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Abstract

We present a geometric Lagrangian formulation for first-order field theories with dis-

sipation. This formulation is based on the k-contact geometry introduced in a previous

paper, and gathers contact Lagrangian mechanics with k-symplectic Lagrangian field the-

ory together. We also study the symmetries and dissipation laws for these nonconservative

theories, and analyze some examples.
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1 Introduction

In the last years the methods of differential geometry have been used to develop an intrinsic

framework to describe dissipative or damped systems, in particular using contact geometry

[2, 17, 24]. It has been applied to give both the Hamiltonian and the Lagrangian descriptions

of mechanical systems with dissipation [3, 5, 7, 8, 9, 13, 16, 25, 27]. Contact geometry has

other physical applications, as for instance thermodynamics, quantum mechanics, circuit theory,

control theory, etc (see [4, 8, 20, 24, 28], among others). All of them are described by ordinary

differential equations to which some terms that account for the dissipation or damping have

been added.

These geometric methods have been also used to give intrinsic descriptions of the Lagrangian

and Hamiltonian formalisms of field theory; in particular, those of multisymplectic and k-

symplectic geometry (see, for instance, [6, 12, 14, 18, 29, 31] and references therein). Nev-

ertheless, all these methods are developed, in general, to model systems of variational type; that

is, without dissipation or damping.

In a recent paper [15] we have introduced a generalization of both contact geometry and

k-symplectic geometry to describe field theories with dissipation, and more specifically their

Hamiltonian (De Donder–Weyl) covariant formulation. This new formalism is inspired by con-

tact Hamiltonian mechanics, where the addition of a “contact variable” s allows to describe

dissipation terms; geometrically this new variable comes from a contact form instead of the

usual symplectic form of Hamiltonian mechanics. In the field theory case, if k is the number

of independent variables (usually space-time variables), we add k new dependent variables sα

to introduce dissipation terms in the De Donder–Weyl equations. These new variables can be

obtained geometrically from the notion of k-contact structure: a family of k differential 1-forms

ηα satisfying certain properties. Then a k-contact Hamiltonian system is a manifold endowed

with a k-contact structure and a Hamiltonian function H. With these elements we can state

the k-contact Hamilton equations, which indeed add dissipation terms to the usual Hamiltonian

field equations. The study of their symmetries also allows to obtain some dissipation laws. This

formalism was applied to two relevant examples: the damped vibrating string and Burgers’

equation.

The aim of this paper is to extend the above study, developing the Lagrangian formalism of

field theories with dissipation, mainly in the regular case. For this purpose, the aforementioned

k-contact structure will be used to generalize the Lagrangian formalism of the contact mechanics

presented in [9, 16] and the Lagrangian k-symplectic formulation of classical field theories [12, 29].

In this new formalism the phase bundle is ⊕kTQ × R
k = (TQ⊕ k. . . ⊕TQ) × R

k. Then, given

a Lagrangian function L : ⊕k TQ× R
k → R, one defines k differential 1-forms ηαL which, when

L is regular, constitute a k-contact structure on the phase bundle. The k-contact Lagrangian

field equations are then defined as the k-contact Hamiltonian field equations for the Lagrangian

energy EL. When written in coordinates they are the Euler–Lagrange equations for L with some

additional terms which account for dissipation.

We also study several types of symmetries for these Lagrangian field theories, as well as

their associated dissipation laws, which are characteristic of dissipative systems, and are the

analogous to the conservation laws for conservative systems.

As examples of this formalism we study the construction of a k-contact Lagrangian formu-
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lation for a class of second-order elliptic and hyperbolic partial differential equations, and we

exemplify this procedure with the equation of the damped vibrating membrane. In another ex-

ample we illustrate the difference between the linear terms that appear in the equations arising

from magnetic-like terms and those coming from a k-contact formulation.

The paper is organized as follows. Section 2 is devoted to briefly review several preliminary

concepts on k-symplectic manifolds, k-contact geometry and k-contact Hamiltonian systems for

field theories with dissipation. In Section 3 we introduce the notion of k-contact Lagrangian

system, and set the geometric framework for the Lagrangian formalism of field theories with

dissipation, stating the geometric form of the contact Euler–Lagrange equations in several equiv-

alent ways, as well as the Legendre transformation and the associated canonical Hamiltonian

formalism. In Section 4 we study several types of Lagrangian symmetries and the relations

between them, as well as the corresponding dissipation laws. Finally, some examples are given

in Section 5.

Throughout the paper all the manifolds and mappings are assumed to be smooth. Sum over

crossed repeated indices is understood.

2 Preliminaries

2.1 k-tangent bundle, k-vector fields and geometric structures

(See [12, 29] for more details).

Let Q be a manifold and consider ⊕kTQ = TQ⊕ k. . . ⊕TQ (it is called the k-tangent

bundle or bundle of k1-velocities of Q), which is endowed with the natural projections to each

direct summand and to the base manifold:

τα : ⊕k TQ→ TQ , τ1Q : ⊕k TQ→ Q .

A point of ⊕kTQ is wq = (v1q, . . . , vkq) ∈ ⊕kTQ, where (vi)q ∈ TqQ.

A k-vector field on Q is a section X : Q −→ ⊕kTQ of the projection τ1Q. It is specified by

giving k vector fields X1, . . . ,Xk ∈ X(Q), obtained as Xα = τα ◦ X; for 1 ≤ α ≤ k, and it is

denoted X = (X1, . . . ,Xk).

Given a map φ : D ⊂ R
k → Q, the first prolongation of φ to ⊕kTQ is the map φ′ : D ⊂

R
k → ⊕kTQ defined by

φ′(t) =

(
φ(t),Tφ

(
∂

∂t1

∣∣∣
t

)
, . . . ,Tφ

(
∂

∂tk

∣∣∣
t

))
≡ (φ(t);φ′α(t)) ,

where t = (t1, . . . , tk) are the canonical coordinates of Rk. A map ϕ : D ⊂ R
k → ⊕kTQ is said

to be holonomic if it is the first prolongation of a map φ : D ⊂ R
k → Q.

A map φ : D ⊂ R
k → Q is an integral map of a k-vector field X = (X1, . . . ,Xk) when

φ′ = X ◦ φ . (1)

Equivalently, Tφ ◦
∂

∂tα
= Xα ◦ φ, for every α. A k-vector field X is integrable if every point

of Q is in the image of an integral map of X.
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In coordinates, if Xα = Xi
α

∂

∂xi
, then φ is an integral map of X if, and only if, it is a solution

to the following system of partial differential equations:

∂φi

∂tα
= Xi

α(φ) .

A k-vector field X = (X1, . . . ,Xk) is integrable if, and only if, [Xα,Xβ ] = 0, for every α, β

[26]; these are the necessary and sufficient conditions for the integrability of the above system

of partial differential equations.

As in the case of the tangent bundle, local coordinates (qi) in U ⊂ Q induce natural coordi-

nates (qi, viα) in (τ1Q)
−1(U) ⊂ ⊕kTQ, with 1 ≤ i ≤ n and 1 ≤ α ≤ k.

Given α and wq ∈ ⊕kTQ, there exists a natural map (Λ
wq
q )α : TqQ → Twq(⊕

kTQ), called

the α-vertical lift from q to wq, defined as

(Λ
wq
q )α(uq) =

d

dλ
(v1q, . . . , vα−1q, vαq + λuq, vα+1q, . . . , vkq)|λ=0

.

In coordinates, if uq = ai
∂

∂qi

∣∣∣
q
, we have (Λ

wq
q )α(uq) = ai

∂

∂viα

∣∣∣
wq

. Observe that these α-vertical

lifts are τ1Q-vertical vectors. These vertical lifts extend to vector fields in a natural way; that is,

if X ∈ X(Q), then its α-vertical lift, Λα(X) ∈ X(⊕kTQ), is given by (Λα(X))wq := (Λ
wq
q )α(Xq).

The canonical k-tangent structure on ⊕kTQ is the set (J1, . . . , Jk) of tensor fields of

type (1, 1) in ⊕kTQ defined as

Jα
wq

:= (Λ
wq
q )α ◦ Twqτ

1
Q .

In natural coordinates we have Jα =
∂

∂viα
⊗ dqi.

The Liouville vector field ∆ ∈ X(⊕kTQ) is the infinitesimal generator of the flow ψ : R×

⊕kTQ −→ ⊕kTQ, given by ψ(t; v1q, . . . , vkq) = (etv1q, . . . , e
tvkq). Observe that ∆ = ∆1 + . . .+

∆k, where each ∆α ∈ X(⊕kTQ) is the infinitesimal generator of the flow ψα : R × ⊕kTQ −→

⊕kTQ

ψα(s; v1q, . . . , vkq) = (v1q, . . . , v(α−1)q , e
tvαq, v(α+1)q , . . . , vkq) .

In coordinates, ∆ = viα
∂

∂viα
.

Given a map Φ: M → N , there exists a natural extension ⊕kTΦ: ⊕kTM → ⊕kTN , defined

by

⊕kTΦ(v1q, . . . , vkq) := (TqΦ(v1q), . . . ,TqΦ(vkq)) .

By definition, a k-vector field Γ = (Γ1, . . . ,Γk) in ⊕kTQ is a section of the projection

τ1⊕kTQ : T(⊕kTQ)⊕ k. . . ⊕T(⊕kTQ) → ⊕kTQ .

Then, we say that Γ is a second order partial differential equation (sopde) if it is also a

section of the projection

⊕kTτ1Q : T(⊕kTQ)⊕ k. . . ⊕T(⊕kTQ) → ⊕kTQ ;

that is, ⊕kTτ1Q ◦ Γ = Id⊕kTQ = τ1
⊕kTQ

◦ Γ. Notice that a k-vector field Γ in ⊕kTQ is a sopde

if, and only if, Jα(Γα) = ∆.



J. Gaset et al — A k-contact Lagrangian formulation for nonconservative field theories 5

In addition, an integrable k-vector field Γ = (Γ1, . . . ,Γk) in ⊕kTQ is a sopde if, and only

if, its integrable maps are holonomic.

In natural coordinates, the expression of the components of a sopde is Γα = viα
∂

∂qi
+Γiαβ

∂

∂viβ
.

Then, if ψ : Rk → ⊕kTQ, locally given by ψ(t) = (ψi(t), ψiβ(t)), is an integral map of an

integrable sopde, from (1) we have that

∂ψi

∂tα

∣∣∣
t
= ψiα(t) ,

∂ψiβ
∂tα

∣∣∣
t
= Γiαβ(ψ(t)) .

Furthermore, ψ = φ′, where φ′ is the first prolongation of the map φ = τ ◦ψ : Rk
ψ
→ ⊕kTQ

τ
→ Q,

and hence φ is a solution to the system of second order partial differential equations

∂2φi

∂tα∂tβ
(t) = Γiαβ

(
φi(t),

∂φi

∂tγ
(t)

)
. (2)

Observe that, from (2) we obtain that, if Γ is an integrable sopde, then Γiαβ = Γiβα.

2.2 k-symplectic manifolds

(See [1, 10, 11, 12, 29] for more details.)

Let M be a manifold of dimension N = n + kn. A k-symplectic structure on M is

a family (ω1, . . . , ωk;V ), where ωα (α = 1, . . . , k) are closed 2-forms, and V is an integrable

nk-dimensional tangent distribution on M such that

(i) ωα|V×V = 0 (for every α) , (ii)

k⋂

α=1

kerωα = {0} .

Then (M,ωα, V ) is called a k-symplectic manifold.

For every point ofM there exist a neighbourhood U and local coordinates (qi, pαi ) (1 ≤ i ≤ n,

1 ≤ α ≤ k) such that, on U ,

ωα = dqi ∧ dpαi , V =

〈
∂

∂p1i
, . . . ,

∂

∂pki

〉
.

These are the so-called Darboux or canonical coordinates of the k-symplectic manifold [1].

The canonical model for k-symplectic manifolds is ⊕kT∗Q = T∗Q⊕ k. . . ⊕T∗Q, with natural

projections

πα : ⊕k T∗Q→ T∗Q , π1Q : ⊕k T∗Q → Q .

As in the case of the cotangent bundle, local coordinates (qi) in U ⊂ Q induce natural coordinates

(qi, pαi ) in (π1Q)
−1(U). If θ and ω = −dθ are the canonical forms of T∗Q, then ⊕kT∗Q is endowed

with the canonical forms

θα = (πα)∗θ , ωα = (πα)∗ω = −(πα)∗dθ = −dθα, (3)

and in natural coordinates we have that θα = pαi dq
i and ωα = dqi ∧ dpαi . Thus, the triple

(⊕kT∗Q,ωα, V ), where V = ker Tπ1Q, is a k-symplectic manifold, and the natural coordinates in

⊕kT∗Q are Darboux coordinates.
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2.3 k-contact structures

The definition of k-contact structure has been recently introduced in [15], where the reader can

find more details.

Remember that, if M is a smoooth manifold of dimension m, a (generalized) distribution

on M is a subset D ⊂ TM such that, for every x ∈ M , Dx ⊂ TxM is a vector subspace. The

distribution D is smooth when it can be locally spanned by a family of smooth vector fields, and

is regular when it is smooth and has locally constant rank. A codistribution on M is a subset

C ⊂ T∗M with similar properties. The annihilator D◦ of a distribution D is a codistribution.

A (smooth) differential 1-form η ∈ Ω1(M) generates a smooth codistribution that we denote

by 〈η〉 ⊂ T∗M ; it has rank 1 at every point where η does not vanish. Its annihilator is a

distribution 〈η〉◦ ⊂ TM ; it can be described also as the kernel of the vector bundle morphism

η̂ : TM →M × R defined by η. This distribution has corank 1 at every point where η does not

vanish.

Now, given k differential 1-forms η1, . . . , ηk ∈ Ω1(M), let:

CC = 〈η1, . . . , ηk〉 ⊂ T∗M ,

DC =
(
CC
)◦

= ker η̂1 ∩ . . . ∩ ker η̂k ⊂ TM ,

DR = ker d̂η1 ∩ . . . ∩ ker d̂ηk ⊂ TM ,

CR =
(
DR
)◦

⊂ T∗M .

Definition 2.1. A k-contact structure onM is a family of k differential 1-forms ηα ∈ Ω1(M)

such that, with the preceding notations,

(i) DC ⊂ TM is a regular distribution of corank k; or, what is equivalent, η1 ∧ . . . ∧ ηk 6= 0,

at every point.

(ii) DR ⊂ TM is a regular distribution of rank k.

(iii) DC ∩ DR = {0} or, what is equivalent,
k⋂

α=1

(
ker η̂α ∩ ker d̂ηα

)
= {0}.

We call CC the contact codistribution; DC the contact distribution; DR the Reeb distri-

bution; and CR the Reeb codistribution.

A k-contact manifold is a manifold endowed with a k-contact structure.

Remark 2.2. If conditions (i) and (ii) hold, then (iii) is equivalent to

(iii ′) TM = DC ⊕DR.

For k = 1 we recover the definition of contact structure.

Theorem 2.3. Let (M,ηα) be a k–contact manifold.

1. The Reeb distribution DR is involutive, and therefore integrable.

2. There exist k vector fields Rα ∈ X(M), the Reeb vector fields, uniquely defined by the

relations

i(Rβ)η
α = δαβ , i(Rβ)dη

α = 0 . (4)
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3. The Reeb vector fields commute, [Rα,Rβ] = 0, and they generate DR.

There are coordinates (xI ; sα) such that

Rα =
∂

∂sα
, ηα = dsα − fαI (x) dx

I ,

where fαI (x) are functions depending only on the xI , which are called adapted coordinates

(to the k-contact structure).

Example 2.4. Given k ≥ 1, the manifold (⊕kT∗Q) × R
k has a canonical k-contact structure

defined by the 1-forms

ηα = dsα − θα ,

where sα is the α-th cartesian coordinate of Rk, and θα is the pull-back of the canonical 1-form

of T∗Q with respect to the projection (⊕kT∗Q)×R
k → T∗Q to the α-th direct summand. Using

coordinates qi on Q and natural coordinates (qi, pαi ) on each T∗Q, their local expressions are

ηα = dsα − pαi dq
i ,

from which dηα = dqi ∧ dpαi , and the Reeb vector fields are

Rα =
∂

∂sα
.

The following result ensures the existence of canonical coordinates for a particular kind of

k-contact manifolds:

Theorem 2.5 (k-contact Darboux theorem). Let (M,ηα) be a k–contact manifold of dimension

n+kn+k such that there exists an integrable subdistribution V of DC with rankV = nk. Around

every point of M , there exists a local chart of coordinates (U ; qi, pαi , s
α), 1 ≤ α ≤ k , 1 ≤ i ≤ n,

such that

ηα|U = dsα − pαi dq
i .

In these coordinates,

DR|U =

〈
Rα =

∂

∂sα

〉
, V|U =

〈
∂

∂pαi

〉
.

These are the so-called canonical or Darboux coordinates of the k-contact manifold.

This theorem allows us to consider the manifold presented in the example 2.4 as the canonical

model for these kinds of k-contact manifolds.

2.4 k-contact Hamiltonian systems

Together with k-contact structures, k-contact Hamiltonian systems have also been defined in

[15].

A k-contact Hamiltonian system is a family (M,ηα,H), where (M,ηα) is a k-contact

manifold, and H ∈ C∞(M) is called a Hamiltonian function. The k-contact Hamilton–de

Donder–Weyl equations for a map ψ : D ⊂ R
k →M are

{
i(ψ′

α)dη
α =

(
dH− (LRαH)ηα

)
◦ ψ ,

i(ψ′
α)η

α = −H ◦ ψ .
(5)
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The k-contact Hamilton–de Donder–Weyl equations for a k-vector fieldX = (X1, . . . ,Xk)

in M are {
i(Xα)dη

α = dH− (LRαH)ηα ,

i(Xα)η
α = −H .

(6)

Their solutions are called Hamiltonian k-vector fields. These equations are equivalent to

{
LXαη

α = −(LRαH)ηα ,

i(Xα)η
α = −H .

(7)

Solutions to these equations always exist, although they are neither unique, nor necessarily

integrable.

If X is an integrable k-vector field in M , then every integral map ψ : D ⊂ R
k → M of X

satisfies the k-contact equation (5) if, and only if, X is a solution to (6). Notice, however, that

equations (5) and (6) are not, in general, fully equivalent, since a solution to (5) may not be an

integral map of some integrable k-vector field in M solution to (6).

An alternative, partially equivalent, expression for the Hamilton–De Donder–Weyl equations,

which does not use the Reeb vector fields Rα, can be given as follows. Consider the 2-forms

Ωα = −H dηα+dH∧ηα. On the open set O = {p ∈M ; H(p) 6= 0}, if a k-vector field X = (Xα)

satisfies {
i(Xα)Ω

α = 0 ,

i(Xα)η
α = −H ,

(8)

then X is a solution of the Hamilton–De Donder–Weyl equations (6)). Any integral map ψ of

such a k-vector field is a solution to

{
i(ψ′

α)Ω
α = 0 ,

i(ψ′
α)η

α = −H ◦ ψ .
(9)

Remark 2.6. If the family (M,ηα) does not hold some of the conditions of Definition (2.1),

then (M,ηα) is called a k-precontact manifold and (M,ηα,H) is said to be a k-precontact

Hamiltonian system. In this case, the Reeb vector fields are not uniquely defined. However,

as it happens in other similar situations (precosymplectic mechanics, k-precosymplectic field

theories or precontact mechanics) [9, 23], it could be proved that equations (5) and (6) does not

depend on the used Reeb vector fields and, thus, the equations are still valid.

In canonical coordinates, if ψ = (qi(tβ), pαi (t
β), sα(tβ)), then ψ′

α =
(
qi, pαi , s

α,
∂qi

∂tβ
,
∂pαi
∂tβ

,
∂sα

∂tβ

)
,

and these equations read 



∂qi

∂tα
=
∂H

∂pαi
◦ ψ ,

∂pαi
∂tα

= −

(
∂H

∂qi
+ pαi

∂H

∂sα

)
◦ ψ ,

∂sα

∂tα
=

(
pαi
∂H

∂pαi
−H

)
◦ ψ ,

(10)
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If X = (Xα) is a k-vector field solution to (8) and in canonical coordinates we have that

Xα = Xβ
α

∂

∂sβ
+Xi

α

∂

∂qi
+Xβ

αi

∂

∂pβi
, then





Xi
α =

∂H

∂pαi
,

Xα
αi = −

(
∂H

∂qi
+ pαi

∂H

∂sα

)
,

Xα
α = pαi

∂H

∂pαi
−H ,

(11)

3 k-contact Lagrangian field theory

3.1 k-contact Lagrangian systems

Using the geometric framework introduced in Section 2.1, we are ready to deal with Lagrangian

systems with dissipation in field theories. First we need to enlarge the bundle in order to include

the dissipation variables. Then, consider the bundle ⊕kTQ× R
k with canonical projections

τ̄1 : ⊕k TQ× R
k → ⊕kTQ , τ̄k : ⊕k TQ×R

k → TQ , sα : ⊕k TQ× R
k → R .

Natural coordinates in ⊕kTQ× R
k are (qi, viα, s

α).

As ⊕kTQ×R
k → ⊕kTQ is a trivial bundle, the canonical structures in ⊕kTQ (the canonical

k-tangent structure and the Liouville vector field described above) can be extended to ⊕kTQ×R
k

in a natural way, and are denoted with the same notation (Jα) and ∆. Then, using these

structures, we can extend also the concept of sode k-vector fields to ⊕kTQ× R
k as follows:

Definition 3.1. A k-vector field Γ = (Γα) in ⊕kTQ× R
k is a second order partial differ-

ential equation ( sopde) if Jα(Γα) = ∆.

The local expression of a sopde is

Γα = viα
∂

∂qi
+ Γiαβ

∂

∂viβ
+ gβα

∂

∂sβ
. (12)

Definition 3.2. Let ψ : Rk → Q × R
k be a section of the projection Q × R

k → R
k; with

ψ = (φ, sα), where φ : Rk → Q. The first prolongation of ψ to ⊕kTQ × R
k is the map

σ : Rk → ⊕kTQ× R
k given by σ = (φ′, sα). The map σ is said to be holonomic.

The following property is a straightforward consequence of the above definitions and the

results about sopdes in the bundle ⊕kTQ given in Section 2.1:

Proposition 3.3. A k-vector field Γ in ⊕kTQ×R
k is a sopde if, and only if, its integral maps

are holonomic.

Now we can state the Lagrangian formalism of field theories with dissipation.
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Definition 3.4. A Lagrangian function is a function L ∈ C∞(⊕kTQ× R
k).

The Lagrangian energy associated with L is the function EL := ∆(L)−L ∈ C∞(⊕kTQ×R
k).

The Cartan forms associated with L are

θαL = t(Jα) ◦ dL ∈ Ω1(⊕kTQ× R
k) , ωαL = −dθαL ∈ Ω2(⊕kTQ× R

k) .

Finally, we can define the forms

ηαL = dsα − θαL ∈ Ω1(⊕kTQ× R
k) , dηαL = ωαL ∈ Ω2(⊕kTQ× R

k) .

The couple (⊕kTQ× R
k,L) is said to be a k-contact Lagrangian system.

In natural coordinates (qi, viα, s
α) of ⊕kTQ×R

k, the local expressions of these elements are

EL = viα
∂L

∂viα
− L , ηαL = dsα −

∂L

∂viα
dqi .

Before introducing the Legendre map, remember that, given a bundle map f : E → F

between two vector bundles over a manifold B, the fibre derivative of f is the map Ff : E →

Hom(E,F ) ≈ F ⊗ E∗ obtained by restricting f to the fibres, fb : Eb → Fb, and computing

the usual derivative of a map between two vector spaces: Ff(eb) = Dfb(eb). This applies in

particular when the second vector bundle is trivial of rank 1, that is, for a function f : E → R;

then Ff : E → E∗. This map also has a fibre derivative F2f : E → E∗ ⊗ E∗, which is usually

called the fibre Hessian of f . For every eb ∈ E, F2f(eb) can be considered as a symmetric

bilinear form on Eb. It is easy to check that Ff is a local diffeomorphism at a point e ∈ E if,

and only if, the Hessian F2f(e) is non-degenerate. (See [21] for details).

Definition 3.5. The Legendre map associated with a Lagrangian L ∈ C∞(⊕kTQ×R
k) is the

fibre derivative of L, considered as a function on the vector bundle ⊕kTQ×R
k → Q×R

k; that

is, the map FL : ⊕k TQ× R
k → ⊕kT∗Q× R

k given by

FL(v1q, . . . , vkq; s
α) =

(
FL(·, sα)(v1q, . . . , vkq), s

α
)
; (v1q, . . . , vkq) ∈ ⊕kTQ ,

where L(·, sα) denotes the Lagrangian with sα freezed.

This map is locally given by FL(qi, viα, s
α) =

(
qi,

∂L

∂viα
, sα
)
.

Remark 3.6. The Cartan forms can also be defined as

θαL = FL ∗θα , ωαL = FL ∗ωα ,

where θα and ωα are given in (3).

Proposition 3.7. For a Lagrangian function L the following conditions are equivalent:

1. The Legendre map FL is a local diffeomorphism.

2. The fibre Hessian F2L : ⊕kTQ×R
k −→ (⊕kT∗Q×R

k)⊗(⊕kT∗Q×R
k) of L is everywhere

nondegenerate. (The tensor product is of vector bundles over Q× R
k.)
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3. (⊕kTQ× R
k, ηαL) is a k-contact manifold.

Proof. The proof can be easily done using natural coordinates, bearing in mind that

FL(qi, viα, s
α) =

(
qi,

∂L

∂viα
, sα
)

,

F2L(qi, viα, s
α) = (qi,Wαβ

ij , s
α) , with Wαβ

ij =

(
∂2L

∂viα∂v
j
β

)
.

Then the conditions in the proposition mean that the matrix W = (Wαβ
ij ) is everywhere non-

singular.

Definition 3.8. A Lagrangian function L is said to be regular if the equivalent conditions in

Proposition 3.7 hold. Otherwise L is called a singular Lagrangian. In particular, L is said to

be hyperregular if FL is a global diffeomorphism.

Given a regular k-contact Lagrangian system (⊕kTQ × R
k,L), from (4) we have that the

Reeb vector fields (RL)α ∈ X(⊕kTQ× R
k) for this system are the unique solution to

i((RL)α)dη
β
L = 0 , i((RL)α)η

β
L = δβα .

If L is regular, then there exists the inverse W ij
αβ of the Hessian matrix, namely W ij

αβ

∂2L

∂vjβ∂v
k
γ

=

δikδ
γ
α, and then a simple calculation in coordinates leads to

(RL)α =
∂

∂sα
−W ji

γβ

∂2L

∂sα∂vjγ

∂

∂viβ
.

3.2 The k-contact Euler–Lagrange equations

As a result of the preceding definitions and results, every regular contact Lagrangian system has

associated the k-contact Hamiltonian system (⊕kTQ× R, ηαL, EL). Then:

Definition 3.9. Let (⊕kTQ× R
k,L) be a k-contact Lagrangian system.

The k-contact Euler–Lagrange equations for a holonomic maps σ : Rk → ⊕kTQ× R
k are




i(σ′

α)dη
α
L =

(
dEL − (L(RL)αEL)η

α
L

)
◦ σ ,

i(σ′
α)η

α
L = −EL ◦ σ .

(13)

The k-contact Lagrangian equations for a k-vector field XL = ((XL)α) in ⊕kTQ× R
k are

{
i((XL)α)dη

α
L = dEL − (L(RL)αEL)η

α
L ,

i((XL)α)η
α
L = −EL .

(14)

A k-vector field which is solution to these equations is called a Lagrangian k-vector field.

A first relevant result is:
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Proposition 3.10. Let (⊕kTQ × R
k,L) be a k-contact regular Lagrangian system. Then, the

k-contact Euler–Lagrange equations (14) admit solutions. They are not unique if k > 1.

Proof. The proof is the same as that of Proposition 4.3 in [15].

In a natural chart of coordinates of ⊕kTQ× R
k, equations (13) read

∂

∂tα

(
∂L

∂viα
◦ σ

)
=

(
∂L

∂qi
+
∂L

∂sα
∂L

∂viα

)
◦ σ ,

∂sα

∂tα
= L ◦ σ , (15)

meanwhile, for a k-vector fieldXL = ((XL)α) with (XL)α = (XL)
i
α

∂

∂qi
+(XL)

i
αβ

∂

∂viβ
+(XL)

β
α

∂

∂sβ
,

the Lagrangian equations (14) are

0 =
(
(XL)

j
α − vjα

) ∂2L

∂vjα∂sβ
, (16)

0 =
(
(XL)

j
α − vjα

) ∂2L

∂viβ∂v
j
α

, (17)

0 =
(
(XL)

j
α − vjα

) ∂2L

∂qi∂vjα
+
∂L

∂qi
−

∂2L

∂sβ∂viα
(XL)

β
α

−
∂2L

∂qj∂viα
(XL)

j
α −

∂2L

∂vjβ∂v
i
α

(XL)
j
αβ +

∂L

∂sα
∂L

∂viα
, (18)

0 = L+
∂L

∂viα

(
(XL)

j
α − vjα

)
− (XL)

α
α . (19)

If L is a regular Lagrangian, equations (17) lead to viα = (XL)
i
α, which are the sopde condition

for the k-vector field X. Then, (16) holds identically, and (19) and (18) give

(XL)
α
α = L ,

−
∂L

∂qi
+

∂2L

∂sβ∂viα
(XL)

β
α +

∂2L

∂qj∂viα
vjα +

∂2L

∂vjβ∂v
i
α

(XL)
j
αβ =

∂L

∂sα
∂L

∂viα
.

Notice that, if this sopdeXL is integrable, these last equations are the Euler–Lagrange equations

(15) for its integral maps. In this way, we have proved that:

Proposition 3.11. If L is a regular Lagrangian, then the corresponding Lagrangian k-vector

fields XL (solutions to the k-contact Lagrangian equations (14)) are sopde’s and if, in addi-

tion, XL is integrable, then its integral maps are solutions to the k-contact Euler–Lagrange field

equations (13).

This sopde XL ≡ ΓL is called the Euler–Lagrange k-vector field associated with the

Lagrangian function L.

Remark 3.12. It is interesting to point out how, in the Lagrangian formalism of dissipative

field theories, the second equation in (15) relates the variation of the “dissipation coordinates”

sα to the Lagrangian function.

Remark 3.13. If L is not regular then (⊕kTQ× R
k, ηαL, EL) is a k-precontact system and, in

general, equations (13) and (14) have no solutions everywhere in ⊕kTQ× R
k but, in the most



J. Gaset et al — A k-contact Lagrangian formulation for nonconservative field theories 13

favourable situations, they do in a submanifold of ⊕kTQ × R
k which is obtained by applying

a suitable constraint algorithm. Nevertheless, solutions to equations (14) are not necessarily

sopde (unless it is required as the additional condition Jα(Xα) = ∆) and, as a consequence, if

they are integrable, their integral maps are not necessarily holonomic.

Remark 3.14. Observe that the particular case k = 1 gives the Lagrangian formalism for

mechanical systems with dissipation [9, 16].

3.3 k-contact canonical Hamiltonian formalism

In the regular or the hyper-regular cases we have that FL is a (local) diffeomorphism between

(⊕kTQ×R
k, ηαL) and (⊕kT∗Q×R

k, ηα), where FL ∗ηα = ηαL. Furthermore, there exists (maybe

locally) a function H ∈ C∞(⊕kT∗Q×R) such that H = EL ◦FL−1; then we have the k-contact

Hamiltonian system (⊕kT∗Q × R
k, ηα,H), for which FL∗(RL)α = Rα. Therefore, if ΓL is an

Euler–Lagrange k-vector field associated with L in ⊕kTQ×R
k, then FL∗ΓL = XH is a contact

Hamiltonian k-vector field associated with H in ⊕kT∗Q× R
k, and conversely.

For singular Lagrangians, following [19] we define:

Definition 3.15. A singular Lagrangian L is almost-regular if

1. P := FL(⊕kTQ×R
k) is a closed submanifold of ⊕kT∗Q×R

k.

2. FL is a submersion onto its image.

3. The fibres FL−1(p), for every p ∈ P, are connected submanifolds of ⊕kTQ× R
k.

If L is almost-regular and 0 : P →֒ ⊕kT∗Q × R
k is the natural embedding, denoting by

FL0 : ⊕k TQ× R
k → P the restriction of FL given by 0 ◦ FL0 = FL; then there exists H0 ∈

C∞(P) such that (FL0)
∗H0 = EL. Furthermore, we can define ηα0 = ∗0η

α, and then, the triple

(P, ηα0 ,H0) is the k-precontact Hamiltonian system associated with L, and the corresponding

Hamiltonian fields equations are (8) or (9) (in P). In general, these equations have no solutions

everywhere in P but, in the most favourable situations, they do in a submanifold Pf →֒ P,

which is obtained applying a suitable constraint algorithm, and where there are Hamiltonian

k-vector fields in P, tangent to Pf .

4 Symmetries and dissipated quantities in the Lagrangian for-

malism

As in [15], we introduce different concepts of symmetry of the system, depending on which

structure is preserved, putting the emphasis on the transformations that leave the geometric

structures invariant, or on the transformations that preserve the solutions of the system (see, for

instance [22, 32]). In this way, the following definitions and properties are adapted from those

stated for generic k-contact Hamiltonian systems to the case of a k-contact regular Lagrangian

system (⊕kTQ×R
k,L); that is, for the system (⊕kTQ×R

k, ηαL, EL). The proofs of the results

for the general case are given in [15].
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4.1 Symmetries

Definition 4.1. Let (⊕kTQ× R
k,L) be a k-contact regular Lagrangian system.

• A Lagrangian dynamical symmetry is a diffeomorphism Φ: ⊕kTQ×R
k → ⊕kTQ×R

k

such that, for every solution σ to the k-contact Euler–Lagrange equations (13), Φ ◦ σ is

also a solution.

• An infinitesimal Lagrangian dynamical symmetry is a vector field Y ∈ X(⊕kTQ×

R
k) whose local flow is made of local symmetries.

The following results give characterizations of symmetries in terms of k-vector fields:

Lemma 4.2. Let Φ: ⊕k TQ × R
k → ⊕kTQ × R

k be a diffeomorphism and X = (X1, . . . ,Xk)

a k-vector field in ⊕kTQ× R
k. If ψ is an integral map of X, then Φ ◦ ψ is an integral map of

Φ∗X = (Φ∗Xα). In particular, if X is integrable then Φ∗X is also integrable.

Proposition 4.3. If Φ: ⊕kTQ×R
k → ⊕kTQ×R

k is a Lagrangian dynamical symmetry then,

for every integrable k-vector field X solution to the k-contact Lagrangian equations (14), Φ∗X

is another solution.

On the other side, if Φ transforms every k-vector field XL solution to the k-contact La-

grangian equations (14) into another solution, then for every integral map ψ of XL, we have

that Φ ◦ ψ is a solution to the k-contact Euler–Lagrange equations (13).

Among the most relevant symmetries are those that leave the geometric structures invariant:

Definition 4.4. A Lagrangian k-contact symmetry is a diffeomorphism Φ: ⊕kTQ×R
k →

⊕kTQ× R
k such that

Φ∗ηαL = ηαL , Φ∗EL = EL .

An infinitesimal Lagrangian k-contact symmetry is a vector field Y ∈ X(⊕kTQ × R
k)

whose local flow is a Lagrangian k-contact symmetry; that is,

L (Y )ηαL = 0 , L (Y )EL = 0 .

Proposition 4.5. Every (infinitesimal) Lagrangian k-contact symmetry preserves the Reeb vec-

tor fields, that is; Φ∗(RL)α = (RL)α (or [Y, (RL)α] = 0).

And, as a consequence of these results, we obtain the relation between these kinds of sym-

metries:

Proposition 4.6. (Infinitesimal) Lagrangian k-contact symmetries are (infinitesimal) Lagrangian

dynamical symmetries.

4.2 Dissipation laws

Definition 4.7. A map F : M → R
k, F = (F 1, . . . , F k), is said to satisfy:
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1. The dissipation law for maps if, for every map σ solution to the k-contact Euler–

Lagrange equations (13), the divergence of F ◦ σ = (Fα ◦ σ) : Rk → R
k, which is defined

as usual by div(F ◦ σ) = ∂(Fα◦σ)/∂tα, satisfies that

div(F ◦ σ) = −
[
(L(RL)αEL)F

α
]
◦ σ . (20)

2. The dissipation law for k-vector fields if, for every k-vector field XL solution to the

k-contact Lagrangian equations (14), the following equation holds:

L(XL)αF
α = −(L(RL)αEL)F

α . (21)

Both concepts are partially related by the following property:

Proposition 4.8. If F = (Fα) satisfies the dissipation law for maps then, for every integrable

k-vector field XL = ((XL)α) which is a solution to the k-contact Lagrangian equations (14), we

have that the equation (21) holds for XL.

On the other side, if (21) holds for a k-vector field X, then (20) holds for every integral map

ψ of X.

Proposition 4.9. If Y is an infinitesimal dynamical symmetry then, for every solution XL =

((XL)α) to the k-contact Lagrangian equations (14), we have that

i([Y, (XL)α])η
α
L = 0 , i([Y, (XL)α])dη

α
L = 0 .

Finally, we have the following fundamental result which associates dissipated quantities with

symmetries:

Theorem 4.10. (Dissipation theorem). If Y is an infinitesimal dynamical symmetry, then

Fα = −i(Y )ηαL satisfies the dissipation law for k-vector fields (21).

4.3 Symmetries of the Lagrangian function

Consider a k-contact regular Lagrangian system (⊕kTQ× R
k,L).

First, remember that, if ϕ : Q→ Q is a diffeomorphism, we can construct the diffeomorphism

Φ := (Tkϕ, Id
Rk) : ⊕k TQ × R

k −→ ⊕kTQ × R
k, where Tkϕ : ⊕k TQ → ⊕kTQ denotes the

canonical lifting of ϕ to ⊕kTQ. Then Φ is said to be the canonical lifting of ϕ to ⊕kTQ× R
k.

Any transformation Φ of this kind is called a natural transformation of ⊕kTQ× R
k.

Moreover, given a vector field Z ∈ X(⊕kTQ × R
k) we can define its complete lifting to

⊕kTQ × R
k as the vector field Y ∈ X(⊕kTQ × R

k) whose local flow is the canonical lifting of

the local flow of Z to ⊕kTQ × R
k; that is, the vector field Y = ZC , where ZC denotes the

complete lifting of Z to ⊕kTQ, identified in a natural way as a vector field in ⊕kTQ×R
k. Any

infinitesimal transformation Y of this kind is called a natural infinitesimal transformation of

⊕kTQ× R
k.

It is well-known that the canonical k-tangent structure (Jα) and the Liouville vector field

∆ in ⊕kTQ are invariant under the action of canonical liftings of diffeomorphisms and vector

fields from Q to ⊕kTQ. Then, taking into account the definitions of the canonical k-tangent
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structure (Jα) and the Liouville vector field ∆ in ⊕kTQ, it can be proved that canonical liftings

of diffeomorphisms and vector fields from Q to ⊕kTQ preserve these canonical structures as well

as the Reeb vector fields (RL)α.

Therefore, as an immediate consequence, we obtain a relationship between Lagrangian-

preserving natural transformations and contact symmetries:

Proposition 4.11. If Φ ∈ Diff(⊕kTQ) (resp. Y ∈ X(⊕kTQ)) is a canonical lifting to ⊕kTQ

of a diffeomorphism ϕ ∈ Diff(Q) (resp. of a vector field Z ∈ X(Q)) that leaves the Lagrangian

L invariant, then it is a (infinitesimal) contact symmetry, i.e.,

Φ∗ηαL = ηαL , Φ∗EL = EL (resp. LY η
α
L = 0 , LY EL = 0 ) .

As a consequence, it is a (infinitesimal) Lagrangian dynamical symmetry.

As an immediate consequence we have the following momentum dissipation theorem:

Proposition 4.12. If
∂L

∂qi
= 0, then

∂

∂qi
is an infinitesimal contact symmetry and its associated

dissipation law is given by the “momenta”

(
∂L

∂viα

)
; that is, for every k-vector field XL = ((XL)α)

solution to the k-contact Lagrangian equations (14), then

L(XL)α

(
∂L

∂viα

)
= −(L(RL)αEL)

∂L

∂viα
=

∂L

∂sα
∂L

∂viα
.

5 Examples

5.1 An inverse problem for a class of elliptic and hyperbolic equations

A generic second-order linear PDE in R
2 is

Auxx + 2Buxy +Cuyy +Dux + Euy + Fu+G = 0 ,

where A,B,C,D,E, F,G are functions of (x, y), with A > 0. If B2 − AC > 0 the equation is

said to be hyperbolic, if B2 − AC < 0 is elliptic, and if B2 − AC = 0 is parabolic. In R
n we

consider the equation

Aαβuαβ +Dαuα +G(u) = 0 , (22)

where 1 ≤ α, β ≤ n; and now we consider the following case: Aαβ is constant and invertible (not

parabolic), Dα is constant and G is an arbitrary function in u.

In order to find a Lagrangian k-contact formulation of these kind of PDE’s, consider ⊕nTR×

R
n, with coordinates (u, uα, s

α) and a generic Lagrangian of the form

L =
1

2
aαβ(u)uαuβ + b(u)uαs

α + d(u, s) .

The associated k-contact structure is given by

ηα = dsα −
∂L

∂uα
du = dsα − (aαβuβ + bsα + cα)du .
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The k-contact Euler–Lagrange equations associated to L are

aαβuαβ +

(
1

2

∂aαβ

∂u
−

1

2
baαβ

)
uαuβ −

∂d

∂sβ
aβαuα +

(
−
∂d

∂sα
bsα + bd−

∂d

∂u

)
= 0 . (23)

If this equation has to match (22) then

aαβ = Aαβ , b = 0 , d = −(a−1)αβD
βsα − g,

where a = (aαβ) and
∂g

∂u
= G.

Damped vibrating membrane As a particular example consider the damped vibrating

membrane, which is described by the PDE

utt − µ2(uxx + uyy) + γut = 0 ;

then

Aαβ =



1 0 0

0 −µ2 0

0 0 −µ2


 , Dα =



γ

0

0


 , G = 0 ,

and therefore

aαβ =



1 0 0

0 −µ2 0

0 0 −µ2


 , b = 0 , d = −γst .

Then, a Lagrangian that leads to this equation is

L =
1

2
u2t −

µ2

2
(u2x + u2y)− γst,

for which

ηt = dst − utdu , η
x = dsx + µ2uxdu , η

y = dsy + µ2uydu .

In this case, we have the contact symmetry
∂

∂u
and the associated map F = (F t, F x, F y) that

satisfies the dissipation law for 3-vector fields is

F t = −i(Y )ηt = ut , F
x = −i(Y )ηx = −µ2ux , F

y = −i(Y )ηy = −µ2uy .

5.2 A vibrating string: Lorentz-like forces versus dissipation forces

Terms linear in velocities can be found in Euler–Lagrange equations of symplectic systems.

However, they have a specific form, arising from the coefficients of a closed 2-form in the con-

figuration space. The canonical example is the force of a magnetic field acting on a moving

charged particle; such forces do not dissipate energy. By contrast, other forces linear in the

velocities do dissipate energy; for instance, damping forces. To illustrate the difference between

the equations arising from magnetic-like terms in the Lagrangian and the equations given by

the k-contact formulation of a linear dissipation, we analyze the following academic example.

Consider an infinite string aligned with the z-axis, each of whose points can vibrate in a

horizontal plane. So, the independent variables are (t, z) ∈ R
2, and the phase space is the
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bundle manifold ⊕2TR2 with coordinates (x, y, xt, xz, yt, yz). Let’s imagine that the string is

non-conducting, but charged with linear density charge λ. Then, inspired by the Lagrangian

formulation of the Lorentz force, we set the Lagrangian

Lo =
1

2
ρ(x2t + y2t )−

1

2
τ(x2z + y2z)− λ (φ−A1xt −A2yt)

depending on some fixed functions A1(x, y), A2(x, y) and φ(x, y). The resulting Euler–Lagrange

equations are

ρxtt − τxzz = −λ

(
∂A2

∂x
−
∂A1

∂y

)
yt + λ

∂φ

∂x
,

ρytt − τyzz = λ

(
∂A2

∂x
−
∂A1

∂y

)
xt + λ

∂φ

∂y
.

(24)

The left-hand side is the string equation with two modes of vibration in the plane XY and in

the right-hand side we have an electromagnetic-like term.

Now, consider the contact phase space⊕2TR2×R
2, with coordinates (x, y, xt, xz, yt, yz, s

t, sz).

We add a simple dissipation term in the preceding Lagrangian:

L = Lo + γ st =
1

2
ρ(x2t + y2t )−

1

2
τ(x2z + y2z)− λ (φ−A1xt −A2yt) + γst.

The induced 2-contact structure is

ηt = dst − (ρxt + λA1) dx− (ρyt + λA2) dy ; ηz = dsz + τxz dx+ τyz dy .

The 2-contact Euler–Lagrange equations are

ρxtt − τxzz = −λ

(
∂A2

∂x
−
∂A1

∂y

)
yt + λ

∂φ

∂x
+ γρxt + γλA1 ,

ρytt − τyzz = λ

(
∂A2

∂x
−
∂A1

∂y

)
xt + λ

∂φ

∂y
+ γρyt + γλA2 .

(25)

Comparing equations (24) and (25) we observe that the dissipation originates two new terms: a

dissipation force proportional to the velocity, and an extra term proportional to (A1, A2). This

last term comes from the non-linearity of the 2-contact Euler–Lagrange equations with respect

to the Lagrangian.

This system has the Lagrangian 2-contact symmetry

Y =
∂A2

∂x

∂

∂x
+
∂A1

∂y

∂

∂y
.

The associated map F = (F t, F z) that satisfies the dissipation law for 2-vector fields is

F t = −i(Y )ηt = ρxt
∂A2

∂x
+ λ

∂A2

∂x
A1 + ρyt

∂A1

∂y
+ λ

∂A1

∂y
A2 ,

F z = −i(Y )ηz = −τxz
∂A2

∂x
− τyz

∂A1

∂y
.
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6 Conclusions and outlook

In a previous paper [15] we introduced the notion of k-contact structure to describe Hamil-

tonian (De Donder–Weyl) covariant field theories with dissipation, bringing together contact

Hamiltonian mechanics and k-symplectic field theory.

In this paper, we have developed the Lagrangian counterpart of this theory, basing on contact

Lagrangian and k-contact Hamiltonian formalisms. Thus, we have obtained and analyzed the

Lagrangian (Euler–Lagrange) equations of dissipative field theories. It should be pointed out

that the regularity of the Lagrangian is required to obtain a k-contact structure.

We have also studied several kinds of symmetries: dynamical symmetries (those preserving

solutions), k-contact symmetries (those preserving the k-contact structure and the energy) and

symmetries of the Lagragian function. We have showed how to associate a dissipation law with

any dynamical symmetry.

As interesting examples, we have constructed Lagrangian functions for certain classes of

elliptic and hyperbolic partial differential equations; in particular, we have analyzed the example

of the damped vibrating membrane. Another example has shown the difference between the

equations of the k-contact formulation of a linear dissipation and the equations arising from

magnetic-like terms appearing in some Lagrangian functions of field theories.

Among future lines of research, the case of singular Lagrangians seems especially interesting,

though it would require to define the notions of k-precontact structure and k-precontact Hamil-

tonian system, and to develop a constraint analysis to check the consistency of field equations.
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