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a b s t r a c t 

A conservative approach for MPI-based parallelization of tridiagonal compact schemes is developed in 

the context of multi-block finite-volume methods. For each block, an enlarged linear system is solved by 

overlapping a certain number of neighbour cells from adjacent sub-domains. The values at block-to-block 

boundary faces are evaluated by a high-order centered approximation formula. Unlike previous methods, 

conservation is retained by properly re-computing the common interface value between two neighbour- 

ing blocks. Numerical tests show that parallelization artifacts decrease significantly as the number of 

overlapping cells is increased, at some expense of parallel efficiency. A reasonable trade-off between ac- 

curacy and performances is discussed in the paper with reference to both the spectral properties of the 

method and the results of fully turbulent numerical simulations. 
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. Introduction 

Compact schemes are widely employed in numerical simula-

ions of turbulent flows, because of their beneficial resolution

roperties and high overall accuracy [1] . In contrast to classical ex-

licit schemes, compact methods are global and require the solu-

ion of a tri- or penta-diagonal linear system to provide the desired

erivatives or interpolated values [2] . The implicit nature of such

ethods leads to a difficult implementation in a parallel frame-

ork, especially when a MPI-based domain decomposition tech-

ique is employed. This issue may preclude the potential bene-

ts of compact methods for direct (DNS) or large-eddy simulations

LES) of turbulence, for which massively parallel computations are

andatory. Several algorithms have been developed over the years

o tackle this problem efficiently, each with pros and cons; the

pproaches fall mainly into three categories, which are briefly re-

iewed as follows. 

The first category is typically referred to as transpose methods,

nd is popular in the pseudo-spectral community. In this case, the

omputational domain is partitioned along one (or two) dimen-

ions at a time ( slabs or pencils respectively), so that the applica-

ion of the global scheme can be performed exactly along the re-

aining direction(s). Then, the computational space is transposed

y means of all-to-all communications to allow completion of the
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lgorithm [3–5] . Although in this case the parallelization is free

f errors (i.e., the solution is identical to the serial one), the re-

ulting approach is very communication intensive, as the collective

ommunications require to exchange a volume of data which in-

reases in size as N 

3 , being N the number of unknowns of each

ne-dimensional computation - in contrast with the N 

2 scaling of

onventional techniques. On the other hand, upon use of optimized

ibraries (such as MPI_Alltoall and FFTW3) and careful processor

apping, some authors were able to obtain excellent scalability

n up to O(10 5 ) processors [3,6] . By construction, the transpose

ethod is especially suited for simple cartesian domains, while an

ppropriate generalization to complex geometries may require in-

olved computer programming to properly take into account the

omain topology. Also, the number of processors is limited to no

ore than N (or N 

2 ) when slabs (or pencils) are used. 

Alternatives to the transpose method are represented by algo-

ithmic approaches, i.e., methods that aim to parallelize the solu-

ion of the banded linear system. Notable examples include the

ipelined Thomas [7] , the parallel diagonal dominant [8] (which

re limited to tridiagonal systems), and the SPIKE algorithms [9] .

hese methods are powerful and provide exact (pipelined Thomas,

PIKE) or bounded (parallel diagonal dominant) parallelizations er-

ors, but are usually susceptible to penalties in efficiency due to

dle times. Also, the computational complexity of the computer

ode is generally highly increased. To the authors’ knowledge, the

se of such methods in computational fluid dynamics (CFD) ap-

lications is relatively limited. For a comparison of the pipelined

homas and parallel diagonal dominant algorithms for flow simu-

https://doi.org/10.1016/j.compfluid.2017.10.017
http://www.ScienceDirect.com
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lations, see [10] . The SPIKE algorithm has been recently applied to

large-eddy simulation in [11] . 

The third family of methods is constituted by the so-called

boundary approximation approach (BAA). In this case, the origi-

nal linear system is split into disjoint matrix systems that can be

solved independently for each sub-domain by exchanging a (small)

number of halo cells. The method is thus naturally suited to the

widespread MPI-based multi-block partitioning technique, which is

at the base of many finite-difference and finite-volume CFD codes.

The major drawback of this procedure is that the global depen-

dence of the compact scheme is broken at block-to-block inter-

faces, leading to a certain degree of deterioration similar to the one

occurring at regular boundaries. These effects are mainly attributed

to the altered dissipation and dispersion properties due to the

boundary closure [12] . However, it is well known that the spectral

characteristics of the discretization are crucial for an accurate nu-

merical simulation of multi-scale and acoustics phenomena, such

as compressible turbulence [13] . Several boundary approximations

have been developed in recent years to reduce parallelization arti-

facts. These mainly rely on overlapping grids [14,15] or halo points

[16] with proper boundary closures at adjacent sub-domain in-

terfaces. In some cases, the resulting schemes are optimized in

wavenumber space for accurate acoustic computations, or used

in conjunction with suitable filtering operators to remove high-

frequency errors [17] . Particularly Gaitonde & Visbal [15] suggested

to use a region of overlap between adjacent subdomains aimed

to reduce parallelization artifacts in their finite-difference method;

boundary closure was achieved by high-order one-sided formulas.

However, their approach is not locally conservative, which might

be troublesome for flows with shocks [18] . 

The present work falls within the BAA category and focuses

on tridiagonal compact schemes. An overlapping strategy is de-

veloped in order to preserve accuracy on the interior points of

each sub-domain; however, boundary closure is achieved by ex-

plicit centered formulas. Unlike previous studies, which have been

concerned with the finite-difference method, a finite-volume (FV)

discretization is employed here. A straightforward implementation

of the overlapping method in a FV framework leads to the formal

loss of local conservation at block-to-block interfaces. In this work,

a method aimed to overcome this issue is developed so to retain

the inherent conservation properties of the finite-volume method.

The proposed algorithm is thus suitable for high-fidelity, paral-

lel computations of compressible shock-free turbulent flows, and

could serve as a building block for flows with discontinuities. 

The paper is organized as follows. In Section 2 , the relevant

governing equations are introduced; then, the employed finite-

volume discretization and serial numerical method are described.

Section 3 presents the parallel method. A modified wavenumber

analysis is reported in Section 4 , while Section 5 reports a series

of numerical tests aimed to characterize the accuracy of the pro-

posed approach. Section 6 focuses on efficiency and parallel per-

formances. Concluding remarks are given in Section 7 . 

2. Governing equations and serial numerical method 

The fully compressible Navier-Stokes equations are considered

in this work. In a three-dimensional Cartesian coordinate frame ( x,

y, z ), the motion of a gas with density ρ , velocity u = (u, v , w ) ,

pressure p , temperature T and total energy E is governed by the

system: 

∂U 

∂t 
+ 

∂F x 

∂x 
+ 

∂F y 

∂y 
+ 

∂F z 

∂z 
= 0 , (1)

where U is the vector of conservative variables, U =
( ρ, ρu, ρv , ρw, E ) . The total energy E is defined as the sum

of internal and kinetic energy, E = ρe + ρ| u | 2 / 2 . The vectors
 x = F c x − F d x , F y = F c y − F d y and F z = F c z − F d z represent the fluxes

long the three components. The inviscid (convective) fluxes are

efined as: 

 

c 
x = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρu 

ρu 

2 + p 

ρu v 

ρuw 

u (E + p) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, F c y = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρv 

ρu v 

ρv 2 + p 

ρv w 

v (E + p) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

F c z = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρw 

ρuw 

ρv w 

ρw 

2 + p 

w (E + p) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (2)

hereas the diffusive fluxes are 

 

d 
x = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

τ11 

τ12 

τ13 

(τu ) 1 − q 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, F d y = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 

τ21 

τ22 

τ23 

(τu ) 2 − q 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

 

d 
z = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

τ31 

τ32 

τ33 

(τu ) 3 − q 3 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (3)

The stress tensor τ ij and the conductive heat flux q i are ex-

ressed by the usual Newton’s and Fourier’s laws, respectively τi j =(
∂u i 
∂x j 

+ 

∂u j 
∂x i 

− 2 
3 δi j 

∂u k 
∂x k 

)
and q i = −λ ∂T 

∂x i 
, where μ is the molecu-

ar viscosity and λ the thermal conductivity of the fluid. Closure is

chieved by means of the ideal-gas equation of state, p = ρRT . 

.1. Finite-volume discretization 

The computational domain is partitioned into a structured grid

f hexahedrons indexed by ( i, j, k ). The finite-volume method is

ased upon integration of Eq. (1) over a generic control volume �,

ielding 

 i jk 

∂ ̄U i jk 

∂t 
+ 

∫ 
∂�

( F x n x + F y n y + F z n z ) dσ = 0 , (4)

here V i jk = | �| is the volume of the region and 

¯
 i jk = 

1 

V i jk 

∫ 
�

U d�. (5)

The integral in Eq. (4) applies to each control-volume; as a con-

equence, surface integrals over inner cell faces cancel out and

iscrete global conservation of primary unknowns is guaranteed

hrough the telescopic property. The built-in global conservation

eature is indeed one of the major advantages of finite-volume

ethods. 

The meaning of the cell integral in Eq. (5) deserves further dis-

ussion. In a so-called pointwise approach, nodal values U P are usu-

lly supposed to be known at the cell-center, resulting in a second-

rder accurate average, i.e., Ū = U P + O(	2 ) , with 	 being a rele-

ant grid spacing. Therefore, if high-order accuracy is seeked, cor-

espondent high-order formulas are needed for the evaluation of
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Table 1 

Interpolation schemes considered in the work. 

Scheme α L γ 1 γ 2 Order 

2E 0 1 1/2 0 O(	2 ) 

4E 0 2 7/12 −1 / 12 O(	4 ) 

4C 1/4 1 3/4 0 O(	4 ) 

6C 1/3 2 29/36 1/36 O(	6 ) 
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s

he integral [19] . However, a more careful look at Eq. (4) suggests

o store and advance in time the cell-averaged values themselves.

n this approach, the integral has not to be evaluated and the ac-

uracy of the method depends solely on the fluxes reconstruction

20] . The cell-averaged approach is adopted here and will be used

hroughout the paper. 

The solution algorithm follows that of any typical semi-discrete

ethod, in which Eq. (4) is first semi-discretized in space and then

dvanced in time. The surface fluxes appearing in Eq. (4) need to

e properly approximated. For simplicity, the cell interface S i −1 / 2 

long a generic ( j, k ) line and between cells ( i ) and (i − 1) is con-

idered. The corresponding flux is defined by: 

˜ F i −1 / 2 = 

∫ 
S i −1 / 2 

( F x n x + F y n y + F z n z ) dσ ≈ S 
(

˜ F x n x + ̃

 F y n y + ̃

 F z n z 

)
, 

(6) 

here S = 

∣∣S i −1 / 2 

∣∣. It is assumed that the normal vector is constant

long the interface, while the operator ˜ (·) denotes surface averag-

ng. Starting from Eq. (6) , the discretizations of convective and dif-

usive fluxes will be described in the next sections. 

.1.1. Convective fluxes 

The convective fluxes are evaluated using face-averaged values

f conservative variables: 

˜ 
 

c 
i −1 / 2 = S 

(
F c x ( ̃  U i −1 / 2 ) n x + F c y ( ̃  U i −1 / 2 ) n y + F c z ( ̃  U i −1 / 2 ) n z 

)
. (7) 

he core of the method, as well as most of the code overall ac-

uracy, lies on a proper interpolation of conservative variables to

ell faces. Following [21] , face-averaged values are obtained by

eans of a cartesian-like approach, i.e., U is assumed to depend

xclusively on the curvilinear abscissa along each line of the grid.

nder this hypothesis, the face-averaged value ˜ U at the interface

(i − 1 / 2 , j, k ) is expressed by the following interpolation formula: 

˜ U i −3 / 2 + 

˜ U i −1 / 2 + α ˜ U i +1 / 2 = 

L ∑ 

l=1 

γl 

(
Ū i −l + Ū i + l−1 

)
. (8) 

Eq. (8) represents a generic family of explicit ( α = 0 ) or implicit

 α � = 0) centered interpolation formulas based on cell-averaged val-

es. The coefficients α, L and γ l determine the order of accuracy

nd the spectral properties of the scheme. In Table 1 , a number

f possibilities are given, assuming uniform grid-spacing 	, along

ith the corresponding acronym used in the work. The present

ork will particularly focus on the sixth-order compact method

6C). Note that in the case of non-uniform (Cartesian) grids, the

rder of accuracy can be preserved by computing the coefficients

n the basis of a Taylor series expansion that takes into account

he metrics of the mesh [22] . 

It is worth to remark that, in the context of explicit schemes,

 proper computation of convective fluxes can lead to discrete

nergy-conservation properties, i.e., the convective term does not

puriously contribute to the kinetic energy balance in the invis-

id limit [23] . This property guarantees well-known benefits, espe-

ially for turbulent flows [24] . However, energy-conserving fluxes

or compact schemes in conservation (divergence) form have not

et been found; therefore, the use of Eq. (7) appears to be ade-

uate. 
.1.2. Diffusive fluxes 

Unlike convective fluxes, diffusive terms are linear and typically

o not raise substantial difficulties. In many CFD applications, they

re calculated by a second-order centered formula. The application

f a compact scheme to the computation of diffusive fluxes can

e carried out by using a scheme similar to Eq. (8) , with face-

veraged derivatives appearing on the left-hand side. Indeed, dif-

usive fluxes depend on face-averaged derivatives of velocity and

emperature. The use of a compact scheme for the diffusive fluxes

id not yield relevant benefits for the tests reported in this work.

herefore, a second-order centred formula has been employed for

implicity. However, it is worth to emphasize that the paralleliza-

ion algorithm proposed here can be extended in a straightforward

anner to the compact computation of diffusive fluxes as well. 

.2. Time advancement 

Once the convective and diffusive fluxes have been discretized,

q. (4) reduces to a system of ordinary differential equations: 

 i jk 

d ̄U i jk 

dt 
= R i jk , (9) 

here R ijk is the residual resulting from spatial discretization. Time

ntegration from t n to t n +1 is achieved by standard explicit Runge–

utta schemes: 

¯
 

n +1 = Ū 

n + 	t 

s ∑ 

l=1 

b p R 

(
Ū 

p 
)
, (10) 

¯
 

p = Ū 

n + 	t 

p−1 ∑ 

q =1 

a pq R 

(
Ū 

q 
)
, (11) 

here s is the number of stages, b p and a pq are the Runge–

utta coefficients and the subscript ijk has been omitted for clar-

ty. Runge–Kutta methods are widely used in numerical simula-

ions of both incompressible and compressible turbulence, due to

heir ease of implementation and relatively large stability foot-

rint. They also have the advantage over multistep methods of be-

ng self-starting, i.e., information from previous time-levels is not

equired. Furthermore, the Runge–Kutta coefficients can be opti-

ized for multiple purposes, e.g., to improve dissipation and dis-

ersion properties for computational acoustics [25] , or to enhance

he accuracy of the discrete kinetic energy conservation [26,27] .

or standard explicit schemes, the temporal order of accuracy is

ypically equal to the number of stages, at least for s ≤ 4. The algo-

ithms described in this work are compatible with explicit schemes

f arbitrary order; in Section 5 , a three-stage, third-order method

s employed. 

It is worth to remind the reader that the overall linear stabil-

ty characteristics of the algorithm result from the coupling be-

ween the Runge–Kutta method and the spatial scheme used for

onvective and diffusive terms. For convection-dominated flows,

he constraint is usually dictated by the convective operator, yield-

ng ( | u | + c ) 	t 
	x 

≤ σi 

w 

′ 
m 

, where c is the speed of sound, σ i depends

n the stability segment of the time-advancement method on the

maginary axis, and w 

′ 
m 

is the maximum value of the modified

avenumber of the spatial operator [1] . To give an example, third-

rder Runge–Kutta methods used in conjunction with the schemes

E, 4C and 6C yield an acoustic CFL limit of 1.262, 1 and 0.871 re-

pectively. 
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Fig. 1. Diagram describing the interface between two blocks and the transfer of data involved in MPI communications. Overlapping interfaces (here for M = 2 ) are shown in 

blue, while halo cells in grey. The data transfer involves N ex = M + 2 cells per side. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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3. Parallel multi-block method 

The objective of this work is to parallelize the algorithm pre-

sented in Section 2 , and particularly the computation of convective

(and/or diffusive) fluxes via the compact formula in Eq. (8) . The

paradigm considered here is based on a multi-block partitioning

technique: the computational domain is split into non-overlapping

blocks which are assigned to different processors. The paralleliza-

tion is achieved by means of conventional MPI communications. 

For the sake of clarity, a uniform one-dimensional domain is

considered in the following, with N computational cells of spacing

	 and N + 1 cell interfaces, labeled with subscripts ranging from

1/2 to N/ 2 + 1 / 2 . The extension to multi-dimensional computations

is straightforward. 

3.1. Overlap method 

For simplicity, the one-dimensional domain is equally split into

two sub-domains, each having N /2 cells and N/ 2 + 1 interfaces (see

Fig. 1 ). The objective is to apply the compact scheme of Eq. (8) in

such a way that the two sub-domains can be computed indepen-

dently, subject only to a conventional data exchange. In general,

this can be achieved by applying Eq. (8) to each block and treating

the shared interface as a regular domain boundary, to be computed

by a suitable (explicit or compact) scheme. 

In the present work, the compact scheme is applied in each

sub-domain to an enlarged system that includes a certain number

of overlapping interfaces and cells from the neighbour blocks. Only

centered formulas are used, and the last interface value is com-

puted by means of a high-order explicit scheme. As a result of the

overlapping, the border approximation effects are decreased and

the accuracy for the interior points is preserved. From a mathemat-

ical point of view, the beneficial effects of the overlapping tech-

nique can be attributed to the exponential decay rate of the in-

verse of tridiagonal banded matrices away from the diagonal [28] .

It is also worth to mention that an overlapping-like technique has

been rigorously shown to reduce the parallelization error within a

given tolerance for tridiagonal Toeplitz matrices [29] . 

In the following, with reference to Eq. (8) , the overlap method

is presented for a generic tridiagonal scheme ( α � = 0) with L =
2 , therefore accommodating up to sixth-order accuracy (C6). Of

course lower-order accurate cases can be easily recovered, e.g. by

setting γ2 = 0 . 

The compact scheme for the first block reads 

r  

h  
⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b.c. 

. . . 

α 1 α
α 1 α

α 1 α
. . . 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

U t 1 / 2 
. . . 

˜ U 

(1) 
N/ 2+1 / 2 

U t N/ 2+3 / 2 

. . . 
U t N/ 2+ M+1 / 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b.c. 

. . . 

γ2 γ1 γ1 γ2 

γ2 γ1 γ1 γ2 

. . . 

γ2 γ1 γ1 γ2 

b a a b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

U m 1 

. . . 
U m N/ 2 

U m N/ 2+1 

. . . 

Ū N/ 2+ M+1 

U m N/ 2+ M+2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

here M is an integer that determines the size of the overlapping

egion, i.e., the number of additional interface values to be com-

uted (cf. Fig. 1 , in which a case with M = 2 is shown). Note that

t the far left and right sides of the computational domain, some

physical) boundary condition (b.c.) is assumed, whose details are

ot essential to the purpose of the present discussion. In this case,

he left-hand side matrix is square with (N/ 2 + M + 1) rows, while

he right-hand side matrix has dimensions (N/ 2 + M + 1) × (N/ 2 +
 + 2) . The scheme of Eq. (8) is applied up to i = N/ 2 + M, while

he total number of computed interface values is N/ 2 + M + 1 , of

hich only the first N/ 2 + 1 are retained. The last calculated in-

erface value is N/ 2 + M + 1 / 2 , that is evaluated by means of the

entered formula 

˜ 
 N/ 2+ M+1 / 2 = a 

(
Ū N/ 2+ M+1 + Ū N/ 2+ M 

)
+ b 

(
Ū N/ 2+ M−1 + Ū N/ 2+ M+2 

)
, 

(12)

here the values a and b can be chosen to provide (at maxi-

um) fourth-order accuracy, which is accomplished with a = 7 / 12

nd b = −1 / 12 . This boundary closure requires a total number of

 ex = M + 2 solution data layers to be sent/received to/from each

eighbouring block. This can be accomplished by a standard MPI

echnique. Regarding the formal order of accuracy of the method,

t has been shown theoretically in [30] that, for Padé-like finite-

olume schemes, the order of accuracy of the global scheme re-

uces to the one of the boundary closure. Therefore, both the C4

nd C6 schemes are expected to be formally fourth-order accu-

ate when used in conjunction with the overlap method presented

ere. The use of Eq. (12) has been selected among various attempts
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Table 2 

Values of ‖ Im( k ′ / k ) ‖ ∞ for the first two points, for schemes C4 and 

C6 and for various numbers of overlap layers M . 

M C4 C6 

i = 1 i = 2 i = 1 i = 2 

0 7 . 87 × 10 −2 4 . 12 × 10 −2 1 . 25 × 10 −1 9 . 97 × 10 −2 

1 2 . 53 × 10 −2 1 . 06 × 10 −2 6 . 32 × 10 −2 3 . 95 × 10 −2 

2 8 . 84 × 10 −3 2 . 45 × 10 −3 2 . 50 × 10 −2 1 . 35 × 10 −2 

3 2 . 72 × 10 −3 7 . 81 × 10 −4 1 . 23 × 10 −2 5 . 32 × 10 −3 

4 6 . 30 × 10 −4 2 . 16 × 10 −4 4 . 45 × 10 −3 2 . 20 × 10 −3 
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imed to improve the spectral properties of the resulting scheme.

ther boundary closures, both symmetric or one-sided, have been

ested (but are not shown here). The results were either unsuccess-

ul, or did not provide any relevant advantages, on equal computa-

ional cost, over the use of the highest-order centered formula. It

s worth to mention that a dedicated optimization in wavenumber

pace could be carried out to further enhance the scheme prop-

rties (see, e.g., [16] ). However, this issue has not been taken into

ccount in the present work. 

Note that for M = 0 the two values ˜ U 

(1) 
N/ 2+1 / 2 

and 

˜ U 

(2) 
N/ 2+1 / 2 

re equal, since they are calculated by the explicit formula Eq.

12) based on the same values; as a consequence, the fluxes that

re computed from these values are also equal for the two blocks,

nd local conservation is retained. The resulting scheme is equiva-

ent to the one proposed in [21] , and the approach is analogous

o the conservative finite-difference compact method developed

n [18] , in which the interface flux is computed on the basis of

he fifth-order accurate approximation of Shu [31] . For M > 0, the

hared interface values are calculated by different schemes, and

he method formally loses local conservation. Therefore, without

roper remedies, the choice M � = 0 might not be suitable for flows

ith shocks or discontinuities. The problem could be solved by

aking a proper average of ˜ U 

(1) 
N/ 2+1 / 2 

and 

˜ U 

(2) 
N/ 2+1 / 2 

(e.g., a Roe-like

verage, as proposed in [21] ), but this would require an additional

ommunication step between the processors. In this work, the fol-

owing strategy is proposed to restore the local and global conser-

ation properties of the method. 

.2. Enforcing local conservation (ELC) 

The local (and global) conservation condition for the method is

iven by 

˜ 
 

(1) 
N/ 2+1 / 2 

= 

˜ U 

(2) 
N/ 2+1 / 2 

. (13) 

learly, Eq. (13) cannot be directly satisfied if M � = 0. Therefore, the

wo interface values have to be re-computed in each block by a

uitable scheme that is based on the same values. A way to achieve

his goal is to perform a further application of the same compact

ormula that involves the maximum possible number of available

ata. With reference to Fig. 1 , the compact scheme extends to all

he available (grey) cells 2 N ex = 2 M + 4 , and reads (for the first

lock), ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

. . . 

α 1 α
α 1 α

α 1 α
. . . 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ U N/ 2 −M+1 / 2 

. . . 

˜ U 

(1) 
N/ 2+1 / 2 

˜ U N/ 2+3 / 2 

. . . 
˜ U N/ 2+ M+1 / 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b a a b 
γ2 γ1 γ1 γ2 

. . . 

γ2 γ1 γ1 γ2 

b a a b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

Ū N/ 2 −M−1 

. . . 

Ū N/ 2 

Ū N/ 2+1 

. . . 

Ū N/ 2+ M+2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

ote that the matrix coefficient is square of size (2 M + 1) , while

he matrix on the right-hand side has size (2 M + 1) × (2 M + 4) .

he application of this scheme for Block 1 and Block 2 guaran-

ees that Eq. (13) is satisfied. Again, this method proved to be the
ost effective among a number of possible strategies that have

een tested throughout this study. This approach avoids a further

xchange of data between processors (with associated risk of idle

imes) and allows each processor to proceed independently. On the

ther hand, a small amount of additional computational cost is re-

uired to solve the restricted tridiagonal system based on the halo

ells. 

The ELC method is clearly to be applied for M ≥ 1. 

. Spectral analysis 

The accuracy of the overlapping method is preliminarily as-

essed by performing a spectral resolution analysis. The scheme is

pplied to evaluate the derivative of the complex wave e ikx ; the nu-

erical solution can be written as ik ′ e ikx , where k ′ is the so-called

odified wavenumber. The real and imaginary parts of k ′ modify

he speed and amplitude of the wave, leading to dispersive and

iffusive numerical errors respectively. It is well known that these

purious effects have to be minimized as much as possible in prob-

ems involving multi-scale phenomena and wave propagation, such

s turbulence and acoustics [13] . 

Results are shown in Figs. 2 and 3 for the C4 and C6 schemes

espectively, and for three values of M . Since each partition is fully

ecoupled from the others, a single block with N = 40 is con-

idered, with the boundary closure in Eq. (12) applied to both

ides of the domain. In contrast to the serial scheme, the modified

avenumbers vary from node to node due to the use of a differ-

nt scheme at boundaries [21,32] . Most importantly, diffusion and

nti-diffusion effects appear at the boundary nodes, although the

et dissipation is zero (for linear problems), since only centered

chemes are used. Anti-diffusion is especially troublesome as it can

ead to artificial amplification of high-frequency modes near block

oundaries and thus to a spurious contamination of the computa-

ion. Note that the dispersive errors of symmetric nodes coincide

e.g. for i = 1 and i = N), and hence only the curves for i = 1 and

 = 2 are shown in Figs. 2 (a) and 3 (a). On the other hand, diffusive

rrors at such nodes are equal and opposite. 

As M is increased, the errors decrease significantly and the solu-

ion converges to the serial one, which is purely real and coincides

ith its finite-difference counterpart [1] 

 

′ = 

1 

	

˜ γ1 sin (k 	) + ˜ γ2 sin (2 k 	) 

1 + 2 ̃  α cos (k 	) 
, (14) 

here ˜ γ1 , 2 and ˜ α are the finite-difference coefficients for fourth-

nd sixth-order tridiagonal compact schemes. For M = 2 , some de-

ree of anti-diffusion is still present at medium-high wavenum-

ers, while the errors for M = 4 are lowered by two orders of mag-

itude with respect to the M = 0 case. The ELC condition was ap-

lied in all the cases shown in this section, which resulted in a

light improvement of the results with respect to the correspond-

ng non-conservative method. A summary of the maximum errors

or the imaginary part of the modified wavenumber is reported in

able 2 . It is interesting to note that the errors for the C4 scheme

re much lower than those occurring for C6. This is attributed to
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Fig. 2. Modified wavenumber of C4 scheme for the first and last two boundary points, for M = 0 (black), M = 2 (red) and M = 4 (blue). The serial curve is also shown for 

comparison. (a) real part of the modified wavenumber; (b) imaginary part of the modified wavenumber. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 3. Modified wavenumber of C6 scheme for the first and last two boundary points, for M = 0 (black), M = 2 (red) and M = 4 (blue). The serial curve is also shown for 
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the fact that the symmetry breaking effect of the interface treat-

ment is more accentuated in higher-order schemes than in low-

order ones. The C6 scheme is thus more challenging to parallelize

with a high degree of accuracy with respect to C4. The tests pre-

sented in the next section will focus on C6. 

The computed spectra of the semi-discretized operators show

that the schemes are linearly stable on a uniform mesh, with all

the eigenvalues lying in the negative half plane. 

From this preliminary (linear) analysis it can be concluded that

the overlap method is very effective in reducing the spurious ef-

fects that occur as a consequence of breaking the symmetry of the

compact difference operator at boundaries. As a rule of thumb, it

was found that the maximum error on diffusion decreases of one

order of magnitude every 2 added overlap layers. 
. Numerical results 

The method presented in the previous sections has been im-

lemented into the CIRA code SPARK-LES, a finite-volume solver

hat integrates the fully compressible Navier–Stokes equations on

ulti-block structured grids [33] . Numerical tests are presented in

his section to assess the accuracy and performances of the de-

eloped technique. The results will be systematically compared to

he serial solution. The use of low-pass filters, which has been ex-

ensively analyzed in previous studies to suppress anti-diffusion at

igh frequencies [16,17] , has purposely not been considered in this

tudy with the aim of isolating spurious parallelization artifacts.

onetheless, all the tests presented in the following were stable

ithout the use of any filtering operator. 
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.1. Order of accuracy study 

The first test aims to verify that the formal order of accuracy is

orrectly recovered. A grid-refinement study is performed for the

ne-dimensional advection equation 

∂φ

∂t 
+ a 

∂φ

∂x 
, (15) 

iscretized on a domain −L d ≤ x ≤ L d . Periodic boundary condi-

ions are applied to the sides of the domain. The initial condition

s a sinusoidal wave φ(x, 0) = sin (πx ) . The error is computed from

he L 2 norm of the difference between the computed and exact so-

utions as the wave has travelled a distance of 2 L d / a . Time advance-

ent is carried out by means of a three-stage, third-order Runge–

utta method with a CFL number equal to 0.1, which was verified

o be sufficiently small to keep time integrations errors negligible

ith respect to spatial errors. 

The domain is split into 4 blocks of equal dimensions and the

ulti-block treatment is applied at each block-to-block interface

s well as to the sides of the computational domain. Results are

hown in Fig. 4 for the C6 scheme. In all cases the expected fourth-

rder accuracy is correctly recovered. Note that the error decreases

onotonically as the overlap layer is increased. Other tests (not

hown here) performed with a higher number of blocks yielded

imilar results, with the error norm increasing very slightly with

he number of partitions, as also reported in [18] . 

.2. Convection of a vortex 

The convection of an isentropic vortex is usually employed

o test the numerical properties of parallel compact schemes,

ee for instance [12,16] . In particular, the test is employed here

o analyze the effect of spurious acoustic reflections induced by

he multi-block treatment as a vortical structure crosses a sub-

omain boundary. The Euler equations are integrated over a peri-

dic rectangular domain x ∈ [ −0 . 5 L d , 0 . 5 L d ] and y ∈ [ −0 . 5 L d , 0 . 5 L d ]

f 320 × 320 cells. The initial condition is given as follows 

 (x, y ) = U 0 − �( y − y 0 ) 

R 

2 
exp 

(
−1 

2 

r 2 
)
, (16a) 

 (x, y ) = 

�( x − x 0 ) 

R 

2 
exp 

(
−1 

2 

r 2 
)
, (16b) 
m  
 (x, y ) = T 0 − �2 

2 R 

2 C p 
exp 

(
−r 2 

)
, (16c) 

here r = 

√ 

(x − x 0 ) 2 + (y − y 0 ) 2 /R, the parameters � and R con-

rol the strength and the size of the vortex respectively, while C p 
s the heat capacity at constant pressure of the gas. In the follow-

ng, � = 1 . 66 and R = L d / 50 are chosen. The density is computed

rom the temperature field via isentropic relations; then, pressure

s obtained by the equation of state. The dimensional parameters

 0 and T 0 are set to yield a Mach number equal to 0.5. Again, time

dvancement is obtained by a three-stage, third-order Runge–Kutta

cheme with a CFL number equal to 0.5. The vortex is expected to

ravel without deformation advected by U 0 . 

It is effective to analyze the behaviour of the vortex as it crosses

he interface between two blocks. To this aim, the domain is split

n the middle into two sub-domains that are solved in parallel;

hen, the solution is compared to the serial one in terms of the

uantity 

 p = 

| p − p serial | 
p ∞ 

− p min 

, (17) 

hat represents the parallelization error normalized by the pres-

ure drop at the vortex core [12] . The vortex starts from (x, y ) =
(−0 . 125 L, 0) and is stopped at u ∞ 

t/L = 0 . 25 , after travelling a

uarter of the computational domain and having crossed the

locks boundary. Results are shown in Fig. 5 for three values of

 and for two different ranges of logarithmic contour levels. Par-

llelization errors are evident for M = 0 , especially in the upper

ange, and occupy the entire domain. However, they progressively

isappear as M is increased and become more concentrated at the

ortex core. Small residual effects are still present at the lowest er-

or levels, but can be considered as negligible, in particular for the

ase M = 4 . 

In summary, the results confirm the beneficial effects of the

verlapping in terms of reducing acoustic reflections at block-to-

lock interfaces. It appears that, for acoustic reflections to be re-

uced at negligible levels, a value of M = 4 is required. 

The local conservation statement of the proposed method has

lso been assessed. The integral average over the computational

omain of the x-momentum 

¯
 x (t) = 

1 

| �| 
∫ 
�

ρu d � (18) 

as been computed for one complete turnover of the vortex. Of

ourse, this quantity should be conserved in time due to the pe-

iodic nature of the problem and the absence of viscosity. In this

ase, the domain has been split into 4 × 4 blocks along the x and

 directions. A high value of the non-dimensional vortex strength
�

U 0 R 
= 0 . 2 has been selected, while the vortex radius is R = L d / 20

nd the Mach number is again equal to 0.5. Results are shown in

ig. 6 for M = 2 , with and without the enforcement of local conser-

ation. Without application of the remedy proposed in Section 3.2 ,

on-negligible errors in the conservation of global momentum oc-

ur. The time evolution of the error follows a periodic pattern

hich is repeated four times, due to the presence of four blocks

long the x direction. The enforcement of local conservation gives

ull (to machine accuracy) global momentum preservation. 

.3. Direct numerical simulation of the Taylor–Green Vortex 

The three-dimensional Taylor–Green Vortex (TGV) is an excel-

ent benchmark to assess the properties of numerical schemes in

ituations involving creation of small scales, transition and tur-

ulence, which are the main target applications of the proposed

ethod. This challenging case has been continuously listed among
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Fig. 5. Contours of εp for the isentropic vortex in logarithmic scales, for two different error levels (top and bottom rows) and for M = 0 (left column), M = 2 (middle column) 

and M = 4 (right column). 
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the proposed tests in all the editions of the International Workshop

for High-Order CFD Methods (see [34] for a review). The following

initial conditions are given: 

u (x, y, z) = U 0 sin (x/L d ) cos (y/L d ) cos (z/L d ) , (19a)

v (x, y, z) = −U 0 cos (x/L d ) sin (y/L d ) cos (z/L d ) , (19b)

w (x, y, z) = 0 , (19c)

p(x, y, z) = p 0 + 

ρ0 U 

2 
0 

16 

[ cos (2 x/L d ) + cos (2 y/L d ) ] 

× [ cos (2 z/L d ) + 2 ] , (19d)

where the dimensional variables U 0 , p 0 and ρ0 , together with the

viscosity coefficient, are set to yield a Reynolds number equal to

1600 and a Mach number equal to 0.1. The domain consists of a pe-

riodic cube with side of 2 πL d . Two grid resolutions have been an-

alyzed; one is an under-resolved case with 128 3 cells, the other is

a marginally resolved direct numerical simulation with 256 3 cells.

The ratio of the grid spacing to the estimated Kolmogorov length

scale is 4.06 and 2.03 respectively. In both cases, no subgrid-scale

model is employed, so that any possible numerical artifact coming

from the parallelization strategy is emphasized. All the simulations

are time-advanced by means of a three-stage, third-order Runge–

Kutta method and a CFL number equal to 0.3. The computational

domain has been split uniformly into 8 3 and 16 3 blocks. It has to
e emphasized that no filters of any type have been employed in

he simulations, which were stable in all the cases analyzed. This

s remarkable, since boundary closures analyzed in some previous

tudies which were stable from a linear analysis, turned out to be

nstable in turbulent simulations without the use of proper filter-

ng operators [17] . 

The first diagnostic parameter is the evolution of the global

inetic energy dissipation rate, integrated over the computational

omain 

 = − d 

dt 

1 

ρ0 �

∫ 
�

ρ
u i u i 

2 

d�, (20)

s a function of the non-dimensional time t ∗ = tU 0 /L d . Results are

hown in Fig. 7 . For both resolutions, the parallel simulations show

o significant deviations from the serial data in the first part of

he time evolution. This is reasonable since the early evolution of

he Taylor-Green vortex is rather smooth and a relatively low range

f wavenumbers is excited. However, after transition to turbulence

 t ∗ ≈ 9), the range of scales becomes increasingly wider and spu-

ious numerical effects at medium-high wavenumbers (cf. Fig. 3 )

ause the M = 0 case to deviate from the serial solution, espe-

ially for the coarser grid. In both cases, the M = 2 case is close

o the serial simulation. As the resolution is increased, a broader

ange of scales is well resolved and the curves tend to collapse.

esults obtained with quasi-DNS resolution provide parallel results

ractically identical to the serial solution and in good agreement

ith the reference spectral data. The solution with 16 3 blocks also

hows remarkably good behavior, despite the computational do-

ain is in this case split into 4096 sub-domains. A reference so-
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Table 3 

Hardware configurations of Galileo and Marconi. 

Item Galileo Marconi (Broadwell) 

Nodes 516 1512 

Cores 8256 54,432 

Processor Intel Haswell Intel Xeon E5-2697 

Frequency 2.40 GHz 2.30 GHz 

Memory/node 128GB 128GB 

Internal network Infiniband Intel OmniPath 

b  

l  

i  

c  

r

6

 

m  

t  

i  

p  

t  

T  

a  

t  

t  

i  

M

 

s  

o  

s  

s  

a  

v  

b  

o

a  

r  

F

2

ution obtained with a pseudo-spectral method and full DNS accu-

acy is also reported [35] . It is worth to mention that the devia-

ion from the spectral solution has mainly to be attributed to the

arginal resolution of the two grids and to the incomplete resolv-

ng efficiency of compact schemes. 

Additional insights into the quality of the local flow field can

e gained by looking at a snapshot of the instantaneous vorticity

agnitude in the early transition phase. In particular, contours of

he vorticity norm on a subset of the plane x = −πL d at t ∗ = 8 are

hown in Fig. 8 . A correct representation of the concentration of

orticity and the development of the shear layer proved to be very

hallenging for the accuracy and resolution of numerical methods

34] . However, significant deviations from the serial solution can
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ig. 7. Time evolution of the energy dissipation rate of the Taylor–Green vortex. In all ca

56 3 cells. 
e here observed only for the M = 0 case on the coarsest reso-

ution. The results obtained on the quasi-DNS grid are practically

dentical to plotting accuracy, giving additional fidelity that the lo-

al flow field is not spuriously contaminated by parallelization er-

ors. 

. Parallel performances 

The impact of the overlapping technique on the parallel perfor-

ances has been analyzed in terms of parallel efficiency and CPU

ime, based on the results obtained for the TGV test case presented

n Section 5.3 . The tests have been carried out on the CINECA su-

ercomputing facilities Galileo [36] and Marconi (Broadwell par-

ition) [37] , whose main characteristics are reported in Table 3 .

he two architectures mainly differ in terms of number of nodes

nd interconnection protocol. For the parallel runs, two configura-

ions typical of nowadays fully-resolved direct numerical simula-

ions have been considered, with 512 3 and 1024 3 cells, distributed

n 4096 equally-balanced blocks, and with three different values of

 equal to 0, 2, 4. 

Results are reported in Fig. 9 . Specfically, the run time (in

econds) per time-step is shown as a function of the number

f processors; note that the run time includes the entire three-

tep Runge–Kutta time-integration procedure. This so-called strong

caling test is used to evaluate the gain in elapsed time of a par-

llel run with respect to a serial computation, and is most rele-

ant when one is interested in reducing the computational time

y increasing the number of processors, which is typically the case

f production CFD runs. Due to memory requirements, the 512 3 

nd 1024 3 tests could not be run on less than 64 and 256 cores

espectively, on both Galileo and Marconi. Good scaling is found
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ses the domain is divided into 8 3 blocks, except where specified. (a) 128 3 cells; (b) 
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(a) (b)

Fig. 8. Contour of dimensionless vorticity norm 

L d 
U 0 

‖ ω‖ = 1 , 5 , 10 , 20 , 30 in a subset of the periodic face x 
L d 

= π at time t ∗ = 8 for various values of M . Shown are the spectral 

solution (red line), the parallel solutions for M = 0 (thin black line), M = 2 (dash-dotted), M = 4 (dotted), M = 4 and 16 3 blocks (dashed), and the serial solution (thick black 

line). (a) 128 3 grid; (b) 256 3 grid. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Parallel performances of the overlapping approach for the 512 3 and 1024 3 configurations. (a) Galileo (b) Marconi. 
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on up to 1024 processors for both grids and on both platforms,

with Marconi showing slightly superior speedups with respect to

Galileo. For instance, in the baseline M = 0 case the parallel effi-

ciency (defined as the ratio between the actual speedup and the

ideal speedup) for the 512 3 configuration was 70% on Marconi and

54% on Galileo; on the other hand, the largest grid achieved a re-

markable 83% for 1024 CPU cores on both architectures. Increas-

ing the number of overlap layers has obviously a detrimental ef-

fect on parallel performances, due to the additional amount of data

to be exchanged among the processors; in this regard, it is worth

to recall here that the number of exchanged cell layers vary as

N ex = M + 2 . The observed reduction in parallel efficiency, with re-

spect to the M = 0 case, ranges on average from 15% to 25% for the

512 3 grid and from 10% to 15% for the 1024 3 one. In practice, the

M = 2 overlap appears to be as a reasonable trade-off between ac-

curacy and performances, leading to parallel efficiencies as high as

60% and 75% on 1024 processors for the small and the large grid

respectively. When a number of processors higher than 2048 was

attempted, the network latency started to become dominant, lead-

ing to performances flattening (especially for higher values of M ),

as a consequence of assigning a too small workload to each pro-

cess. The number of CPU cores at which the speedup saturates is

highly case- and machine-dependent [3] and might be increased

by a proper code-platform tuning, which has not been pursued
here. t  
The total run time is also affected by the overlapping, as a con-

equence of the over-sized linear system to be solved by each pro-

essor, and most importantly, of the MPI communication overhead.

owever, the increase in run times, on equal number of CPU cores,

s moderate and ranges from about 5% to 15% when going from

 = 0 to, e.g., M = 2 . 

It is worth to note that the above results were obtained without

ny dedicated code optimization; therefore, it is possible that the

arallel performances shown in this section could be further en-

anced. Also, analogous results were obtained at the first attempt

n another Linux cluster owned by CIRA and equipped with a sim-

lar hardware as Marconi, showing that the BAA method can offer

ood performances also on unsophisticated commodity clusters. 

. Conclusions 

A systematic method for the parallelization of tridiagonal com-

act finite-volume schemes has been developed. The algorithm is

ased on an overlapping technique, i.e., an over-extended linear

ystem is solved for each sub-domain, with the aim of preserving

he accuracy of the interior solution. Boundary closure is achieved

y a centered fourth-order formula. In contrast to previous strate-

ies based on overlap-like techniques, the method retains local and

lobal conservation of primary invariants by properly re-computing

he shared boundary values without losing accuracy and with
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ittle additional computational cost. The inherent local conserva-

ion properties of the finite-volume method are thus retained

y the present approach. The proposed idea of enforcing lo-

al conservation can be equally applied to any finite-difference

ethod written in conservation form. The method can be imple-

ented straightforwardly and is especially suited for multi-block-

ased parallel CFD codes, thus being applicable for the simula-

ion of flows in complex geometries or with moving boundaries.

he method has been proposed and tested on uniform cartesian

eshes but can be readily applied to curvilinear meshes as well. 

A linear Fourier analysis has shown that the developed method

s able to preserve the spectral properties of the original scheme

ithin an acceptable tolerance, with the errors rapidly decreasing

s the overlap region M , i.e., the number of additional interfaces

omputed for each side of the block, is increased. Numerical tests

howed that the method achieves the theoretically expected order

f accuracy; in terms of spurious acoustic reflections at block-to-

lock interfaces, an isentropic vortex convection test demonstrated

hat a significant reduction can be accomplished already for M = 2 ,

hile M = 4 led to almost negligible parallelization errors. The

ethod has finally been tested on a challenging turbulent case,

he three-dimensional Taylor-Green vortex, involving transition to

urbulence, creation of small scales and turbulent decay. Results

ere remarakbly satisfactory, yielding solutions very close to the

erial one both in terms of integral quantities (kinetic energy dissi-

ation rate) and local flow field analysis (vorticity magnitude prior

o transition). Significant deviations from the serial solution were

bserved only for the case M = 0 on the coarsest grid resolution,

ut disappeared for M = 2 . The schemes were stable in all cases

ithout using any filtering operator. 

From a point of view of computational performances, the choice

f the overlapping region size is a trade-off between accuracy and

arallel efficiency: numerical results suggest that M = 2 might be

 reasonable choice, although the value of M could be selected de-

ending on the specific problem under study. Without any ded-

cated optimization, the case with M = 2 attained a parallel effi-

iency in a strong scaling test as high as 75% on 1024 processors,

hus making it appealing for efficient computations on commod-

ty clusters. Accurate computational aeroacoustics analyses might

equire higher values of M , with unavoidable penalties in parallel

erformances. In this regard, it is worth to remark that dedicated

ptimizations in wavenumber space, such as those carried out in

16] for pentadiagonal schemes, could be developed to further im-

rove the performances of the schemes. However, these optimiza-

ions have not been undertaken in this study and are left for future

ork. 
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