee the exact
optimum solution [101]. Unlike heuristic methods, the
meta-heuristic approaches are not problem-dependent [102].
Meta-heuristics methods incorporate strategies and mecha-
nisms to guide the search process and, most importantly,
avoid getting trapped in confined areas of the search space.
Considering the complexity of the problem, evolutionary or
co-evolutionary approaches can be applied for optimization
purposes.

The main idea to use evolutionary methods is achieving
the best performance with minimum information about the
problem. The evolutionary approaches can be distinguished
into two classes, evolutionary algorithms and swarm intel-
ligence. The main difference of these classes refers to the
exploited algorithm in order to evolve a set point among
the populations of search space [103]. The GA and DE are
the most famous population-based meta-heuristic algorithm
that the optimization procedure is based on an evolutionary
process. The PSO, ACO, BE, and BF are the most famous
swarm intelligence optimization methods based on a collab-
orative study of individuals’ behavior and interactions with
one another.

There are a multiplicity of classic methods that can be
studied in various papers and book chapters. Therefore,
in this paper, the heuristic and meta-heuristic methods only
are investigated specifically for multi-objective optimization
problems. The problems are defined in minimization for-
mat, but the same procedure can be applied in maximization
problems.
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TABLE 3. Violation and optimization problem.

C. EVOLUTIONARY APPROACHES
1) PENALTY FUNCTION
In the penalty function method, the constraints of the prob-
lem aggregate to the objective function by considering a
penalty factor. In fact, a constraints optimization problem
converts to the unconstraint multi-objective problem in the
penalty function method. In following this procedure is
expressed [107]:

min f(x) x ∈ X (1)

Subject to: gi(x) ≤ g0 i = 1, 2, . . . ,N (2)

In this method, the constraints gi(x) replace by the viola-
tion function, and the unconstrained minimization problem is
defined as:

min f̂(x) = f(x)−
N∑
i=1

λi ν(x) x ∈ X (3)

where x is the state variable, and λi is the co-state. The λi
variables can be extracted from an ancillary optimization
procedure to enhance the performance of the optimization.
However, a constant value for λi mostly results in a satisfac-
tory achievement. The violation for inequality and equality
constraints is defined in Table 1. In addition, the violation
can be adopted to the primal problem f(x) in the form of
additive, multiplicative, and hybrid (additive-multiplicative
or vice versa) [108]. These dual problems f̂ (x) are described
in Table 3.

The barrier function method, also known as the inte-
rior point method (IPM), is one of the approaches in con-
strained optimization problems that can effectively apply to
the penalty function method [109]. In barrier methods, a very
high cost impose on feasible points that lie so close to the
boundary of the feasible solution region. A barrier function
can hire continuous functions. However, the two most com-
mon barrier functions are logarithmic barrier function and
inverse barrier function, which are described below:

ψ(x) = −
N∑
i=1

log(−νi(x)) x ∈ X (4)

ψ(x) = −
N∑
i=1

1
νi(x)

x ∈ X (5)

In (4), (5), the barrier function ψ(x)→ ∞, if νi(x)→ 0 for
any i. In [65], the logarithmic barrier function is used to solve
the distributed MPC problem with constraints.

2) FEASIBILITY METHOD
In the feasibility method, the response is endeavored to retain
in an acceptable restriction area. This method is more appli-
cable for the problem with equality constraints, although
inequality constraints are also practical. Mathematically the
feasibility method can be express as:

Suppose x ∈ X is existed such that:

gi(x) < 0 i = 1, 2, . . . ,N (6)

Ax = B (7)

Thus, the feasible solution can be found by solving:

min
x,f

{
f
∣∣gi(x) ≤ f

}
x ∈ X, i = 1, . . . ,N, (8)

subject to: Ax = B (9)

In this method, the best solution is discovered among the fea-
sible solutions. However, in some problems determining the
feasible area is complicated. It is worth mentioning that the
barrier function also can be applied to this method. In [110],
to enhance the MG system performance, a feasible range
to obtain the optimal value of the virtual impedance of the
droop-based control is determined.

3) MULTI-OBJECTIVE OPTIMIZATION METHODS
As mentioned previously, one of the approaches to deal-
ing with constraints optimization problems is reducing con-
straints space and augmenting constraints to the objective
space. Treating constraints as objectives make the cognition
of multi-objective optimization methods essential. In this
section, the most important multi-objective optimization
methods are studied.

Instead of concentrating on a single goal, the optimization
algorithms in multi-objective problems take several goals
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FIGURE 8. Sample pareto-front for two objective functions.

FIGURE 9. Multi-objective optimization methods.

under evaluation simultaneously. Multi-objective optimiza-
tion proposes a set of optimized solutions as Pareto-optimal
solutions. Fig. 8 shows a sample Pareto-front with two objec-
tive functions. To produce the Pareto-optimal frontier, the
non-dominated solutions are evaluated by the dominance
concept [111]. In (10) dominance concept is stated:

x dom y⇔

{
∀i : xi ≤ yi
∃i0 : xi0 < yi0

(10)

The relations in (10) state that x dominates y if solu-
tion x is no worse than y in all objectives, and solution x is
strictly better than y in at least one objective. Fig. 8 shows
a two-objective problem, the solid points represent the non-
dominated solutions, and the hollow ones are the dominated
solutions. The Pareto solution proposes a variety of optimum
solutions. Therefore, to select a proper solution, the solutions
have to be evaluated by considering the constraints. In the
constraints problems, the limits of the constraints can be
exploited to specify the best optimal value. For instance,
as can be seen in Fig. 8, the closest solid point to the line
g(x) = g0 is the best acceptable solution to fulfill the con-
straint g(x) < g0. Furthermore, the feature selection methods
and clustering analysis can also be applied to determine the
best solution in the Pareto-optimal solutions set.

Figure 9 demonstrates the general classification of multi-
objective optimization methods. In decomposing approaches,
the multi-objective problem converts to a single objec-
tive problem. Weighted sum, weighted metric sum, and
ε-constraint are some decomposition approaches widely used

in multi-objective optimizations and constraints problems.
The main disadvantage of decomposition approaches is that
the Pareto-front set will find after multiple iterations. On the
other hand, direct solutions utilize a more complicated algo-
rithm to find the Pareto-optimal solutions in only one single
run considering all objective functions.

a: DECOMPOSITION APPROACHES
i) WEIGHTED SUM

This method is widely used in multi-optimization prob-
lems due to its simplicity and usability in convex objective
functions. In the weighted sum method, a set of objec-
tive functions are scalarized into a single objective function
considering different pre-multiplier weights for each objec-
tive function. Mathematically, the weighted sum method is
expressed as [112]:

min fWS(x) =
N∑
i=1

Wifi(x) x ∈ X, i ∈ {1, 2, . . . ,N}

(11)

Subject to : gi(x) ≤ g0 (12)

where the weights Wi determine the relative importance of
the objective functions, f(x) is the objective function, and
N is the number of objective functions. There are two main
disadvantages to using this method. Determine a weight vec-
tor set to obtain the Pareto-optimal solution in the desired
region in the objective space is complex. Also, this method
is not able to detect the Pareto-optimal solution for the
non-convex part of the objective space. In the case of fac-
ing non-convex cost function in the MG application, the
linearization methods can be used to obtain an approxi-
mate convex cost function. According to the constraints in
(12), the best solution among the Pareto-optimal set can be
determined. However, as discussed for the penalty function
method, by considering the violation, the constraints can also
integrate with the objective function:

min
{
fWS(x)|gi(x) ≤ g0

}
⇒ min fWS(x)+

1
n

n∑
i=1

ψ(νi(x))

(13)

In [99], an incentive-based demand response program is
implemented to achieve the optimal economic status. The
multi-objective problem in this article involves maximiz-
ing the MGs’ demand response program profit, minimizing
the generator cost and trading cost. To produce the Pareto-
optimal solutions, the weighted sum technique is applied in
this paper. In [113]–[116], also weighted sum method is used
for multi-objective optimization.

ii) WEIGHTED METRIC METHOD
This method combines multiple objective functions to min-
imize the distance metric between all solutions and an
ideal solution T0. In (14), the formulation of this method
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is expressed:

min fGP(x) =
N∑
i=1

(
Wi ‖fi(x)− T0i‖P,W

) 1
P

x ∈ X, i ∈ {1, 2, . . . ,N} (14)

Subject to: gi(x) ≤ g0 (15)

where Wi can effectively utilize to normalized the distance
between objective functions and the target T0 that this dis-
tance calculation method is dependent on P. If P is equal to 1,
the distance calculates by city block distance norm, and if P is
equal to 2, the distance calculates by Euclidean norm [117].
In these cases (P = 1 or 2), the weighted metric method is
known as goal programming. In addition, if P tends to infin-
ity, the distance is considered the maximum distance between
objective functions and T0, which this method is known as
goal attainment or the Tchebycheff method [118]. Compared
with the weighted sum technique, the main advantage of
this method is producing the whole Pareto-optimal solution,
either convex or non-convex problem, by ideal solution T0.
However, knowledge about minimum or maximum objective
values is required to choose a proper ideal solution T0.
In [119], a multi-objective optimization problem in order

to maximize the investor’s profit and MG operational cost
considering the optimal storage power rating, energy capac-
ity, and the year of installation is solved using a goal pro-
gramming approach. Also, goal programming is applied
in [120] to minimize the emission, storage operating, and
startup/shutdown cost of DG units and maximize their effi-
ciency. In [121], a multi-criteria decision analysis (MCDA)
uses goal attainment programming to solve the multi-
objective dispatch function for scheduling the dispatch in
MGs. Goal programming and goal attainment are used in
many articles for the purpose of optimization [122]–[125].

iii) ε-CONSTRAINT
In this method, unlike the two previous methods, only one
objective function keeps the main objective, and the rest of
the objective functions are considered the constraints [126].
This method is expressed mathematically in (16):

min fM(x) x ∈ X (16)

Subject to: fi(x) ≤ εi i = 1, 2, . . . ,N (N 6= M) (17)

where fM(x) is the main objective function, and the other
objective functions fi(x) are considered constraints restricted
to εi. This method is also able to find all Pareto-optimal
solutions for either convex or non-convex objective functions.
However, the main disadvantage of this method is that the ε
vector has to be chosen precisely considering the minimum
and maximum values of the individual objective functions.
In [127], an augmented ε-constraint method is implemented
to solve the multi-objective optimization problem in order
to achieve economic optimization and peak-load reduction
of the combined cooling heating and power (CCHP) MGs
model. In [128], an optimal energy management technique

using the ε-constraint method for grid-tied and stand-alone
battery-based MGs is studied. The ε-constraint method is
applied in further researches [129]–[133] as an optimization
technique.

b: DIRECT APPROACH
The main difference between single-objective optimization
algorithms like GA, PSO, DE, and multi-objective optimiza-
tion algorithms like NSGA-II, MOPSO, PESA-II, SPEA-II,
and MOEA/D is referred to the population sorting algorithm.

The non-dominated sorting genetic algorithm (NSGA)
[134] is one of the first multi-optimization methods which
produce a set of Pareto-optimal solutions in a single
run. However, the high computational complexity of non-
dominated sorting, lack of elitism, and need for specifying the
sharing parameter led to proposing the modified version of
thismethod asNSGA-II [135]. In this algorithm, in the initial-
ization phase, the main population P(t = 0) is produced. The
population P(t) merges with offspring population Q(t) and
mutation population R(t) in each iteration. Then, the merged
population is sorted considering the rank and crowded dis-
tance of individuals to determine the non-dominated solu-
tion. NSGA-II is utilized in MG applications for different
purposes. In [136], NSGA-II is used in order to establish a
smart networked MG with the lowest operating cost and the
most negligible pollutant emission. In [137], the membership
functions (MFs) of a fuzzy logic-based energy management
system (FEMS) are optimized by the NSGA-II algorithm.
The proposed FEMS is responsible for reducing the average
peak load and operating cost. Moreover, in [138], NSGA-
II is applied to the controller of the inverters of distributed
generators with inner and outer control loops to seamless
transition operation between grid-connected and islanding
mode. In [139]–[142] the more applications of NSGA-II are
presented.

The Strength Pareto evolutionary algorithm (SPEA-II) is
proposed by Zitzler and Thiele as an efficient algorithm
to face multi-objective optimization. The second version
of SPEA could eliminate the potential weaknesses of the
first edition by improving the fitness assignment scheme,
more accurate guidance of the search process by incor-
porating a nearest neighbor density estimation technique,
and preserving boundary solutions by a new archive trun-
cation method [143]. This algorithm presents an acceptable
performance in terms of convergence and diversity by
introducing the concept of strength for non-domination solu-
tions. SPEA-II is applied in multiple studies in MG appli-
cation [144]–[146]. In [147], SPEA-II is used in demand
response management (DRM) to meet the peak load demand
and decreasing customer expenditure. In [148], a multi-level
algorithm is proposed to optimize the revenue and expense
while preserving the quality of service (QoS) of the data cen-
ter and power network stability. The proposed algorithm uses
SPEA-II for the multi-objective constrained optimization
problem. Amulti-objective algorithm based on the Six Sigma
approach is proposed in [149] to solve the sizing problem
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of the hybrid MG system consists of multiple resources and
multiple constraints. Among MOPSO, PESA-II, and SPEA-
II, which are applied to the optimization algorithm, the results
show SPEA-II has better performance in this article.

The Pareto envelope-based selection algorithm
(PESA-II) uses the GA mechanism by applying hyper-grids
to make the selections and create the next generation. The
individuals-based selection in the first edition of PESA is
replaced by the region-based selection in PESA-II for objec-
tive space [150]. This technique shows more sensitivity to
ensure a good spread of development along the Pareto-front.
In [151], the techno-economic objectives are optimized by the
iterative-PESA-II algorithm to optimally sizing a stand-alone
MG with PV and battery storage resources.

Multiple objective particle swarm optimization (MOPSO)
is also one of the practical algorithms among swarm intel-
ligence methods. MOPSO applied the same technique used
in PESA-II by replacing GA with the PSO algorithm.
In MOPSO, the particles dynamically change their position
according to the velocity vector by considering the individu-
als’ best and global best. In [152], the MOPSO algorithm is
proposed by using an external repository of non-dominated
vectors to guide the other particles in each iteration mean-
while maintaining the diversity. Multiple studies were carried
out by applying MOPSO in order to optimize the multi-
criteria objectives in MGs. In [153], MOPSO is used to
find the best configuration and sizing the components of a
hybrid PV, WT, DG, and battery storage system, consider-
ing a tradeoff between cost and reliability of the system.
In [154], the energy management unit employed the MOPSO
algorithm to ensure the maximum utilization of resources by
maintaining the state of charge (SOC) in batteries to manage
power exchange betweenMGs. In [155], MOPSOmakes able
the proposed EMS to minimize the operation cost of the MG
concerning the renewable penetration, the fluctuation in the
generated power, uncertainty in the power demand, and utility
market price. More uses of MOPSO are investigated in MG
application in various researches [156]–[159].

The multi-objective evolutionary algorithm based on
decomposition (MOEA/D) is one of the algorithms in
multi-objective optimization problems. The main difference
between MOEA/D and the other algorithms discussed for
direct approach solutions is not using the concept of dom-
inance to produce the Pareto-frontier. In this algorithm,
a multi-objective optimization problem decomposed into sev-
eral scalar optimization sub-problems and optimized them
simultaneously. Weighted sum, Tchebycheff, and boundary
intersection (BI) are three approaches discussed in [160]
to decompose a multi-objective optimization. Despite the
weighted sum and weighed metric method discussed in the
previous section, in the MOEA/D algorithm, the Pareto-front
produces in only a single run. Multi-objective optimization
using MOEA/D also draws attention to be used in MG appli-
cations. In [161], the optimal design of a hybrid MG system
consists of PV, WT, DG, and storage devices considering
load uncertainty is analyzed. MOED/D and transforming to

TABLE 4. Optimization in MGC application.

FIGURE 10. Co-evolutionary algorithm.

a single objective function are two optimization methods
applied in this article to optimize the loss of power supply
probability (LPSP) and cost of electricity (COE). In [162],
a three-level hierarchical control architecture is proposed in
order to mitigate the unbalance currents through the MG’s
point of common coupling (PCC) and degradation of power
factor (PF). The MOEA/D in the second level is employed
to maximize the active power injection and minimize the
currents unbalance into the main grid. MOEA/D is widely
used for optimization purposes in distribution networks and
MGs [163]–[166].

Table 4 compares the performance of the direct approach
algorithms discussed in this section.

D. CO-EVOLUTIONARY APPROACHES
In the case of facing an extremely complex problem, the
evolutionary approaches may not be able to attain the
solution with adequate accuracy. Therefore, co-evolutionary
approaches proposed a computational procedure by con-
verting a large problem to smaller ones and do parallel
calculations by applying several optimization algorithms
simultaneously. Fig. 10 illustrates the general performance
of a co-evolutionary approach. As it can be observed from
Fig. 10, a meta-algorithm is in charge of coordinating other
algorithms in order to obtain the optimum solution amongst
the optimum feasible solutions by the sub-algorithms.

Dynamic programming as the most popular
co-evolutionary approach is a promising optimizationmethod
specifically in large-scale MGs and MGC to tackle dimen-
sionality. In [104], [105], a dynamic programming method is
developed to achieve themaximumprofit from energy trading
in a day. Furthermore, in the hybrid meta-heuristic approach,
a heuristic algorithm combines with other optimization meth-
ods in order to exploit the complementary identity of different
optimization methods. Vector evaluated genetic algorithm
(VEGA) provides a robust search technique for a complicated
multi-objective optimization problem. VEGA divides the
population into multiple sub-population, and by considering
Pareto dominance, only in the process of optimization, the
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FIGURE 11. Clustering methods.

individuals evolve toward the single objective. In conse-
quence, the optimal non-dominated solution evaluates by a
non-Pareto optimization algorithm [106]. The same policy
is applied in parallel meta-heuristic approaches by taking
advantage of multiple meta-heuristic algorithms.

In Table 5, an overview of the different optimization meth-
ods in MGC applications is presented.

V. FEATURE SELECTION AND CLUSTERING ALGORITHMS
In multi-objective optimization problems, a wide variety of
optimum solutions are proposed by the algorithm. Therefore,
a supplementary evaluation is typically essential to select
the proper Pareto-front solution. Various methods can be
applied to these problems in order to evaluate the Pareto-
front solutions. The first and preliminary approach that could
be utilized in these problems is exploiting the experience
of the designer. For instance, in [167], a certain amount of
Pareto-front solutions are tabulated for three different cases,
and the results can be evaluated for each solution to select the
final proper solution according to the best operation of the
system. Moreover, the knee point for convex Pareto front is
typically an appropriate solution as a trade-off between two
or several objective extremes. In [78], [129], the knee point is
used as a compromise solution.

A sort of intelligent approach has been introduced in recent
years that can be effectively applied in selecting a proper
solution amongst a set of optimal solutions presented in
Pareto-front. Feature selection and clustering algorithms are
two important approaches in data miming science that can
apply in data analysis related to the Pareto-optimal set.

Artificial intelligence (AI) is a practical tool using in fea-
ture selection and clustering data analysis. Feature selection is
a process of selecting a small subset of essential features from
the data. On the other hand, in clustering analysis, the data
points are assigned to belong to the clusters such that items in
the same cluster are as similar as possible from the aspects of
similarity measurement like distance, connectivity, and inten-
sity. Supervised learning artificial neural networks (ANN)
such as multilayer perceptron (MLP), radial basis function
(RBF), and unsupervised learning ANN like self-organized
map (SOM) and Hopfield neural network are able to apply to
the algorithms in feature selection or clustering applications.
Support vector machines (SVM) are also a kind of neural net-
work that, unlike MLP and RBF, minimizes the operational

TABLE 5. Optimization in MGC application.
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TABLE 5. (Continued.) Optimization in MGC application. TABLE 5. (Continued.) Optimization in MGC application.

risk of classification or modeling instead of minimizing the
error between system and model.

The k-means (KM) problem is also one of the famous
clustering problems that can be solved by the Lloyd algo-
rithm. In the k-means problem, the data partition to K clus-
ter in which each data belongs to the nearest mean of the
partitions [168]. Fuzzy clustering algorithms are another
clustering method such that data points can belong in more
than one cluster. Easier creating the fuzzy boundaries is the
main advantage of this method from the computation point
of view. In [127], a fuzzy clustering method is applied to
the multi-optimization problem to deal with the large scale
of the solution set. It is shown that the selection of the
Pareto optimal set depends on the preference of the decision-
maker. Fuzzy C-means (FCM) clustering is one of the most
popular fuzzy clustering algorithms. FCM is very similar
to the KM algorithm; however, FCM is extremely slower
than KM due to iterative fuzzy calculation [169]. In [170],
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TABLE 6. Feature selection and clustering methods in multi-objective
optimization.

TABLE 6. (Continued.) Feature selection and clustering methods in
multi-objective optimization.

FCM clustering is utilized to reduce the total output scenarios
generated by Latin hypercube sampling (LHS) to analyze
the uncertainty of RE output. Fig 11 represents the different
clustering methods. In Table 6, different methods to find the
best compromise solution in multi-objective optimization for
microgrids applications are reviewed.

VI. CONCLUSION
According to the literature researches, master-slave, peer-
to-peer, and hierarchical architecture are considered as the
most prominent control strategies in grid-connected or iso-
lated MGs. Each control strategy proposes specific features
to MG and MGC operation from the efficiency and relia-
bility perspective. The analysis verifies that the hierarchical
structure could provide more reliable operation by employing
different control strategies such as centralized, decentralized,
hybrid, and distributed control. Furthermore, planning and
scheduling programs for MGs are investigated in order to
determine the practical and technical specifications of the
operating system. Therefore, an energy management system
is essentially required not only to guarantee the optimal
operation and economic feasibility but also to follow specific
practical and technical considerations determined by plan-
ning and scheduling. Consequently, the optimum operation
assessment of MGs is the main purpose of energy manage-
ment system in MGs. The optimum operation of MGs from
the mathematics point of view is considered an optimization
problem. Obviously, a more appropriate utilized optimizer
results in a more reliable MG operation. To this end, this
paper concentrates on various optimization methods to fulfill
the performance of MGs associated with practical and tech-
nical constraints, calculation burden, information communi-
cation delay, etc. A classification of optimization methods
in order to solve the single objective and multi-objective
problems is presented. Several multi-objective approaches
are discussed, and it was observed that by applying the
concept of dominance, the advanced single-objective algo-
rithms like GA, PSO, etc., turn to multi-objective algorithms
like NSGA, MOPSO, etc. The multi-objective algorithms
produced the Pareto-front set. Unlike single-objective opti-
mization, in multi-objective optimization, a set of optimum
solutions is offered by the algorithm. Therefore, the optimum
solutions are required to be evaluated in order to select the
proper solutions. Ultimately, various methods such as feature
selection and clustering methods are proposed to analyze
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the Pareto-optimal solutions. The performance of the opti-
mization algorithms can enhance by incorporating deep
learning approaches. In this case, the optimal solutions can
be produced properly employing deep learning algorithms.
Therefore, the performance will be improved by reducing
the calculation burden and obtaining more accurate solutions.
This incorporation can be surveyed in future works.
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