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Error Propagation in Microwave Soil Moisture and
Vegetation Optical Depth Retrievals

Andrew F. Feldman , Student Member, IEEE, David Chaparro, and Dara Entekhabi , Fellow, IEEE

Abstract—Satellite soil moisture and vegetation optical depth
[(VOD); related to the total vegetation water mass per unit area]
are increasingly being used to study water relations in the soil-plant
continuum across the globe. However, soil moisture and VOD
are typically jointly estimated, where errors in the optimization
approach can cause compensation between both variables and
confound such studies. It is thus critical to quantify how satellite
microwave measurement errors propagate into soil moisture and
VOD. Such a study is especially important for VOD given limited
investigations of whether VOD reflects in situ plant physiology.
Furthermore, despite new approaches that constrain (or regular-
ize) VOD dynamics to reduce soil moisture errors, there is lim-
ited study of whether regularization reduces VOD errors without
obscuring true vegetation temporal dynamics. Here, we find that,
across the globe, VOD is less robust to measurement error (more
difficult for optimization methods to find the true solution) than
soil moisture in their joint estimation. However, a moderate degree
of regularization (via time-constrained VOD) reduces errors in
VOD to a greater degree than soil moisture and reduces spurious
soil moisture-VOD coupling. Furthermore, despite constraining
VOD time dynamics, regularized VOD variations on subweekly
scales are both closer to simulated true VOD time series and have
global VOD post-rainfall responses with reduced error signatures
compared to VOD retrievals without regularization. Ultimately, we
recommend moderately regularized VOD for use in large scale
studies of soil-plant water relations because it suppresses noise
and spurious soil moisture-VOD coupling without removing the
physical signal.

Index Terms—Brightness temperature, microwave retrieval
algorithms, regularization, soil moisture, vegetation optical depth.
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I. INTRODUCTION

V EGETATION optical depth (VOD) and soil moisture, as
remotely measured from microwave spaceborne sensors,

are now widely used across geophysical investigations. These
quantities are often jointly estimated using satellite measure-
ments, for example, from low frequency microwave (L-band;
1.4 GHz) sensors onboard the Soil Moisture and Ocean Salinity
(SMOS) and Soil Moisture Active Passive (SMAP) satellites [1],
[2]. VOD is directly related to the total water mass within the
vegetation canopy per unit area (traditionally named vegetation
water content) [3]. As a quantity that is challenging to measure
in situ across large spatial scales, satellite VOD can be used
to understand vegetation’s role in the global water and carbon
cycles via vegetation phenological cycles, plant hydraulics, and
terrestrial carbon storages [4], [5]. Soil moisture is a small, but
highly active global water reservoir that links the water, carbon,
and energy cycles at the land-atmosphere interface [6]. The joint
study of these variables across lower microwave frequencies is
enabling an improved understanding of soil-plant water rela-
tions and fluxes through the soil-plant-atmosphere continuum
[4], [7]–[10]. These studies ultimately rely on how well both
soil moisture and VOD can be jointly retrieved from satellite
instruments. Despite widespread use of both variables, only un-
certainty of soil moisture alone has largely been assessed while
VOD and joint soil moisture-VOD uncertainty assessments are
largely absent from the literature.

An accurate assessment of errors in both variables is essential
to investigate temporal dynamics of soil and plants individually
and jointly. While VOD is increasingly used in ecosystem studies
[4], [5], [11]–[13], it is unknown how well satellite VOD reflects
in situ plant temporal dynamics. Though annual average VOD
was found to correspond well with aboveground biomass [5],
[14], VOD in situ investigations of daily to seasonal dynamics
are only sparsely becoming available due to the difficulty of
obtaining time-dynamic field vegetation measurements related
to VOD at large spatial scales [15]–[19]. Other satellite vege-
tation products, such as leaf area index or solar induced fluo-
rescence, are limited in validating VOD because they measure
vegetation at optical and thermal frequencies and detect canopy
features only partially related to VOD [4], [20]. With in situ
VOD measurements available only at sparse field sites, broader
generalizations of VOD error quantification are currently lim-
ited to evaluation of algorithmic VOD uncertainty. Moreover,
satellite-based soil moisture dynamics broadly show consistency
with soil measurements at more expansive calibration/validation
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field sites [21], [22]. However, misrepresenting VOD dynamics
has been shown to drive soil moisture errors, which conveys the
detriment of evaluating soil moisture uncertainty in isolation
of VOD considerations [23]–[27]. This is because microwave
emission used to retrieve both quantities is a strong function of
both of these variables (via the surface roughness and canopy
transmissivity at microwave frequencies) [26], [28], [29]. As
such, it is critical to quantify the degree to which satellite mea-
surement error propagates simultaneously into soil moisture and
VOD retrievals within retrieval algorithms and identify where
artifacts arise.

Soil moisture and VOD are traditionally retrieved simultane-
ously where both variables are estimated from horizontally and
vertically polarized microwave brightness temperature measure-
ments (TBH and TBV, respectively) at each satellite overpass.
Such retrieval algorithms, referred to here as simultaneous re-
trieval approaches, include the dual channel algorithm (DCA)
and land parameter retrieval model (LPRM) [22], [30], [31].
However, it has been shown that raw satellite measurements of
horizontally and vertically polarized TB are correlated and, thus,
do not provide two full degrees of information [32]. This mutual
information results in an inability to fully retrieve two unknowns
regardless of the electromagnetic model used. As a result, op-
timization search instabilities occur, which cause errors when
simultaneously estimating soil moisture and VOD [33], [34].
Furthermore, retrieved VOD using these simultaneous retrieval
approaches has been noted as unreliable at short timescales [26],
[35].

It is becoming common practice to reduce soil moisture and
VOD errors in a procedure termed “regularization” [22], [34],
[36], [37]. In this context, regularization solves underdeter-
mined problems (i.e., using two dependent TB measurements
to retrieve two unknowns) by imposing a priori information
about soil moisture and/or VOD to enable a robust inversion.
There are now increasingly-used algorithms that regularize VOD
such as the multitemporal dual channel algorithm (MT-DCA),
Sobolev-Norm, and Tikhonov regularization approaches [33],
[34], [37], [38]. The MT-DCA regularizes on a discrete basis
by retrieving VOD on a given overpass using TB information
from time-adjacent overpasses [37]. Like the MT-DCA, the
Sobolev-norm approach constrains VOD rates of change on a
continuous-basis using a penalty term in the cost function. The
Tikhonov approach constrains VOD variations to be similar to
those of an input a priori VOD time series [33], [39]. These
regularization approaches are now being implemented within
widely-used satellite mission retrieval algorithms [36], [40],
[41].

We focus here on regularization through constraining time
derivatives of VOD such as using the MT-DCA and Sobolev-
norm because they do not require a priori VOD time series to
implement. Regularization in this manner presents a tradeoff.
It adds a priori information on time dynamics of VOD that
it is slower in time than soil moisture. This stabilizes the soil
moisture-VOD parameter optimization search which reduces
retrieval errors. However, constraining VOD changes to a large
degree may partially remove real VOD temporal dynamics
(especially at shorter timescales) beyond only errors [33]. Thus,

a greater degree of regularization may result in greater retrieval
error reduction, but potentially at the expense of subduing real
VOD changes at shorter timescales. The goal is to moderately
regularize VOD such that primarily VOD changes due to error
are removed rather than true dynamics. We expect the optimal
amount of regularization to improve and allow interpretation of
VOD dynamics at subweekly timescales.

Smoothing a retrieved time series with a low-pass filter is not
equivalent to the time derivative regularization discussed here.
This is because smoothing explicitly removes short timescale
variability without the benefits of stabilizing the optimization
and suppressing errors by imposing a priori information [33].

The regularization approach discussed here that constrains
the VOD time derivative assumes that the vegetation temporal
dynamics that VOD represents occur slower than surface soil
moisture changes. Consider that VOD has been shown to be a
joint function of plant moisture and biomass changes across
timescales [16], [42]. The assumption of slower VOD than
soil moisture dynamics is viable because while plant saturation
changes simultaneously with soil moisture under predawn water
potential equilibrium [43], VOD contributions from plant dry
biomass changes are slower than moisture changes and will,
thus, act to slow the overall VOD signal relative to soil moisture
[44].

Ultimately, it is unclear how errors propagate into soil mois-
ture and VOD within these simultaneous and regularization
retrieval approaches. It is similarly unknown how much reg-
ularization suppresses VOD errors and whether it allows better
interpretation of the true VOD time dynamics. In this article,
we ask: how does satellite measurement error propagate into
soil moisture and vegetation optical depth? Can regularization
reduce VOD noise without obscuring real VOD temporal dy-
namics? This article expands on recent work that evaluated
retrieval noise reductions between simultaneous retrievals and
regularization approaches [24], [33], [38]. These studies mainly
focused on error reductions in soil moisture, whereas the work
here provides increased focus on the VOD signal, its errors, and
its interactions with soil moisture.

We refer to VOD as a radiative transfer parameter throughout
and focus on the errors in its estimation in forward modeling the
radiative transfer equations. VOD’s relation to any geophysical
parameter and the functional forms of that relationship are topics
for ecology and hydrology application studies. We note that
VOD is known to be monotonically related to the total water
mass per unit area and be sensitive to biomass and percent
saturation, but its exact relation to canopy properties is still an
open research question [3], [45].

The rest of this article is organized as follows. We first moti-
vate the article by theoretically estimating error propagation into
soil moisture and VOD in simultaneous retrieval frameworks in
Section II. In Section III, we investigate the effects of VOD
regularization on soil moisture and VOD errors. Finally, in
Section IV, we evaluate the effects of soil moisture and VOD
errors as well as regularization on the VOD signal.
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II. ERROR QUANTIFICATION IN SIMULTANEOUS RETRIEVALS

We first investigate theoretically how satellite instrument
brightness temperature measurement errors propagate into soil
moisture and VOD in traditional simultaneous retrieval algo-
rithms that do not use regularization. Previous global microwave
parameter sensitivity analyses have been conducted but mainly
focus on effects of soil moisture in numerical frameworks [28],
[46], [47]. Though they tend to agree on high level of TB
sensitivity to soil moisture over other parameters, it is unclear
how this finding translates into error propagation, respectively,
into these variables, especially VOD. The following evaluation
only reflects the mathematical formulation of the zeroth-order
radiative transfer model, or the so-called tau–omega model [48],
not natural processes on the land surface. Using a different
radiative transfer model would produce different results [49].
However, we expect these results to be widely relevant because
the tau–omega model framework is applied across microwave
land surface retrieval algorithms. The analysis here ultimately
motivates Sections III and IV.

Soil moisture and VOD are most commonly estimated from
TBH and TBV within the tau–omega model [48]. This can
be accomplished using the DCA or LPRM. At this stage, TB
measurement errors can propagate into soil moisture and VOD
retrievals. One can estimate these errors and their properties
using the Hessian matrix of the cost function. The typical cost
function (J) for soil moisture and VOD retrieval is

J =
1

2

[(
TBH Obs − TBH Mod

σTBH

)2

+

(
TBV Obs − TBV Mod

σTBV

)2
]

(1)

where TBMod is forward modeled using the tau–omega model
with the goal of reducing the squared differences with the
observed TB (TBObs) by adjusting mainly soil moisture and
VOD. σ is the TB measurement error (σTBH and σTBV) and is
known to be normally distributed. We chose an error standard
deviation of 1.1K in both polarizations independently, which
is a conservative choice compared to NEDT estimations of
approximately 0.9K–0.96K [50]. Note that the choice of NEDT
does not qualitatively change results because it mainly applies
a mean scaling to the errors but does not change the plotted
relationships and conclusions.

The second derivative of J with respect to soil moisture and
VOD can isolate how robust soil moisture and VOD, respec-
tively, are to errors (see Fig. 1). We use “robust” in this context
to refer to how well the optimization approach can find the true
solution as determined by the curvature of the cost function.
Based on the curvature of the cost function, the inverse of the
Hessian matrix (H) provides an estimate of the error variances
of soil moisture and VOD when the variables are normally
distributed and not strongly nonlinearly related [51]

Σ = H−1 =

[
∂2J
∂SM2

∂2J
∂SM∂VOD

∂2J
∂VOD∂SM

∂2J
∂VOD2

]−1

Fig. 1. Schematic of cost function scenarios with resulting second derivatives
and target variable variances (SM represents soil moisture; VOD represents
vegetation optical depth). The true solution is shown by the green symbol and
noisy retrieval by the red symbol. The deviation of the retrieval from the true
solution represents the error. Estimation on the left panel is more robust to error
(lower error standard deviation expressed as σ) than on the right panel because
the second derivative magnitudes of the cost function are larger. The units of J
are arbitrary here.

=

[
ΣSM, SM ΣSM,VOD

ΣVOD, SM ΣVOD,VOD

]
(2)

σ(SM)Error = (ΣSM,SM)
1
2 (3)

σ(VOD)Error = (ΣVOD,VOD)
1
2 (4)

where Σ is the covariance matrix and the diagonals of Σ are the
soil moisture and VOD error variance. The soil moisture and
VOD error standard deviation, σ(SM)Error and σ(VOD)Error,
respectively, can, thus, be computed in (3) and (4). Although
they model a more idealized error pattern and normality may
not always hold, (3) and (4) provide a viable approximation that
we use to evaluate error patterns within the simultaneous soil
moisture and VOD estimation space.

As predicted from (2), Fig. 1 demonstrates that large second
derivatives of the cost function equate to low variances of the
estimated metrics. Specifically, the deep instead of shallow well
allows optimization search methods to estimate the true solution
more closely in the presence of noise. Conversely, a shallow
well would result in gradient search methods having difficulty
converging to the true solution. This creates undesirable vari-
ability within each variable as well as compensation between the
variables from noise-based artifacts. Ultimately, joint variability
of soil moisture and VOD that is due to error would bias true
soil moisture-VOD relationships and lead to misinterpretations
of their physical behavior.

Next, the robustness of soil moisture and VOD across all true
combinations of soil moisture and VOD are evaluated by nu-
merically computing the soil moisture and VOD error standard
deviation using the inverse Hessian matrix in (3) and (4) (see
Fig. 2). Inverse Hessian matrices are numerically computed at
each true soil moisture-VOD pair. Nominal values were chosen
to model TB via the tau–omega model including a single scatter-
ing albedo of 0.1, a physical temperature of 290K, a clay fraction
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Fig. 2. Inverse Hessian matrix estimated (A) soil moisture and (B) vegetation optical depth error standard deviations. Given a 1.1K TB error standard deviation
in both polarizations, error standard deviation of soil moisture and VOD are shown at the true solution for each given soil moisture-VOD pair. For reference,
grasslands and savannas have mean VOD values of 0.2–0.4 while forests have values above 0.6. SMAP’s mission goal is for a soil moisture unbiased root mean
square difference [metric similar to that plotted in (A)] of less than 0.04 m3 m−3. SMAP flags soil moisture retrievals for poor quality above VOD of approximately
0.5 due to increasingly dense vegetation cover. The abrupt error change along the x-axis in (A) near 0.09 m3 m−3 originates from the Mironov soil mixing dielectric
model in [52].

of 0.2, a surface roughness model as in [22], and the Mironov
soil mixing dielectric model [52]. These same parameters are
used throughout the study, unless otherwise specified. While the
magnitudes can shift with these choices, the overall qualitative
results remain the same. Note that single scattering albedo is
known to vary temporally and should be the subject of future
investigations on how its dynamics influence soil moisture and
VOD errors [53]. These values along with the true soil moisture,
VOD pair were used to model the true TB values at each true
soil moisture, VOD pair. Perturbations of soil moisture and VOD
and their effects on the modeled TB were used to estimate the
second derivative of J with respect to soil moisture or VOD.

Soil moisture and VOD experience increasing errors under
differing scenarios of soil moisture and vegetation conditions:
soil moisture becomes less robust with both greater canopy
density (higher VOD) and greater soil moisture [see Fig. 2(A)];
VOD generally experiences greater error at higher mean VOD
and under dry soil conditions [see Fig. 2(B)]. Note that some of
the reduction of soil moisture and VOD error standard deviations
at lower values is due to both variables having lower bounds.

In comparing the soil moisture and VOD error standard de-
viations across the estimation space, we investigated whether
errors propagate more into VOD or soil moisture across a range
of conditions. A metric to compare the relative robustness of
soil moisture and VOD to error in a normalized fashion is the
difference in their signal to noise ratios (SNR)

SNR Difference =
σ(SM)Signal
σ(SM)Error

− σ(VOD)Signal
σ(VOD)Error

(5)

where we define σ(SM)Signal and σ(VOD)Signal as the standard
deviation of the SM and VOD time series, respectively. SNR
difference values greater than zero indicate more robustness of
soil moisture to error and that measurement error is propagating
relatively more into VOD.

While we can estimate the error standard deviations theo-
retically from (2), the true soil moisture and VOD signals are
unknown. Making inferences about the true VOD and soil mois-
ture signals is complicated by VOD and soil moisture having
different units and dynamic ranges. To estimate the soil moisture
and VOD signals and thus the SNR difference, we used dual
channel algorithm retrievals of soil moisture and VOD from
the SMAP and SMOS missions. These include 36 km gridded
retrievals from the SMAP L1C TB descending measurements
and SMOS L2 TB ascending measurements at 6AM between
April 1st, 2015 and March 31st, 2018 [1], [54]. Since standard
deviations of the full three-year time series were computed, each
36 km grid cell across global land surfaces will have an estimate
of the SNR difference. We specifically estimated σ(SM)Signal
and σ(VOD)Signal by taking the standard deviation of the de-
seasoned soil moisture and VOD time series. We estimated
deseasoned soil moisture and VOD time series by computing a
30-day moving average window from the respective time series
then subtracting it from the raw time series. This normalization
removes the effect of large seasonal cycles in some regions;
these regions would have a large signal estimate only due to
a disproportionately large seasonal amplitude, not because of
more robustness to error. We used the same DCA retrievals as
in the experiments in Section IV.

Assuming that the deseasoned standard deviation of SMAP
VOD and soil moisture retrievals are good representations of
the signal, error propagates into VOD relatively more than
soil moisture for more than 99% of global land surfaces (see
Fig. 3). The pattern estimated with SMOS is nearly identical
(not shown). Over most of the globe, the SNR difference is
between two and four meaning that the VOD signal would
need to be an additional factor of two to four higher than that
estimated by the satellite for the error to instead propagate into
soil moisture (where the SNR difference would be negative).
The SNR difference tends to be greatest over the commonly
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Fig. 3. Degree to which errors propagate into VOD relative to soil moisture.
Estimate of the SNR difference in (5) using satellite retrievals where each global
36 km land pixel includes a value plotted on this joint density. Values greater
than zero indicate that error propagates into VOD more than soil moisture. Black
contours show the joint density of SMAP time-mean values of soil moisture and
VOD, and thus denotes locations in this space relevant to commonly observed
conditions for the globe.

occurring global surface conditions (lower mean soil moisture
and VOD). Conversely, regions with higher mean soil moisture
and VOD inherently have lower sensitivity to soil moisture due
to attenuation of microwaves through a dense canopy; their SNR
differences are closer to zero meaning similar error propagation
into soil moisture and VOD. Despite uncertain signal estimates,
SNR differences commonly near four suggests a high degree
of propagation of error into VOD relative to soil moisture. It
also suggests that the overall finding is robust because it is
unlikely that the satellite instrument and/or retrieval algorithm
are underestimating true VOD variability by a factor of four.

Consider that without estimates of the true soil moisture and
VOD signals as in Fig. 3, the ratio of Hessian matrix-estimated
soil moisture and VOD error standard deviations in Fig. 2
can be used to establish the conditions for error propagation
relatively more into VOD. Based on (5), the condition for error
to propagate into VOD relatively more (SNR Difference > 0)
can be written as

σ(VOD)Signal
σ(SM)Signal

<
σ(VOD)Error

σ(SM)Error

. (6)

Equation (6) states that for error to propagate more into VOD,
the ratio of the true VOD and soil moisture signals needs to be
less than the ratio of their errors. For the inequality in (6) to
hold and based on error ratio estimates from Fig. 2, the VOD
signal would need to be generally less than three times the soil
moisture variability across soil moisture and VOD conditions.
Though the range of retrieved VOD magnitudes can extend to
more than three times soil moisture’s range, retrievals of SMAP
and SMOS instead show that VOD standard deviations are only
a factor of 1.5 to 2 higher than soil moisture standard deviations
for the majority of vegetated pixels. This is generally well below
the ratios of the errors suggesting that the SNR difference is
typically greater than zero across the globe.

III. EFFECT OF REGULARIZATION ON SOIL MOISTURE AND

VOD RETRIEVAL ERRORS

We next investigate the effect of regularization on the retrieval
errors compared to the nonregularized simultaneous retrieval
approaches. Given the relatively higher VOD error sensitivity,
one can anticipate reductions in VOD error when implementing
a regularization approach. In this article, we regularized VOD
using the MT-DCA, which retrieves VOD by constraining its
dynamics in using TB information over a discrete number of
satellite overpasses (two by default)

min
X = VOD,SM1,SM2

J =

2∑
t=1

∑
p=H,V

(TBp Obs (X)− TBp Mod)
2

(7)
where a single VOD and two soil moisture values are retrieved
for an overpass pair using a total of four TB measurements. Equa-
tion (7) generates two time series of VOD: one where a given
overpasses’ VOD is retrieved using TB information from the
overpass before and one with the overpass after. This results in
two VOD retrievals for each overpass. Both series are averaged.
Thus, while VOD is held constant over a given overpass pair,
this is repeated for multiple time-adjacent overpass such that the
VOD is only temporally constrained for a given overpasses and
not held constant. This is similar to the Sobolev-norm approach,
which constrains the VOD time derivative between overpasses
explicitly within the cost function [38], [55]. We note that our
results are not specific to the MT-DCA here because repeating
the analysis with the Sobolev-norm regularization provides the
same qualitative findings (not shown). These approaches are
different from the Tikhonov regularization approach, which
constrains deviations from an a priori input time series of VOD
[39]. The MT-DCA is chosen here because it does not require
an a priori guess of the VOD variations and the timescale of
constraints between discrete overpasses is more tangible than
the Sobolev-norm continuous-based timescale representation
[33], [38]. Results here are most applicable to the MT-DCA
and Sobolev-norm regularization approaches. The results apply
to the Tikhonov approach, but Tikhonov approach would ad-
ditionally be a function of the chosen input a priori VOD time
series. Comparison between the retrievals of MT-DCA and other
regularization approaches is beyond the scope of this article.

There are two major assumptions of this time-constrained reg-
ularization. First, the true VOD behavior must be slower in time
(such as, more autocorrelated) than the soil moisture dynamics.
If dynamics of soil moisture are slower, then soil moisture could
instead be regularized to reduce errors. If the daily dynamics of
both variables occur over similar timescales, regularization may
not reduce errors. Nevertheless, such conditions of more rapid
VOD dynamics than soil moisture are unlikely given known
contribution of relatively slower dry biomass to VOD across
timescales as well as VOD retrievals globally indicating slower
responses to rain events than soil moisture [5], [7], [42]. Second,
TB changes between overpasses are non-negligible. Insufficient
changes in TB between overpasses fail to provide additional TB
information and the optimization converges to that of the DCA.
Such cases can occur if surface conditions remain stagnant or the
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instrument sampling frequency is too small to observe surface
changes. However, under most conditions, surface conditions
change sufficiently between the 1–3-day SMAP and SMOS
satellite revisits used in this article.

To first assess the effect of regularization on soil moisture and
VOD errors, we ran experiments where we simulated true soil
moisture and VOD time series such that the true soil moisture
and VOD solutions are known and algorithm performance with
respect to the true solutions can be assessed. We then converted
these time series into TB using the tau–omega model and ob-
scured the original signal by adding random noise. The same
noisy TB simulated time series are input into each algorithm
(regularized and simultaneous) and retrieved soil moisture and
VOD are produced. We then computed error deviations from de-
fined “true” time series using algorithms with and without VOD
regularization in the presence of random noise. No algorithm
has an advantage over another because they all receive the same
noisy inputs. The difference between the error deviations from
the regularized and simultaneous retrieval algorithms isolates
only changes in error due to regularization. Comparison between
different satellite-based products would instead be additionally
a function of algorithmic parameterization choices and sources
of TB observations [38].

Here, true soil moisture time series were simulated using a
stochastic rainfall generator: precipitation was randomly gen-
erated based on random draws of daily probability of rainfall
and storm intensity from uniform and exponential distributions,
respectively. The simulated precipitation time series was then
translated into soil moisture with gains based on a water bal-
ance “bucket” model and losses based on exponential losses
empirically determined previously [56]. True vegetation optical
depth time series were then generated that physically depend on
the soil moisture time series. Specifically, after rainfall, higher
soil moisture values result in increasing VOD and lower soil
moisture values result in decreasing VOD as found in previous
studies [7]. In addition to lower frequency biomass climatology
contributions, such VOD variations include higher frequency
variability on sub-weekly timescales given expected contribu-
tions from daily water loss, rehydration, and known rapid growth
dynamics in semiarid biomes [16], [42], [45]. This results in
lagged VOD responses to soil moisture variations as identified
previously in both simultaneous and regularized VOD retrievals
[42], [57]. Example true time series are shown in Fig. 4. We
examined the limiting case of VOD exactly varying with soil
moisture; such a scenario can occur if VOD is only a function
of water potential in the canopy, which generally varies exactly
with soil water potential at predawn. In violating one of the
main assumptions of regularization, this scenario generally leads
to converging behavior between the DCA and MT-DCA as
expected (not shown). Ultimately, the purpose is for the synthetic
time series to resemble observed satellite soil moisture and VOD
so that the results are applicable to the VOD behavior retrieved
by satellites. We assert that simulating the exact in situ dynamics
is not necessary to address our research questions here because a
range of selected dynamics would describe emerging qualitative
behavior from the radiative transfer model and algorithm. The
magnitudes of error metrics should be interpreted with caution
because we anticipate some dependence on the chosen true

Fig. 4. Example simulated time series for (A) soil moisture and (B) VOD truth,
retrieved without regularization (DCA), and retrieved with VOD regularization
(MT-DCA). Simulated time series with retrievals given a 1.1K TB error standard
deviation.

VOD dynamics and parameter selections. Nevertheless, the
VOD scenarios here likely present conservative estimates of
regularization’s error reduction in emphasizing rapid, subweekly
contributions to VOD temporal dynamics.

Next, the soil moisture and VOD time series were used to
create synthetic, true TBH and TBV time series by forward
modeling with the tau–omega model. Randomly generated nor-
mally distributed noise on the order of that determined for the
SMAP satellite [e.g., N(01.1K)] were then added to these true TB
series. Finally, using these noisy TB time series, soil moisture,
and VOD were estimated using the tau–omega model within
both DCA (VOD without regularization) and MT-DCA (VOD
with regularization) algorithms, while holding all other radiative
transfer parameters constant. See Fig. 4 for noisy retrieved
time series examples based on the simulated TB time series.
The root-mean-square error (RMSE) is computed between the
true simulated series and retrieved series both for soil moisture
and VOD. The default MT-DCA algorithm was used which
constrains VOD dynamics between time-adjacent overpasses
(1–3 days). This procedure was repeated in a Monte Carlo
setting by randomly generating TB noise [e.g., N(0, 1.1K)] to
generate soil moisture and VOD error distributions. The same
parameters as in Figs. 2 and 3 were used here. Note that the
TB time series were converted to emissivity by normalizing by
physical temperature such that physical temperature variations
and underlying assumptions are factored out.

The aforementioned simulation procedure isolates VOD and
soil moisture’s response to measurement noise as it propagates
through each algorithm. It also isolates the effect of regulariza-
tion on a given variable’s errors in comparing errors from the
DCA and MT-DCA. As expected, the soil moisture and VOD
RMSE from the simultaneous retrieval algorithm (DCA) within
these simulations have similar magnitudes as error standard
deviations computed theoretically in Fig. 2 (compare Figs. 2
and 5).
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Fig. 5. Regularization reduces both soil moisture and VOD errors. RMSE of
soil moisture and VOD for simultaneous retrieval algorithm (DCA) and VOD
regularization algorithm (MT-DCA). Computed based on simulated time series
where retrievals with random noise inputs were compared with true simulated
soil moisture and VOD time series. Error bars show 95% confidence interval.
Computed given a 1.1K TB error standard deviation and average soil moisture
of 0.2 m3 m−3.

Across a range of scenarios in varying mean soil moisture
and mean VOD, VOD RMSE are reduced by an average of
36% when using regularization (see Figs. 5 and S1). Soil
moisture RMSE are also reduced by an average of 22% with
regularization (see Fig. 5). This is less than that for VOD which
is a consequence of soil moisture’s already larger robustness to
error (see Fig. 3). Nevertheless, it has been shown previously
that VOD regularization brings satellite soil moisture dynamics
closer to in situ observed dynamics [27], [33], [38]. It can,
thus, be expected that regularization will create greater cor-
roboration with independent datasets for VOD than that found
for soil moisture. Equivalent studies for VOD are becoming
possible with more ground vegetation measurements of VOD or
observationally-constrained crop model output related to VOD
[15], [18], [19]. However, a greater number of sites across land
cover types will be needed to obtain robust results. Ideally,
measurements of VOD from multiple tower radiometers within a
satellite footprint would provide the most direct comparison with
satellite VOD, though such an effort is cost restrictive. Another
method is to use measurements of percent saturation and dry
biomass at satellite footprint scales (i.e., 36 km) along with
a method to convert these parameters to VOD, as in a recent
study [18]. We nevertheless provide further simulation-based
and indirect observation-based support for this expectation in
Section IV.

An example of the aforementioned effects can be seen in
Fig. 4. Error propagates more into VOD than soil moisture as
seen in the greater departures of the simultaneous retrievals for
VOD from the true values than for soil moisture. Such large VOD
departures from truth have been shown in previous simulations
[38]. For example, simultaneous VOD retrievals can result in
greater false detection of VOD increases when only VOD loss is
detected (see Fig. 4(B) between days 70 and 110). Regularized
VOD retrievals reduce these VOD departures and are better able
to detect peaks and declines in VOD on average [see Fig. 4(B)].

Greater regularization can be applied with VOD constrained
over longer timescales, analogously to increased regulariza-
tion in the Sobolev-norm approach. We repeated the MT-DCA
retrieval process for the conditions in Fig. 5, but with VOD
constrained and measurements used for retrieval over three
time-adjacent overpasses (4–6 day duration because of two
satellite overpass intervals) instead of two overpasses. We found
that there are diminishing benefits: on average VOD RMSE are
only reduced by an additional 8% and soil moisture RMSE
by an additional 2% beyond that of the error reductions from
the default level of regularization in the original MT-DCA (see
Figs. S1 and S2). Furthermore, increasing the degree of VOD
regularization can result in obscuring VOD dynamics that are
known to occur on subweekly timescales [42] (see Section IV).

Another benefit of regularization is that it reduces the positive
relationship between soil moisture and VOD errors (see Fig. 6).
Here, errors are computed as the difference between the retrieved
and simulated true values for each time step. Because of the cost
function structure generated by the tau-omega model (see Fig. 1
in [37]), soil moisture and VOD errors are positively related (see
Fig. 6). Errors propagating through the estimation move along
a valley within the cost function. Such an effect is amplified
when using a simultaneous retrieval approach such as the DCA
or LPRM that is ill-posed due to correlated TB measurements.
Note that at high VOD the valley within the cost function orients
along the VOD axis and the spurious positive soil moisture-VOD
coupling inherently reduces (see Fig. 6). Nevertheless, this rela-
tionship prescribed within the tau–omega model can confound
investigations of soil-plant relations because it does not reflect
real soil moisture-VOD coupling. In reducing soil moisture and
VOD’s sensitivity to noise, regularization reduces the correlation
between soil moisture and VOD errors at lower mean VOD and
across conditions at higher frequency components of variability
for soil moisture and VOD (see Fig. 6). This effect propagates
into reduced spurious correlations between the soil moisture and
VOD signals (see Section IV and [33]). Greater regularization
reduces the correlation further, but again at the expense of ob-
scuring real VOD dynamics on short timescales (see Section IV).

IV. EFFECT OF REGULARIZATION ON THE VOD SIGNAL

Though regularization reduces the VOD signal’s errors and
spurious coupling with soil moisture, it is unclear whether reg-
ularizing VOD will obscure real VOD dynamics at the shortest
timescales observed. We first evaluate the impact of regulariza-
tion on satellite VOD retrievals in comparing VOD with and
without regularization holding all other parameters constant.
Specifically, we compare nonregularized and regularized VOD
retrievals from DCA and MT-DCA approaches, respectively,
using SMAP L1C TB measurements between April 1st, 2015
and March 31st, 2019 [54], [58].

We choose this approach for several reasons. First, we were
able to apply the DCA and MT-DCA with the same radiative
transfer parameters such that the only difference between the
algorithms’ retrievals is that regularization is applied in the
MT-DCA. It, therefore, isolates only the effect of regularization
on retrieved soil moisture and VOD rather than other algorithmic
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Fig. 6. While soil moisture-VOD errors are positively correlated, regulariza-
tion tends to reduce this coupling, especially at short timescales. Temporal
correlation between soil moisture and vegetation optical depth errors. Shown
for both the simultaneous retrieval algorithm (DCA) and VOD regularization
algorithm (MT-DCA). (A) Pearson correlation coefficient between the errors.
The right axis (green lines) shows the error correlation when only considering
variability of less than 10-days. (B) Example raw soil moisture-VOD error
relationship from same simulation as that shown in Fig. 4 (p < 0.05). Computed
based on simulated time series where retrievals with random noise inputs were
compared with true simulated soil moisture and VOD time series. Error bars
show 95% confidence interval. Computed given a 1.1K TB error standard
deviation and average soil moisture of 0.2 m3 m−3.

decisions or data sources. We are unable to conduct such a
controlled experiment with official SMAP or SMOS products.
Second, in using our own algorithmic framework, the same
approach applied to the synthetic data in Figs. 4 to 6 can be
applied to the observed satellite TB data as well. This minimizes
differences in algorithm frameworks used throughout the study.
Third, the MT-DCA regularization was again used instead of the
Sobolev approach because of simplicity in interpreting how the
VOD regularization was applied (see Section III). Nevertheless,
these results are sensitive only to the fundamental structure of
the tau–omega model and effects of regularization—they are
not sensitive to the choice of the algorithm or product. Thus,
the same qualitative results would be found using alternative
algorithms and regularization approaches. Our goal is to evaluate
differences in regularized and simultaneous retrievals, not to

Fig. 7. Simultaneous (DCA) and regularized (MT-DCA) VOD retrievals tend
to differ most at higher frequencies (<10-day variability). (A) Power spectral
density of difference between regularized and simultaneously retrieved VOD.
Shown using SMAP data for a representative grassland pixel in Chad (13.7oN,
16.0oE). (B) Probability density function of correlation between DCA VOD
and MT-DCA VOD for different spectra using SMAP satellite retrievals from
all vegetated regions across the globe.

compare regularization approaches or satellite products. We are
not arguing in favor of any of the dataset sources or algorithms
presented here.

To test the effects of regularization on different VOD fre-
quency spectra, we computed the power spectral density of the
difference between global satellite retrieved MT-DCA VOD and
DCA VOD. The Lomb-Scargle periodogram method was used
due to irregular sampling frequencies in the microwave satellite
overpasses [59].

We find that regularized VOD appears to show differences
from nonregularized VOD mainly for periods of variability
below 10 days [see Fig. 7(A)]. This is expected given that
regularized VOD is constrained over 2-to-3-day periods and
spurious coupling reductions due to regularization appear largest
at this timescale (see Fig. 6). Thus, this would mainly influence
VOD’s subweekly variations.

We further investigate here whether regularization influences
only high frequency VOD variability across the globe. We define
high frequency here as the shorter timescale dynamics observed
for VOD of periods less than 10 days. We isolated DCA and
MT-DCA variability below a 10-day threshold chosen based on
Fig. 7(A). We suspected that there could be additional effects
on subseasonal variability up to 90 days. Therefore, the low
frequency (periods>90 days) and two high frequency bands
(periods<10 days and 10–90 days) of VOD were partitioned
from both the DCA and MT-DCA retrievals and then compared.
At each location, 10- and 90-day moving average windows were
fit to each VOD time series to approximately decompose each
frequency band for each pixel across the globe. The 90-day
moving average window produces time series with only low fre-
quency variability. The 10-day moving average was subtracted
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from the VOD time series to produce a time series with high
frequency variability of approximately less than 10-day periods.
Finally, 10–90-day variability was computed by subtracting
both the greater than 90-day moving average and 10-day high
frequency variability from the VOD time series. This process
was repeated for both the DCA and MT-DCA at each pixel.
We computed Pearson’s correlation coefficients between the
MT-DCA and DCA VOD variability within each spectral band
to determine the effect of regularization on these components of
the signal.

Across the globe, regularizing VOD mainly influences the
high frequency VOD dynamics below 10 days, reducing tem-
poral correspondence with the nonregularized retrievals [global
mean ρ= 0.77; global mean absolute mean difference < 0.001;
Fig. 7(B)]. The lower frequency seasonal and interannual dy-
namics as well as 10–90-day subseasonal dynamics are less
impacted [global mean ρ > 0.95; Fig. 7(B)].

We caution that Fig. 7 does not suggest that regulation should
only be applied when interpreting subweekly VOD variations.
Rather, Fig. 7 serves as motivation to further evaluate the sub-
weekly VOD signal, which changes most with regularization.
It is well known that regularization reduces soil moisture errors
[24], [33]. Furthermore, analyses evaluating only low frequency
properties of VOD (i.e., seasonal cycles, annual means, etc.)
are still impacted by high frequency noise and would have
error reduction benefits from regularization. This is because
the high frequency variability due to noise has large impacts
on the RMSE of the full VOD time series (see Figs. 5 and 6).
Even the low frequency VOD variability alone shows root mean
square differences of 0.01 and mean absolute biases of 0.01
(increasing to 0.03 in forested regions) between simultaneous
and regularized low frequency VOD retrievals. It was also re-
cently shown that the spurious coupling between soil moisture
and VOD persists on monthly timescales, which can be reduced
with regularization [33]. Therefore, regularization can remove
effects of noise holistically in soil moisture and VOD time series.

While regularization influences high frequency variability of
VOD relatively more, it is unclear whether regularization ben-
efits short term VOD dynamics in removing errors or obscures
real VOD dynamics in applying temporal constraints. We first
assess this issue using our simulations. Here, we correlated the
noisy retrievals (with and without regularization) with the true
simulated time series at high frequencies (periods <10 days).
We also evaluated how much soil moisture-VOD correlation,
a coupling metric, deviates from the true simulated coupling
with and without regularization. Such an investigation can iso-
late whether regularization improves satellite VOD’s ability to
represent true VOD dynamics at high frequencies, the subject
of recent work [11], [42].

We find that regularized retrievals more closely resemble the
true high frequency variability of both soil moisture and VOD
(see Fig. 8). Across scenarios, regularization significantly (p
< 0.01) increases the correlation of VOD with true dynamics
at high frequencies (periods of <10 days). Statistical signifi-
cance was determined based on parametric two sample t-tests of
means (where Kolmogorov–Smirnov tests did not indicate non-
normal distributions) [60]. Regularization of VOD additionally

Fig. 8. Regularization increases soil moisture and VOD temporal correlation
with true variations on sub-weekly timescales. Correlation between simulated
noisy time series and truth for soil moisture and VOD for their high frequency
components (<10 day periods). Shown for both the simultaneous retrieval
algorithm (DCA) and VOD regularization algorithm (MT-DCA). In all cases,
differences between DCA and MT-DCA metrics are statistically significant
(p < 0.01). Computed based on simulated time series where retrievals with
random noise inputs were compared with true simulated soil moisture and VOD
time series. Computed given a 1.1K TB error standard deviation and average
soil moisture of 0.2 m3 m−3.

Fig. 9. While simultaneous retrieval methods positively bias soil moisture-
VOD coupling, regularization reduces this bias. Difference between the retrieved
soil moisture-VOD correlation and the true correlation for their high frequency
components (<10-day periods). Shown for both the simultaneous retrieval
algorithm (DCA) and VOD regularization algorithm (MT-DCA). Note that
the correlations are positive in nearly all cases. Computed based on simulated
time series where retrievals with random noise inputs were compared with true
simulated soil moisture and VOD time series. Computed given a 1.1K TB error
standard deviation and average soil moisture of 0.2 m3 m−3.

increases the soil moisture correspondence to truth at subweekly
timescales (see Fig. 8). Regularized retrievals also more closely
resemble the true soil moisture-VOD coupling (see Fig. 9).
The regularized retrieval’s improved resemblance to the truth
is largely because the spurious positive correlations due to error
are reduced (see Fig. 6). This error correlation tends to positively
bias correlation metrics evaluating soil moisture-VOD coupling
mostly at high frequencies (see Fig. 9). Note that the exact
magnitudes of correlation depend on the temporal dynamics of
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the simulated soil moisture and VOD time series. The qualitative
result that holds across conditions is that regularization reduces
these error correlations such that soil moisture-VOD coupling
can be more reliably evaluated (see Fig. 9). The reductions in
spurious coupling translate to lower frequency components of
the soil moisture-VOD time series as shown previously [33].
Therefore, recent studies evaluating soil moisture and VOD
dynamics across timescales, and especially shorter timescales
(i.e., drydown dynamics), can benefit from regularization [56],
[61]. Note that the ability to represent true VOD high frequency
dynamics under heavy tree cover (high VOD) is generally lower
altogether (see Figs. 5 and 8).

Increasing the degree of regularization by constraining VOD
over more overpasses presents diminishing returns. In constrain-
ing VOD over three instead of two overpasses, the full VOD
signal experiences marginal, nonstatistically significant mean
increases in correspondence between truth and retrieved VOD
in the presence of noise (see Fig. S2). However, under greater
regularization, the higher frequency, subweekly VOD variability
tends to show decreases in correspondence between the retrieved
VOD series and truth, especially for lower mean VOD (see
Fig. S3). This is expected given that regularization mostly
imposes restrictions on VOD changes on shorter timescales.
Over-regularizing will thus obscure real VOD changes on sub-
weekly timescales in taking on features of a low-pass filter.
Given the timescale of physical processes governing VOD
changes and satellite overpass revisit timescale, it appears that
regularizing VOD over periods of no more than three days is
optimal, especially for regions with lower mean VOD (see Fig.
S3). Some biomes like forested regions may have a different
optimal degree of regularization. In the case of the Sobolev-norm
regularization approach, the parameter penalizing changes in
VOD would need to be similarly adjusted to determine at what
point over-regularization occurs as in [33].

Do the effects and perceived benefits of regularization ap-
pear in global VOD responses to climate, especially at shorter
timescales? We evaluated the satellite observed VOD response
to rainfall with and without regularization to assess imprints
of errors and regularization found in the simulations on the
satellite-retrieved VOD subweekly variability. We computed the
percentage of rainfall events where VOD increases (likely rep-
resenting plant water uptake faster than transpiration or biomass
loss) for both the DCA and MT-DCA. Rainfall events were
defined using the soil moisture drydown identification technique
in [42].

VOD dynamics on subweekly timescales, in response to storm
events, show the same global spatial pattern between the two
algorithms, but with a mean bias (see Fig. 10). Specifically, as
found previously, SMAP VOD shows more frequent increases
after rainfall in semiarid regions than in more humid, wooded
regions across both algorithms (see Fig. 10) [7], [42]. This
response and spatial pattern are shown in both regularized and
nonregularized VOD retrievals (spatial Pearson correlation co-
efficient of 0.89; p<0.01). However, a mean bias is present:
MT-DCA VOD increases in response to storms occur more
frequently (by 7% on average) than VOD increases from the
DCA.

Fig. 10. Reduced spurious soil moisture-VOD coupling from regularization
results in more frequent VOD increases after rain events as shown in global
retrievals. Plotted variable shows percentage of storms where there is a VOD
increase response during soil drying on the first overpass after a storm.Vegetation
optical depth post rain storm response from (A) dual channel algorithm and from
a (B) regularization approach (MT-DCA). Computed based on VOD retrievals
from SMAP TB measurements.

We argue that the DCA having less frequent VOD increase
responses is due to measurement error artificially inducing a
positive relationship between soil moisture and VOD (see Figs. 6
and 9). Since the VOD responses are evaluated during soil
moisture drying (decreases) after storms, measurement error
will tend to cause VOD to decrease in step with soil moisture
artificially, as shown in Fig. 6. Thus, regardless of the true
VOD response during soil drying, noise will negatively bias
the metric in Fig. 10 in driving VOD decreases. Thus, with
greater susceptibility to error in the DCA, DCA-retrieved VOD
artificially decreases more frequently after storms. In contrast,
regularization within the MT-DCA reduces the positive soil
moisture-VOD error relationship, as shown in Fig. 6, by reducing
the correlation of soil moisture and VOD errors. As shown
in Fig. 9, this reduces biases in soil moisture-VOD coupling.
As such, regularized VOD shows more frequent increases after
storms; poststorm VOD increases would be a sign of a negative
soil moisture-VOD relationship. Furthermore, these regularized
VOD increases are less prone to spurious changes due to noise
(see Figs. 5, 8, and 9). These more frequent VOD increases,
especially in semiarid regions, are expected from recent investi-
gations linking these VOD responses to rapid plant hydraulic and
photosynthetic mechanisms [42], [62]. A similar case of error
correlations may be occurring in croplands where post-growing
season artificial VOD increases manifest from improperly rep-
resenting tilling-based soil roughness increases [18], [26].
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Of note is that the regularized retrievals also still show rainfall
responses indicating that the subweekly signal is not suppressed.
If the MT-DCA regularization suppressed subweekly VOD dy-
namics as in a low-pass filter, the spatial pattern shown using
the simultaneous retrievals (DCA) would not persist and the
percentage of storms where VOD increases computed based
on the regularized VOD (MT-DCA) would converge to 50%
indicating no consistent response (with equal, random increases
and decreases of VOD after storms where VOD is decoupled
from rainfall driven soil moisture responses).

In summary, the regularized VOD poststorm behavior shown
in the satellite retrievals likely reflects real VOD dynamics at
subweekly timescales beyond that of snapshot DCA retrievals
(see Fig. 10). First, regularization increases occurrence of VOD
increases after storms, which is indicative of more negative
soil moisture-VOD relationships. This suggests DCA retrievals
are influenced by error-induced positive soil moisture-VOD
relationships (see Fig. 6) and that regularization reduces these
artifacts. Second, despite regularization potentially imposing
constrained VOD change restrictions between overpasses that
could obscure short-timescale VOD dynamics, we show that
moderately regularized VOD can represent the true VOD dy-
namics at subweekly timescales more than simultaneous VOD
retrievals can (see Figs. 8 and 9). Additional credence is given
to the regularized post-rainfall VOD responses in Fig. 10(B)
because they were previously found to reflect in situ plant
hydraulic and photosynthetic responses [42], [62]. However,
greater regularization instead begins to obscure the subweekly
VOD signal (see Fig. S3), despite modest error reductions of the
entire VOD signal. Nevertheless, there is no evidence that the
VOD responses are subdued or overconstrained here in using
the default MT-DCA that uses moderate regularization. This
is because both regularized and simultaneous retrievals show
similar spatial patterns of VOD response in Fig. 10, whereas
over-regularized retrievals would converge to values of 50%
everywhere (with random increases and decreases of VOD).

Ultimately, a moderate degree of regularization brings VOD
closer to the simulated true VOD time series, improves soil-
moisture VOD coupling metrics, and removes features of noise-
based artifacts from the plant pulse-response rainfall responses
compared to simultaneous VOD retrievals. Equivalent investi-
gations should be attempted on how error patterns here influence
studies evaluating diurnal changes in VOD [11], [63].

V. CONCLUSION

We find that microwave sensor measurement errors tend
to propagate disproportionately into vegetation optical depth
(related to water mass per unit area in the vegetation canopy)
compared to soil moisture. Measurement errors result in spuri-
ous relationships between soil moisture and VOD that confound
their joint study, for example, of soil-plant water relations. Mod-
erately constraining (or regularizing) VOD dynamics by using
measurement information from temporally adjacent satellite
overpasses creates greater soil moisture and VOD robustness
to error and reduces spurious positive relationships between
soil moisture and VOD. As such, regularized VOD is closer

to the true simulated VOD variations and soil moisture-VOD
coupling biases are reduced, especially at the shortest timescales
observed. This results in reduced effects of noise on globally
retrieved VOD rainfall responses, linked previously to plant
rehydration and growth. We, therefore, recommend VOD time-
constrained regularization for the large-scale study of vegeta-
tion temporal dynamics and soil-plant water relations across
timescales. This advocates for recent efforts to regularize VOD
in SMAP and SMOS official products. We also recommend
further work in evaluating the optimal degree of regulariza-
tion needed as more in situ vegetation information related to
VOD becomes available at large scales. The results mainly
pertain to time-derivative constraints such as in the MT-DCA
and Sobolev-norm regularization approaches. Further work is
needed to determine if inputting a priori VOD time series such as
in the Tikhonov regularization confers the same benefits outlined
here.

As these results reflect the formulation of the radiative trans-
fer model, they may change with alternative electromagnetic
modeling approaches of surface microwave emission (such as,
first-order models that are applicable for woody vegetation or
multifrequency approaches). However, the majority of soil mois-
ture and VOD retrieval approaches maintain the general structure
of the tau–omega model. These results are, thus, anticipated to
be general and apply to retrieval approaches across microwave
soil moisture satellite missions.
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