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Abstract

We reproduce the phenomenon of chemotaxis through a hybrid random walk
model in two dimensions on a lattice. The dynamics of the chemoattractant
is modelled using a partial differential equation, which reproduces its diffusion
through the environment from its local sources. The cell is treated discretely and it
is considered immersed in a medium with concentration gradients, so that its path
is affected by these chemical anisotropies. Therefore, the direction taken in each
iteration of the walk is given by a stochastic process that must be biased by the
chemical concentrations, giving preference towards the highest values. For this
purpose, we model the intensity of the bias by a single parameter, which is related
to how much a cell is attracted to a source and, consequently, how efficient this
source is with respect to the cellular capture. Since the model is intended for later
hybridization with cellular automata models, a thorough quantitative analysis of
the parameter space has been carried out. Finally, we also illustrate the efficiency
of the cellular capture due to the concentration sources by using stochastic basins
of attraction.
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1. Introduction

Chemotaxis is a phenomenon based on the directional movement of unicel-
lular organisms, like bacteria or the cells of multicellular organisms, according
to the chemical substances concentration in the environment. The first works on
chemotaxis were carried out more than one century ago [1, 2], and described the
alternation between the stopping and swimming phases in the motion of bacte-
ria, mainly through mobile flagella. If we observe the cell moving in a uniform
and isotropic environment in the absence of concentration gradients, the motion
follows an erratic path consisting of a swim with arbitrary stops that redirect the
cell [3]. Under these conditions, it can not swim in a straight line for a long time,
tending to forget with each stop the direction along which it was going [4].

On the other hand, with the existence of chemical gradients due to the presence
of concentration sources, the medium becomes anisotropic and the cell performs
chemotaxis, since its movement becomes biased by these gradients [5]. Just to
recall, by bias in a random walk, we refer to a preference in the choice of the
direction of the walk for higher concentration levels of a substance diffused in
the environment. Certainly, we can consider that if the cell approaches higher
concentrations, it will keep swimming in a straight line for a longer time before
stopping [6]. However, if it moves far away from any source, it will tend to stop
with higher frequency to take a new direction at random [7], always with the
objective of heading another time towards the highest concentrations. Therefore,
we can represent this phenomenon through a random walk model [8] in which the
time evolves in a discrete way and the cell moves a fixed length during each time
interval. By adding a probabilistic bias function to choose the direction of motion,
the directional preference towards the location of the sources in the space can be
modelled with respect to the chemical gradients [9, 10, 11]. Thus, we reproduce
chemotaxis through a biased random walk model [12, 13] given the concentration
inhomogeneities in the medium.

This erratic path as chemotactic response is usually viewed as analogous to
Brownian motion [14, 15]. Indeed, the fluctuations that the cell experiences along
its walk are due to the concentration irregularities present in the medium instead
of the impacts by microscopic molecules of its surroundings. There are many
works that focus on the extrapolation to the continuum limit representing the tem-
poral evolution in a continuous way [16, 17]. The resulting equations are used
macroscopically to describe the cell flux in terms of a chemotactic agent [18].
Therefore, the time variation of the cell density can be determined as a function
of the concentration gradients, which are responsible for the aggregation of cells
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[19, 20]. However, the usage of hybrid models for chemotaxis in the literature is
much more recent and comparatively scarce [21, 22, 23]. These models are being
increasingly used in the representation of many biological phenomena [24], spe-
cially in the modelling of cancer growth [25, 26, 27]. Hence, the development of
hybrid models for chemotaxis that can be easily and efficiently adapted to more
complex multiscale models is certainly deserved.

Our main purpose is to design a model that can be efficiently hybridized with
specific cellular automata models for tumor growth [26, 27], where immune cells
are attracted to the tumor location by chemotaxis during the process of immune
cell recruitment [28]. As opposed to previous hybrid models [21, 23], here the cell
dynamics is treated discretely [19, 29], while the diffusion of the chemoattractant
is modelled by means of continuous partial differential equations [18]. Certainly,
the model assumptions must be in accordance with the hypothetical continuum
limit above-mentioned [17, 30]. The smaller the spatial dimension is considered,
the closer the continuous limit is attained [31]. Consequently, the construction
of this analogy to Brownian motion will be done as long as the discretization is
accurate enough to accept it [32].

Other works previously designed cellular automata based on nearest neighbors
interactions [33, 34, 35, 36], but with a many-body description instead of a single
one. In our model, a lattice representing the chemical concentration distribution
extends all over the space, and the cell is situated in a certain mesh box. Locally,
in a square lattice, the possible random moves of the cell will be towards one of the
eight neighboring boxes, except on the borders, where the number can be reduced
to five boxes. Throughout the time evolution, the random walk shall go through
many sites of the mesh until its capture by an attractive source, according to the
imposed concentration bias. Importantly, we have designed a new nonlinear bias
function that controls through a single characteristic parameter the influence that
the chemical concentration has on the cell’s random path. The introduction of this
parameter is crucial, since in the context of immune cell dynamics, the bias of a
particular cell towards the tumor location might differ from the others. To study
this effect, we compute different magnitudes that give us an idea of how intense
is the directional preference [37] as a function of the characteristic parameter. In
addition, we will discuss the efficiency of the cellular capture in the presence of
more than one concentration source.

The paper is organized as follows. In Sec. 2 we describe the biased random
walk model that determines the cell’s trajectory in the space. We define the con-
centration map which takes into account the chemical gradients that are present in
the non-isotropic medium where the cell is immersed. A probabilistic bias func-
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tion that describes the preference for higher concentrations is introduced with the
aim of influencing the movement over the lattice. For this purpose, an intensifier
parameter is created in Sec. 3, in order to analyze quantitatively the bias inten-
sity and cellular attraction. Furthermore, in Sec. 4 we explore an scenario with
two similar concentration sources, which act as chemoattractants in the medium,
computing their respective stochastic basins of attraction [38]. Finally, Sec. 5 is
devoted as usual to conclusions and discussions related to the new bias function
and its efficiency in cellular capture by the sources.

2. Model description and bias construction

2.1. Concentration map
As previously said, we consider the cell immersed in a non-isotropic medium.

Therefore, we assume that one or more concentration sources, defined by the den-
sity of chemoattractant ρ, create an effective potential U , which spreads all over
the two-dimensional space, spanned by the coordinates x = (x, y). The relation-
ship between the potential and the source is given by Poisson’s equation

∂2U(x)

∂x2
+
∂2U(x)

∂y2
+ ρ(x) = 0, (1)

where we have assumed that the concentration gradient is stationary, since in the
present work we want to focus on fixed environments, in order to more clearly
settle the model properties. Further extension of the present model to evolving
scenarios is straightforward by simply replacing the partial differential equation
describing the reaction and diffusion phenomena of the chemoattractant in the en-
vironment. These effects are specially important when the chemoattractants are
produced by the attracted cells themselves, since the sources are then in motion as
well [39]. The cell heads towards the higher values of U according to the spatial
arrangement of the sources. Then, we need to solve this partial differential equa-
tion to numerically obtain the effective potential that characterizes the chemotaxis
phenomenon. For this purpose, we use a finite-difference method consisting of
discrete step approximations for the derivatives. A discretization of the variables
is done on a lattice with a uniform spacing h. In two dimensions, both coordinates
are equally discretized as x = ih and y = jh with i = 0, ..., Nx and j = 0, ..., Ny,
respectively. Defining f(x, y) = f(ih, jh) ≡ fij , the two-dimensional function
becomes an array of dimension Nx ×Ny. Then, Eq. 1 can be written as

Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j + h2ρi,j = 0. (2)
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Therefore, the numerical resolution requires to solve a matrix linear equation, and
the number of these equations depends on the step size, namely on Nx and Ny,
corresponding to both dimensions of our space.

The discretization also requires a spatial initialization in order to compute the
potential over the whole lattice. We impose Dirichlet boundary conditions so that
the lattice edges take constant values, while the remaining points are the unknown
variables. The specific conditions are as follows:

1. For simplicity, the upper and lower edges are set at a fixed value U = 1.
This is the normalized lowest value that the potential will take throughout
the lattice [26, 27].

2. The left and right edges wrap around. Each mesh row is modelled as a ring,
so the cell on the left edge is a neighbor of the cell on the right and vice
versa. This creates the perception of an infinite grid and can be appreciated
with a cylindrical symmetry rather than the conventional Cartesian mesh.

With regard to the concentration sources, we model them through a mathemat-
ical function centered at some point x0 = (x0, y0) in the space. It is well known
that the most general solution to the physical phenomenon of diffusion is a Gaus-
sian [40, 41]. Thereby, a natural function for the source ρ that diffuses through
the space could be an exponential in the form

ρ(x) = ρ0 exp

(
−(r(x, x0)−R)2

σ2

)
, (3)

where r(x, x0) =
√

(x− x0)2 + (y − y0)2 and R = h defines its action radius.
The exponential width is given by σ2, whereas ρ0 is related to the maximum value
that the potential reaches.

As stated above, the resolution of the problem to numerically obtain the effec-
tive potential implies solving a set of linear equations, where there is one equation
for each inner point of the lattice. We use one of the most popular methods to solve
the partial differential equation in a matrix form. The successive over-relaxation
method explicits the term Ui,j of Eq. 2 to find the solution iteratively [42]. The
main advantage of this method is that it is diagonally dominant, which ensures
a convergence after a certain number of iterations and with a much lower con-
sumption of computational time in comparison with other methods [43]. Unless
otherwise indicated, the simulation is carried out in this work utilizing a 100×100
dimensional grid with a uniform integration step of h = 0.5.
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Figure 1: The effective potential. Two-dimensional representation of the effective potential, U ,
in presence of two concentration sources. The exponential model has been used with a depth of
ρ0 = 10 and a width of σ = 0.8 for the upper source in x0 = (50, 75), whereas the values ρ0 = 6
and σ = 1.2 have been used for the lower one in x0 = (50, 25).

2.2. Random walk
The mathematical and computational treatment of the cell’s path, which is

immersed in an anisotropic medium, is based on a biased random walk model
[12, 13]. The discrete disposition of the potential leads not only to the fixed step
motion of the cell, but also to a reduced number of possibilities to choose a direc-
tion of motion in each time step. This casuistry has to be only perceptible zooming
in the trajectory, while negligible from a macroscopic viewpoint. This local fea-
ture is always present in any computational modelling in which a discretization of
space is done [17, 30]. Then, contrary to what is obtained using Brownian mo-
tion, the resulting random walk is a discrete jump process that is not self-similar
[44]. However, the uniform spacing, h, can be small enough to construct correctly
an analogy with a Brownian motion [32]. The mathematical description of the
latter is a continuous-time stochastic process in which all directions of motion
are possible, so we can achieve this ideal continuity in time reducing the uniform
spacing as much as we can [31]. Further information about this convergence in
distribution can be found in the literature [45].

The cell’s transition from a certain mesh box to another is given only by near-
est neighbors (nn). Then, the transition probability is determined through the
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characteristic bias of the random walk. Summing over the potential values of the
set of nearest neighbors {p, q}, we define the sampling weight of the cell (i, j) as

ωi,j =
Ui,j∑

(k,l)∈{p,q} Uk,l
, (4)

so the transition probability to move towards this cell (i, j) can be given by

πi,j =
F(ωi,j)∑

(k,l)∈{p,q}F(ωk,l)
, (5)

where the function F is what we call the bias characteristic function. Similar
transition techniques can be found in previous works in the literature [33, 35].

In order to make the transition, the method consists in generating a random
number µ, which follows the uniform distribution in the interval [0, 1]. We have
to determine if this number belongs to an interval given by one of the transition
probabilities. If so, the cell moves towards the corresponding mesh box, and so
on for each time step. Following the disposition of Fig. 2, this algorithm is also
known as the roulette wheel selection [46], which determines the destination box

Figure 2: Nearest neighbors arrangement. The potential’s grid layout under the discretization
of space determines the nearest neighbor transition of the cell. This one is located in this image in
the center (0, 0) represented by a big red dot. Notice that this arrangement is typical of an inner
lattice point because of nn = 8. If the cell was on the top or bottom border, then nn = 5.
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as the first nearest neighbor with indexes (i, j) that satisfies

(i,j)∑
(k,l)

πk,l > µ. (6)

The choice of the bias characteristic function depends on the chemotactic re-
sponse that we consider. Obviously, this function has to be non-negative since a
transition probability is always positive. Another aspect that we have to take into
account is bijectivity. Indeed, since transition equiprobability can not exist for
different values of ωi,j , each sampling weight must have a different image from
the rest of weights. Therefore, the function has to be monotonically increasing.
Specifically, the consideration of a cellular attraction by the higher concentrations
implies a positive slope throughout the whole interval. In this way, we propose a
Gompertz curve as the bias characteristic function of the model, as follows

F(ωi,j) = exp [−10a exp (−aωi,j)] , (7)

where a is a positive constant that expresses the intensity of the bias when mak-
ing the transition movement across the lattice. As we show below in Sec. 4, this
nonlinear function allows to control very efficiently the bias of the walk and the
cellular capture by the sources, where a single parameter totally controls the deter-
ministic part of the motion in the chemotactic response. Importantly, it is biologi-
cally expected that different cells within a tissue present heterogeneous sensitivity
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Figure 3: The bias characteristic function. Representation of the Gompertz curve depending
on the sampling weight. Notice that the value of a not only changes the function’s slope but also
where the curve takes place regarding ω.
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to chemoattractants, since the efficiency of chemotaxis depends on many biologi-
cal factors at the cell scale. The present parameter has the usefulness of allowing
us to model all these complex random phenomena, by simply letting it to fluctuate
from one cell to another. The fact that the implementation of the Gompertz curve
to represent the bias is so simple and efficient at the same time, makes it one of the
best candidates to model the phenomenon of chemotaxis through random walks
on a lattice in more complicated computational models [33, 39], which might be
already highly time-consuming [26, 27].

For the case of an isotropic medium, the potential would have the same value
everywhere, so that an equiprobability would exist with ω = 1/nn for each near-
est neighbor. However, as this can not occur in anisotropic conditions, we can
suppose that the highest sampling weight corresponding to the highest concentra-
tion achieves greater values. Therefore, if we observe Fig. 3, the value of a for
which the curve takes place at greater weights is a = 15, whereas for increas-
ing values the curve is given at smaller weights. These considerations provided,
we conclude that the lower the constant a, the more intense the bias, and conse-

U

Figure 4: The biased random walk. Representation of the same concentration sources as in
Fig. 1, but now adding also two biased random walks that are born in the center of the map. Each
one is drawn in a different color, green and yellow, in order to differentiate to which source has
been attracted. An intensifier parameter of a = 40 has been used for the simulation of the paths.
Notice that even though both walks start from the same point in space, due to the randomness of
the algorithm, they are not captured by the same source.
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quently, the more significant the cellular attraction as well.
The strengthening of transition probabilities towards the highest values of the

potential, via a nonlinear bias characteristic function like the Gompertz curve,
represents an advantage regarding probabilities that are simply proportional to the
concentration gradient [34, 36]. Moreover, by controlling the function to enhance
only the greatest weights we can practically ignore the lowest concentrations, what
can not be achieved for more simple monotonically increasing functions, such as
the exponential function or a product of exponentials [35]. This fact allows our
model to more efficiently represent the cell capture by the sources.

3. Analysis of the bias function

Definitely, the positive constant appearing in Eq. 7 determines the bias charac-
teristic function. It is the only degree of freedom used to characterize our biased
random walk. Thus, a quantitative analysis that classifies each erratic path of the
cell according to the value of a is essential to understand the relation between this
parameter and the nature of the walk. We use the so-called indexes of motion
behavior [37] to study a certain property of the walk, depending on the intensity
of the bias.

It is important to bear in mind the stationarity of the potential gradients, and
thus, a fixed concentration map while random walks evolve. For this reason, we
can analyze the cell’s trajectory in function of a but keeping constant source pa-
rameters like ρ0 and σ2, and not the other way around. Nevertheless, we will set
different values of these parameters to know their influence in the motion of the
cell.

We use for this section the system’s arrangement represented in Fig. 5, with
a single concentration source modelled by Eq. 3. Moreover, the cell is initially
placed at a fixed distance with respect to the source, with the aim of carrying out
a total N = 103 random walks for each value of the constant a. In this way, we
compute a certain index of motion behavior I through the sample mean

I(a) =
1

N

N∑
k=1

ik(a), (8)

where i is the index of the k-th random walk, in particular. The analysis is devel-
oped through the variation of a, studying the quantitative changes as the proba-
bilistic bias is modified. Then, using two definitions of index of motion, the shape
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of the biased random walk is analyzed through two properties of the motion be-
havior: the spatial anisotropy and the tortuosity of the path. For the different
values of a, we show the variation of the corresponding index depending on how
much spherical and tortuous the walk results.

(a) (b)

(c) (d)

Figure 5: The intensity of the bias. The single concentration source in x0 = (50, 75) is modelled
using a depth of ρ0 = 10 and a width of σ = 0.8. As it can be seen, with the cell initially placed
at x0 = (50, 25), more erratic random walks are obtained for increasing values of a. The aim
consists of studying how indices of motion vary as the erraticity of the walks increases, i.e., the
bias turns to be less intense.
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3.1. Sphericity: anisotropy
For a simple isotropic random walk (unbiased), the statistical distribution of

visited points is rotationally symmetric with respect to its origin. However, for a
biased random walk, the paths tend to be more elongated due to the predilection
for a specific direction. This elongation causes the spherical symmetry to be lost,
a particularity given by its spatial anisotropy, which is not a statistical anomaly but
a characteristic feature of the random walk. The presence of any bias represents
a certain determinism in the motion, since not all directions are equally probable.
We then need to describe the size and shape of the walk as a function of the
different directions of the motion. Following Ref. [47], the radius of gyration
tensor in two dimensions is defined here as

G =

(
σ2
x σxy

σxy σ2
y

)
, (9)

where the diagonal and off-diagonal elements are the variances of each two di-
rections and the covariances between them, respectively. The averages here are
computed through the number of footprints, what renders a single matrix for each
walk.

Notice that Eq. 9 can be regarded as a moment of inertia tensor that equips
the walk traced by the cell with the property of a rigid body. Being symmetric
and positive-definite, the tensor can be diagonalized by deriving its real and also
positive eigenvalues λ±. Defining σ± ≡ σ2

x ± σ2
y and Φ2 ≡ σ2

− + (2σxy)
2, the

eigenvalues can be easily obtained as

λ± =
σ+ ± Φ

2
. (10)

These values quantify the average extension of the random walk in each direction.
Particularly, under bias the total elongation leads to a direction along which the
path is more extended than along the other one. We then refer to it respectively
as the expansion direction and the contraction direction, which are effectively
orthogonal. Indeed, the eigenvalue λ+ lying on the expansion direction represents
the square of the semi-major axis of the ellipse along which the walk is confined,
whereas λ− lying on the contraction direction that represents at the same time the
square of the semi-minor axis. In this way, the intersection point between both
semi-axes is the center of the ellipse, which physically can be considered as the
center of mass of the walk.
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Figure 6: Sphericity of a random walk. Confinement of a biased random walk (in black) in an
ellipse (in blue) computed through the radius of gyration tensor. A circle (in red) is also drawn,
which, using Pythagoras’ theorem, has a radius of Rg =

√
λ+ + λ−. To construct the walk, a

disposition of the source like in Fig. 5 but with axes switched has been used. An expansion and
contraction direction in x-axis and y-axis can be distinguished, respectively.

Now, we can define an index of motion behavior that gives information about
the sphericity of the walk. Confining it in an ellipse, if both eigenvalues are sim-
ilar, the spreading to both directions would be practically equal, and as a conse-
quence the ellipse would be slightly eccentric (high sphericity). If, conversely,
there is a great difference between them, the extension is greater on the expan-
sion direction, resulting a very eccentric ellipse (small sphericity). The spatial
anisotropy due to this eccentricity is usually defined as the ratio between the eigen-
values with the largest one at the denominator [48]. For an increasing bias, the el-
lipse would be more and more elongated and, therefore, the ratio would be smaller
and smaller. For this reason, it can not be a good indicator of anisotropy, since
its value would tend to increase instead of decreasing: the anisotropy is greater
in the presence of a spatial preference, i.e., an elongated ellipse, which can be
obtained with small values of a for the bias. We propose the ratio between the
difference and the sum of both eigenvalues, which, unlike the previous definition,
it increases for high eccentricities. Using Eq. 10, the index of motion behavior
takes the following simple form
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Λ =
Φ

σ+
. (11)

We can check from Fig. 7 that not only the bias decreases for an increasing
parameter a, but also the index of anisotropy decreases from values close to the
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Figure 7: The index of anisotropy. The index clearly decreases for a decreasing bias, which
can be achieved increasing the value of a. The random walk then becomes more spherical, with
an increasingly shorter expansion direction and longer contraction direction. Using the source
disposition of Fig. 5, several values of ρ0 (top, setting σ = 0.8) and σ2 (bottom, with ρ0 = 10) are
also included. Every single dot depicted in this figure corresponds to a certain value of the index
following the definition of Eq. 8.
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unity. This behavior is given according to an increasingly spherical walk, while
for an intense bias a high anisotropy is obtained between both directions, i.e., a
very elongated ellipse. Furthermore, different values of ρ0 and σ2 are considered.
We see that greater depths and widths of the concentration source give place also
greater anisotropies, since it increases the potential gradient, and then, decreases
the sphericity of the walks.

3.2. Tortuosity: intensity use
An important property of any random walk is how erratic it is in a given space

and time. The number of twists, turns and tumbles that the path experiences pre-
vents it from being perfectly straight. We refer to this erraticity as the tortuosity,
which is an intrinsic property of the walk and should be quantified through an
index of motion behavior. The straightness is defined as the ratio between the Eu-
clidean distance from the beginning until the end of the path and the total traveled
length l = Kh [49], where K is the total number of iterations required for cell’s
capture by the source and h the integration step. It is therefore a way to compare
the real length of the walk with the shortest possible. Following the disposition
of Fig. 5, since this Euclidean distance is always the same regardless of shape
of the path, we prefer the intensity use rather than the straightness. The former
compares the total length with the square root of the surface that covers the walk’s
motion [50, 51]. In practice, the calculation of this area is not usually easy, but
here we can take advantage of the information provided in Sec. 3.1 and the ellipse
in which the walk is confined. Employing the well-known formula for the area of
an ellipse and using Eq. 10, the intensity use is defined as

IU =
Kh√

π
2

√
σ2
+ − Φ2

≈ Kh
√
πσxσy

, (12)

where the approximation has been performed if we consider zero correlation be-
tween walk steps. From Fig. 8 we note an increasing tendency of the index for a
decreasing attractive effect of the source. It is mainly due to the higher number of
iterationsK in a weaker bias, i.e., a higher traveled length l. On the other hand, an
increasing attraction for an intense bias implies a less spherical walk, and there-
fore a lower surface of the confining ellipse. However, this fact seems to be not
more significant than the loss of erraticity, as the ratio decreases for decreasing
values of a, as well. Hence, the rise or decrease of iterations proves to be more
important than how spherical the walk is, since its total length varies faster and
much more than the square root of surface.
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Like for the index of anisotropy, we have considered here different values of ρ0
and σ2 too. However, their influence does not seem to be now just as important. If
we increase the depth of the concentration source, the intensity use decreases but
not in a significant way, so the walks become slightly less tortuous. The variation
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Figure 8: The index of intensity use. The index clearly increases for a decreasing bias, which
means that the random walk becomes more and more tortuous, getting further and further away
from a straight line. Several values of ρ0 (top, setting σ = 0.8) and σ2 (bottom, with ρ0 = 10) for
the single source of the system’s arrangement depicted in Fig. 5 are also included. Every single
dot depicted in this figure corresponds to a certain value of the index following the definition of
Eq. 8.
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of the width, though, has no remarkable effect, being therefore the tortuosity of
the trajectories practically independent regarding how wide the source is.

4. Basins of attraction

The dynamical system comprised by the cell and the concentration sources has
been designed through a discretized lattice. Each mesh node can be considered as
an initial condition for a hypothetical random walk, and like any dissipative dy-
namical system, each one evolves in time and usually tends to a certain trapping
region of space. In this work, the cell is attracted by a source, which behaves as
an attractor of the system. Under these conditions, we can use the idea of basins
of attraction for each attractor in order to classify every initial condition corre-
sponding to the source by which the cell is captured [52, 53]. However, we have
to distinguish a fundamental characteristic of this particular system: its dynamics
is not essentially deterministic, but it is subject to the intrinsic randomness of the
walks. This fact makes possible that any dynamic repetition in the same initial
condition exhibits a different final state, that is to say, the cell is captured by an-
other distinct source in comparison to the original case. Therefore, we can not
trivially speak of a sensitivity to initial conditions, since its temporal evolution is,
although biased, stochastic.

The cell is attracted by the higher values of the concentration potential. Then,
the potential peaks located at the center of the sources behave as attractor points,
geometrically speaking. Since initial conditions evolve haphazardly towards these
points, we use a particular and simplified example of the so-called stochastic
basins of attraction [38]. To study their appearance, we use the bistable system
depicted in Fig. 1, with both attractor sources symmetrically situated in space. Al-
though each of them slightly differs from its analogous in ρ0 and σ2, we approxi-
mate the deterministic boundary of the basins of each one splitting the whole space
into two regions also in a symmetrical way. Indeed, and despite both sources being
located at the same distance from the center of the map, this is an approximation,
since the attraction intensity of each one is different from the other. Then, the re-
sulting horizontal line, which separates both source regions of the corresponding
attractors, contains initial conditions located exactly in the middle between the
sources.

Considering the stochasticity and the lack of determinism of the dynamics of
the random walks, the representation of these basins of attraction must be based
on the probability of cellular capture by the attractor sources. Indeed, and as was
mentioned before, if we repeat the simulation of a random walk that previously
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(a) (b)

(c) (d)

Figure 9: Basins represented by probabilities. Stochastic basins of attraction constructed
through the definition of the probability of non-capture (colorbar). The two regions of the bistable
system shown in Fig. 1 that contain one of both sources at the top and the bottom of the map,
respectively, are clearly separated here by means of a horizontal line in the middle between them.
Notice the different attraction of each source because of the different parameters shown in the
definition of Eq. 3, being the lower one the most attractive. For an increasing value of a, and fol-
lowing the order (a), (b), (c) and (d), the bias becomes less intense and the probability increases.
However, if we intensify it, the probability is almost zero in both regions, which means that the
efficiency in cellular capture is very high.
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(a) (b)

(c) (d)

Figure 10: Basins represented by thresholds. Stochastic basins of attraction constructed through
a threshold values definition, with N < 5 in red, with 5 ≤ N < 30 in green, with 30 ≤ N < 50
in cyan and with N ≥ 50 in blue. For an increasing value of a, and following the order (a), (b),
(c) and (d), we detect a progressive reduction of the extension of the red basin due to a less and
less intense bias. However, if we intensify it, the basin of the corresponding source extends over
almost the entire region, which means that the efficiency in cellular capture is very high.
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was captured, now we can obtain another one that avoids its capture. It is note-
worthy that the non-capture of a cell in the upper region can only be due to the
capture by the other source in the lower region, and vice versa. Therefore, we
build the stochastic basins of attraction by using the probability of avoiding the
cellular capture by the source in the corresponding region [54, 55]. The computa-
tion of this probability is achieved by dividing the number of uncaptured cells N ,
with respect to the total number NT = 100 of random walks performed for each
initial condition. The results are displayed in Fig. 9 for different intensities of the
bias.

Another representation of the stochastic basins that we have considered is
through threshold values for these uncapturated cells: if N < 5 we paint the
point in red, if 5 ≤ N < 30 in green, if 30 ≤ N < 50 in cyan and if N ≥ 50 we
use the blue color. The results are also displayed now in Fig. 10. We note that,
for increasing values of parameter a, the non-capture probability increases corre-
spondingly and, therefore, the red basin for N < 5 becomes smaller. If the bias
is weaker, the possibility that a cell is not captured is larger, mainly far from the
center of the source. This means that, even though the cellular attraction of both
sources is less intense, the capture by the attractor in the other region becomes
more likely than in conditions with lower a. On the other hand, for decreasing
values of parameter a, this red basin expands through the corresponding region,
being the biggest one with respect to the others defined by the different thresh-
olds. This means that the bias turns to be almost deterministic, since its intensity
is so large that strongly diminishes the non-capture probability. Therefore, we can
say that the efficiency of the bias is very high, because most initial conditions of
both regions represent a very poor probability that the cell avoids its capture by
the corresponding source. As can be seen, the nonlinear bias function described
in Eq. 7 behaves correctly and the concept of stochastic basins of attraction can
be a very powerful tool to characterize the nature of this bias of the random walks
in those environments in which the gradients are stationary or not changing very
rapidly, in comparison with the speed of cell motion.

5. Conclusions and Discussion

We have designed a hybrid model of chemotactic cellular attraction using ran-
dom walks on a lattice. A new and very easily constructed bias function that can
be intensified through the variation of a single parameter has been devised. To
this end, we have used the well-known Gompertz curve to construct the bias in
a simple way. The solution of Poisson’s equation has allowed us to relate the
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chemical concentration of a certain substance in a medium with an effective po-
tential, which has entailed us to model the attraction by the sources. A spatial
discretization adapting the continuous partial differential equation to the discrete
cell motion has been key for this purpose [17, 25, 30]. This aspect makes our
hybrid chemotactic model computationally very affordable in comparison with
those based on nonlinear partial differential equations [39]. They also make the
model specially useful to be incorporated in previously designed hybrid cellular
automata models that require very large computation times, and which are aimed
at representing processes of lymphocyte recruitment in the description of tumor-
immune cell interactions [26, 27, 28, 56].

We have studied how indexes of motion behavior [37] vary as a function of a
single and simply accessible constant, analyzing the great impact that this inten-
sity parameter has on the bias. Random walks traced by the cells subject to an
increasing cellular attraction gain straightness in shape, and at the same time lose
spatial sphericity. We have checked that the differences between the quantitative
results obtained for different values of the bias parameter a are not proportional to
the variation of the latter. Indeed, the increase or decrease of the different indexes
of motion behavior is nonlinear with this variation, probably following an alge-
braic law like a power or an exponential one. This curvature makes the bias very
sensitive to the variations of the parameter, which avoids using too large parameter
domains.

To conclude, we have applied to chemotaxis the concept of stochastic basins
of attraction [38] to pictorially analyze the attraction capability of each source
with respect to the cell. The efficiency of the bias function has become clearer,
since all random walks around an attractor are captured by it with high probability.
Thus, the bias can be so weak that makes a captured cell’s path too tortuous or,
equivalently, so intense that makes its capture practically deterministic, despite
the intrinsic randomness of the system.
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