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Abstract: The estimation of the network traffic state, its likely short-term evolution, the prediction of
the expected travel times in a network, and the role that mobility patterns play in transport modeling
is usually based on dynamic traffic models, whose main input is a dynamic origin–destination (OD)
matrix that describes the time dependencies of travel patterns; this is one of the reasons that have
fostered large amounts of research on the topic of estimating OD matrices from the available traffic
information. The complexity of the problem, its underdetermination, and the many alternatives
that it offers are other reasons that make it an appealing research topic. The availability of new
traffic data measurements that were prompted by the pervasive penetration of information and
communications technology (ICT) applications offers new research opportunities. This study focused
on GPS tracking data and explored two alternative modeling approaches regarding how to account
for this new information to solve the dynamic origin–destination matrix estimation (DODME)
problem, either including it as an additional term in the formulation model or using it in a data-
driven modeling method to propose new model formulations. Complementarily, independently of
the approach used, a key aspect is the quality of the estimated OD, which, as recent research has
made evident, is not well measured by the conventional indicators. This study also explored this
problem for the proposed approaches by conducting synthetic computational experiments to control
and understand the process.

Keywords: OD estimation; bi-level optimization; derivative-free optimization; stochastic perturbation
stochastic approximation (SPSA); nonlinear optimization; structural similarity

1. Introduction

The estimation of the network traffic state, its likely short-term evolution, the predic-
tion of the expected travel times in a network, and the role that mobility patterns play in
transport modeling, namely, in traffic management and information systems, especially
in urban areas and in real-time applications, stimulate the research interest in dynamic
traffic models. The main components of the core engine of these systems use a dynamic
origin-to-destination (OD) matrix that describes the time dependencies of travel patterns
in urban scenarios as the main input. This is a relevant reason for drawing the continuous
attention of researchers to the dynamic origin–destination matrix estimation (DODME)
problem, as a quick look at recent publications shows [1–11]. Additionally, the complexity
of the problem, its underdetermination, and the many alternatives that it offers make it
an appealing research topic. Furthermore, the availability of new traffic measurements
due to the pervasive penetration of ICT measurements offers new paths to explore [12–19].
The objective of this study was to provide an insight into what can be achieved when, in
addition to link flow counts, travel times that come from treated GPS traces are directly or
indirectly considered in the formulation of a DODME.
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A rough classification of the approaches that are taken in these studies could be
as follows:

• Analytical approaches that are supported by hypotheses on the relationships between
the observed link flows on subsets of links of a road network that is equipped with
sensors, and the assignment matrices that are used in the estimation of the correspond-
ing link flows. Assignment matrices that are provided by a traffic assignment method,
usually a dynamic traffic assignment (DTA), in those approaches aim at estimating
discretized time-dependent origin-to-destination (OD) matrices.

• Similar hypotheses exist that instead resort either to a derivative-free optimization
or methods that numerically approximate the calculation of the derivatives because
the assignment matrix is usually generated by a DTA whose network loading is based
on traffic simulation, i.e., a mesoscopic approach, and therefore the result is not analyt-
ical and, consequently, the resulting relationships cannot be differentiated. Although a
variety of derivative-free methods were used in the past, in recent years, despite some
inconveniences, most researchers tend to use the stochastic perturbation stochastic
approximation (SPSA) [20] or variants of it within a computational framework of
simulation-based optimization [21].

• Data-driven problem reformulations that are based on approaches that calculate
the key components of the modeling approach from the empirical measurements from
ICT applications.

However, leaving aside some attempts to include other data sources in the formula-
tion of the OD estimation, i.e., Bluetooth travel times between pairs of suitably located
antennas [14,15,18,22], most of the references rely on the observed link flow counts and a
historical origin-to-destination (OD) matrix as the information to solve the problem. There
are alternative approaches in the literature that are based on license plate recognition data
collection applications [23]. These approaches were not considered in this study since it
was focused on GPS tracking. Newly published papers considered sensitivity analysis
of misfunctioning sensors on the static OD flow estimation [24]. A Bayesian method to
synthesize multiple sources of data to estimate a dynamic OD matrix was proposed by [25],
including the use of travel times on partial paths as we do, and [26] proposed a three-
dimensional (3D) convolution-based deep neural network using automatic identification
from LPR and partial paths.

Bluetooth travel times are usually rather accurate; however, from a practical point
of view, they may have two main drawbacks: they imply an additional investment in
equipment, namely, the antennas, which most traffic authorities are reluctant to approve
for various reasons, and if approved, their layout must satisfy very specific constraints
to ensure that the used paths are almost uniquely identified [1,27]. On the other hand,
GPS tracking of equipped vehicle trajectories, or other similar ICT measurements from
mobile devices, which are becoming accessible, do not require any investment in spe-
cific equipment and ensure a pervasive penetration through the traffic network, enabling
the estimation of travel times between selected (likely arbitrary) pairs of points along well-
identified paths (sub-paths) in the network, or speed profiles for road segments. Therefore,
the inclusion of path travel times from GPS trajectories that are reconstructed from way-
points in dynamic origin–destination matrix estimation (DODME) is an interesting research
problem, particularly from the perspective of investigating which is the most appropriate
algorithmic approach.

The aim of this study consisted of a comparison of simulation-optimization methods
and a new analytical approach that uses an experimental design that was based on synthetic
data. The experimental framework allowed for optionally adding GPS tracking information
to traffic count measures and a distance term to a reliable origin-to-destination (OD)
historical matrix. We explored how to use a modified stopping criterion that was based
on the variation of structural similarity, limiting the number of iterations with respect to
classical stopping criteria to improve the quality of the results.
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In Section 2, this paper reviews the conventional bi-level formulations of the DODME
problem, analyzes the requisites for a direct formulation of the inclusion of travel time
measurements from ICT applications in the model formulation, and proposes a method-
ological framework to manage the data and the model. Since the relationships between
the travel times and the estimated origin-to-destination (OD) matrices cannot be set up
in an analytical form, Section 3 proposes resorting to a derivative-free approach to solve
the problem, specifically the stochastic perturbation stochastic approximation (SPSA), and
Section 4 proposes a variant that involves splitting the gradient into two components: one
that is analytical for those terms of the objective function whose gradient can be computed
analytically, while the other was approximated using SPSA. Section 5 develops a proposed
alternative formulation using the new ICT measurements in a data-driven fashion to es-
timate the model components to reformulate it instead of including the measurements
directly in the formulation. Section 6 introduces an alternative for measuring the quality of
the solution in OD matrix estimation and proposes the application of the new stopping
criterion based on this quality measures analysis. Section 7 defines a synthetic experimental
framework to conduct a controlled series of experiments to learn about the behavior of the
approaches and to investigate the quality of the origin-to-destination (OD) flow estimations.
Section 8 reports and discusses the achieved computational results and, finally, Section 9
reports the conclusions of the comparative analysis.

2. Direct Problem Formulation

The most used approaches formulate DODME as a bi-level optimization problem
in terms of the minimization at the upper level of certain distance functions F1

(
X, XH)

between the estimated origin-to-destination (OD) matrix X and an acceptable historical
OD matrix XH representing a priori valid knowledge, at least in terms of the structure of
the mobility patterns that are represented by the OD, and F2

(
Y, Ŷ

)
between the measured

link flows Ŷ at a subset of links in the network equipped with detectors and the corre-
sponding estimated flows Y. Furthermore, a traffic assignment at the lower level provides
the estimates of the current flows Y from the current estimated OD matrix X. Therefore,
an apparently straightforward extension of this bi-level formulation that accounts for
the measured t̂t and estimated travel times tt would be to expand the objective function
by adding a third term F3(tt, t̂t) that minimizes some distance between the measured and
estimated travel times between arbitrary pairs of points in the network, assuming that
trips between them most likely use the shortest paths. The hypothetical formulation would
then be:

minZ(X) = w1F1
(
Y, Ŷ

)
+ w2F2

(
X, XH)+ w3F3(tt, t̂t)

(Y, tt) = Assignmt(X)
X ∈ Ω

(1)

Assuming, as in [9], that Y(X) = Assignmt(X) = A(X)X, that is, the relationship be-
tween the estimated link flows and the estimated OD matrix, as defined by the assignment,
can be formulated in terms of the assignment matrix A(X) provided by the assignment,
then the problem can be reformulated as:

minZ(X) = w1F1
(
A(X)X, Ŷ

)
+ w2F2

(
X, XH)+ w3F3(tt, t̂t)

tt(X) = F (X)
X ∈ Ω

(2)

However, the analytical relationship between the travel times tt and the estimated
OD matrix X, namely, tt(X) = F (X), either does not exist or is at least unclear, but in
practice, when the assignment is a DTA, the travel times can be estimated from the DTA;
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therefore, one can assume that some kind of relationship exists and rewrite it as tt(X) ∼
Assignmt(X). The problem to be solved is thus reformulated as:

minZ(X) = w1F1
(
Y, Ŷ

)
+ w2F2

(
X, XH)+ w3F3(tt, t̂t)

(Y, tt) = Assignmt(X)
X ∈ Ω

(3)

The methodological approach that was proposed in this study is described in the logical
diagram in Figure 1. Processing of the GPS data was done to obtain the most used paths
with their observed path travel times t̂t, which are map matched to the transport model
supporting a DTA that allows for estimating the corresponding travel times tt, which was
added to the objective function, as explained in Section 3.

1 
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Figure 1. Methodological diagram.

3. Direct Inclusion of ICT Measurements in the Model Formulation: An SPSA
Approach to Solve the DODME Problem with Partial Path Travel Times

Since the relationship tt(X) ∼ Assignmt(X) is not analytical and is induced from
the DTA, and, at least in our case, the network loading of the DTA is done using a meso-
scopic traffic simulation, the upper-level optimization problem has to be solved by re-
sorting either to a derivative-free optimization method or a numerical approach that is
based on a numerical approximation of the derivatives. Considering the references made in
the introduction and our own experience [9], the approach chosen was the SPSA (stochastic
perturbation stochastic approximation).

Although analytically founded, the SPSA (stochastic perturbation stochastic approxi-
mation), originally proposed by [28], can be considered heuristic in nature since it depends
on parameters whose values cannot be calculated analytically. SPSA is an optimization
method that estimates the direction of descent by calculating a stochastic gradient and
evaluates the objective function only twice instead of M times, as in the case of a finite-
difference gradient approach, where M is the number of OD pairs times the number of
considered periods. This is appropriate for cases where the objective function cannot be
analytically expressed as a function of the parameters and when the evaluation is costly
because it requires a simulation engine to produce the data that are involved in the evalua-
tion. This is the case in the DODME problem, where a gradient approximation with only
two dynamic traffic assignments is desirable because it is the most time-consuming step of
the optimization, especially in the case of large networks.

Formally, a SPSA is a gradient optimization procedure that starts from an initial origin-
to-destination (OD) matrix, usually a historical OD matrix, and the next point is computed
using the first-order Taylor development:

Xk+1 = Xk − ak ĝk(Xk) (4)
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where ĝk(Xk) is the gradient that is calculated during the kth iteration from the current
estimation of the OD matrix Xk and ak is the step length along the gradient descent direction.
SPSA (stochastic perturbation stochastic approximation) estimates the gradient ĝk(Xk) since
it cannot be calculated analytically, calculating it numerically as:

ĝk(Xk) =
Z(Xk + ck∆k)− Z(Xk)

ck
·


∆−1

k,1
...

∆−1
k, N

 =


Z(Xk+ck∆k)−Z(Xk)

ck∆k
1

...
Z(Xk+ck∆k)−Z(Xk)

ck∆k
N

 (5)

where ∆k is a random perturbation N-dimensional vector with ∆i, ∀i, independent identi-

cally distributed random variables satisfying E(∆i) = 0 and
∣∣∣E((∆−1

i

)n)∣∣∣ < ∞, ∀n. Note
that only two evaluations are required. ∆i ∼ Be(1/2, ±1), which is a Bernoulli distribution
with the probability 1/2 for each ±1 outcome, is the usual perturbation used.

The spacing coefficient ck and the step size ak are decreasing sequences of positive real
values that satisfy some regularity conditions to ensure the convergence of the method,
as detailed in [28]. A detailed discussion on how the best values can be estimated and
the possibility of auto-adaptive calculation approaches can be found in [6,9].

This paper implements a version following the recommendation of [28], which in-
volves averaging a predefined number ng of independent estimations of the gradient of
Equation (5) to contribute to a more stable and quicker convergence of the SPSA (stochas-
tic perturbation stochastic approximation) method. Therefore, the gradient estimation
is finally

ĝ(Xk) =
1

ng

ng

∑
j=1

ĝj
k(Xk) (6)

where ĝj
k(Xk) is calculated as in Equation (5). The objective function is formulated in this

DODME, including travel times, as:

Z(X) = w1 ∑
ijr

(
xijr − xH

ijr

)2
+ w2 ∑

lt
(ylt − ŷlt)

2 + w3 ∑
k

(
ttk − t̂tk

)2 (7)

where the discrepancies between the estimated origin-to-destination (OD) matrix X and
the historical OD matrix XH, the measured link flows Ŷ and the corresponding estimated
flows Y, and the measured t̂t and estimated travel times tt are quadratic functions with
weights w1, w2, and w3 that must be adjusted in order to adapt the magnitudes of each
measure and to give more or less importance to each measure depending on its reliability.
The indices i and j identify an origin and a destination, respectively, that belong to the set
N of all origin–destination pairs, the index r corresponds to the trip departure time interval;
the index l identifies the link with a counting station in the subset L̂ of links with counting
stations; t identifies the counting time interval; and the index k identifies the subpath
belonging to the set K = KT1 ∪ KT2 ∪ . . . ∪ KTn of the subpaths for periods {T1, T2 . . . Tn}
in which the time horizon T is split.

4. An Alternative Approach: The Hybrid SPSA (Stochastic Perturbation Stochastic
Approximation)

In addition to the SPSA approach, a new one was developed and computationally
tested by expanding and adapting a suggestion that was made by [11]. The optimization
problem was the same as in Section 3 but the objective function was redefined as follows:

Z(X) = w1 ∑
lt

((
∑
ijr

alt
ijrxijr

)
− ŷlt

)2

+ w2 ∑
ijr

(
xijr − xH

ijr

)2
+ w3 ∑

k

(
ttk − t̂tk

)2 (8)
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where alt
ijr is the assignment matrix that is estimated from the DTA [5,9], which is assumed

to be constant on a neighborhood of the origin-to-destination (OD) matrix X.
The idea behind this approach is to find the best approximation of the gradient by

considering the analytical components of the objective function for which the analytical
derivation is computable, where the non-analytical terms are:

∂Z
∂xijr

= 2w2 ∑
lt

(
alt

ijrxijr − ŷlt

)
alt

ijr + 2w1

(
xijr − xH

ijr

)
+ w3ĝTT

SPSA(X)ijr (9)

where ĝTT
SPSA(X) is calculated by using the SPSA (stochastic perturbation stochastic approx-

imation) approach but the other terms are the formal partial derivatives of their analytical
forms. This is the gradient used in this hybrid SPSA:

Xk+1 = Xk − ak · ∇Z
(

Xk
)

(10)

5. Indirectly Accounting for the ICT Measurements

Recent literature addresses how to include ICT measures into the DODME problem
to reduce the underdetermination of the underlying problem. A two-step ordinary least
squares (OLS) OD estimation model is proposed in [23], incorporating the output from
a Bayesian path reconstruction model that was developed to cope with an insufficient
coverage rate of ICT data from license plate recognition and estimates both the dynamic
OD demand and assignment matrix without the need for any historical matrix. Finally,
refs. [13,16] used the geopositioning data of probe vehicles from an ad hoc experiment
that was designed by the authors to obtain an a priori dynamic origin-to-destination (OD)
matrix and the reconstructed paths are included in the OD estimation process, and [17]
used a data-analytics-based proprietary procedure to empirically estimate a dynamic
assignment matrix.

The linearization of the relationship between traffic counts and OD flows is the approach
of most analytical models that are used to solve DODME [9]. This can be achieved by
using the proportion of the OD demand flows that pass through the count location at a
certain link. In these terms, the dynamic assignment matrix A(X) =

[
alt

ijr

]
is the result of

the mapping and alt
ijr represents the proportion of the OD flow that departs from origin i in

period r and goes to destination j that crosses link l ∈ L̂ ⊆ L in period t ≥ r.
These analytical approaches to the DODME problem show that all of them rely on

the availability of the assignment matrix A =
[

alt
ijr

]
for the various time intervals, which are

calculated at the lower level of the bi-level problem using the dynamic traffic assignment
at each time interval.

The availability of the GPS-generated data enabled us to assume that, after suitable
data processing to find the empirical paths and the inference of path choice proportions,
it was possible to estimate a dynamic assignment matrix that relied on the information
regarding traffic conditions. Since it would play a similar role to that of the analytical
assignment matrix that is obtained by a DTA, it would, if appropriately processed [19],
estimate a reliable assignment matrix from the available commercial data.

The possibility of estimating an assignment matrix allows for reformulating the DODME
by relating the estimated traffic counts with the OD flows using the estimated
assignment matrix:

ylt = ∑
(i,j)∈N

t

∑
r=1

alt
ijrxijr (11)

where ylt is the estimated flow in link l in period t; xijr is the flow departing origin i with
destination j in time interval t ∈ T; and alt

ijr is the estimated assignment matrix, which is
the fraction of trips from origin i with destination j that depart from i in time interval r and
reach link l at time t, as estimated from the GPS traces.
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There are different approaches that are used to estimate the dynamic assignment
matrix alt

ijr from the GPS traces. In [13], it is implicitly considered that this estimate is
directly provided by a counting process, assuming that the analyst has complete control
over the raw data collected, whereas in other cases when such control is not available
and the access to the preprocessed data is provided by commercial companies, some
drawbacks appear, which are derived from privacy conditions. Reference [17] assumes that
access to very large data sets (i.e., at least 6 months) and an undisclosed proprietary data
analytics application was available to generate the estimated assignment matrix. In [19],
we proposed an indirect procedure that was based on the most reliable data supplied
by commercial GPS providers, which involves the waypoints that usually take the form
(IDk, tskl , latkl , longkl), where k denotes the trip identity; l is the ordered lth waypoint of
trip k; ts is the time stamp; and lat and long are the geographic latitude and longitude,
respectively. The approach studied in [19], in essence, proposed the following:

• A graph network model that is supplied either by transport planning software or by a
GIS like OSM;

• A standard map matching that associates waypoints with the corresponding points in
the links of the network, from which, the link travel times can be heuristically estimated;

• When using appropriate k-shortest paths, a suitable route choice set can be calculated;
• When considering the path overlapping factors, the reliable path proportion Pk(i,j,r),

which is the proportion of trips traveling from origin i to destination j leaving origin i
at time r and using path k, can be calculated.

The assignment matrix can then be calculated using:

alt
ijr = ∑

k∈Kijr

δlt
k(i,j,r)Pk(i,j,r) ∀i, j, r, l, t (12)

where δlt
k(i,j,r) is the link–path incidence matrix:

δlt
k(i,j,r) =

{
1 if path k(i, j, r) uses link l at time t
0 otherwise

In Equation (11), the estimated assignment matrix alt
ijr is combined with the estimated

origin-to-destination (OD) matrix xijr to obtain the estimated link flows ylt. In the bi-level
optimization problem, the OD flows are always the variables that must be adjusted to
minimize the objective function. However, from experience with analytical approaches [9],
we observed in our experiments that OD flows may be substantially modified to fit traffic
counts that imply high volumes to certain OD pairs, which is a drawback that can be
overcome with a data-driven approach that aims to preserve the OD pattern that is included
in the seed OD matrix.

The proposed formulation was inspired by gravity models, where it sets bi-dimensional
constraints for rows and columns, as in the double-constrained models that are common
for updating gravity distribution models [29]. Therefore, the origin-to-destination (OD)
flow appearing in Equation (11) can be decoupled into independent scaling factors that
are different for origins and destinations, expanding a seed matrix x0

ijr that, if the collected
data are suitable, can be the observed OD matrix:

xijr = αiβ jx0
ijr, ∀(i, j) ∈ N, ∀r ∈ T (13)

If ŷlt, l ∈ L̂ ⊆ L, t ∈ T are the link flows that are measured at the counting stations
and alt

ijr is the dynamic assignment matrix that is estimated from GPS data, then data-driven
DODME models can be formulated [17,19]. These modeling approaches do not need to
resort to a dynamic traffic assignment to estimate the dynamic assignment matrix since it is
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estimated from GPS data. Reference [19] formulates the problem as the following nonlinear
optimization problem whose variables are the scaling factors αi, i ∈ I and β j, j ∈ J:

min
αi , β j

 ∑
l∈L̂

∑
t∈T

(
ŷlt − ∑

(i,j)∈N

t
∑

r=1
αiβ jalt

ijrx0
ijr

)2

+ w2

(
∑

(i,j)∈N

t
∑

r=1

(
xH

ijr − αiβ jx0
ijr

)2
)

s. to αi ≥ LBi, ∀ i ∈ I and β j ≥ LBj, ∀ j ∈ J

(14)

An advantage of this formulation is the dimensionality reduction from |I|·|J|·|T| to
|I|+ |J|. Moreover, using the scaling factors as variables aims to preserve the structure of
the seed origin-to-destination (OD) matrix, as gravity models do. On the other hand, in
this formulation, the objective function is not quadratic; therefore, it requires appropriate
optimization methods to solve it. In this study, our main concern was testing the quality of
the results, not the development of an ad hoc algorithm. Therefore, to solve the minimiza-
tion problem, the L-BFGS-B method [30] was chosen. It is a quasi-Newtonian method that
is suited for constrained nonlinear problems with a high number of variables that efficiently
reduces the memory requirements and the computational burden, especially when there is
the risk of ill-conditioned Hessians, as could be the case due to the presumable flatness of
the objective function. Moreover, the objective function that is given in Equation (14) is a
quartic polynomial function with respect to the variables of the problem, which means that
it is convex and a minimum is guaranteed.

6. Consideration on the Quality of the DODME Results

The quality of the results of the origin-to-destination (OD) estimation problem is
usually established in terms of the convergence of the optimization algorithm that is
used to solve the bi-level problem and the fitting of the simulated to the observed link
flows. In addition, when a reliable historical OD matrix XH is available, a measure
comparing the estimated OD X and the historical XH is added as a quality indicator.
The typical measures that are used are based on classical vector matrices by considering
both of the matrices X =

[
Xij
]
, XH =

[
XH

ij

]
∈ Mmxn(R) as vectors of Rmxn. However,

refs. [4,9,31] proved that the measures that are defined using Euclidean (RMSE
(
X, XH)),

Manhattan (RMAE
(
X, XH)), or other similar vector distances fail to capture the differ-

ences and similarities between the two matrices in many aspects, for example, the structure
of the matrices. They present numerical examples where a reference OD matrix can be
perturbed to generate two structurally different matrices that are indistinguishable in terms
of these measures. This is a critical aspect to account for given that the underdetermination
of the problem formulation means that many different OD matrices can generate the same
observed link flow measurements; therefore, if they are structurally different, which is
the most credible? On the other hand, proving that the optimization algorithm numerically
converges only proves that it converges to a solution, but how good is that solution? If
the complementary quality indicator is the R2 goodness of fit between the observed and
the simulated link flows at the available counting stations in the subset of links l ∈ L̂ ⊆ L,
it may happen, as shown in [9], that the optimization algorithm behaves as a kind of
meta-regression model that pulls from or pushes to the OD entries Xij just to improve
the fitting to traffic counts and travel times, ignoring the underlying reality of the physical
transportation problem, where trips from origin i to destination j are a consequence of a
socioeconomic reality that cannot increase or decrease the number of trips between this
OD pair just for numerical needs and, thus, modify the underlying OD pattern.

In practical applications, if a reliable historical origin-to-destination (OD) matrix XH is
available, the number of trips may be outdated for the structure of the matrix, but will still
be relevant; therefore, it would be desirable that the structure of the estimated OD matrix
be as close as possible to the structure of the historical matrix XH . A measure of similarity
borrowed from image quality assessment to compare two different images is proposed
in [4]. Reference [32] presents SSIM (structural similarity) for a matrix of pixels as a product
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of three different comparison components: luminance, contrast, and structure. Luminance
corresponds to the intensity of illumination, which is the mean of the different pixels in a
sub-matrix. Contrast is the root of the squared average between pixels once the luminance
is removed, i.e., it is the standard deviation, and finally, the structure comparison is done
by using the covariance between the two matrices. These three factors are first transformed
with the aim to adjust them to the interval [0, 1], where 1 means a perfect match and 0
means totally different. SSIM, therefore, is a similarity measure that is independent of
the magnitude of the values in the matrix. The formula summarizing this explanation
is below:

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ (15)

where luminance, contrast, and structure are respectively defined as:
l(x, y) = 2µxµy+C1

µ2
x+u2

y+C1

c(x, y) = 2σxσy+C2

σ2
x+σ2

y+C2

s(x, y) = σxy+C3
σxσy+C3

(16)

where µx, µy, σx, σy, and σxy are the means, standard deviations, and the covariance of
the vectors x and y, respectively. C1, C2, and C3 are stability constants to avoid numerical
problems; these are typically set to C1 = C2 = 2·C3 = 1. α, β, γ are weighting coefficients,
which are typically set to 1 [32]. During the image comparison, the MSSIM is computed as
the mean of the SSIM of all the sub-matrices of dimension N because pixel proximity is
crucial in image pattern recognition. A variant of MSSIM is proposed in [15,18] including it
in the objective function of the formulation of the mathematical model in Equation (3) after
setting specific relationships between the measured and estimated travel times that are
measured using ad hoc layouts of Bluetooth antennas, which are not reproducible when
travel times are measured by other technologies, such as GPS.

Regarding the original problem, ref. [32] obtained the MSSIM by averaging the SSIM
using sliding windows, which were submatrices of size Ns. When extrapolating the sliding
windows to OD matrices, ref. [4] proposed reordering the origin-to-destination (OD) matrix
by volume, both by rows and by columns, in order to obtain the MSSIM using the same
sliding submatrices because the term S of the SSIM is highly sensitive to the order of
the OD pairs. Another open question is the dimension of the submatrices Ns, which should
be fixed, and it does affect the final measure. Reference [31] also reorders the OD pairs,
but in this case, they proposed clustering them in greater regional areas. In the same
article, they showed how the dimension of the submatrices affects the MSSIM measure; as
such, this new proposal solves the problem of tuning Ns, which is fixed automatically by
the dimension of these regional areas.

Here we proposed a more meaningful variant that is easier to apply in practice and
considered the physical meaning of the origin-to-destination (OD) matrices. This variant
consisted of calculating the averages of the SSIM according to rows and columns rather
than submatrices, that is, by using rectangular sliding rules that correspond to either rows
or columns in the OD matrix. One row in an OD matrix for a given period represents
the distribution of trips that depart from a single origin zone while, analogously, one
column is the distribution of trips arriving at a single destination zone. This, therefore,
corresponds to a physical interpretation of mobility patterns in the underlying transport
system. Thus, the SSIM will capture the similarity between these described distributions
by considering the mean, variance, and structure of the departure and arrival distributions,
all of which correspond to the structural property of the trip patterns that are described by
the OD. Moreover, this proposal also fixes Ns to the number of origins and destinations in
the network. Then, if the MSSIM is averaged over Ns sliding windows, a key question arises
regarding whether all windows have the same weight or whether their role in the total
demand requires that they have different weights. In the case of OD matrices, it is obvious
that not all origins and destinations are equivalent in a transport network. Therefore, a
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weighted MSSIM, as in [33], prioritizes those origins and destinations with more impact on
the network.

This proposed weighting average is defined as follows:

MSSIM(X, XH) =
∑NS

i=1 W(ai, bi)SSIM(ai, bi)

∑Ns
i=1 W(ai, bi)

(17)

where ai and bi are the ith windows of X and XH, respectively, while the weight W(ai, bi) is
given by:

W(ai, bi) = log

[(
1 +

σ2
ai

C2

)(
1 +

σ2
bi

C2

)]
(18)

In terms of the variance of the selected windows in the origin-to-destination (OD)
matrices, these weighting factors correspond to the variance of the total generated trips from
an origin (or total attracted trips to a destination) to all destinations (from all origins); thus,
the weighting is increased as the origin is distributed to all destinations (or the destination
attracts trips from origins) becomes more non-uniform. Moreover, these weights also
take into account the magnitude of their contribution (implicitly in the variance value)
so that the contribution of each origin or destination to the overall demand pattern is
well balanced.

Under the assumption of the reliability of the historical OD matrix XH, at least con-
cerning the structural information on the mobility patterns that it contains, in this study, we
proposed to use the relative difference in the MSSIM calculation in Equation (17) between
the estimated OD matrix X at iteration k and the historical OD matrix XH as stopping
criterion. The stopping criterion is:

MSSIM
(

X(k), XH
)
−MSSIM

(
X(k−1), XH

)
MSSIM

(
X(k−1), XH

) < ε (19)

When no historical OD matrix is available, or the historical OD matrix is unreli-
able, a way of avoiding the fitting process distorting the structure could be to apply
the alternative criterion:

MSSIM
(

X(k), X(k−1)
)
−MSSIM

(
X(k−1), X(k−2)

)
MSSIM

(
X(k−1), X(k−2)

) < ε (20)

This is based on the relative structural change of the estimated matrix after each step
of the iterative process.

7. Synthetic Experimental Framework

In most papers that deal with DODME by adding richer ICT traffic measurements
to the conventional link flow counts [13,16,17], the authors assume specific conditions
for controlling the data collection processes, such as those proposed by [17,34,35]. These
conditions for collecting the data ensure their quality and allow for making assumptions
that form the basis of the approaches. This is not always possible with commercial data
because the researcher has no access to it, the fleet size is very limited, or the only available
data are supplied by commercial companies who prohibit access to the whole raw data set,
which they pre-process, depending on their business model. Therefore, it is common to
conduct simulation experiments that emulate reality, which is then mimicked by generating
synthetic data. Reference [1] provides an experimental framework was widely used by
researchers. However, they used specific microscopic simulation models and numerical
software (i.e., MATLAB). This is why we propose a synthetic and agnostic software data
generation process that fulfills the functional requirements and provides data that are
indistinguishable from the actually measured data consisting of:
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• A learning process that is supported by the analysis of a sample of GPS waypoints
from an equipped fleet;

• Building a microscopic traffic simulation model of a traffic network that emulates
the behavior of individual vehicles, including the class of equipped vehicles;

• Developing an APP to properly emulate the GPS data collection from the equipped
vehicles (e.g., replicating the waypoint data collection policies).

Figure 2 depicts the conceptual diagram of the proposed methodology. To conduct
the computational experiments that are reported in this paper, this methodological frame-
work was implemented in PTV Vissim and PTV Visum, where the DTA used was the SBA
implemented in Visum [36]. It was applied to a model of the city of Hillsboro, USA, con-
sisting of 618 links and 58 zones. The simulation ran over a time horizon from 08:00 am to
09:00 am in three periods of 20 min; 120 days were generated in Vissim in order to obtain
enough GPS trips with different random seeds and time latencies based on the learning
process from the physical data. The full GPS data set contained 9.1 M waypoints, which is
approx. 109 k trips. This data set was transformed to PrT paths in Visum using the GPX
import tool and its map matching techniques to obtain the interpolated travel times at
the link level from the sequence of waypoints.
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Subpaths Extraction

A heuristic procedure that was used to obtain the “most used subpaths” from the GPS
sample was designed. The implemented procedure was the following:

1. From the list of paths in Visum, called PrTPaths, that were generated by the map-
matching process and the links that they use, the heuristic started by selecting
the most used link by paths. An example highlighted in purple is depicted in Figure 3.

2. Selecting all the paths that use the selected link, a search simultaneously found
the forward and backward maximal subpaths.

3. The procedure stopped when the number of paths that were used by link Lm (subpath
M = {L1, L2, . . . , Lm}) was reduced to a percent stop = 20% from the initial link L1.
The percent stop was a design parameter.

4. Once the subpath M = {L1, L2, . . . , Lm} was selected, the links that formed this
subpath were removed from the list of candidate links to define the most used paths.
The list of paths and candidate links for step 1 was updated. The procedure returned
to step 1.

5. The iterative procedure was executed by also considering the departing period of each
PrTPath to find subpaths for each period of the simulation and capture its dynamicity.
It iterated until no more paths were found; in this case, 379 subpaths were found
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(127 on T1, 123 on T2, 129 on T3). The observed path travel times were calculated as
the sum of their observed link travel times.
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These subpaths with the observed travel time covered the entire network, as shown
in Figure 4, and they were used by many GPS paths (158 on average), which allowed for
confidence in their use and their observed travel time. The average length of these subpaths
was 911 m. In this network, a subpath was considered if the number of links was greater
than five.
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8. Computational Results

The minimization problem that was used for the experiments is the one shown in
Equation (21):

minZ(X) = w1F1
(
Y, Ŷ

)
+ w2F2

(
X, XH)+ w3F3(tt, t̂t)

(Y, tt) = Assignmt(X)

X ∈ Ω ⊂ RI×T
+

(21)

The three methods that were used in the computational experiments were:

• An SPSA (stochastic perturbation stochastic approximation) with travel times and
the objective function defined in Equation (4);

• A hybrid SPSA with travel times and the objective function defined in Equation (5);
• A data-driven approach with the objective function defined in Equation (14).

Following the computational experience in [1], when the SPSA (stochastic perturba-
tion stochastic approximation) is used, a constrained SPSA variant is applied in which
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the feasible set Ω is determined by the bounding constraints, as shown in Equation (22),
whose objective is to help to preserve the structural similarity:

Ω =
{
(1− β)xH

ijr ≤ xijr ≤ (1 + β)xH
ijr , ∀xijr ∈ X

}
(22)

The term β of Equation (22) represents an acceptable relative change of the solution
relative to the historical OD matrix, which serves as a reference, and is expected to be
reliable based on the empirical background provided by the demand analysis practice. In
these experiments, 0.2 was used based on common practices in traffic analysis applications.

A total of eight experiments were performed in order to see the effects of each
of the proposed innovations. Three main factors were combined to generate the set
of experiments:

• The term of the reference historical OD matrix on the objective function (w2 = 0 or
w2 = 1);

• The term of travel times on the objective function (w3 = 0 or w3 = 1);
• The hybridization, or not, of the SPSA (stochastic perturbation stochastic approxima-

tion) gradient.

All the experiments used the matrix that was proposed for benchmarking purposes
in MULTITUDE Cost action [1] as the historical OD matrix, normalizing the variables in
the objective function. The weight w3 was set to w3 = F2

(
X0)/F3

(
X0) in order to equalize

the importance of traffic counts and travel times.
Figure 5 summarizes the computational results in terms of the structural similarity

index MSSIM and the total number of trips.
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On the one hand, the addition of the term comparing the historical origin-to-destination
(OD) matrix (w2 = 1) and the addition of travel times to the problem allowed for an in-
crease in the total number of trips to get closer to the ground truth NT

(
XGT) = 9973, and

the estimated OD matrices were more reliable from the structural point of view, namely,
in the hybrid approach, which showed a more consistent behavior. It can be appreciated
that in the case of the hybrid SPSA without travel times, the effect of adding the historical
OD matrix (w2 = 1) was negligible because the curves overlapped. This was because
the optimization process was not stochastic anymore and the contribution of the F2 term
was not significant.

On the other hand, it was experimentally shown that the hybrid SPSA (stochastic
perturbation stochastic approximation) gradient in Equation (6) outperformed the SPSA
gradient. As expected, the analytical part of the gradient of the linearized objective function
was a better approximation of the maximum descent direction. This effect was notably
appreciated in the cases of w3 = 0. However, when w3 6= 0, the effects of the hybrid SPSA
vanished because of the SPSA-gradient-based part.
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Figure 6 shows the simulated and real traffic measurements that were related to
the objective function in the case of w2 = 1. Table 1 summarizes the R2 adjustment and
the MSSIM between the measurements.
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Table 1. R2 adjustments and MSSIM between measurements.

SPSA Hybrid SPSA Data-Driven

No tt tt No tt tt tt

Traffic Counts (ylt ) w2 = 0 0.8297 0.7614 0.7598 0.6485 0.6187
w2 = 1 0.8319 0.7488 0.7684 0.7243 0.6620

Travel Times (ttk ) w2 = 0 - 0.8312 - 0.8371 -
w2 = 1 - 0.8426 - 0.8297 -

MSSIM
w2 = 0 0.9189 0.9282 0.9371 0.9283 0.9703
w2 = 1 0.9207 0.9318 0.9371 0.9278 0.9706

Regarding the traffic counts, the inclusion of the travel times in the objective function
decreased the R2. On the other hand, the two variants of the SPSA (stochastic perturbation
stochastic approximation) with travel times adjusted the paths travel times relative to
the real measurements well, but the SPSA with travel times showed greater R2 values.

In Figure 6, a remarkable group of outliers is shown for the traffic counts measure-
ments. All these points belonged to the same detector in the outer limits of the study
area and appeared for all methods, indicating that the traffic counts could not be satisfied
without perturbing the global fit. A general trend can be highlighted: the SPSA (stochastic
perturbation stochastic approximation) without travel times method had a greater R2

because the estimation procedure behaved as a metamodel that modified the output matrix
in such a way that traffic counts were forced. Nevertheless, as travel times were included, a
compromise between the traffic counts and travel times had to be met and a joint enhance-
ment required relaxing the traffic counts fit to obtain a global benefit in the estimation of
the output matrix.

The obtained results when the historical matrix term was included in the objective
function were generally beneficial in terms of the structural similarity and R2 for counts
and travel times (if included). These results were consistent with the common practice that
considered historical matrices as reliable reference matrices. Obsolete matrices that are
available in some practical applications should not be included in the objective function for
an origin-to-destination (OD) matrix adjustment.

In the left panel of Figure 7, the evolution of the MSSIM indicator, calculated as a
comparative index relative to the historical matrix in one of the approaches (DDAF), is
shown. Wide oscillations were present in the first few iterations; nevertheless, smooth
behavior was found as the optimization progressed, indicating structural similarity pattern
convergence to the historical matrix. In the right panel of Figure 7, even a weaker oscillation
of the MSSIM indicator (Equation (20)) was obtained when comparing two consecutive
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iterations of the matrix estimates; in terms of structural similarity, this behavior indicated
that the proposed DDAF formulation smoothly converged to the resulting matrix.
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9. Conclusions

The origin-to-destination (OD) estimation problem is an underdetermined problem
that, depending on the used seed OD matrix, could lead to the resulting OD matrices fitting
traffic counts but losing the OD trip pattern from available historical matrices. We focused
on reducing such underdetermination using new ICT traffic measurements and improving
the quality of the estimated matrices.

The knowledge that was acquired can be summarized in two ideas: first, the stochas-
tic approaches that were based in SPSA (stochastic perturbation stochastic approxima-
tion) showed slow convergence and a high computation time. They failed to preserve
the structural similarity of the resulting matrix compared with a reliable origin-to-destination
(OD) historical matrix and they were incapable of increasing the total number of trips.
As a benefit, they allowed for adding as many traffic measurements as desired into
the objective function.

Second, analytical approaches rely on a dynamic assignment matrix estimation and
they become extremely complex when they include additional traffic measurements to
the traffic counts. In another work [19], we addressed the estimation of the dynamic
assignment matrix from GPS data, and the DODME problem was reformulated, leading
to a DDAF method. The quality of the estimated origin-to-destination (OD) matrices was
better at preserving the structural similarity of the OD matrix relative to a reliable OD
historical matrix, where the number of trips was increased/decreased when needed and
fast convergence was obtained.

The main contribution of this article relied on the comparison of simulation opti-
mization and the new analytical method using an experimental design that was based on
synthetic data. The experimental framework allows for optionally adding information
from GPS tracking to traffic count measures and a distance term to a reliable origin-to-
destination (OD) historical matrix. Well-known goodness-of-fit indicators (R2, RMSE, and
number of trips) and a revised proposal as a structural similarity index were collected for
the SPSA (stochastic perturbation stochastic approximation) and DDAF approaches when
the stopping criteria were modified.

The primary conclusion supports the use of a modified stopping criterion that was
based on the variation of structural similarity that limited the number of iterations relative
to classical stopping criteria. This new criterion was shown to provide remarkably good
results in terms of structural similarity in the DDAF approach.

As a secondary conclusion, the DDAF approach that was proposed by the authors is
the only method that has been shown to be capable of improving the total number of trips
as needed. The number of trips of the estimated matrix has been rarely taken into account
as a goodness-of-fit indicator. The best results were obtained for the DDAF approach when
a distance term to a reliable historical origin-to-destination (OD) was considered.
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Lastly, but not least, adding a distance term to a reliable origin-to-destination (OD)
historical matrix in the SPSA studied approaches and travel time data that were derived
from GPS traces were shown to benefit the quality of the estimated OD matrix, although
never reaching the remarkable results obtained with the DDAF approach. The results
for the SPSA (stochastic perturbation stochastic approximation) approaches indicated an
excellent fit to traffic counts and travel times at the expense of structural similarity and
slow progress on the number of trips fitting to the ground truth value.
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