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Abstract (English) 
One of the main causes of the widespread problem of freshwater scarcity lies in unfruitful 

maintenance of distribution infrastructure, leading to failures with consequent waste of 

precious resources. It is estimated that more than 25% of the annual loss of water is due to 

poor conditions of the distribution networks and, in a scenario of continuously increasing 

demand for water, effects of such inefficiency might be even more dramatic, beyond the 

merely economic aspect. However, with the rise of data analysis, the awareness of the 

power of predictive technologies and machine learning techniques, the opportunity to make 

use of these tools to support decision making has become more than a hope.  

With this study, the author attempts to address the problem of usage of historical data of 

pipes and their failures in the Spanish city of Manresa to deduce conclusions on how to 

conduct maintenance interventions. After conducting an explorative study on how pipes 

intrinsic factors may have reflections on breakages, machine learning algorithms (Logistic 

Regression and Random Forest have been chosen in this thesis) are used to predict pipe 

failures over time. Lately, results from predictions will be used to take out conclusions from 

two different assessment models. The first method, given the structure of cost of a general 

distribution company, tries to establish the optimal ratio between sensitivity and sensibility 

of a predictive model to return the best economic benefit from the predictive maintenance.  

The second approach wants to assess how the uptime of the service level can be improved 

whether relying on prediction to replace pipes, given a certain agreed investment budget.  

In an old industry such as water distribution, difficulties come up not only during the 

development of predictive models but also during the reconstruction of the data on which 

training and testing models, since they can suffer from inconsistencies. Indeed, data 

gathering has not unique and standardized methodologies and time and people take-over 

have changed procedures during the data collection, making the whole work harder.  
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Abstract (Spanish) 
Una de las principales causas del problema generalizado de la escasez de agua dulce 

radica en el mantenimiento infructuoso de la infraestructura de distribución, que conduce a 

fallas con el consiguiente desperdicio de recursos preciosos. Se estima que más del 25% 

de la pérdida anual de agua se debe a las malas condiciones de las redes de distribución 

y, en un escenario de demanda de agua en continuo aumento, los efectos de dicha 

ineficiencia podrían ser aún más dramáticos, más allá del aspecto meramente económico. 

. Sin embargo, con el auge del análisis de datos, la conciencia del poder de las tecnologías 

predictivas y las técnicas de aprendizaje automático, la oportunidad de hacer uso de estas 

herramientas para respaldar la toma de decisiones se ha convertido en más que una 

esperanza. 

Con este estudio, el autor intenta abordar el problema del uso de datos históricos de las 

tuberías y sus fallos en la ciudad española de Manresa para deducir conclusiones sobre 

cómo realizar las intervenciones de mantenimiento. Después de realizar un estudio 

exploratorio sobre cómo los factores intrínsecos de las tuberías pueden tener reflejos en 

las roturas, se utilizan algoritmos de aprendizaje automático (en esta tesis se eligieron 

Regresión logística y Random Forest) para predecir fallas de tuberías a lo largo del tiempo. 

Últimamente, los resultados de las predicciones se utilizarán para sacar conclusiones de 

dos modelos de evaluación diferentes. El primer método, dada la estructura de costes de 

una empresa de distribución general, intenta establecer la relación óptima entre 

sensibilidad y sensibilidad de un modelo predictivo para devolver el mejor beneficio 

económico del mantenimiento predictivo. El segundo enfoque quiere evaluar cómo se 

puede mejorar el tiempo de actividad del nivel de servicio, ya sea confiando en la predicción 

para reemplazar las tuberías, dado un cierto presupuesto de inversión acordado. 

En una industria antigua como la distribución de agua, surgen dificultades no solo durante 

el desarrollo de modelos predictivos sino también durante la reconstrucción de los datos 

sobre los que se entrenan y prueban los modelos, ya que pueden sufrir inconsistencias. De 

hecho, la recopilación de datos no tiene metodologías únicas y estandarizadas, y el tiempo 

y la toma de control de las personas han cambiado los procedimientos durante la 

recopilación de datos, lo que dificulta todo el trabajo. 
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1 Introduction 
The first chapter of this study aims to build the structure of the whole thesis, outline the 

background behind the issue of freshwater resources and the reason why management of 

water distribution network has become an important topic in terms of sustainability but also 

economically talking. Many are the challenges affecting the distribution of freshwater, 

starting from scarcity of pure sources because of climate change, until the continuously 

increasing demand of water due to inexorable growth of Mondial population.  

Among all the efforts to deal with the critical situation, effects can be immediate and surely 

goal-oriented thanks to improvement in the management of distribution networks, which, 

because of low investments for maintenance, suffer from serious problems of leaks and 

breakages.  

Over time, studies have tried to identify deteriorating paths and causes of bursts to prevent 

waste of water. The rise of the word of data analysis has given hope even to the topic in the 

matter, with the application of new tools attempting to give a solution to tough issues.  

 

1.1 Background 

European water demand has been rising over the last 50 years, mainly due to an always 

increasing population. This scenario has been responsible for a reduction of around 24% of 

renewable freshwater resources (such as rivers, groundwater or lakes) per capita in the Old 

Continent [1]. An increase in drought phenomenon in Europe, especially in countries such 

as Italy and Spain, climate change and global warming threaten the already scarce 

availability of water, worsening an already worrying and risky situation.  

According to a report released by United Nations World Development Report, by 2050, 6 

billion people will suffer from real water scarcity, keeping the current usage trends, and this 

prediction could even be an underestimation (WWAP, 2018). The three main driving causes 

are increases in water demand, reduction in water sources and an always higher level of 

pollution of freshwaters. Actually, the world would be able to face demand increases, but 

only with massive changes in the way water is used, managed and shared. Regulation of 

population and economic increase rate, as well policies and rules to reduce pollution of 

water sources are urgent measures that need to be undertaken to preliminarily face the 

water shortage threat. 

It is estimated that between 25% and 50% of all annual globally distributed water is lost due 

to inefficient water distribution networks and poor condition of infrastructure [2].  

Going beyond mere business aspects and the consequences of this inefficiency, there is 

an additional aspect that, over the last decades, has been catching the attention and interest 

of all authorities around the world. We are talking about the impact that water waste can 
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have on the environment and the sustainability of the distribution process. Data on water 

availability and its effects over the year are dramatically discouraging, with almost half of 

the world’s wetlands disappeared since 1900 and damaging ecosystems [3].  

Infrastructure deterioration, inaccurate water pressure management and limited budget for 

maintenance are some of the causes leading to low performances of water distribution 

networks. Among them, leakages, due to pipe breaks, can be charged to be responsible for 

above 80% of all the lost water [2]. 

What is a break? “A break is a rupture of the line causing a cessation of service” and the 

reasons for breaks are grouped into four classes (Clark R. M., 1982): 

 

1. Quality and age of pipe itself. 

2. The environment where the pipe is located. 

3. Quality of workmanship in laying the pipe. 

4. Service conditions, such as pressure. 

 

The phenomenon of water main burst has become a very frequent problem in pipes 

management and some study says that the frequency of breaks has gone up by over 27% 

over the last six years. (Folkman, 2018). Increases in pipe breaks are problematic either 

because they increase repair costs, interrupt services provided to customers and also 

potentially impact water quality. 

 

In one of his articles, Raziyeh Farmani, Associate Professor of water engineering at 

University of Exeter and Chair of Intermittent Water Supply Specialist Group, defines a 

failure as “a cumulative effect of various pipe-intrinsic (such as material, diameter, and age), 

operational (such as corrosion, pressure, external stresses) and environmental factors 

(such as temperature, rainfall, soil conditions) acting on mains” (Farmani, Kakoudakisb, 

Behzadianc, & Butlerd, 2017). Additionally, environmental and intrinsic factors can either 

be static or dynamic, while operational factors belong only to the dynamic group (Farmani, 

Kakoudakisb, Behzadianc, & Butlerd, 2017).  

Basically, there is a widespread hypothesis assumption that pipes sharing the same intrinsic 

properties are expected to have the same breakage pattern. Actually, even pipes absolutely 

equal can react differently to external dynamic factors, making the previous assumption 

unrealistic. However, it is unreasonable to carry predictive studies on the breakage 

behaviour of every single pipe because not enough data could be gathered for each tube 

object of study. Statistical analysis with such a low-sampled methodology would result to 

be not significant and powerful (Kleiner & Rajani, 2012).  
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In a total water supply system, the distribution network represents a big share of the total 

expenditure, up to 80% and its management and maintenance is crucial for optimal 

functionality. Indeed, as water mains deteriorate into the network, the breakage rate 

increase, the reliability of the service and hydraulic capacity decrease and the quality of 

water will be negatively impacted. Therefore, asset management, including replacement 

and repair strategies, is crucial for providing optimal service to consumers and for reaching 

good cost-effective decision-making, since capitals are always scarce and limited (Kleiner 

& Rajani, 2001). 

Improvement in data collection and the introduction of the concept of data mining for a better 

understanding and use of data have represented an important step forward in the world of 

water distribution network management. One of the principal ways to monitor water flow 

conditions within a distribution network is the pressure sensor system, enabling it to operate 

safely. Thanks to the use of pressure sensors alongside pipes and all information gathered 

to know in real-time events occurring at a depth of meters. In fact, while pipe bursts can be 

easily identified by civils if the water reaches the ground, detecting leakages, but also burst 

occurring in not visible or easily reachable places, with the aid of pressure sensors can be 

extremely easier and quicker (Qi, et al., 2018).  

Identification of leaks and bursts, the monitoring of pipes evolution and the collection of 

huge amounts of data over time have enabled the application of machine learning 

technology and artificial intelligence to predict future events and anomalies. However, 

already developed models present many forms of inaccuracies, mainly coming from the fact 

that these models are built relying on relatively little data availability, for lack of historical 

awareness of collecting data, which leads to incomplete knowledge.  
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1.2 Origins of this work 

Aigües Manresa is the municipal company managing the water supply cycle for around 20 

towns, mainly belonging to the “Bages comarca”, in the center of Catalunya.  

As known, Spain suffers from dramatic water supply losses, as almost a quarter of all 

distributed water does not reach households, as it goes lost because of breakages and 

leaks for around the 60% of the cases [4]. Besides the real water loss, part of the water is 

not recorded due to “faked losses”, due to mistakes that occurred during collection and 

handling of data. The main cause is surely the lack of investments, either of distribution 

system, data detection technologies or data utilization [5]. 

As almost the totality of company of any industry, also Aigües Manresa has long started the 

gathering of data through sensors and other technologies, to monitor daily water behaviour 

alongside buried pipes. Over years, the company has installed alongside their pipes and 

upstream tanks sensors to detect water pressure and tanks’ water level and outflow, and 

these tools represent the main sources of data for the company, besides the self-reading of 

water meters by consumers. They have strengthened their data analysis department to take 

advantage of all the data that have been collected over years to make predictions. 

Outcomes coming from the department would represent support for decision-making 

processes and solid help for developing better maintenance strategies with mainly three 

gains. First of all, starting from the most considerable aspect, reducing losses due to breaks 

represents an important step forward more solid sustainability of water distribution process, 

reducing environmental impacts. Secondly, as some places suffer from shortage of hydro-

sources during the year, the pumping capacity of electromechanical equipment is not 

enough for ensuring a supply service appropriate to quality standards. Last but not least, 

data understanding and usage may be of use to economic results. 

However, sorting, arranging, combining and using a large amount of data could be 

challenging work that requires time and resources. Also, the department of data analysis 

has complained about asynchronism between data they collect, which makes all the jobs 

more complex and long. For this reason, thanks to the intermediation of Professor Peréz 

Magrané Ramon, the company got in touch with the author of this thesis proposing the 

application of machine learning knowledge for making predictions about future water main 

breakages and, eventually, attempting to assess how ML can improve company’s financial 

performances. 

Although machine learning is widespread and with wide application in any field, according 

to what was said from the data analysis department, in Aigües Manresa it has not passed 

the innovation department yet and therefore the company has not exploited the power of 

these technologies yet. Therefore, the use of machine learning methods for predicting future 
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pipe failures to support the decision-making process would represent a concrete innovation, 

bringing also new insight to the company management. 
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2 Literature review on water main management 
Watermain management has always been object of interest for engineers. Losses in 

distribution network efficiency and their impact on economic performances have pushed 

people to carry out studies attempting to give a contribution to the current knowledge and 

state of the art over years. 

The present chapter is a summary of some of the main literature that was analyzed to outline 

the current state of the art for water main management. The reader will have a general but 

concise idea about how the topic of this thesis has been undertaken over the last decades 

and how it evolved thanks to research.  

The methodology of researching these sources comes from selecting papers, articles, 

reports found on databases such as Scopus [6], ScienceDirect [7], Google Scholar [8]. 

These platforms have been chosen for their wide gamma of resources, both in terms of 

topics covered but also for the time of publication. In some cases, reports, conference 

minutes or presentation has been found directly on specific authorities’ websites. Although 

it was established to refer basically to sources of the last 10-15 years, some articles cited 

in the review are dated back to the early twenties and even before. In fact, although a 

massive effort of researchers to improve technologies in water main management, some 

subsequently methodologies still rely on such dated back studies.  

Watermain management is a very wide topic, including basically three main sub-topics: 

• Maintenance strategies. 

• Predictive analysis. 

• Economic assessment. 

Usually, authors, in their studies, focus on only one of these three aspects, which turns out 

to be the main theme of the research, with only a few references to the other two aspects. 

Only recently, it was increasingly common to have papers jointly dealing with all three 

aspects of water mains management.  

In this literature review, we are going to outline, for each of these subtopics, how knowledge 

has been evolved over time and how we have reached the current state of the art.
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2.1 Maintenance strategies 

Various decision-making strategies have been developed to deal with water pipe 

deterioration, to find the optimal, in terms of reliability and costs, sequence of reparation 

and replacement. All strategies can be grouped into two main families: reactive strategies 

and proactive strategies.  

Reactive strategies are still the most used worldwide and they refer to those maintenance 

interventions that take place only once a break occurs (Canadian Water Network, 2018). 

Reactive strategies do not attempt to predict ex-ante future water main conditions; 

therefore, these strategies are not recommended to make long-term maintenance plans. 

Usually, a pipe is replaced after it has experienced a certain number of breaks, followed by 

a corresponding number of repairing interventions. Generally, reactive strategies are 

considered more money-consuming and therefore less cost-efficient. In fact, without a 

proper study regarding the expected life of a pipe, a company risks allocating capital and 

time to repair a break that can be avoided because predicted. In other cases, the repair was 

not necessary because the broken pipe had already reached its useful life and replacement 

would be the best option.  

Proactive strategies work trying to predict and estimate future conditions of water pipes to 

develop well-structured long-term maintenance plans, with the right allocation of capital. 

Whether for reactive strategies, the resources and capital are used ex-post for repairing or 

replacing, in proactive strategies a strong effort must be done before using or developing 

predictive models to identify the optimal time for replacing a pipe. In fact, if a pipe is replaced 

before its optimal time, a company does not exploit fully the efficient service life of the main, 

using now resources that can be postponed. On the other hand, the utility company can 

wrongly keep on repairing and spending money in maintaining in service a pipe that has 

overcome its useful and cost-efficient life. However, the use of models for making 

predictions does not ensure optimal identification of the correct replacement time, because 

these models present often inaccuracy (Snider & McBean, 2021). One of the main sources 

of inaccuracy comes from directly the fact that these models are built relying on relatively 

little data availability, for lack of historical awareness of collecting data, which leads to 

incomplete knowledge. Regarding this last point, it has not to be forgotten as these data 

come from pipes buried at a depth of several meters. Therefore, mechanisms leading to 

pipe failures, besides being complex, are not fully explained and understood (Kleiner & 

Rajani, 2001). 

However, although the results of predictive models could not be perfectly accurate, they 

help utilities to estimate the optimal time for a replacement. As long as a new pipe ownership 

cost, the sum of replacement, operational and maintenance cost (Boulos, 2017), exceeds 

the existing pipe ownership cost (operational and maintenance), it is economically 
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inconvenient to renovate the water main. Once keeping in life an existing pipe, continuously 

repairing breaks, occurring due to deterioration, becomes too expensive, going above costs 

of replacing and maintaining a new pipe, that is the moment when water distribution 

company must substitute the pipe to allocate efficiently capitals. 

Effects of pipe failures do not regard only the economic performance and efficiency of water 

utilities. In fact, besides maintenance cost, consequences involve not only economic 

aspects, but also operational, environmental and social. Economic consequences concern 

factors of asset utility and society in monetary terms, such as loss in revenues of direct and 

indirect business, repairing cost. Operational effects refer to the loss of operational 

availability of infrastructure assets and surrounding (e.g., loss of production, loss of 

hydraulic functionality, etc.). Effect on habitats, water bodies, service areas, archaeological 

sites etc. are part of those called “environmental consequences” (Mazumder R. , Salman, 

Li, & Yu, 2021). Finally, the social consequences concern all the impacts on public life 

deriving from inconveniences to public life due to inefficiencies, traffic slowdowns, etc. 

(Salman & Salem, 2011). 

 

2.2 Prediction field 

Over years, researchers and scientists have studied pipe breaks, especially from the 80s 

(Kettlere & Goulter, 1985; Kazei & Goultier, 1988; O'Day, 1985). With the improvement of 

data quantity and source, more and more articles have been published in the most important 

journals for urban infrastructure management. Intending to increase economic performance 

and asset management, the two main undertaken problems have been causal inference 

and prediction (Konstantinou & Stoianov, 2020). Going through the first problem, 

researchers attempt to identify factors and mechanisms responsible for pipe failures and 

for accelerating deterioration phenomena. The outcome of these studies is the set of 

variables that will be later included in predictive models, that, on the other side, allows to 

reach a specific result such as pipe break, a hazard function, predicted by using a specific 

set of factors (Konstantinou & Stoianov, 2020). 

Predictive models can be grouped, depending on input data and procedures, into physical, 

statistical and machine learning models. 

Physical models predict the breaking of tubes by evaluating the load to which the tube is 

subjected and the ability of the tube to handle the load efficiently. Some other of the 

variables used in these models are corrosion, stress acting on pipes and residual strength 

and remaining pipe thickness. As soon as stresses of load acting on pipes’ surfaces exceed 

the remaining strength of the pipe, a break is expected to occur.  The main limitation of 

physical models is the high requirement of accurate data, with infield measurements, that 
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are often difficult to obtain for time and financial constraints (Marlow, Davis, Beale, Burn, & 

Urquhart, 2010). 

More common and with easier applications are statistical methods, that use available data 

regarding breaks history and pipe intrinsic information for predicting future failures.  

The early developed statistical methods are those called deterministic, which typically use 

two or three parameters (e.g., pipe length, age, breakage history) to predict specific break 

rate or time-to-next-break prediction. An important application point for these models is that 

they are best applied to a group of water mains that are homogenous in respect to the 

parameters influencing the breakage patterns (e.g., diameter, age of the pipe, pipe type, 

number of repairs etc.) (Kleiner & Rajani, 2001). Among some of the deterministic models 

that have been the backbone of this approach, it is worth remembering the time-exponential 

models, e.g. (Shamir & Howard, 1979; Clark, Stafford, & Goodrich, 1982), time-linear 

regression models, e.g. (Kettler & Goulter, 1985; Jacobs & Karney, 1994). Actually, many 

weaknesses come up from the deterministic models such as low values of R2 in some cases, 

a sign that the model is not enough powerful to predict occurrences but only to see which 

variables accelerate more degradation of pipes. Or more the strict requirement to over-

partitioning pipes in homogenous groups, e.g., using ANOVA, to apply the model.  

The second macro-group of models takes the name of probabilistic multivariate models 

because they consider many covariates that influence breakage patterns. The output is 

usually a hazard function, representing the probability to have a break at each unit of time 

during the pipe’s life (Cox D. R., 1972; Andreou, Marks, & Clark, 1987). Unlike deterministic 

models that usually are relatively simple, the mathematical framework of probabilistic 

multivariate models is much more complex and able to handle many variables (Kleiner & 

Rajani, 2001). On the other hand, the inclusion of any factor for the prediction of failure 

probability models reduces the need to divide water networks into homogeneous groups.. 

Indeed, these models are also more suitable for pipe individual analysis rather than families 

of homogeneous pipes, making these approaches ad-hoc for single replacement strategies 

planning. However, the most relevant strength of some multi-variate models is the ability to 

take into consideration also right-censored data, which instead are usually discarded from 

samples for inability to include them into models. “Right-censorships occur when the event 

of interest (pipe break) has not occurred within the study period. Right-censorship occurs 

within pipe break datasets in two forms: (1) the pipe is removed before the break is 

recorded, or (2) the pipe break has not yet occurred (pipe is still in service but the break has 

not yet occurred). In either instance, the event of interest (break) has not been recorded for 

the pipe and a right-censored event is said to occur at the last observed time for the pipe 

(i.e., the date of pipe removal or the latest date of pipe breaks records)”. (Snider & McBean, 

2021)   
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Eventually, the last group, probabilistic single-variate, gather those models using 

probabilistic processes to predict probabilities of pipe life expectancy, probability of break 

and probabilistic analysis of break clustering phenomenon (Kleiner & Rajani, 2001). These 

models, e.g. (Goulter, Davidson, & Jacobs, 1993; Kleiner & Rajani, 2012; Clark, J., 

ThurnauR., R., & S., 2010), have the feature to be enough versatile even though they are 

not appropriate for medium and long-term plans, but only for the short term.  

Recently, machine-learning technologies have increased their use and popularity in water 

distribution network management. Machine-learning algorithms, with a data-driven 

approach, can strongly identify relationships between several input factors, probably 

responsible for pipes’ deterioration, and breaks (Snider & McBean, 2021). Generally, they 

seem to be more accurate and easier to calibrate, making them nowadays the most spread 

and used methods for studying pipes’ life cycle.  

Machine-learning models result to be really different from each other, with several 

approaches going from clustering through k-mean cluster technology pipes (Farmani, 

Kakoudakisb, Behzadianc, & Butlerd, 2017), or use of non-additive models such as decision 

tree, random forest and gradient boosting machine (Chen, Beekman, & Guikema, 2017).  

With the parallel improvement of data collection by water utilities and advanced technology 

in machine learning, predictive models have significantly increased their accuracy and 

efficacy. Furthermore, last studies have also dealt with the problem of handling right-

censored data, overcoming the removal of these data that, introducing bias, causes 

prediction of early pipe breakage.  Survival machine learning is a relatively new field that 

tries to include right-censored data for developing predictive models. By combining survival 

analysis techniques and machine learning algorithms, models such as Random Survival 

Forest (Snider & McBean, 2021) have opened significant new horizons for water main 

management.
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2.3 Economic goal 

Most of the studies about predicting pipe life expectancies were born to contribute to the 

improvement of economic performances of water utilities. Therefore, besides the prediction 

model itself, they often include some assessment of the economic convenience of replacing 

or repairing (Kibum, et al., 2019; Snider & McBean, 2021; Kleiner, Nafi, & Rajani, 2010; Li, 

Ma, Sun, & Mathew, 2011). 

Generally, although slight differences between authors’ ways of allocating some costs, 

economic approaches are aligned. Indeed, water main management presents mainly two 

kinds of cost, namely marginal cost and replacement cost and the financial of asset is based 

on the comparison of these two costs (Boulos, 2017). 

Marginal cost includes all the expected risk costs of keeping an existing pipe (e.g., the 

consequences of an upcoming break, such as water loss, other direct damage such as 

adjacent infrastructure, road damages etc.), the accelerating cost of maintenance of the 

pipe (more the pipe fails, faster breaks occur and higher expenses for fixing) and costs due 

to declines of service level (e.g., social costs such as pollution, time loss, loss of business, 

disruption etc.). The curve of marginal cost rises with increasing rates as all cost 

components increase dramatically over time. 

All the costs involved in replacing a pipe account for replacement costs, including 

mobilization components (e.g., costs for setting up the job site, signage, discovery and 

marking of adjacent infrastructure) and variable components (e.g., material, new pipes) 

(Kleiner, Nafi, & Rajani, 2010). The value is discounted and the present value decrease as 

pipe renewal is deferred. Therefore, the replacement cost curve decreases as time 

increases (Boulos, 2017). 

 

The sum of these two mentioned curves represents the curve of the total cost a company 

must bear for replacing an existing pipe. The economic optimal time to decide not to repair 

the main but to substitute it is uniquely determined with the time when the minim of the 

curve occurs. If the replacement takes place before the optimal time, the company does not 

exploit all the useful life of a pipe. On the other hand, substituting a pipe beyond its optimal 

time means wasting capital in sustaining, maintaining and repairing a pipe that has 

overcome its economic useful life (Figure 1).  
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Figure 1 Optimal timing of pipe replacement 

 
Source 1 Boulos Paul F., Optimal time of pipe replacement, 2017, Journal AWWA, 109 (1), 45 

 

Further studies have been carried out including additional factors in the economic 

assessment of replacing. For example, Kleiner, Rajani and Nafi (2010) included in one of 

their publications the concept of economies of scale and the convenience of replacing also 

some adjacent water main once the excavation is already done for replacing a pipe. To do 

so, they defined the cost of replacement as the sum of a fixed and variable contribution. 

The first fixed addend includes costs such as for setting up the job, signage, marking of 

adjacent infrastructure, while the variable cost depends on the length-unit cost, pipe 

material, diameter etc. They described two types of economies of scale:	quantity discount, 

which applies to the variable component of pipe cost and contiguity discount, which applies 

to the mobilization (fixed) component.	Quantity discount occurs when pipe material installed 

exceeds a certain quantity lower bound, from which pipe unitary cost start decreasing. 

Contiguity discount is defined as follows: “if pipe j is contiguous to pipe i (both share the 

same node) and both are replaced in a given year t they are assumed to be part of the same 

replacement project and therefore only one mobilization component is levied. Therefore, if 

k contiguous pipes are replaced in a given year, their total replacement cost will comprise 

the sum of all their unit costs plus one mobilization charge (i.e., k-1 mobilization charges 

were saved compared to the cost of replacing k non-contiguous pipes)” (Kleiner, Nafi, & 

Rajani, 2010).
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2.4 The goal of the thesis as a bridge for research gaps 

After reviewing the literature selected for this thesis, we have concluded that the industry of 

water main management cannot be classified as an industry with “disruptive technologies” 

coming over previous predictive methods and maintenance strategies. Improvements and 

innovation arise slowly, and, in many cases, they concern only little modifications of already 

existing methods. For this reason, most of the publications are updated literature reviews 

where usually the authors also include a specific case of study, with application of selected 

predictive models, economic analysis and maintenance approach.  

Many cases of study have Canada as the place of interest (Snider & McBean, 2021; Wang, 

Zayed, & Moselhi, 2009; Kleiner, Nafi, & Rajani, 2010), but also the USA (Chen, Beekman, 

& Guikema, 2017; Mazumder R. K., Salman, Li, & Yu, 2021) or Korea (Shin, Joo, & Koo, 

2016; Kibum, et al., 2019)  

However, cases of study regarding Mediterranean locations and more generally, European 

sites, are rare with no recent studies. Therefore, since environmental conditions are among 

those most affecting corrosion, burst and breakages, an application to a location such as 

Manresa, in Catalunya, may represent an original case of application of existing knowledge. 

The town has a Mediterranean subhumid climate with a continental tendency climate, with 

cold winters, with 1-2 months with 0°-5° averaged temperature, and hot, moderately dry 

summers, while the rainiest seasons are spring and autumn [9]. Moreover, the city has 

experienced an important urbanistic expansion from the 60s, due to the increase of 

population, with almost the 60% of the total built surface dated from the 60s to the first 

decade of the 21st century [10]. This background has implied a relevant development of the 

entire distribution network to fulfil water demand in the newly expanded area of the city.  
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Figure 2 Manresa - building by decade of construction 

 
Source 2 [10] 

In addition, generally, each author undertakes their own path for the application of predictive 

models and maintenance investment analysis.  Over time, the literature has not intrinsically 

outlined common guidelines for future study, letting anyone interested in the topic follow 

different roads. The goal of this work is also to provide readers and future interested a well-

structured methodology to approach the study of water main failures, to accomplish real 

business situations with theoretical knowledge. 

This thesis will be carried out starting from the company’s needs, discussed with one 

employee of the data analysis department of Aigues Manresa, and we will try to give an 

external consideration about how to face and solve their problems using new theoretical, 

but also practical, methods. 
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3 Data exploration  
The following chapters will immerse the reader into the world of water distribution networks 

through data analysis techniques. The goal is to make use of information provided by the 

company “Aigüe Manresa” to identify potential behaviours of pipes as a response to 

changes of variables such as diameter, age or pressure. Charts and other data visualization 

tools will be used for this purpose. By doing so, the author could already delineate particular 

behaviours that can be meaningful also in the later stage of prediction. However, given the 

complexity of the problem, links between variables might also be unrevealed or seem a 

 

3.1 Procedure structure 

Data analysis is a structured process, made of defined and not-officially standardized steps, 

to convert raw and apparently meaningless raw data into useful information to support 

decision-making (Judd & McCleland, 1989). It can be seen as the pairing of people who 

develop technology that can learn from data with people who have data and who have 

problems to solve.  

Although the discipline has various approaches, the main phases on the entire analysis are 

quite defined and they are iterative, as the result of a later phase may result in additional 

work in earlier stages (Schutt & O'Neil, 2013).  

In order of being performed, the phases of a proper data analysis are the data requirement, 

data collection, data cleaning, analysis of data and eventually interpretation of results 

(Erdelyi, 2021). 
Figure 3 Data science flowchart 

 
Source 3 Schutt, R. & O'Neil, C., Doing Data Science, O'Reilly Media, 2013 
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3.2 Data requirement and data collection 

3.2.1 Which data are needed? 

As previously explained in chapter 1, pipe-intrinsic, operational and environmental factors 

are those mostly used in pipes’ failure management. A proper amount of data would allow 

either to perform analysis for visualization of insight and for applying ML to predict future 

failures. Therefore, the author asked the company to provide as much data as they were 

able to collect and give, in the matter of pipes and their failures over years.  

 

3.2.2 Source of data 

To accomplish the goal of this study, Aigues Manresa has provided the author with a 

considerable amount of data regarding pipes and failures in the distribution network. 

Unfortunately, Aigues Manresa has never collected data regarding environmental factors 

such as soil corrosivity or average traffic load, so only intrinsic and limited operational 

variables have been collected. Moreover, the importance of collecting data to support 

decision-making processes has been deeply understood only in the early 2000s, data 

regarding failures and other intrinsic factors affecting and characterizing pipes are available 

only for about the last 15 years of operation. However, the sample is considered enough 

big to be used for the purpose of this thesis.   

Data have been provided as.xlsx extension files, containing three different datasets, 

respectively pipe_all, pipe leak and arc_minsector. 

 

. Pipe_all 

The dataset pipe_all (henceforth pipes) contains detailed information about all the pipes 

within the whole distribution network between 2005 and 2019. Going in detail into which 

information we have for each element of the dataset, the following are the category of 

information, also known as variables, of the dataset, in their original configuration: 

1. Arc_id: pipe’s ID. 

2. Builtdate: pipe’s installation date, as day/month/year. 

3. Length: pipe’s longitude. 

4. Matcat_id: material a pipe is made of. 

5. Pnom: average pressure detected inside a certain pipe. 

6. Dnom: nominal diameter of a pipe. 

 

As it happens frequently when handling a large amount of data over years, some information 

can miss or go lost for unexpected circumstances or lack of information. For example, for 

some pipes the entry on builtdate column is 01/01/1900, corresponding to an unknown date. 



 A new machine learning approach to support asset  
management in water distribution networks. 

 

 26 

Therefore, during the cleaning data stage of the study, these values must be properly 

handled. 

Regarding the way on how to measure the nominal diameter of the pipe, for some pipes, 

such as those made of polyethylene, it is an exterior measurement (including also the 

section of the pipe). Iron pipes, as well as those in fiber cement, have their diameter 

measured from the inside. However, the operative method used for measuring the diameter 

cannot be deducted from the dataset and this represents a clear example of hidden 

information that cannot be spread objectively through data, but only verbally. 

 

. Arc_minsector 

The dataset arc_minsector (henceforth sectors) introduces two new concepts never 

encountered through this study so far, “minimum sector” and “node”. 

As explained by a correspondent of Aigues Manresa, a “sector” is the whole group of pipes 

that will be affected negatively by a burst of one of the pipes belonging to the sector itself. 

Obviously, companies used to gather pipes into minimum sectors because one of their 

goals is to impact as few pipes as possible given a certain burst, reducing a wider sector 

into a minimum sector identifying the minimum number of pipes likely involved in a failure. 

In case of a breakage, the only pipe shut down for placing the maintenance would be those 

belonging to the same minimum sector of the broken one.  

The other new term is “node”, identifying a point of connection of two or more pipes. Each 

pipe will so have two nodes, one for each extremity. 

Once clarified the meaning of these new concepts, the core of the speech can move toward 

the analysis of the dataset, which presents seven variables: 

1. Arc_id: ID of a pipe. 

2. Minsector: minimum sector the pipe belongs to. 

3. Node_1: connection node 1 of a pipe. 

4. Node_2: connection node 2 of a pipe. 

5. Arccat_id: a string containing information about material and nominal diameter of a 

pipe. 

6. Custom_length: Longitudinal length of a pipe. 

7. Builtdate: date of installation of a pipe.  

 

. Pipeleak 

This last dataset (henceforth leaks) lays the foundation for this study, as it contains 

information regarding failures that occurred from 2005 to 2020. It is not exactly known 

whether the starting date of this sample coincides with the campaign of data detection from 
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Aigues Manresa, but a period of 14 years might constitute enough big sample to give 

meaning and solidity to this study. 

The variables of this dataset are eight, respectively: 

1. Arc_id: ID of the pipe affected by a failure. 

2. Builtdate: installation date of the leaking pipe, as day/month/year. 

3. Data: date when the leakage has been firstly detected. 

4. Length: longitude length of the broken pipe. 

5. Matcad_id: material of the broken pipe. 

6. Pnom: nominal pressure of the broken pipe. 

7. Dnom: nominal diameter of the broken pipe. 

8. Minsector: “minimal sector” the broken pipe belongs to. 

Even for this dataset are valid the same instructions regarding “builtdate” and nominal 

diameter: date corresponding to January 1st, 1900, are “not known” entries, while for the 

detection of pipe thickness of different material, the same rules must be applied.  

 

3.3 Data cleaning  

3.3.1 Software setting  

The third step, so-called “data cleaning”, is dramatically vital for the accuracy and quality of 

the analysis and also extremely impacting on the pace of progress. It consists in amending, 

fixing and removing incorrect, corrupted, superfluous data as well as possible 

inconsistencies. In fact, a predictive model, or more generally any outcome may result to 

be unreliable whether based on not-cleaned data.  

The language selected to accomplish the goal of this study is R 4.0.2 GUI 1.72 Catalina 

build (7847), many of the packages on CRAN, containing all additional packages useful to 

exploit R resources, while the statistical software Rstudio. Among all the libraries into 

CRAN, R has some packages constituting the backbone of the software itself, which are its 

graphical libraries allowing the coder to display graphs and make them interactable with the 

user. In addition, R offers several advanced data analysis options such as forecasting model 

development, machine learning algorithms, etc. [11]. All these features make R a valid and 

suitable tool for the purpose of this work at the most of its possibilities and expectancies. 

3.3.2 Data cleaning 

Among the activities conducted during the data cleaning, “not-available” entries and 

management of variables format are worth to be mentioned. Actually, right before moving 

on to checking data, an analyst should be sure that the upload of data from the data source 

onto the used software has taken place successfully. This basically means checking the 

proper reading function to use, dimensions of the uploaded dataset and heads of variables. 
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In fact, it could happen that during the upload of a dataset, some rows and/or columns go 

lost for mere problems of reading.  
leaks <- read_excel("leaks.xlsx") 
pipes <- read_excel("pipes.xlsx") 
sectors <- read_excel("sectors.xlsx") 

 

. Aligning formats 

The first typical step of data cleaning is the variables’ format check, as in many cases they 

do not present the right format, suitable for being manipulated easily and giving easily all 

the information they have. It is for example the common case of dates, that usually are 

uploaded as integers that count the number of days from a certain day (usually January 1st 

1900 or December 31st 1899) up to the date they represent. Therefore, this integer must be 

converted in a data format. Also, in case data are missing in the original dataset, with empty 

entries, these cells would be seen as containing zero and in the calculation of the date, R 

would assign them the origin date from which the calculation starts. For this reason, all the 

rows dated to December 31st, 1899, would get their date substituted with NAs. 

The same procedure is carried out for “NULL” entries to uniform the nomenclature to NA to 

indicate missing values.  

 

. Discarding duplications 

After checking whether the dataset’ dimensions on R match with those from the .xlsx files, 

sign of a successful upload, and transform variables into proper formats, an important step 

of data cleaning consists in checking and removing potential redundancies in the dataset. 

Indeed, duplicate observation happens really often when collecting data, especially when 

they come from partners, clients, other or multiple departments. De-duplication is one of the 

largest areas to be considered in this process [12]. 

For each dataset, it is needed to identify which, among all the variables, is a primary key 

that distinguishes a univocal row from a duplication. In some cases, not a single variable 

can alone determine the uniqueness of an observation and only the combination of two or 

more values can succeed in the purpose. 

Starting with the analysis of pipes dataset, arc_id is identified as primary key, as it will be 

an error to find two rows with the same value in the columns arc_id, because they would 

give the same information regarding a single item of the network. It is found out that there 

are 5,393 duplications, destined to be removed from the dataset: they represent a threat for 

a good study and for reliable outcomes. Out of 18,022 observations from the original 

dataset, the final, at least for now, the dataset will be reduced by almost 30%. Just to have 
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an idea on how much important the data cleaning process is as data never are in a “ready-

to-be-used” status. 

Same primary key, arc_id, is used for the same purpose for sectors. The output, in this 

case, is definitely happier since no duplication is detected, for the luck of the analyst. Indeed, 

reducing a database’s size is always a loss, as a bigger sample means more data to 

validate, but also to destroy, results. Reliability goes up as the data sample increases in 

dimensions.   

Eventually, for the dataset reporting information about failures in the distribution network, 

leaks, the analyst had to choose during the detection of duplication, two primary keys. In 

fact, a single pipe might experience multiple failures in its life cycle, therefore two or more 

rows with identical values in the column arc_id are allowed. However, we assume that two 

failures cannot simultaneously occur on the same pipe. Therefore, a row presenting arc_id 

and date entries identical to a previous one will be seen as redundancy, so it is destined to 

be eliminated from the dataset.  

By asking Rstudio to display the number of duplications with the formula duplicated(), we 

get aware of a discouraging output: out of 3,007 observations of failures, the backbone of 

our study, 1,776 are not unique rows: almost 60% of the dataset is made of duplication.  

Actually, the duplicated() formula considers redundancies also those rows with identical 

arc_id entry and NAs as date, but it can also be likely scenario that the latter value just 

misses for detection issues. Therefore, even though two failures for the same pipe 

happened in different moments but without recording the breakage time, duplicated() would 

see the two events as duplication. As there are 337 NAs in the column data, the worst 

scenario we could run into is that all 337 observations were actually failures that occurred 

to pipes at different moments, and by using the duplicated() formula, useful information is 

discarded from the dataset. In the best scenario, all 337 leaks are really duplications, and 

the formula is efficiently cleaning the dataset up. An analyst would opt for having a less 

numerous dataset but surely clean rather than keeping rows that might bring bias into the 

study.  

However, as the phenomenon is of a relevant magnitude that may lead to rising doubts 

regarding the reliability of the data source, it is has been decided that before moving on with 

the following step of data analysis, to report all the issues to Aigues Manresa, with the 

purpose to understand a reason of the found inconsistencies and maybe, find a solution.  
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. Arc_id cross-check 

As we know, pipes dataset represents the “born-list” of all items in the distribution network 

and, in theory, should be the most reliable and accurate source of information we have. We 

expect that all events recorded in the leaks dataset and all the information contained in 

sectors are about pipes registered into pipes dataset.  

By defining a formula that shows the elements of a vector not into another vector, it is 

possible displaying how many are the element in leaks$arc_id and sector$arc_id are not 

into pipes$arc_id column. 
'%!in%' <- function(x,y)!('%in%'(x,y)) 
filter(leaks, leaks$arc_id%!in%pipes$arc_id)%>%nrow() 

filter(sectors, arc_id%!in%pipes$arc_id)%>%nrow() 

The discovery in the aftermath of this process is not neglectable: 120 leaks regard pipes 

not registered into pipes and even 1,048 rows from the sectors dataset. This is a dramatic 

discovery for the solidity of the data and their source because we expected that everything 

happening as a failure, involve a pipe registered in the system and all sectors include pipes 

the company know everything about. This inconsistency is even more worrying than the 

one about duplication deserve a deeper analysis and a cross-check directly from the source 

of origin 

 

. Length consistency between pipes and sectors dataset 

Already warned by the company of this discrepancy of pipes’ length between pipes and 

sectors dataset, in this subchapter the focus will be on trying to make uniform values of this 

variable in the two data frames.  

The analysis will be carried out according to the following procedure: 

1. Create a temporary data frame including arc_id and the corresponding value of 

length from pipes and sectors dataset, respectively length and custom_length. 

2. Omitting arc_id where one of the two values, either in length or custom_length is NA 

because for those pipes we only have one value of length that will be taken anyway. 

3. Check whether there are still pipes with different values of length after the first 

cleaning about NAs. If not, the inconsistency was due to the value of length not 

registered in one data set or the other and the length analysis ends. If it does, we 

should keep on investigating, moving to the following step.  

4. The following step is to understand the magnitude of the delta between length 

values, creating a new column in the temporary data frame, delta_length. 

5. The first check on the delta regards numbers rounding. As lengths value are 

rounded at the second decimal digit, arc_di with length_delta equal to ± 0.01 will not 
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be considered different as the delta is only due to approximation. Therefore, those 

rows are taken away from the data frame  

6. Once step 5 is performed, by checking the dimension of the resulting dataset, the 

number of residual pipes with divergent lengths between pipes and sectors data 

frame will be displayed. 

7. Depending upon step 6 results, deciding how to handle the situation.  

 

After removing a consistent number of rows presenting NAs (step 3), 453 pipes have 

different length values. However, around 300 of these differences is due to rounding, but 

still, 152 pipes are recoded into pipes and sectors dataset with different longitudinal 

dimension.  

To decide how to proceed, it has been considered appropriate to study what is the 

distribution of delta values for the interested pipes. 

summary(consistency.test$length) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##    0.21    2.22    9.98   34.08   46.96  440.00 

Already 25% of delta values diverge for more than 2 meters and half of them for almost 10 

meters, and moving up to the following quartiles, values incredibly worsen. It is not a matter 

of differences of centimeters, rather entire meters of pipes in excess or lack: another 

important inconsistency to be reported to the company. 

 

3.4 Data validation and check  

Given the high number of consistencies found on the three datasets provided by Aigues 

Manresa, the author has believed that the work could not be kept on board without a cross-

check from the data source. Therefore, all the previous conclusions from the data cleaning 

have been reported to the responsible department of the company. 

Indeed, all mismatches highlighted from the analysis have been confirmed by the 

company’s correspondent, who has gladly embraced these starting points to run a new 

extrapolation of the dataset from their database. In fact, as the installation of their new 

Geographical Information System (GIS) took place only in March 2018, at the time when 

data have been extrapolated, late 2019, the GIS was still on a debug phase that led to 

duplications, mismatches and inconsistencies in the data.  

Once becoming aware of their data Aigues Manresa have also relied and worked on, a new 

data extrapolation has been performed, at this time based on a solid and more reliable GIS, 

even able to record and store additional information. Indeed, the new dataset created and 

used for the continuation of this work not only is more solid for very high rates of consistency 
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throughout all the datasets but also all_pipes dataset has been improved with two valuable 

variables: 

1. End_date: date at which a pipe has been replaced. 

2. State: categorical variable assuming value 0 whether a pipe has been replaced, 1 

whether still in service, 2 whether a pipe is out of service. 

Unlikely the first versions of the dataset, the new ones are presented with .csv extension, 

an aspect not particularly impacting by how NA data are expressed. Whether for .xlsx files, 

the origin counting date was 31/12/1899, in the new .csv file the count starts on 01/01/1900, 

that would be our NAs for dates. Another peculiarity of .csv files is that NAs can as NULL, 

the reason was needed to check for those columns with NULL entries and replace those 

cells with NAs. 

Even though new datasets are reduced in terms of dimension (new leaks dataset is less 

than half of the previous given one) and present more missing values than first versions, 

data are definitely solid and reliable, as: 

• Duplications of rows with same arc_id within pipes dataset are 0. 

• Duplications of failure detections are only 4 rows out of 1173 rows of leaks dataset. 

• No pipes whose there are failures recorded are not registered in pipes dataset 

(before, 120 were the failures of unknown pipes). 

• No pipes whose the belonging to a certain sector is unknown (before, for more than 

1000 pipes the sector of belonging was not registered) 

• No pipes whose sector belonging was known is not included in pipes dataset 

(before, we knew information about 762 sectors of pipes not in pipes dataset) 

• No pipes with different longitudinal lengths between pipes and sectors dataset.  
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4 Data analysis 
The goal of this chapter is to go through all the information available to get insight regarding 

pipes and try to understand whether or not there is a straightforward relationship between 

some features, such as the material or the diameter, and a break 

 

4.1 Frequency of pipes by age  

Once obtained cleaned data frames, to start with the extrapolation of meaningful 

information, seeing when pipes have been installed can give a general understanding of 

how pipes are distributed over year and whether the distribution matches Manresa’s main 

expansion period. 

To carry the analysis out, a new data frame only containing pipes with no NAs within the 

builtdate column was created and named pipes.complete. Basing upon the variable 

builtdate in the new dataset, a new variable age has been created as the difference between 

pipe year of installation and the enddate, which for this study has been set on the 1st 

September 2021. The function eeptools::age_cal has been used as follows: 
pipes.complete <- mutate(pipes.complete, age=age_calc(builtdate, enddate 
= as.Date("2021-09-01") , units = "years")) 

 
By checking the range of the new variable age, the youngest pipe has only 0.098 years 

(indeed installed only on July the 27th 2021) while the oldest is more than 77 years old, 

dating back to 1944. The quartile distribution is the following:  
quantile(pipes.complete$age) 

##          0%         25%         50%         75%        100%  
##  0.09863014 15.04109589 23.66849315 44.67121791 77.66849315 

For plotting the distribution of age, bins of 10 years have been created because it has been 

believed that analyzing pipes’ age per decade would be more insightful rather than per 

single year. 

Figure 4 shows that among the entire water distribution network, there are especially two 

age bins with the highest frequency: pipes aged between 10 and 20 years and 40 and 50 

years, therefore respectively built in the decade 1970-1980 and 2000-2009. The result is 

perfectly aligned with Manresa’s main expansion periods, where there was a boost in 

surface construction as Figure 5 shows. 1970-1980 and 2000-2009 were the two decades 

where most of the city surface has been built and consequently, pipes have been installed 

to enlarge the water distribution network.  
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Figure 4 Histogram: distribution of age of pipe 

 
 

 
Figure 5 Manresa data: built surface over decades 

 
Source 4 [10]   
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4.2 Pipe material 

Surely among the most relevant variable of a pipe, materials used for distribution network 

have been changed over the years, as technology and discoveries have progressed.  

By grouping pipes by the same material, a bar chart displaying the absolute frequency of 

usage of a single material has been created to visually identify widely used materials.  

 
Figure 6 Bar chart: absolute frequency of pipes by material 

 
 

Figure 6 gives a piece of important information for the continuation of the study: the almost 

totality of distribution network in Manresa is made of “FIB” (Fibrocemento), “FO” (fundición 

dúctil) and “PE” (Polietileno) standing respectively for fiber cement, ductile cast iron, 

polyethylene.  

Besides a light relevant usage of “Fe” (iron), the use of other materials can be considered 

negligible.  

However, could be possible that the absolute number of pipes made of a certain material is 

low, but the total length of those tubes might represent an important share in the entire 

network. This consideration has led to the construction of the following graph, where not 

merely the frequency of usage is displayed, but the total length of pipes per material.  

However, no relevant changes come out from Figure 7, as the same three materials, FIB, 

FE and PE remain the highest usage also in terms of meters extension. 

Since the impact of all other materials is really irrelevant, the study can proceed only 

focusing the attention on pipes where the variable matcat_id assumes the values “FIB”, 
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“FE” and “PE”. All the rows where this condition is not respected will be taken away from 

the dataset, filtering the information by what really matters. The risk of keeping pipes made 

of those “low-used material” is that in a future predictive stage, predictive models could get 

distorted as bias can be generated by those classes of materials.  

 
Figure 7 Bar chart: total length of pipe by material 

 
 

4.2.1 Material per decade 

Once having understood the major used materials within the network, the focus moves on 

how materials have been used over years, with the attempt of identifying possible trends.  
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Figure 8 Bar chart: Total length of pipes by material over decades 

 
It is straightforward as “FIB” that in the past was largely the most used material, sometimes 

almost the unique one, has been abandoned from the 70s and replaced by a more and 

more used “PE” and, over the last 3 decades, by “FO”. The cause behind the stop of fiber 

cement as the main material for pipes construction is due to the presence of asbestos, that 

once exposed to weather and erosion elements, can be a source of airborne toxic fibers, 

threatening human health. The “Orden de 7 de diciembre de 2001 por la que se modifica el 

anexo I del Real Decreto 1406/1989, de 10 de noviembre, por el que se imponen 

limitaciones a la comercialización y al uso de ciertas sustancias y preparados peligrosos”1 

had officially prohibited the presence of asbestos within fibers of fiber cements material.  

To fully understand how materials have been used relatively within a specific decade, the 

following graph displays out of the total 100% of length installed in each decade, which is 

the share per each material.  

   

 
1 Orden de 7 de diciembre de 2001, por la que se modifica el anexo I del Real Decreto 1406/1989, 
de 10 de noviembre. 
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Figure 9 100% bar chart: relative total length of pipes per decade 

 
 

In the late 60s, regulations around the world against asbestos risks have been revamped 

and, in the early 70s, deeply strengthened [13], trigging strong reflection on fiber cement 

usage also in Spain. The main percentage reduction in length of pipes in “FIB” occurred 

during the three decades from 1970 and 2000, for the benefit of “PE” that had been 

increasingly replaced “FIB” in the distribution network. However, whether from the 1950s 

the share of length lost by “FIB” was almost completely taken by “PE”, from the 90s, also 

pipes made of “FO” started to be largely used. 

 

4.2.2 Material and average pipes length 

In this sub-session of relationship with used material, the goal is to investigate possible 

preferred material to be used depending on the length of the pipe. Maybe some materials 

are better suited for longest mains, for a matter of monetary affordability (lower price per 

unit of length) or physical characteristics. By grouping data from pipes dataset by the 

variable matcat_id, a boxplot could say which are length distribution within each class of 

material and where the median is located. Median has been chosen as the main indicator 

rather than average as some outlier could negatively affect the mean per each material. In 

addition, a boxplot may also tell more than a bar graph as it also shows the distribution and 

the dispersion of values around the median (1st and 3rd quartile values). 
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Figure 10 Boxplot: length distribution of pipes by material 

 
 

However, Figure 10 shows that pipes apparently measure homogeneously between 

materials, with very similar widespread distribution: there is not any material preferred 

basing upon the length of a pipe. To be meticulous, although medians are almost perfectly 

aligned between them, there is a slight difference among lengths of pipes made of FO and 

other material, as it seems as they are less widespread, and its 3rd quartile value (upper 

side of the green box) is slightly lower than for the other two boxes.  

 

4.2.3 Material and nominal diameter 

Once found that pipe length is not a determining variable for the choice of material, the 

attention falls onto the other main dimension of a pipe, that is the nominal diameter, variable 

dnom in pipes dataset. 

The same approach has been adapted for this analysis, that is plotting a boxplot able to 

display simultaneously median and quartile distribution of values the variable dnom assume 

within material groups. 
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Figure 11 Boxplot: nominal diameter of pipes by material 

 
 

Unlikely longitudinal length, pipe material is chosen depending on the nominal diameter of 

the pipes. Indeed, from Figure 11 it is possible to detect a clear upward trend for “FO” 

diameter dimension, compared to the other two materials. In addition, “PE” box is narrower 

than “FIB” box, than in overall results to be the most widespread material in terms of 

diameter. Once brainstormed with the correspondent from Aigües Manresa, the reason 

behind this particular behaviour has been identified and it is merely based on economic 

assessments. Indeed, for smaller diameters, polyethylene (PE) is much cheaper than 

ductile cast (FE). However, this economic convenience disappears once diameter 

dimension rises, and since ductile iron is stronger than polyethylene, and so a better 

material at an equal price, it is preferred for biggest mains. Regarding fiber cement, the 

large area of the box is because when in the past it was almost the only one used material, 

both big and small dieter pipes were built with FIB, that therefore presents a wider 

distribution of nominal diameter values. 

 

4.3 Sector 

As already defined, a “sector” is the whole group of pipes that will be affected negatively by 

a burst of one of the pipes belonging to the sector itself. What could be an object of interest 

about sectors is to understand how many pipes are contained into sectors and which 

frequency a certain numerousness within a sector is repeated in the network. Indeed, if on 

one side a utopic scenario would be to have sectors made of only one pipe to reduce 
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minimally the spread of failures’ impacts, on the other side, such scenario would lead to an 

extreme granular network and too complex to build and manage (due to very high 

duplication of resources). In a hypothetical graph, the “complexity curve” would decrease 

as the numerousness of sectors increases. On the other hand, the spread of failure’s impact 

would increase as the numerousness of sectors increases. The optimal numerousness 

would be given by the interception of the curve where there is the perfect compromise 

between network complexity and risk.  

As previously done for the distribution of age of pipes, the methodology for showing how 

pipes are distributed within sectors is to calculate the absolute frequency of a certain 

numerousness of pipes in a sector (Figure 12).  

  
Figure 12 Histogram: distribution of pipes within sectors 

 
 

However, instead of calculating merely the frequency of the number of pipes per sector, 

once again, it is widely believed that length is a more robust indicator rather than frequency. 

In addition, in the following histogram (Figure 13), the length per sector will be displayed in 

terms of relative percentage over the total length of pipes. 
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Figure 13 Histogram: distribution of length of pipes within sectors: percentage over the total network length 

 
 

As visible from the histogram in Figure 13, the majority of sectors have less than 200 meters 

of pipes within them. In particular, in 75% of the cases, a failure involves less than 150 

meters of the distribution network. 

 

4.4 Leaks 

4.4.1 Leaks per material                                 

Once having explored interesting correlation among variables of pipes and sectors 

dataset, the focus of the study moves on the core dataset of this study, that is leaks.  

The first preliminary visualization will regard the absolute number of failures per group of 

material within the dataset. By doing so, the reader would have a general idea which are 

pipe materials mostly populating the dataset of failures.  
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Figure 14 Bar chart: absolute frequency of leaks by material 

 
 

Keeping in mind that “FIB”, together with “Fe”, pipes are the oldest in the network, while 

“FO” pipes are the newest, the bar chart Figure 14 shows as, in absolute terms, pipes in 

fiber cement mainly fail, followed by those in polyethylene. On the other hand, very few 

are the breaks of pipe made of “FO” recorded in the company’s database. However, to get 

a deep insight on failure rate by material, absolute failure figures should be compared to 

two values: 

• Total number of pipes of each material group 

• Total length of pipes of each material group.  

In the first case, the ratio would give a relative break frequency, showing the percentage 

of broken pipes per each material, while the second one will compare rates of failure per 

meter of materials.  

Figure 15 apparently shows that the relative frequency of failure has radical differences 

between materials, since “FO” has a very percentage of breaks compared to the other two 

materials, being almost 1/3 of the other percentages. 

Although the gap in failures could seem very high, once comparing the number of failures 

throughout the network with the corresponding total extension of pipes, figures come out 

more aligned as shown in Figure 16. Indeed, the number of failures per unit of length 

rewards one more time pipes in fiber cast on a privileged position, that, as also confirmed 

by the company’s expectation, results to be the more resilient and resistant material, with 

a failure rate per meter just above 0.01. 

However, results have to be interpreted carefully, otherwise risking falling into wrong 

conclusions. Indeed, pipes in ductile cast (FO) have started to be installed in the network 
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mainly only from the 90s, as Figure 9 clearly shows. Therefore, on the date of data 

gathering, approximately September 2021, their age is on average lower than pipes in 

fiber cement and polyethylene, as Table 1 clearly displays. So, by that time, the failure of 

pipes in ductile cast are expected to be fewer than for other materials.  

 
Figure 15 Bar chart: relative frequency of leaks per material 

 
Figure 16 Bar chart: number of failures per unit of length (m) 
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Material Average age (year) 

FIB 46.54 

FO 16.22 

PE 19.51 
Table 1 Average age per material (year) 

The proper analysis therefore should be carried on by comparing breaks rates of pipe with 

same age at the observation day.  

After having calculated the age at which each pipe in the leaks dataset has experienced a 

failure, with the help of the formula dplyr::group_by, leaks have been grouped first by 

pipe age at the occurrence and then by material: the goal is to detect particular behaviour 

in failure trends. The goal is to understand how results in Figure 15 are obtained over years. 

Figure 17 shows the (cumulative) rate of failure per year. Basically, it answers the question 

“out of the total number of pipes of a certain material, how many got broken by an age of x 

years old?". Curves do not sum up to 100%, because they do not show the path towards 

the total number of failures, rather they end to a percentage that is equal to the ratio between 

total.leaks.per.material / total.pipe.per.material (values in Figure 15). 

 
Figure 17 Cumulative percentage of leaks by material 

 
 

Depending on the material, trend lines adopt really different shapes.  

The slope of the cumulative percentage of leaks of pipes in polyethylene is quite constant 

over age, with the percentage of leaks increasing constantly as the age increases, up to 45 

years old when the curve flattens. Indeed, whether in the first part of their life, “PE” pipes 
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“get old” quickly, once turning 45 years old, the deterioration process takes an opposite 

trend, up to end in a flat curve in the latest years. Differently, “FIB” seems to be more 

resistant in the first years of their life but falls in a dramatic deterioration from year 30 to 50, 

going even above the curve of “PE” once around 45 years old.  

Eventually, “FO” pipes apparently have a very low and smooth cumulative percentage rate 

of failure, going up to 0.01 extremely slowly. However, this trend line is not enough reliable 

and comparable for two reasons: 

• Pipes in ductile cast iron have been installed only starting from 1990; all the pipes 

aged more than 25 years represent exceptions. 

• The sample size is less than half of the other two material categories. 

 

4.4.2 Leaks and nominal diameter 

An important discovery regarding failures is explained in this sub-chapter, where the author 

has related pipes failure rate and pipes nominal diameter.  

Figure 18 clearly shows as there is a strong relationship between pipe size and the 

probability of having a break. In particular, the trend of failure rate is downward as diameter 

increases. The failure rate is calculated as the ratio between the number of pipes with a 

certain diameter and the total number of failures for that diameter size.  

The result reflects what the experience of employees of Aigüe Manresa predicted, since 

over years the trend was already noticed, biggest pipes used to break less than thinner 

ones.  
Figure 18 Scatter plot and trendline of failure rate as a function of nominal diameter 
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4.5 Conclusions from data exploration  

Even though the complexity of the data, it was possible catching some possible 

relationships between pipes characteristics and failures, such as the link between material 

and breaks or the downward of failures given the nominal diameter. However, unlike it was 

expected at the beginning of this study, the study of impacts of many variables has been 

omitted because apparently with no meaningful direct relationship with breaks. It is the case 

of the minimum, maximum and average pressure detected within pipes, as well as the 

nominal pressure and length. This does not mean those variables do not influence the 

probability of failing, but only that the effect cannot be seen by plotting a two dimensions 

graph. Or also, standing alone, variables such as pressure does not show any relationship, 

but if associated with other variables (e.g., length), within each group of length, pressure 

presents a noticeable relationship. However, during the next analysis about the prediction 

model, it would be possible to understand whether a variable actually has an impact on 

failures or not, but iteratively including and taking out the variable from the model and seeing 

how the goodness changes. If after taking out a variable the model is weaker, it means that 

the left-out variable does have a relationship with failures probability, even though was not 

possible to show it visually. 

Eventually, how matching variables to outline potential trends in pipes failure is a topic left 

out for future studies. 
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5 Prediction 
The content of Chapter 0 has given the reader a meaningful understanding of how pipes 

react to different stimuli and variables and which of them may be more impacting on the 

survival of the network. The probability to have a break is not only a matter of randomness, 

rather the generation of a regression model may attempt to explain some of the variability 

leading to a failure and to predict future breaks based on pipes variables.    

 

5.1 Machine learning as a powerful tool 

In chapter 2, the author reported some of the most famous work from the past in which the 

topic of prediction for water pipes failures has been undertaken. Most of them are based on 

traditional statistical and probabilistic methodologies, using parameters to estimate time-to-

next-break or a hazard function. 

However, the author of this study wants to follow a more recent trend in the management 

of assets with stochastic occurrences: Machine Learning (ML). For this purpose, R and 

Rstudio are very valuable tools, both for creating predictive models and analyzing the 

goodness of results.  

Predicting in ML means generating output using an algorithm, chosen among many for its 

adaptability to the particular scope of the work. The algorithm will be trained and tested 

based on historical data for which complete information is reported, and once reached a 

certain desired level of goodness, the predictive model will be ready to be applied in future 

scenarios where the output variable is unknown to forecast the likelihood of that particular 

outcome [14]. 

Nowadays, there is a group of widespread machine learning algorithms, such powerful to 

be able to solve mainly any data problems (Ray, 2017). Following, the most common have 

been listed: 

• Linear regression 

• Logistic regression 

• Decision tree 

• Naïve Bayes 

• K-means 

• Random forest 

• Gradient boosting algorithm 

 

In cases such as the one interesting this study, where the goal is to predict when and with 

which probability a pipe will “die” due to a break, there is another specific branch of statistic, 

known as “survival analysis”, handling the matter. Although “survival analysis” lies the 
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foundation on traditional statistical studies, that led to the development of non-parametrical 

(e.g. (Kaplan & Meier, 1958), (Nelson, 1972)), semi-parametric (e.g. (Cox R. D., 1972)) and 

parametrical methods (e.g. (Lee & Wang, 2003)), the latest frontier of survival analysis 

involves ML technics, with new developed algorithms such as survival trees, artificial neural 

networks and random survival forest. The main strength of these is to be able to handle 

successfully the issue with censoring and truncation that highly often “damage” datasets.  

 

5.2 Censorship and truncation 

“Samples obtained with data collection and /or observation is restricted over some portions 

of the sample space are, depending on the nature of the restriction, designated as either 

truncated or censored” (Cohen, 2020).  

Censoring occurs when it is not known the exact time-to-event for an included observation 

and depending on when the event takes place, and the sample may be classified as left, 

interval or right-censored. When it is known that the time-to-event on an element of the 

sample is less than some value, the inclusion of this observation lead to left-censoring. The 

case of right-censorship has an opposite scenario, with time-to-event greater than some 

value. The last case includes both right and left censoring, with the time-to-event of an 

element of the sample between two specific values.  

 
Figure 19 Type of censoring 

 
 

The dataset used in this study suffers from censorship, regards the population of pipes 

dataset. Indeed, the inclusion of pipes experiencing leaks before 2005 is a straightforward 

example of left censorship, while all the pipes included in pipes set with no breaks recorded 

by 2020 represent instances of right-censoring observation. Moreover, the absence of 

intermediate-censorship cannot be absolutely stated as it is not exactly known whether, 

during the detection period, there was some time frame when leakages were not detected 

due for instance to technical issues. Since the author is not fully aware of this possible 
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scenario, it is assumed that during the time of observation, 2005 – 2020, no cases of 

intermediate censorship are present.  

As long as the set includes pipes without recorded breaks because happening before 2005 

or after 2020, the data set will be subjected to the censoring problem.  

The truncation phenomenon is caused by the nature of virtue of time-to-event of some 

observations. Left-truncation happens when occurrences, with very short survival time, 

evade sampling, while right-truncation when the value is too big to be measured.  

In this study, truncation regards the population of leaks, because all the leaks before 2005 

were not included in the study, although pipes did have breaks before that temporal lower-

bound: leaks dataset suffers from left-truncation.  

Although the two problems represent an important obstacle in the resolution of such a 

problem analysis, the bias from right censoring can be resolved or mitigated by the use of 

a survival model because a survival model incorporates the right-censoring issue by its 

mathematical definition. Snider and McBean (2020) reconfirmed the advantages of a 

survival model by comparing it with machine learning algorithms that do not incorporate 

right-censored data. They concluded that removing censored events from the machine 

learning model results in predicting earlier pipe breaks than occur (Hao Xu & Sunil, 2021). 

However, survival analysis would solve the problem of pipes dataset, but not the truncation 

affecting leaks, the application of these advanced methods would not be enough to deal 

with all the issues involved in this study. Therefore, with the approval of the department of 

Aigues Manresa, it has been decided to approach the study with traditional machine 

learning methodologies. 

 

5.3 Choose of predictive methods 

As the purpose of this study is to assess how ML methodology can improve the company’s 

performance in asset management in Manresa and given the high complexity behind the 

concept of truncation and censoring, it has been agreed that traditional ML techniques might 

already give valuable insights. Later studies could then focus on the inclusion of problems 

such as censoring and truncation to go deeply into the problem. 
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5.4 Logistic regression as preliminary ML method 

To perform the first prediction and see early results, logistic regression has been elected as 

the preliminary ML method. 

Logistic regression is a learning classification algorithm, used to predict the probability of 

occurrence of the dependent variable, with a dichotomous nature: it can only assume values 

“0” and “1”, respectively in presence of a failure or of a non-failure. By taking as input a list 

of variables X, logistic regression computes the probability that the output variable Y is 1, 

mathematically: 

 

𝑃(𝑌 = 1) = 𝑓(𝑋) 
Equation 1 Logistic regression 

Before creating the predictive model, training and testing it on the dataset, it is needed to 

re-modulate the given information to create a structure suitable to the object. In detail, 

given pipes, sectors and leaks dataset, and keeping in mind that leaks reports information 

about failures from 2005 to 2020, the final framework of the break.history data frame 

would be the following: 

• For each pipes in pipes dataset, break.history will have a number of rows equal to 

15 whether the installation year of the pipe is antecedent data collection beginning 

(2005) or equal to the difference, in number of years, between data collection end 

(2020) and installation year. 

 

#𝒓𝒐𝒘(𝒊) = .
𝟏𝟓, 𝒃𝒖𝒊𝒍𝒕. 𝒅𝒂𝒕𝒆 ≤ 𝟐𝟎𝟎𝟓	(𝟏)

𝟐𝟎𝟐𝟎	 − 	𝒚𝒆𝒂𝒓. 𝒊𝒏𝒔𝒕𝒂𝒍𝒍𝒂𝒕𝒊𝒐𝒏(𝒊), 𝒃𝒖𝒊𝒍𝒕. 𝒅𝒂𝒕𝒆 > 𝟐𝟎𝟎𝟓	(𝟐) 

Equation 2 Calculation of number of rows in break.history dataset 

 

• Column will be those already known variables included in all the three original 

datasets, plus two new columns: 

o Year, standing for “observation year”, going from 2005 to 2020 in case (1) 

in Equation 2, or from installation.year(i) to 2020 in case (2). 

o Failure, a binary value assuming value 0 or 1 whether for the pipe i a failure 

occurred in the “observation year” j.  

To generate break.history, that from now on will represent our information source for 

building predictive models, it was necessary to code a for-if cycle. 

As explained, the cycle will calculate whether a failure occurred for each year within the 

range 2005-2019 in case a pipe was installed before 2005 or within the range 

installation.year-2019 in case of installation after the beginning of data collection.  
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In the end, considering all the pipes in the pipes dataset, a break.history dataset has been 

created with 195.660 rows. After another round of data cleaning to provide the new dataset 

with a proper format, and to delete critical NAs that would represent a threat to the 

effectiveness of predictive models, the path towards the creation of the predictive model 

may proceed. 

The following table shows the frequency of values 0 and 1 within break.history.  

 

VALUE FREQUENCY 

0 69532 
1 237 

Table 2 Frequency of observation with failures (1) and non-failures (0) 

  

Based on these figures in Table 2, the baseline, indicating the percentage of occurrence of 

the event “failure” is calculated as:  

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 	
𝑓(1)

f(0) 	+ 	f(1)
=

237
69532 + 237

= 	0.0034 = 0,34% 

Equation 3 Baseline equation 

Only 0.34% of our dataset has a failure  

Once calculated the baseline, the dataset break.history has been split into a training and 

test subset, both maintaining the same ratio of 1s and 0s in the failures column: the baseline 

value stays constant also in the new two subsets. In this case, subsets have been created 

with a proportion of 75% of observation in training and 25% in test. 

 

It is time to create the logistic prediction model (failure.log) and to train it on the training 

subset. At this first attempt, all variables will be included as possible regressors, even 

though the significance of coefficients must be tested once the model is generated. 

However, for obvious reasons of collinearity, only one variable between age and decade 

will be held in the model. Indeed, they would express a linear relationship in the regression 

model.  

The used formula for the generation of the logistic model is stats::glm, where it will be 

said to use the logistic approach by indicating binomial in the input ”family”. 
failure.log = glm(failure ~ year + length + matcat_id + pnom + dnom + de
cade + max_pressure + min_pressure + avg_pressure, data = training, fami
ly = binomial) 
summary(failure.log) 

##  
## Call: 
## glm(formula = failure ~ year + length + matcat_id + pnom + dnom +  
##     decade + max_pressure + min_pressure + avg_pressure, family = bin
omial,  
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##     data = training) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -0.9741  -0.0856  -0.0665  -0.0448   4.2015   
##  
## Coefficients: 
##                 Estimate  Std. Error z value             Pr(>|z|)     
## (Intercept)  145.7184358  34.5671444   4.216            0.0000249 *** 
## year          -0.0578083   0.0170536  -3.390             0.000699 *** 
## length         0.0074094   0.0007336  10.101 < 0.0000000000000002 *** 
## matcat_idFO    2.7720457   1.1570127   2.396             0.016581 *   
## matcat_idPE    0.4728648   0.3907540   1.210             0.226227     
## pnom          -0.1272491   0.0382823  -3.324             0.000887 *** 
## dnom          -0.0076448   0.0022821  -3.350             0.000808 *** 
## decade        -0.0165595   0.0058483  -2.832             0.004633 **  
## max_pressure  -0.0390213   0.0278516  -1.401             0.161201     
## min_pressure  -0.0324052   0.0152625  -2.123             0.033738 *   
## avg_pressure   0.0731541   0.0375840   1.946             0.051605 .   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 2378.7  on 52326  degrees of freedom 
## Residual deviance: 2131.2  on 52316  degrees of freedom 
## AIC: 2153.2 
##  
## Number of Fisher Scoring iterations: 9 

The first step after creating the predictive model is to go through regression coefficients and 

evaluate their significance. by displaying the summary of the built model, Rstudio shows 

coefficients significance with support of visual indicator, as following:  

 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

With a. significant level of 5%, we can keep all the regressors marked from 3 asterisks 

'***' up to those marked with a dot'.'. For all the other regressors, our training dataset 

does not provide enough evidence to reject the null hypothesis. For these variables, there 

is a zero correlation with the failure values. It is apparently the case of max_pressure and 

the binary matcat_idFO. Indeed, as matcat_id is a categorical variable assuming only 3 

possible values (PE, FO and FIB) the algorithm generates 2 binary variables, matcat_idPE 

and matcat_idFO, assuming value “1” whether the pipe is made of the specific material. A 

row with both binaries “0” would be made of FIB. Regarding the significance, it seems as 

being made of polyethylene is determining for a failure, whereas FO does not. The variable 

max_pressure has also a p-value not enough low to reject the null hypothesis and a non-

zero correlation with failure.  
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However, before taking out not significant regressors, we would like to see the results of 

this first model. By applying failure.log to the training dataset, results are the following: 

predictTrain <- predict(failure.log, type = "response") 
tapply(predictTrain, training$failure, mean) 
          0           1  
0.003374193 0.011456117  
 
 

 Probability 

0 0.0033711 
1 0.0123585 

Table 3 Probability of being predicted as a 0/1 when a failure occurred (training subset) 

 

Table 3 must be read as following: 

• If an observation did not experience a failure, the probability that it is predicted as a 

failure is 0.3%. 

• If a pipe had in a certain year a failure, the logistic predictive model would assign a 

“1” with a probability of 1.2%.  

At a first sight, the results may appear really weak and discouraging, but by thinking about 

the goal of this study, which is to understand whether and how ML can improve the 

company’s economic performances, conclusions need to be taken out only at the end. 

Moreover, the 1 unit of magnitude difference between the two probabilities is already a sign 

of the efficiency of the model.  

The next step would be to convert probabilities into predictions, by setting a threshold: if the 

probability of observation to be predicted positive is below the threshold, failure would 

assume value 0, otherwise, a leak would be predicted.  

For the choice of the right threshold, marking the edge to assign 0 or 1 to each observation, 

the receiver operating characteristic (ROC) curve is useful. The curve helps decide the 

threshold by comparing sensitivity and specificity for different thresholds. It is possible to 

reduce the threshold value as long as the increase in true positive rate causes a less 

proportional increase in false positive rate. Once the side-effect of false positive rate 

increases more than how much the true positive rate rises, it is not favourable to reduce the 

threshold anymore. Geometrically, as long as the straight-line tangent to the curve has a 

slop higher than 45°, the threshold can be reduced.  
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Figure 20 ROC curve, first logistic model 

 
 

Figure 20 plot the ROC curve for the first logistic model and some cutoffs, from which 0.005 

emerges to be the threshold for an optimal compromise of sensitivity and sensibility. 

Considering a threshold of 0.005, the prediction table is the following: 

 

 FALSE TRUE 

0 44,699 7,450 
1 77 101 

Table 4 Aggregated output of prediction 

• Rows (0 and 1): indicates actual values of observations. 

• Columns (FALSE ad TRUE): output of prediction.  

Out of a total of 52,327 observations in training subset, the preliminary logistic model has 

obtained the following results: 

• Out of 52,149 observations without failures, 7,450 observations have been classified 

as TRUE, so as they experienced a failure (false positive). 

• Out of 178 observations with failures, 77 have been predicted as without failures 

(false negative). 

To efficiently summarize Table 4 figures and predictive performances, recalling some 

performance indicators would be useful for a deep understanding. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	 + 	𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Equation 4 Specificity equation 

The meaning of specificity (Equation 4) is to show the capacity of the predictive model to 

predict negative values (without a leak) over the total actual observation without failures. 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 =
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 + 	𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
	 

Equation 5 Sensitivity equation 

Sensitivity (Equation 5) explains the portion of actual pipes with failures that our model has 

been able to predict as such. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	 + 	𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙	#	𝑜𝑓	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

Equation 6 Accuracy equation 

 

The last indicator is the accuracy (Equation 6) shows to which extent the predictive model 

has been able to predict in aggregate correctly the observation.  

In our case, the results are the following.  

 

Indicator Value 

Specificity 0.8571401 
Sensitivity 0.5674157 
Accuracy 0.8561546 

Table 5 Performance from training the first logistic prediction 

 

For being the first predictive model, results are more than satisfying, although the first 

feeling after obtaining figures in Table 4 seemed discouraging. Furthermore, recalling the 

basic goal of this study, which is to plan maintenance supported by prediction, figures from 

Table 5 could be interpreted with a different reading key, providing additional relieving 

information.  

Indeed, the total number of predicted failures (sum of figures in column TRUE) is 7,551, 

summing up for only 14.4% of the observations. The number of real failures that would be 

discovered during these 7,551 maintenance interventions is 101, accounting for 56,7% of 

actual total network failures. Considering a measure “pipe x year”, by working only on the 

14.4% of the total pipe x year, the company would fix the 56% of the total actual failures in 

the distribution network over the same time frame.  

 

5.4.1 Testing the model 

Once training the model and having found such a positive outcome, it is time to test 

failure.log and compare results from training and testing. Basically, the same 

methodologies adopted for training will be followed for the testing stage, heading to 

computing the same indicators of performance as before.  
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predictTest <- predict(failure.log, type = "response", test)  

tapply(predictTest, test$failure, mean) 

 Probability 

0 0.0033711 
1 0.0123585 

Table 6 Probability of being predicted as a 0/1 when a failure occurred (test subset) 

 
Probabilities to predict a pipe with at least a failure in a certain year as “without failures” or 

“with failures” are perfectly aligned with probabilities in Table 3.  

 
Indicator Value.test 

Specificity 0.8699304 
Sensitivity 0.5423729 
Accuracy 0.8688224 

Table 7 Performance from testing the first logistic prediction 

 

Eventually, the last step for validating the model is to compare results with those from the 

training. 

 

Indicator Training Test 

Specificity 0.8689716 0.8699304 
Sensitivity 0.5280899 0.5423729 
Accuracy 0.8678120 0.8688224 

Table 8 Comparison between training and test indicators, first logistic model 

 

Although the training subset is only 25% of the total sample dataset, prediction indicators 

are absolutely aligned with those from the training. The logistic model is solid and enough 

powerful for being applied in a company real situation for supporting decision making, in 

particular maintenance policies.  

 

5.5 An amendment to the first logistic model 

As already mentioned right before starting building the predictive model, once generated 

break.history dataset, a new round of data cleaned has been necessary, especially for 

dealing with NAs. Indeed, by default, most of the regression models in R work complete 

information and missing values can be problematic. Therefore, once deciding which 

variables were candidates as regressors, break.history was adjusted in order to erase any 

inconvenient NA occurring in those variables. In particular, dataset dimension dropped from 
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more than 190 thousand to only around 67 thousand, mainly because of pnom variable, 

presenting around 113 thousand missing values. This deduction of rows has dramatically 

reduced the sample size, and in this subchapter, the objective is to evaluate the effect of 

taking out pnom as a regressor and keeping a larger dataset. The idea is to give up a 

variable with a relevant significance (it is evaluated as a “three asterisks” regressor of the 

1st logistic model) but gaining a larger sample where training and testing the model.  

In addition, by displaying which variables has a coefficient of collinearity of variables higher 

than 0.7, related variables will be also taken out from the model: once again, the goal is to 

build a more simple but pure model.  

In the following code and R output, TRUEs mark pairs of variable with collinearity higher 

than 0.7, which is a reasonable threshold for excluding regressors.  
abs(cor(select(break.history, c(4, 6, 7,10, 11, 12, 13, 14)))) >0.7 

##         length  dnom state   age max_pressure min_pressure avg_pressu
re 
## length    TRUE FALSE FALSE FALSE        FALSE        FALSE     FALSE 
## dnom     FALSE  TRUE FALSE FALSE        FALSE        FALSE     FALSE 
## state    FALSE FALSE  TRUE FALSE        FALSE        FALSE     FALSE 
## age      FALSE FALSE FALSE  TRUE        FALSE        FALSE     FALSE 
## max_pressure  FALSE FALSE FALSE FALSE   TRUE         TRUE      TRUE 
## min_pressure  FALSE FALSE FALSE FALSE   TRUE         TRUE      TRUE 
## avg_pressure  FALSE FALSE FALSE FALSE   TRUE         TRUE      TRUE 
## failure  FALSE FALSE FALSE FALSE        FALSE        FALSE     FALSE 
##              failure 
## length         FALSE 
## dnom           FALSE 
## state          FALSE 
## age            FALSE 
## max_pressure   FALSE 
## min_pressure   FALSE 
## avg_pressure   FALSE 
## failure         TRUE 

In particular, as could be expected, max_pressure, min_pressure and avg_pressure have 

a linear relationship with each other.  Therefore, by attempting of keeping one of them in 

the model and taking out all the others and assessing the effect on significance and 

goodness of the model, we have ended up to the conclusion to only keep avg_pressure 

included as a regressor. 

Following, the result from summarizing logistic model indicators: 
failure.log = glm(failure ~ year + length + matcat_id + dnom + decade + 
avg_pressure, data = training, family = binomial) 
summary(failure.log) 

##  
## Call: 
## glm(formula = failure ~ year + length + matcat_id + dnom + decade +  
##     avg_pressure, family = binomial, data = training) 
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##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.5193  -0.1124  -0.0868  -0.0644   3.9108   
##  
## Coefficients: 
##                 Estimate  Std. Error z value             Pr(>|z|)     
## (Intercept)  181.0567981  18.2527749   9.919 < 0.0000000000000002 *** 
## year          -0.0723028   0.0087113  -8.300 < 0.0000000000000002 *** 
## length         0.0081544   0.0003599  22.659 < 0.0000000000000002 *** 
## matcat_idFO   -0.8620553   0.2499758  -3.449             0.000564 *** 
## matcat_idPE    0.0939436   0.1089888   0.862             0.388712     
## dnom          -0.0053877   0.0009063  -5.945      0.0000000027648 *** 
## decade        -0.0207721   0.0031416  -6.612      0.0000000000379 *** 
## avg_pressure   0.0313787   0.0075489   4.157      0.0000322831276 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 8452.3  on 124504  degrees of freedom 
## Residual deviance: 7676.5  on 124496  degrees of freedom 
## AIC: 7694.5 
 

Once again, the binary matcat_idPE does not pass the non-zero correlation with failures. 

Let’s check results from this tentative and let’s try to give a comparative insight with what 

developed previously.  

 Probability 

0 0.0054117 
1 0.0160062 

Table 9 Probability of being predicted as a 0/1 when a failure occurred (training subset), 2nd model 

Also in this case, the chosen threshold was 0.005, since below this value  

 
Figure 21 ROC curve, second logistic model 
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 FALSE TRUE 

0 77,415 46,409 
1 155 526 

Table 10 Aggregated output of 2nd prediction, training 

Given figures from Table 10, it can be first said that by acting, in a certain time frame, on 

the 37% of the total network x years, 77% of the total failures of the corresponding time 

frame will be found and maintenance actions are taken. 

 

Indicator Value 

Specificity 0.6252019 
Sensitivity 0.7723935 
Accuracy 0.6260070 

Table 11 Performance from training the 2nd logistic prediction 

Before, drawing some conclusions, let’s extract specificity, sensitivity and accuracy from the 

testing process to validate the progress of the algorithm’s training 

 

Indicator Training Test 

Specificity 0.6252019 0.6242186 
Sensitivity 0.7723935 0.7929515 
Accuracy 0.6260070 0.6221296 

Table 12 Comparison between training and test indicators, 2nd prediction 

 

Once all needed indicators are obtained, it is time to make conclusions and compare results.  

 

 

Indicator Training 1st Test 1st Training 2nd Test 2nd 

Specificity 0.8689716 0.8699304 0.6252019 0.6242186 
Sensitivity 0.5280899 0.5423729 0.7723935 0.7929515 
Accuracy 0.8678120 0.8688224 0.6260070 0.6221296 

Table 13 Comparison first and second logistic prediction indicators 

Going from the first logistic model to the second one generated taking out pnom and 

min_pressure and max_pressure, the model has lost power in specificity (more false-

positive detected) but it has considerably gained sensitivity, being able to better detect 

failures. Therefore, in a true economical business scenario, a company should first estimate 

costs of intervention and costs of neglecting a failure. In case it is more worth to “waste” 

resources in acting on false-positive pipes but detecting more actual leaks, the second 

logistic model should be taken into consideration to support maintenance strategies. In the 

other case, where the cost of placing a maintenance action is too high compared with the 
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cost of leaking, it is better to adopt the first model, where fewer interventions will be vain 

because of false-positive occurrence.  

 

5.6 Random forest 

Once ultimate the generation of predictive models based on logistic regression, the second 

machine learning method applied in this study is random forest. It is a classification 

algorithm consisting of many decisions trees. By setting the number of trees in the forest 

and the minimum number of elements within each leaf, each tree releases a class prediction 

and the class with the most votes in the forest will be set as the final prediction. The power 

of random forest relies mainly on the ability of trees to protect each other from their individual 

error. Indeed, for giving a wrong output, the 50% + 1 of trees must go in the wrong direction, 

headed by error. (Yiu, 2021).  

The only important step in data treatment required by random forest is to change the output 

format, applying the formula base::as.factor, transforming failure into a factor: it has not 

to be forgotten as random forest is a classification algorithm. 

The R formula generating the predictive model is randomForest::randomForest the 

parameters to be specified are the number of trees in the forest (ntree =) and the minimum 

dimension of an ending node (nodesize =). 

The number of trees usually rises as much as the sample size increases; therefore, the 

number of trees will be set to 2800 and the minimum number of elements inside each leaf 

to 10. Regarding this last point, a small chapter has to be open. Indeed, setting a too large 

minbucket (technical name) the model would be too simple, while if too small can bring 

overfitting in the model. In the latter case, the built model fits perfectly well the training set 

but once applied to another sample (test subset), it does not guarantee to do equally. 

However, in our case, it is necessary to set a relatively low minbucket as, otherwise, the 

algorithm would be too weak in predicting. The main cause is due to the data structure, 

where pipes with failure in a certain year are only 0.5%, therefore the model must go into 

deep detail to flush failures out. Luckily, there is some developed statistical technique able 

to solve this potential issue, such as cross-validation  

The base used dataset will be the version of break.history where rows containing NAs 

values in the column pnom are not taken out, since this variable will not be included in the 

model as a regressor, following the same path as done for the logistic regressions.  
training$failure <- as.factor(training$failure)	
test$failure <- as.factor(test$failure) 
failure.RNDFor <- randomForest(failure ~ year + length + matcat_id + 
dnom + age + decade + avg_pressure, data = training, ntree = 2800, 
nodesize = 10) 
 
Once built the model, it is time to apply it to the training subset to assess its predictive ability. 
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predict.forest.training <- predict(failure.RNDFor, training) 
 
Table 14 and Table 15 displays the output of training the random forest model: 
  
 

 FALSE TRUE 

0 123,824 1 
1 653 28 

Table 14 Aggregate output random forest, training 

 

Indicator Value 

Specificity 0.9999919 
Sensitivity 0.0411160 
Accuracy 0.9947472 

Table 15 Performance from training random forest model 

 

Results are divergent. Indeed, on one side, the model is absolutely able not to fall in false-

positive prediction, with no case of failure predicted when they occurred, specificity equal 

to 1, as shown in Table 15. However, random forest-based model has a really weak 

sensitivity, as only 28 out of 681 actual failures are detected, while the remaining 653 

failures are classified as FALSE (false negative). However, going through the testing phase 

is required, before starting amending the model to reach better goodness.  

 

 

 FALSE TRUE 

0 41,273 1 
1 217 10 

Table 16 Aggregate output random forest, test 

 

Indicator Value 

Specificity 0.9999757 
Sensitivity 0.0440528 
Accuracy 0.9946989 

Table 17 Performance from testing random forest model 

Testing the model has led to validating outcomes since all the performance indicators are 

aligned with those from training, which mean that no overfitting has “infected” the random 

forest. However, tools such as cross-validation can help to better choose a proper 

minbucket, heading to potential improvement of the model. 

 

 



 A new machine learning approach to support asset  
management in water distribution networks. 

 

 63 

5.6.1 K-fold cross-validation 

A widely used technique in data analysis to increase the goodness of ML models, especially 

when struggling with classification algorithms such as random forest, is cross-validation. 

Given the logic behind the statistical method, cross-validation is suited for choosing optimal 

parameters such as minbucket in random forest. 

Basically, the algorithm is based on splitting the entire sample into k equally sized subsets 

(here the origin of k-fold), and, for each of the k group, doing the following general 

procedure: 

• Take the group as a test dataset. 

• Take the remaining k-1 groups for training the model 

• Fit the model on the training set and evaluate it on the test set 

• Retain the evaluation score and discard the model  

(Brownlee, 2021) 

This aforementioned procedure is iteratively repeated k times and results are eventually 

summarized to show for example how accuracy moves up and down depending on a 

minbucket-size parameter. Each observation of the mother-set must be assigned to only 

one to the k group: in other words, each observation is used once in the testing process 

and k-1 times for testing the model.   

In this study, the author has opted for 10-fold cross-validation has been adopted, as a 

common use is to have a test group accounting for around the 10% of the original set. 

Required packages and functions are caret::trainControl, caret::train . In 

particular, the cross-validation is recalled checking how accuracy changes in the function 

of the “complexity parameter” (cp) parameter. The concept behind cp is the same as 

minbucket, involving the minimum number of observation final nodes of trees. Unlikely 

minbuket, assuming values that increase as the minimum number of elements in a leaf 

increase, cp works in the other way around: higher is the value, lower is the numerousness 

of a node.  

By comparing the relationship between accuracy ~ cp, the optimal found cp value to 

maximize model accuracy is equal to 0.01: a new random forest model is therefore created, 

setting a complexity parameter at 0.01. 

Results from the training section (Table 18) are literally amazing: with no prediction of false-

positive, the algorithm has been able to predict correctly almost the 25% of the real failure 

in the network. However, by applying the model to the test dataset, although an 

improvement (Table 19) compared to the first attempt with random forest model, the author 

recognizes an obvious problem of overfitting. Indeed, sensitivity from the testing step is 

almost 1/3 of the incredible value from the training (Table 20), sing that likely, the model 

has been tailored too much to the data of the training sample. In fact, on that subset, its 
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predictive power is amazing, but once applied to a different dataset, the model loses part of 

its goodness.  

 

 FALSE TRUE 

0 123,824 0 
1 511 170 

Table 18 Aggregate output from random forest after cross-validation, training 

 

 FALSE TRUE 

0 41,269 5 
1  209 18 

Table 19 Aggregate output from random forest after cross-validation, testing 

 

Indicator Training Test 

Specificity 1.0000000 0.9998789 
Sensitivity 0.2496329 0.0792951 
Accuracy 0.9958957 0.9948435 

Table 20 Comparison of performance from training and testing random forest model after cross-validation 

Therefore, given the issue where the study fell into, it is needed to take out and keep in 

variables and rebuilt the regression structure of the model. 

After an iterative procedure of “playing” with regressors, a potential structure that 

overcomes overfitting issue without losing predictive power has been found. By only 

omitting “year” from the list of regressors, the overfitting issue is solved, although the 

number of correct true-positive predictions drops. 

Table 21, Table 22 and Table 23 show results from training and testing the new model, 

where besides a slight decrease in sensitivity, but negligible, nothing deserves to be 

commented because warning. Rather, almost maintaining the same specificity, sensitivity 

rose from a previous value of 0.033 to 0.11 during the training and to 0.08 during the testing! 

This is an incredible outcome demonstrating the extraordinary power of k-fold cross-

validation. 

 

 FALSE TRUE 

0 123,819 5 
1 598 83 

Table 21 Aggregate output from the 2nd random forest after cross-validation, training 
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 FALSE TRUE 

0 41,265 9 
1 208 19 

Table 22 Aggregate output from the 2nd random forest after cross-validation, testing 

 

Indicator Training Test 

Specificity 0.9999596 0.9997577 
Sensitivity 0.1189427 0.0837004 
Accuracy 0.9951408 0.9949158 

Table 23 Comparison of performance from training and testing the 2nd random forest model after cross-validation 
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5.7 Simulating a more critical scenario 

The main challenge of work such as the one this study attempts to address is the scarcity 

and not high accuracy of data, often affected by the phenomena of truncation and 

censoring. In other case, data collection procedures are not standardized, and the takeover 

of persons charged for gathering data lead to non-homogeneity of information.  

Although results of previously validated data have been validated, passing successfully test 

phase, they are built on information about around 14,000 pipes that have experienced only 

1,200 breaks from 2005 up to 2020. Therefore, it has been decided to emulate a more 

critical scenario by increasing the ratio of years with and without failure in break.history. 

perhaps, the model would not be appropriate to the case in analysis, but in a more quickly 

deteriorating distribution network (or sub-network).  

Randomly, around 60 thousand rows with 0 as value of the variable “failure” are removed 

from the dataset, to raise the density of failures in the network over time. Whether Equation 

3 show a baseline of 0.34% for the case of study, the percentage of failures over the sample 

size rises to 1.6%: this hypothetical network is 5 times more dramatic than the one in 

analysis.  

Variables such as pnom, min_pressure and max_pressure are kept out from regressors not 

to infect the sample size by issues brought by NAs. Training and test dataset are created 

as always using respectively a split of 75% of total observations and 25%.  

 

5.7.1 Logistic model  

failure.log = glm(failure ~ year + length + matcat_id + dnom + decade + 
avg_pressure, data = training, family = binomial) 
summary(failure.log) 

##  
## Call: 
## glm(formula = failure ~ year + length + matcat_id + dnom + decade +  
##     avg_pressure, family = binomial, data = training) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.1588  -0.1930  -0.1457  -0.1040   3.8991   
##  
## Coefficients: 
##                 Estimate  Std. Error z value             Pr(>|z|)     
## (Intercept)  213.1788145  18.7474079  11.371 < 0.0000000000000002 *** 
## year          -0.0879440   0.0089840  -9.789 < 0.0000000000000002 *** 
## length         0.0098361   0.0004401  22.348 < 0.0000000000000002 *** 
## matcat_idFO   -1.1812762   0.2821449  -4.187       0.000028295032 *** 
## matcat_idPE    0.0169459   0.1114440   0.152             0.879142     
## dnom          -0.0055953   0.0009165  -6.105       0.000000001029 *** 
## decade        -0.0204928   0.0032144  -6.375       0.000000000183 *** 
## avg_pressure   0.0100993   0.0029476   3.426             0.000612 *** 
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## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 

 

 

 
Figure 22 ROC curve, logistic model: more critical scenario 

 

Looking at the ROC curve, a threshold giving an acceptable trade-off between true positive 

and false positive rate is right lower than 0.02. 

Results of the prediction are shown in the following tables.  

 

 FALSE TRUE 
0 32,039 9,113 
1 222 459 

Table 24 Aggregate output from logistic model in a more critical scenario, training 

 FALSE TRUE 
0 10,818 2,899 
1 76 151 

Table 25 Aggregate output from logistic model in a more critical scenario, testing 

 

Indicator Training Test 

Specificity 0.7785527 0.7886564 
Sensitivity 0.6740088 0.6651982 
Accuracy 0.7768508 0.7866466 

Table 26 Comparison of performance from training and testing logistic model in a more critical scenario 

Given the higher density of failure, the algorithm can better outline a path towards failures 

of pipes and outcomes are by far above what previously found. Although techniques such 

as logistic and random forest attempt to define responsibilities in the deterioration process, 

there are too many factors affecting pipes life, some of them neither included in this study 
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because of shortage of data (e.g., environmental and soil information). The difficulty is even 

hyperbolized since the topic involves events with rare probability, making the whole 

predictive process tougher. Once the occurrence of events becomes more frequent, the 

algorithm easier detects the relationship between the output variable and regressors, giving 

solidity to prediction and definitely better performances.  

The following Table 27 compares performance from testing the 2nd logistic model built in 

this thesis and the last one coming from the critical scenario. In overall, the latter has higher 

accuracy, since in 78% of the cases the prediction match reality, against a 62% of the 2nd 

logistic model.  

However, as already said, the aforementioned example cannot be applied to a general and 

well-working distribution network, but in a not steady scenario, such as in a very old network, 

it can find a proper application. 

 

Indicator 2nd logistic Critical scenario 

Specificity 0.6252019 0.7886564 
Sensitivity 0.7723935 0.6651982 
Accuracy 0.6260070 0.7866466 

Table 27 Comparison between performance of 2nd logistic and logistic in the critical scenario 
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6 Economic assessment 
Chapter 5 has given a list of trained and tested ML models able to predict, with certain levels 

of accuracy, sensitivity and specificity whether a pipe will be affected at least by a failure in 

a certain year. These models can support the company’s management in decision making 

for network maintenance, deciding when and how to perform interventions of reparation or 

replacement of pipes, towards a better allocation of resources, especially economic.  

In section 2.3, the author already went through some of the approaches currently used for 

planning maintenance activities to optimize costs. However, in this specific case of study, 

those approaches do not find easy application, due to data structure and especially the 

output of the prediction. Indeed, the majority of the economic assessment methodologies 

rely on outputs of the type of “time-to-next-failure” or hazard-function saying the probability 

of failure over time. 

For an economic evaluation of the impact of ML on maintenance strategies, the author 

proposes two different roads, one recalling a model already explained in the chapter of the 

literature review and an ex-novo approach.  

The first of the two methodologies will be developed based upon the publication of Kleiner, 

Rajni and Nafi “Planning renewal of water mains while considering deterioration, economies 

of scale and adjacent infrastructure” and will have a more theoretical physiognomy, even 

though with very wide application. Indeed, any company, knowing their function of 

replacement cost, may be able to estimate saving due to the usage of a predictive model, 

by comparing costs in the absence and presence of predictive tools. 

The second approach relies on a more realistic approach. Indeed, companies do not only 

place interventions based on the necessity to maintain the network, but they also need to 

take into consideration the maintenance budget allocated over a certain period. Therefore, 

with this second methodology, the aim is not to quantitively evaluate savings thanks to ML, 

rather to see how prediction can improve the efficacy of maintenance investment and 

assess how service level increases if compared to a baseline scenario without the support 

of predictive algorithms. 

 

6.1 1st assessment model: theoretical methodology with general application 

In particular, as Kleiner, Rajni and Nafi say in their publication (Kleiner, Nafi, & Rajani, 

2010), there are savings a company could benefit from due to simultaneous maintenance 

interventions, due to mobilization of workers teams and quantity of purchased materials. 

The first factor comprises costs such as setting up the job site, signage and the gathering 

of all resources needed during a replacement intervention. Quantity discount depends on 
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pipe material, diameter, location and other circumstances (Kleiner, Nafi, & Rajani, 2010). 

Therefore, the cost of replacing a pipe of a certain length li is:  

C!"#$ = 	M +	C$l$ 
Equation 7 Replacement cost of a pipe 

With Cri the replacement cost per unit of length.  

The second term of the equation presents a fixed component M and a variable factor Cili. 

The quantity discount applies to the variable component of pipe cost while the mobilization 

discount to the fixed component. Indeed, more are the replacement the company has 

planned to put in place at a given year, higher will be the discount on the unitary cost. The 

factor g says what is the discount rate applied in case quantity discount may be applied so 

that the unit cost per length drops to Ci · (1 - g ). 

Moreover, if the management opts for multiple replacements during the same period, all the 

actions composing the fixed voice of the cost M might be carried out only once, or at least 

not continuously replicated for every replacement. In the best scenario, for replacing k 

pipes, a company might save fixed costs amounting to M · (k-1), as if the fixed cost was 

supported only once for all the replacements. In a more realistic scenario, the fixed cost 

would be discounted by a certain factor l, with 0 < l < 1, depending on what percentage of 

the amount k · M can be saved, reducing the fixed cost for replacing k pipes from k · M to k 

· M · (1- l ).  

It is straightforward as both factors l and g  get into action as if talking about replacement 

as well as for preventive maintenance: they do not come from the nature of the intervention, 

rather from the concept of planning and scheduling the maintenance. Indeed, the worst 

company can do is to deal with leaks as they were stand-alone and to wait for their 

occurrence to react and remedy the damage: under this non-strategy, all the economic 

advantages of planning maintenance come less.  

The last important aspect of pipe management is timing, especially when maintenance 

relies on prediction. If a pipe is expected to stop its useful life at a certain year, depending 

on which moment of the year the intervention is put in place, avoiding that the failure already 

has occurred leads to avoiding the cost of a failure, accounting for four main different factors 

(Kleiner, Nafi, & Rajani, 2010):   

1. Ci
dir, cost for expected direct damage (e.g., to adjacent infrastructure, basement 

flooding, road damage) 

2. Ci
indir, cost of indirect damage (e.g., accelerated deterioration of roads, sewers, etc.) 

3. Ci
wat, cost of lost water due to the leaks 

4. Ci
soc, the social cost (e.g., disruption, time loss, pollution, loss of business etc.) 

However, in this study, only direct costs and cost of lost water are taken into account, due 

to difficulties to gather data explaining social and indirect costs. 
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Therefore, given a certain period of x years and its related prediction outcomes as the 

following:  

 FALSE TRUE 

0 TN FP 
1 FN TP 

Table 28 General prediction outcome: TN True Negative, FN False Negative, FP False Positive, TP True 
Positive 

Maintenance costs, depending on the adopted strategy, are the following: 

 
(1). 𝑇𝑜𝑡𝑎𝑙	𝑐𝑜𝑠𝑡%&	(!")*+,*&-	 = (𝐹𝑁 + 𝑇𝑃) × 𝐶!"#		 

Equation 8 Total cost in absence of prediction 

 

(2).		𝑇𝑜𝑡𝑎𝑙	𝐶𝑜𝑠𝑡(!")*+,*&- 	

= 	𝐹𝑁 × 𝐶!"# + (𝐹𝑃 + 𝑇𝑃) × (𝐶𝑟𝑒𝑝 − 	𝜆𝑀	 − 	𝛾𝐶𝑖)− 𝑇𝑃 × 𝐶23,

− 𝐹𝑃 × 𝜌 × 𝐶23, 
Equation 9 Total cost using prediction 

 

Equation 8 regards the scenario in absence of prediction, with the total cost only equal to 

the total number of actual leaks (false negative FN + true positive TP) times the unitary cost 

of replacement. 

If the company decides to use ML for predicting future failures, the function of cost follows 

Equation 9. Following, an explanation of each term of the sum: 

• FN · Crep is the cost due to the not total ability of a predictive model to detect properly 

all the failures; it is the cost to repair pipes that are false negative. The unitary cost 

for these elements will be the same as the prediction was not performed, without 

any quantity or mobilization discount. 

• (FP + TP) · (Crep - lM - gC): The model suggests maintaining pipes expected to get 

broken, either they actually will fail (true positive TP) or not (false positive FP). For 

these pipes, all the economies of scale mentioned by Klainer, Rajani and Nafi will 

get into action, therefore the unitary cost will be reduced by the quantity and 

mobilization discount factors g and l. Therefore, the final discounted unitary cost, 

considering C the unitary cost of a pipe of average length (Crlavg), is:  

 

𝐶)*4
!"# = (𝐹𝑃 + 𝑇𝑃) × [𝑀(1 − 𝜆) + 𝐶(1 − 𝛾)] = (𝐹𝑃 + 𝑇𝑃) × (𝑀 + 𝐶	 − 	𝜆𝑀	 − 	𝛾𝐶)

= (𝐹𝑃 + 𝑇𝑃) × (𝐶!"# − 	𝜆𝑀	 − 	𝛾𝐶) 
Equation 10 Cost or reparation in presence of economies of scale 



 A new machine learning approach to support asset  
management in water distribution networks. 

 

 72 

• TP · Cwat: if the company was not able to predict failures in time, bursts will happen, 

and loss of water would represent a cost. However, as the company may 

hypothetically avoid that some breakages (TP) occur, the cost would be a cost 

avoided, that can be seen as a saving. 

• FP · r · Cwat: the same logic behind the previous term, for saving the loss of water 

for those failures the predict will avoid, stands behind the last element of the 

equation. Indeed, prediction models will also lead to intervention on pipes that would 

not need maintenance (false positive), and their replacement would save the 

company money for possible future breaks, even though discounted by a factor r. 

 

All the cost and discount parameters in Equation 9, Crep , Cwat , g, l  and r , are subject to 

the serval aspects that may change from a company to another and from a geographical 

area to another one. Indeed, depending on how much is the cost of replacing a pip and how 

much can be saved by preventively replacing a pipe, making use of economies of scale and 

the cost of lost water, a certain predictive model may be better than another one. Therefore, 

to minimize the total cost of Equation 9, a company should first assess all its cost and 

savings parameters and based on these values, understand for which ratio of 

specificity/sensitivity the cost equation touches its minimum value.  

For reading easiness, all the cost parameters of Equation 9 are recalled as following:  

• Crep = a 

• Crep – lM – gCi = b 

• C wat =q 

• r · C wat = d 

The cost optimization problem is reduced to solve the following system of equation and to 

minimize the total cost function: 

 

 

Optimization 1 Original system of equations 

With N standing for “sample size”, that would be the size of the network over year.  

The next mathematical steps are the following: 
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1. Expressing the equation of total cost in the function of only one of the 4 instances of 

prediction (TN, FN, FP, TP); in our case, calculous are done by expressing all the 

four equations in the function of FN. 

2. Calculating the derivative of the total cost with respect to TP. 

3. Imposing the derivative equal to 0. 

4. Express sensitivity as a function of specificity and all the cost parameters.  

 

Step 1 of the previous list is developed in the following equations, where second members 

of all the equations are expressed only in function of FN, Se, Sp and sample size N: 

 

Optimization 2 System of equation expressed in function of FN 

Given the function TotalCost(FN), step 2 is carried out as follows: 

 
𝑑𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡

𝑑𝑇𝑁
= [𝛼 ∙ (1 − 𝑆𝑒) + 𝛽 ∙ (𝑆𝑝 + 𝑆𝑒 − 1) + 𝜃 ∙ 𝑆𝑒 + 𝛿 ∙ (𝑆𝑝 − 1) 

Equation 11 First derivative of the "TotalCost" function 

 

By imposing Equation 11 equal to 0, the relationship between sensitivity and specificity for 

which the function of the total cost of replacement can be found. 

 
𝑑𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡

𝑑𝑇𝑁
= 0 

Equation 12 Imposition of the first derivative of “TotalCost” function equal to 0 

Translated into: 

 

𝑆𝑒 =
𝛼 − 𝛽 − 𝛿
𝛼 − 𝛽 − 𝜃

+
𝛽 + 𝛿

𝛼 − 𝛽 − 𝜃
∙ 𝑆𝑝 

Equation 13 Relationship between sensitivity and specificity to minimize "TotalCost" function 

After re-substituting parameters a, b, q and d with the proper values of cost: 
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𝑆𝑒 =
𝜌 ∙ 𝐶2 − 𝜆 ∙ 𝑀 − 𝛾 ∙ 𝐶*
𝜆 ∙ 𝑀 + 𝛾 ∙ 𝐶* + 𝐶2

−
(1 − 𝜆) ∙ 𝑀 + (1 + 𝛾) ∙ 𝐶* + 𝜌 ∙ 𝐶2

𝜆 ∙ 𝑀 + 𝛾 ∙ 𝐶* + 𝐶2
∙ 𝑆𝑝 

Equation 14 Optimal relationship of Sensitivity and Specificity in the function of a company cost parameters 

Equation 14 says for which relationship Sensitivity and Specificity the TotalCost function is 

minimized, given all the cost and discount parameters characterizing the replacement 

framework of costs of a company.  

Depending on their function of cost, a company can establish whether strong to detect 

failures even though falling into many false positives (more sensitivity than specificity) is 

more favourable than an accurate model in not wrongly predicting “healthy” pipes as 

failures. 

Therefore, given this relationship between sensitivity and specificity, the most proper 

prediction model and parameters can be elected, either a logistic with a certain threshold, 

a random forest with a specific minbucket value, etc.  

Once chosen the adapt ML model and the corresponding parameter and run the prediction 

algorithm, by comparing Equation 8 with Equation 9, the economic impact of ML can be 

measured. 

 

6.2 2nd assessment model 

The second proposed way of measuring the impacts of prediction on pipes management 

relies on a different approach. Indeed, the aim is not to compare costs with and without 

prediction to assess the savings, rather to evaluate, by keeping constant the maintenance 

investment, how the service level may change thanks to the usage of a predictive tool. 

A general water distribution company, such as Aigües Manresa, allocates a specific budget 

for maintenance over a certain period and plans which pipes will be replaced, based mainly 

on managers’ experience. The number of interventions depends on the allocated budget 

and on the cost of putting in place maintenance, including costs of workers, raw material, 

worksite set up and the usage of diggers.  

Aigües Manresa has provided a set of data about costs of intervention on different pipes, 

from which it is possible retrieving an average unit cost for replacing a pipe. The author has 

been told that the 2 main factors affecting the cost of intervention are material and length. 

To get the final average cost, the dataset has been first filtered to only keep pipes made of 

“FO”, “PE” and “FIB”. Then, since no info regarding the length of pipes maintained was 

included in the dataset, the author has assumed that the distribution of pipes length is the 

same as in the analyzed network. Eventually, the mean of costs has been calculated, 

accounting for 450€. Therefore, the number of interventions that can be put in place is given 

by the ratio between the allocated budget and the unit cost of a replacement.  
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How does the impact of prediction on service level is measured? In the following two 

sections, the framework of the assessment will be explained, for both cases with and without 

the support of prediction.  

Anyway, for both scenarios, the evaluation will be carried out for the period from 2015 to 

2020. To evaluate the potential impacts of carrying out predictions, a comparison between 

predicted output and the actual value is needed. Therefore, the prediction has been done 

on data from the last 6 years and then real and computed output values have been 

compared.  

Assuming a level of investment I and that the number of replaced pipes is homogeneously 

spread over the 6 years, the number of replacements per year is determined as following: 

 

𝑅 = 𝑁𝑜. 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡/𝑦𝑒𝑎𝑟 =
𝐼(€)

450(€/𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)
∙
1
6
 

Equation 15 Number of pipes replaced per year 

 

Two important assumptions are made in this evaluation, and they will be kept for all the 

scenarios analyzed: 

1. A failure occurring in a certain year would not take place if the pipe is already 

replaced in the years before the year of the break. 

2. A pipe cannot be replaced more than once in the 6-years horizon. Therefore, after 

each year, the R replaced pipes are taken out from the “candidate” list for the 

following year. The assumption is not unrealistic, since less than 1 failure out of 10 

occurs within 6 years from the installation year. In addition, 50% of the leaks in the 

first 6 years of the life of a pipe take place within the first 1.4 years, likely due to 

human mistakes. Therefore, assuming no errors during the installation process, the 

assumption is proper enough not to distort reality.  

 

6.2.1 Replacement without support of prediction 

In the case the company does not embrace the opportunity of prediction, it is preliminarily 

assumed that pipes are replaced randomly, by picking R pipes from the network each year. 

This operativity is far from reality as it never happens that the choice of which pipes to 

replace is left totally to the chance. In predictive maintenance, usually, managers decide 

based upon their experience, but this would not be possible to replicate and to model in a 

simulating study.  

In the year 2015, R random pipes will be replaced from all the pipes present this year in the 

network. This intervention would avoid all the breaks from 2015 to 2020 happening to those 

R pipes (from now, R is the vector including the replaced pipes). Therefore, the efficacy of 
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the maintenance is calculated as the sum of failures between 2015 and 2020 occurring to 

R divided the number of pipes in the network in 2015.  

In the year 2016, R pipes have been already replaced in 2015. Other R’ random pipes will 

be replaced, but from the picking process, the first R cannot be selected. The efficiency of 

this second maintenance is calculated as the number of failures occurring from 2016 to 

2020 to R’ divided by the total number of pipes in the distribution network in 2016.  

In the following years until 2020, the procedure is replicated but deducting during the picking 

process all the pipes already replaced in the prior years.   

Ending this iterative calculation, the avoided failures will be detected. It is important now to 

recall the concept of “sectors”, defined as the group of pipes that would be affected (shut 

down) by a failure in any of the elements belonging to it. Therefore, it is possible, knowing 

the leaks avoided, how many pipes have been saved from being shut down and the 

corresponding percentage of the network. Once again, the goal is to reduce at the least the 

downtime level of the network since a black-out in the water distribution may lead to 

economic and social effects, besides customers’ inconveniences.  

 

Picking pipes to be replaced given the date of birth 

Although the just explained methodology is a good representation of a total random election, 

it goes away from the reality of operating, since a company would not only rely on 

randomness for replacing pipes. Therefore, in the second assumed scenario without the 

support of the predictive model, the selection is carried out with the purpose to replace given 

the age of pipes, starting from the oldest ones. This choice is based on the idea that the 

probability to get broken increases as age goes by. Therefore, each year, the R oldest the 

oldest pipes are replaced, keeping the same two assumptions of not replacing items more 

than once in 5 years and imagining a reality where a new pipe cannot fail again by 2020.  

 

6.2.2 Replacement supported by predictive models 

If the company decides to rely on prediction to decide which pipes to replace, the only 

difference, but substantial, with the case without prediction support is that the vector R will 

not be created either randomly or based on age. In fact, the vector will include the R pipes 

with the highest predicted probability to have a break in the 5 years. Therefore, the support 

of the model acts right in the step of picking pipes that is based on the predicted 

probabilities.  

For the calculation of the probability of failure, any kind of ML predictive model can be used, 

as long as the output of the model is a probability. In this thesis, the author will use the 

RandomForest predictive model, improved by cross-validation, rather than the logistic.  
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6.2.3 Results 

Scenario 1 

In the first simulated scenario, the investment level I is set at €540,000, a level capable to 

allow the replacement of 1200 pipes over 6 years, with R=200 according to Equation 15, 

which means interventions on almost 2% of the distribution network each year. 

Each pipe that is preventively saved by maintenance avoids that the sector to which the 

leak belongs is involved in the failure, decreasing distribution service level. Since each 

sector includes a specific number of pipes, a sector shutdown means stopping the 

distribution alongside that portion of the network belonging to that sector.  

The goal is to understand which portion of the network will be safeguarded from disruption 

of the distribution service, obtained in the following way: 

• The number of sectors involved represents the list of sectors with pipes prevented 

by leaks. In case a sector would have more than one pipe with failures, it will be 

counted as many as the number of predicted failures because the distribution for the 

sector will be interrupted multiple times (assuming not a timing overlap of failures). 

• The multiplication of the number of sectors with failures by the number of pipes into 

each sector says how many pipes will be prevented to be shut down because of 

sectors disruption. This value would represent the “saved network”. 

• The percentage of the “saved network” is given by the ratio between the number of 

pipes saved in each year and the total number of pipes in the network in the same 

year. 

 

USING PREDICTION 

YEAR No. sectors involved No. of pipes saved % NETWORK 

2015 29 268 2.504 
2016 25 225 2.072 
2017 24 220 1.986 
2018 29 268 2.325 
2019 19 181 1.59 
2020 8 94 0.815 

 134 1256 1.882 
Table 29 Result from service level assessment (I = €540,000) 
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 WITH 
PREDICTION 

WITHOUT PREDICTION 

YEAR % Network % Random 
selection 

% Age selection 

2015 2.504 0.028 0.14 
2016 2.072 0.037 0.064 
2017 1.986 0.09 0.135 
2018 2.325 0.026 0.062 
2019 1.59 0.035 0.13 
2020 0.815 0.139 0.061 

AVG 1.882 0.059 0.099 
Table 30 Comparison of different scenarios of service level assessment (I = €540,000) 

 
 

Table 29 clearly shows how prediction may positively impact the level of service of the 

distribution. Over the years, 134 breaks that would occur in 6 years, might be prevented 

and the corresponding sectors not involved in a shutdown, accounting for more than 1250 

pipes not involved in a failure occurrence. Even though the efficacy goes down over years, 

on average 1.882% of the network is saved each year between 2015 and 2020. This 

percentage is by far above what can be reached by adopting the other two methodologies 

of selecting pipes to replace, both random picking and based on age, as figures in Table 30 

show. In particular, it is more than 30 times higher than the random-selection scenario and 

almost 20 times higher than the selection by age. As expected, replacing the oldest pipes 

is a method leading to a higher efficacy (0.099% of the network saved on average) than 

randomly substituting 200 pipes (only 0.056% on average).  

If a company was able to retrieve a cost per each percentage of shut down network t, it 

might also be understood how much a replacement strategy, driven by predictive models, 

can save extra cost due to unexpected events such as leaks.  

 

Changing investment level – scenario 2 

As said at the beginning of Section 6.2, results from the 2nd assessment method show the 

impact of predictive model ceteris-paribus, which is under the same investment budget. 

By acting on the 2% of the network each year (200 pipes over the total network), the average 

network prevented to fall into a shut-down thanks to prediction is 30 times more than a 

random selection and around 20 times more than a replacement strategy by age.  

The goal of this section is to see what happens when changing the allocated budget. Here, 

a budget equal to I = €1,350,000, that has been set such to allow the replacement of 3000 

pipes in 6 years, that means 4.6% of the network each year.  
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USING PREDICTION 

YEAR No. sectors involved No. of pipes saved % Network 
2015 56 522 4.877 
2016 44 417 3.84 
2017 40 389 3.511 
2018 30 289 2.539 
2019 26 258 2.238 
2020 11 120 1.041 

TOTAL 207 1995 3.007 
Table 31 Result from service level assessment (I = €1,350,000) 

 

 WITH 
PREDICTION 

WITHOUT PREDICTION 

Year % Network % Random selection % Age selection 

2015 4.877 0.168 0.234 
2016 3.84 0.212 0.111 
2017 3.511 0.09 0.226 
2018 2.539 0.079 0.105 
2019 2.238 0.104 0.217 
2020 1.041 0.156 0.104 

AVG 3.007 0.135 0.166 
Table 32 Comparison of different scenarios of service level assessment (I = €1,350,000) 

 

207 are the sector not disrupted because in failures that without preventive maintenance 

based on prediction would have happened, involving 1995 pipes. On average, 3.007% of 

the network would be saved from disruption each year. 

The level of investment is 2.5 higher than the first scenario when it was set at €540.000. 

However, the effects of this strong financial increase had not the same impact on 

replacement performance. Table 33 shows that the percentage of network “saved” by the 

predictive model is only 1.6 times higher than in the first case study. Therefore, it seems the 

positive impacts of being supported by a predictive model reduce their effect the more the 

investment budget goes up. Let’s analyze the results from Table 33: 

• With I=€540,000, each €1,000 of investment prevents 2.3 pipes to stop serve 

because of a shutdown. 

• Increasing the budget by 150% leads to an increase of 59% of the network saved 

with respect to the first investment, with almost 1.5 pipes prevented to be closed for 

each €1,000 of extra budget.  

• Eventually, with a further increase of budget by 100%, from 1,350,000 to 2,700,000, 

the increase in network saved accounts for 25% compared to the second 

investment, with only less than a pipe saved for each €1,000 of investment.  
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 INVESTED BUDGET D budget Pipes saved D Pipes Pipes saved / €1,000 Invested 

 540,000  1,256  2.326 
 1,350,000 150% 1,995 59% 1.478 
 2,700,000 100% 2,488 25% 0.921 

Table 33 Comparison of performances of different investment levels 

The optimal value of investment to take advantage of the power of predictive model can be 

found by studying the curve % Network saved – invested budget and to identify the 

maximum of the curve I*. However, if the company was aware of the cost t, previously 

defined as the cost of shutting down 1% of the network, the economic optimal value of 

investment I** may change, since it is given by the intersection of the curve of invested 

budget and money saved per each percent of network saved. Indeed, the capital a company 

allocates for pipe replacement can even go beyond I*, as long as the money saved by 

preventing failures is higher than the invested budget.  
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7 Summary of results 

7.1 Budget summary 

As deeply detailed in the attached document “Budget”, performing such work cannot be 

considered negligible from an economic standpoint. The following table shows the total cost 

estimated to carry out such a study, totally due to pay people in charge for the work. In fact, 

personnel expenses would be the only cost to bear, since the absence of drafting any 

physical design. Moreover, software used for the study do not need license.   

 

Type of cost Total time Total cost (€) 

Personnel expenses 816 h 8,160.00 
Table 34 Cost assessment 

However, given the nature of the job, most of the job needs to be done once and stays valid 

for a quite long period. Indeed, the initial part of understanding the current state of the art is 

a step that does not need to be done continuously, since as said at the beginning of this 

thesis, changes do not occur frequently. Similarly, the generation of the predictive models 

is something that is done once reused over time (anytime a company decides to plan 

preventive maintenance), as well as for the study of the relationship between variables. In 

case, the data analysis department can worry about doing periodical training and testing to 

validate models. Eventually, once given the structure of the economic assessment methods, 

companies only need to insert data and retrieve results, but the whole study behind the 

model is already performed and the cost covered. The only procedure that necessarily 

needs to be done any time new data are collected is the data cleaning and validation, 

accounting for approximately the 10% of the entire cost (840€). 

 

7.2 Conclusions 

Data represent an incredibly strong source to take wise and convenient decisions, 

especially when the ability to observe and study the phenomenon can be impeded by 

physical barriers, such as being buried under the soil. Trying to predict events such as 

breaks may be an optimal strategy to adopt preventive maintenance, and new ML 

techniques are a viable solution to undertake the problem.  

For example, by exploring data, it was possible to establish as ductil cast (FE) material has 

a lower break rate per unit of length than fiber cement and polyethylene pipes. Therefore, 

management should concentrate resources in monitoring pipes of these last two materials, 

because of higher possibility of breaking. Moreover, as Figure 17 shows, before turning 40 

years old, the probability of detecting a failure is higher for pipes in polyethylene than for 

fiber cement. The trend reverses after the breakeven age when fiber cement resistance 
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drops. One last important insight about which physical factor affects durability is the nominal 

diameter, with the failure rate continuously decreasing as the diameter rises (Figure 18). 

Even though some data issues, i.e., truncation and censorship have not been addressed in 

this thesis, logistic and RandomForest predictive models have been able to return important 

insights in terms of operativity. Indeed, even though sometimes sensitivity and sensibility 

had not enthusiastic values from a data analysis standpoint, a holistic view and the meaning 

behind those numbers radically change the interpretation of results. E.g., combining random 

forest and k-fold cross-validation, by only placing 88 interventions, in a network of more 

than 13,000 items, in 6 years, around 12% of the total failures over the same period can be 

avoided. The logistic regression model is stronger in detecting properly failures, with 

sensitivity up to 0.76, enabling the prevention of more than 90% of the failure. However, this 

would be very consuming and far from a real operative scenario due to the enormous 

consumption of resources due to high false-positive prediction. The choice of the proper 

predictive model is a matter of compromise between the risk of falling into false alarms 

during the research of leaks and the necessity to provide the best service possible and 

reduce consumption. This object lies in the scope of the first economic assessment method 

developed in this thesis, where, based on the function of the cost of a company, the most 

suitable relationship between sensitivity and sensibility can be determined to optimize the 

total cost of maintenance.  

The second methodology gets close to the real process of maintenance planning of a 

company such as Aigües Manresa, which first agrees upon the budget to invest in 

maintenance in a certain period and then put into action interventions. We have seen as 

relying on a predictive model, such as random forest, leads to higher efficiency than random 

selection of pipes or replacing by “seniority”, confirming one more time what a powerful tool 

ML can be also in maintaining a good service level also in water distribution. Water 

distribution companies, such as Aigües Manresa, can undertake preventive maintenance 

strategies, using tools and approaches explained in this study to give positive contributions 

to their performances. Without never forgetting the “green” impact ML can have on the 

environment, since preventing failure not only avoid capital waste but also waste of water, 

that as said in the introduction of this report, more and more becomes a scarce resource.  

To conclude, the approach with which this thesis has been carried out can be followed for 

further studies. Reducing complex time-to-next-event problems to a scenario with simply 

binary 0-1 output, by remodulating the mother-dataset, is a banal but efficient trick able to 

easily drive to meaningful conclusions, especially when ML knowledge is limited. This 

simplification, without banalization, of the problem is an important outcome this job was able 

to reach and that may represent an accessible starting point for future interests.  However, 

future inclusions of more advanced ML techniques such as random survival forest, allowing 
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to overcome left-truncation and censorship, would enable a better reconstruction of pipes 

history, to build more powerful predictive models. Also, data imputation techniques may give 

further support to stronger results, always with the aim of building a more meaningful 

dataset on which training and testing predictive models. Eventually, the first point of interest 

to deepen and improve this work stands on the ability to provide to ML algorithms a better 

dataset, for consistency, solidity and size, on which training and testing. The more 

predictions are accurate and with both high sensitivity and sensibility, the more a company 

can increase economic, but also social and environmental, performances.  
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