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ABSTRACT

Polyester (PET) strap reinforcement materials are now used routinely as soil
reinforcement for mechanically stabilized earth (MSE) walls. The important role of
temperature and relative humidity on the chemical degradafid?ET fibres due to
hydrolysis iswell documented in the literature. Strength and stiffness of the polyester
fibres can be expected to decrease with increasing temperature and in the presence of
moisture. This has practical implications for the selection of the partial factor for chemical
degradatiorandlong-termdeformationthat is used in internal stability limit state design

in MSE walls. The PET muHilament core of the straps is protected against installation
damage and moisture by a polyethylene sheath.

This study presents the results of analyses using numerical simulations that were carried
out to estimate, first, the temperature and relative humidity changgssl iregarding
different ground properties and atmospheric boundary conditions, and sebend, t
temporal strength and stiffness changes in simulated buried PET straps placed in different
soil environments while subjected to different tensile loads and temperdiuoesih no

in site measurements are available, modelled results are compared rashddaosistent

with similar previous research regardingsioil temperature distributionBinally, a first
approach at a fully coupled thershgdromechanical (THM) is presentedCreep
behaviour is adequately modeled withing single simulated PET strapsthan the full

MSE wall model.



RESUMEN

Los materiales de refuerzo de fibras de poliéster (PET) se utilizan actualmente de forma
rutinaria como refuerzo del suelo para los muros de tierra mecanicamente estabilizada
(MSE por sus siglas en ing)e<l rol de la temperatura y la humedad relativa en la
degradacion quimica de las fibras PET debido a la hidrdlisis esta bien documentado en la
literatura. Es de esperar que la rigidez y resistateias fibras de poliéster disminuyan

con el aumento de la tempéura y en presencia de humedad. Esto tiene implicaciones
practicas para la seleccionldefactoresparciabsde degradacion quimigadeformacion

a largo plazayue se utiliza en el disefio del estado limite de estabilidad interna en los
muros MSE. El nldleo de multifilamentos de PET de las correas esta protegido contra los
dafios de la instalacion y la humedad por una funda de polietileno.

El presente estudio detaltss resultados de los analisis realizados mediante simulaciones
numeéricas para estimamn erimer lugar, los cambios de temperatura y humedad relativa
en el suelo en relacién con diferentes propiedades del terreno y condiciones atmosféricas
impuestagy, en segundo lugar, los camb#$o largo del tiempo eresistencia y rigidez

en refuerzostipo PET simulandodiferentes entornos de suelo mientras se someten a
variadosestados de carggstemperaturasiun cuando no sdispone danediciones de
campo, los resultados modelados son compargdss encuentran concordantes con
investigacionesntefores con respecto a la distribucion de temperaturas en el terreno.
Por ultimo, se presenta una primera aproximacion a un sistema-héinemecanico
(THM) totalmente acopladdzl comportamientale fluenciaa largo plazo de refuerzos
PET esmodelado de fona adecuada para elementos individuales, no asi dentro del
modelo completo del muro MSE
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1. INTRODUCTION

Polymeric reinforcement materials are used routinely in civil engineering works for soil
reinforcement and stabilizatioeosynthetic materials have proven to be a sustainable
solution for mechanically stabilized earth (MSE) wall applications. (Dixon et al. 2017,
Damians et al2018).

In mechanically stabilized earth structures, the crucial role of temperaturelatide
humidity on the mechanical and chemical degradation of polyester (PET) fibres due to
hydrolysis is well documented in the literature (Jailloux et al. 2008, Greenwood et al.
2012). Strength and stiffness of the polyester fibres can be expectedréaske with
increasing temperature and in the presence of moisture. These reductions modify the
partial factor for creep and chemical degradation that is used in internal stability limit
state design for PET strap MSE walls. Hemealisticlocal ambientaind in soilconditions

should be accounted for at the design phise PET multfilament core of the straps is
protected by a polyethylene sheath to mitigate installation damage and moisture
deterioration. Nevertheless, this sheath still permits theosexp of the polyester
filaments to moisture over the life of reinforcement. For instance, high density
polyethylene (HDPE) coatings are permeable to water vapor over the long term and thus
moisture can accumulate in the air voids between the PET fillresale of degradation

due to hydrolysis leading to creep deformation will change with temperature, which can
vary widely depending on the environment in which the straps are placed, and temporally
with time of day and season.

In order to analyze the lortgrm behaviour of PET straps, the present study proposes a
coupled finite element modélased on the software CODE_BRIGHT (Olivella et al
1996),in which the insoil distribution of temperature and relative humidity for different
atmospheric conditionsra evaluated The effect of atmospheric conditions is first
evaluated using a simplified soil model, followedtbg implementation of a 2D thermo
hydraulic (TH) MSE wall modelAtmospheric conditions include temperature, relative
humidity and precipitatio daily recordsNext, linear elastic, bi linear elastizjsco
elastic and viscplasticconstitutivemodels are implemented to simulate PET strap-long
term response calibrated using the laboratory results ofKyom et al. (2018) for
GECO©OG s F A S Tadwdts (&BCO 2021)The proposed models incorporate
variations in temperature and saturation on the constitutive Fanally, a linear coupled
thermcehydromechanical(THM) MSE wall 2D model is proposed as a preliminary
approach



2. THEORICAL BACKGROUND

2.1 MSE wall design considerations

MSE walls are soil retaining structurbase ontte incorporation ofin-soil horizontal
reinforcementparallel to the principal strain directiomhich providetensile strength and
thus increase saiesisting propertieBeing tolerant to a greater level of deformation and
differential settlements than gravity walls or reinforced concrete structhesg types
of structures are commonly used in bridge abutsend earth retainingamong other
solutions as detailed ifrigure2-1.

(a) | (b)
3 “?3’:13""'&’ M o D N |
X ' - e |
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T Y .
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P 9,:&"9,:.»

Waterfront Structure Bridge Abutment

Figure2-1. Representation of MSEaM applications ag) retaining wall, (b) access ramp, (c)
waterfront structure and (d) bridge abutméBerg et al2009)

The main components conforming a typical MSE wall include:

1 Facing panelsare the exposed visual elements which are responsiblihdo
proper confinement and tension balance of the soil backfill mass. Panels provide
protection against erosion and, when mounted, can include horizontal or vertical
gaps, held together blgearingpads, which provide MSE walls with greater
draining capaittities. Typically, facing panels are composed of precast concrete
with square or hexagonal geometry with areas of 2 t&.5Qtherwise, facing
elements can be composed of welded wire mesh, dry cast modular blocks or
geosynthetics facings, among other g/@%s to provide a proper footing and toe
confinement, base facing panels must me embedded approximately 10 to 15% of
the total MSE wall heigh.



1 In-soil reinforcementscan be categorized by various descriptions. Regarding
geometry, three types can be idéatl. Those being linear unidirectional, which
includeboth metallic and geosynthetic strip, composite unidirectional, composed
of grids or mats with spacings greater than 150 mm, and plarebtional,
which include geosynthetic sheets and welded aven wire meshedAnother
description of reinforcements is that by material type, being categorized in
metallic (steel) and nemetallic (polymeric materials)inally, if extensibility
relative to the soil’s extensibility is considered, reinforcemenbeatiassified as
inextensible, as in the elongation at failure of the reinforcement is considerably
less than the soil, and extensible, in which the deformation at failure is equal or
greater than the soil deformabilityDepending on the selected type of
reinforcement, durability and corrosion resistance must be ensured for the design
life of the structureReinforcements are usually attached to the inside face of
panels by means of metallic connection elements

1 Backfill material mustbe carefully curated and comply with draining,
granulometric and mechanical criteria. order to obtain the desired friction
within the reinforcement and reinforced soil, backfill matesidh high frictional
characteristic is required, generally gramukoils with low fine content
Depending on the type of reinforcement used (mainly metallic or polymeric),
considerations must be taken into account in order to avoid chemical degradation
and installation damage. Backfill material shall be carefully plased
compacted, attaining the desired maximum density and optimal water content for
every layer placed.

1 Bearingpadsserve the purpose of avoiding concrete to concrete contact, provide
a gap between panels for draining purposes, transfer the load bdagesn
elements and accommodate possible settlements that occur during the
construction process. These elements are usually made from polymeric materials.

1 Leveling padsisually consist in a mortar of legrade cement at the base of the
structure to funevn as a footing for the first row of facing elemernt$iese
elements do not intend to act as a foundation which supports the structure, but as
analigning element in which to properly position and align the soon to be built
structure. With this criteriom mind, leveling pad dimension must be limited to
the facing element dimension.

Figure2-2 details a MSE wall under construction for and overpass precast concrete
panels (aps well as an under construction MSE wall with its main components labeled
including facing panels, bkl material, polymeric strips reinforcement and connection
elementgb). Depending on the use and application of the structure, permanent MSE walls
can require design life period of up to 120 years.

MSE wall design criteria must verify both external aimtékernal stability. Failure
mechanisms must be verified via ultimate limit state. Deformation conditions must be
verified viaservice limit statd AASTHO 2020). External stability verifications include
toppling, foundation bearingsistancgbase plandiging and global stabilityas depicted

in Figure2-3.
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Figure2-2. (a) Construction of aMSE wall for an overpass arfd) MSE wall under
construction with all its main components

Regarding internal stability, reinforcement rupturanwarranted reinforcement
elongation,or failure at the groundeinforcement interface (pullodailure) must be
verified. For this, the location of the theorical maximum tensile load acting over the
reinforcements is crucial. This boundary separates the active and resistance zones, those
being the active earth pressure zone acting against tirengtaall and the zone in which

the reinforcements provide added strength to thelseitensible materials present lower
deformations at failure when compared to the soil, on the other hand, extensible materials
present higher strain rates at failuents, thus, maximum tensile loads will should have
different distributions through the reinforced backfifigure 2-4 details thetheorical
delimitation of active and passive zones present in a MSE wallimétttensible, for
instance steel strips, amktensible reinforcementsuch as PET strap$he potenal

failure zone indicates the zone of maximum stress that the reinforcement must endure
and, as such, proves a relevant zone when analyzing the effect of ambient conditions.

When analyzing structures with extensible reinforcements, the maximum stressitzon
be a bilinear function based on face batter, wall height and the inclination of any fills at

4



above the structure. In the case of extensible reinforcements, particularly for near
vertical, the potential failure surface is traced from the foot o$ttheeture and upwards

with an angle ofe 1 v —, withfrbeing the reinforced soll friction angle.

P e ——

.'-‘.i

Bearing

Figure2-3. Potential external failure @hanism of MSE walls (Berg et at. 2009)

Depending on the desired type of wall, mainly the facing element and reinforcement type
selection, the construction process will vaFar stiff facing elements with strlke
reinforcementsite construction sequenisedetailed below.

1 Installation of amall foundation at the foot of the wall to serve not as a structural

element but as a leveling pad.

Placement of thérst facing element is placed in a verticahnner.

Spread and compaction of reinforced soil matetpl to the first panel

reinforcemenconnection

1 Placement of the first reinforcement element perpendicular to the facing panel
direction. Reinforcements can be attached to the facing panels in various ways
depending on the chosen connection.

1 Continue to fill and compact materialp to the next panefreinforcement
connection and repeat the reinforcement installation.

1 Fill and compact with selected granular backfill until the full panel height is
reached

1 Place a new panel above the already installed panetder to prevent concrete
to congete contact, bearing pads must be placed between panels.

1 Repeat the fill and compact process until the desired height is reached.

T
T
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Figure2-4. Location oftheoricalpotential failure surface for internal stability design of MSE
wall using(a) inextensible and (lBxtensible reinfcements (AASHTQ020

Figure 2-5 details thestressstrain behaviour of a dense sandy soil under different
confining pressures. When in shear loading, a significant increase in volumetric strains
can be observed for high démyslow confined cohesionless soils, which is reflected in

an increase in strengthpéak> f constant voump When compared to a high confined state at
constant volume. The described phenomenon is commonly name as soil dilatancy.

Whenhorizontalreinforcanents are embedded within the compacted soil backfill, if the
aforementioned dilatancy effect is considered, when vertical loading is applied, lateral
pressures are developed aimil consequence stressese developed along the
reinforcementsIf no reinfocemens are included, the effect of dilatancy results in a
different stress distributigras detailed ifrigure2-6, where lateral earth pressures differ
(Damians 2016)
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Figure2-5. Stressstrain behaviouover different confining pressures for sandy soils (Damians
2016).

Due to the effect of dilatancy, an increase in volume increases the vertical stresses within
the placed reinforcements. As a consequence, an apparent cohesion is developed,
increasing the soil strength as an apparent cohesion. Another explanation réties on
absorption of part of the horizontal stresses by the reinforcement elements, which results
in a reduces horizontal stress for the reinforced soil and, under low confining pressures,
results in an increased friction andgiégure2-7 depicts Mohr’s circle with the previously
described phenomenon.

(a) Reinforced sample (b) Unreinforced sample
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Figure2-6. Example of (a) reinforced and (b) unreinforced s;i‘r_wples under log@amians
2016)
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Figure2-7. Mohr-Coulomb failure dteria for reinforced soil (Damians 2016)

2.2 MSEwall sustainability considerations

Polymeric reinforcement materials are now used routinely as soil reinforcement and
stabilization, as well as barrier systems, roads and hydraulics, within the framework of
Civil Engineering projects. Geosynthetic materials can play a role in meeting the global
challenges facing society in terms of United Nations sustainability goals, approaches for
counting carbon in both mitigating, and adapting to the impacts of climate ofizirge

et al. 2017).

Besides an economic and social assessment of a project, it has become more common or
even required the inclusion of an environmental sustainability assessment, defined mainly
by the generation of greenhouse gas (GHG) emissions. GH§Siens must consider all
generations sources, being direct or indirect duriclgarly defined period of time.

In order toanalyze and compare the environmental impact of a project, emissions over its
complete construction, use and disposal period mustis&dered. One possible method

of doing so is the Life Cycle Assessment (LCA), in which the impact, beginning from the
extraction of raw materials, up urgite delivery (cradlg¢o-gate) oito endof -life (cradle
to-grave), is evaluatedlSO 2006a)SO 2006b).

Damians et al(2016) studied the environmental impact of various earth retaining
structures, mainly gravity, cantilever and MSE walls with steel and polymeric
reinforcements for various heights. Said stuiysidered a cradi®-operation time
frame in which material production transportation and constructiostages are
consideredFigure 2-8 details a flow chart showing the stages and components included
in the mentionedLCA study, detailing included and excluded stagegure 2-9 shows

the obtained restd regarding equivalent carbon dioxide (L@missions as a function of

wall height for various structure typé®esults showed that MSE wall prove to be a better
solution for every case study as the environmental impact is lower than that of cantilever
ard gravity wall solutions when comparing global warming potent@s in GHG
emissiony, cumulative energy demand and various midpoint and endpoint categories.
The main reasons being the materials and components used, that being concrete for
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gravity walls ad a larger use of steel in cantilever walls. Polyoreinforced MSE walls
showed slightly but not significant better results regarding environmental impact when
compared to steel reinforced MSE walls.
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Figure2-8. Flow chart of lhe included stages and components of an LCA citaeigave system
(Damians et al 2(®)
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Figure2-9. Total global warming gtential (as equivalent G{for eath retaining structures for
various wall heights including material categories, transportation and construction (Damians et
al. 2016)
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As describe by Damians et £018), in order to develop a full sustainability assessment,
economic and social factors ust also be incorporated. Regarding economic
consideration, manufacture, transport and loss of materials, as well as on site fabrication
and labor must be included. Additionally, depending on the used time frame, operation
maintenance, dismantling and disal of material must be included. Social factors vary
widely between project and can be listed but not limitedsafety and aesthetic
considerations as well as design and constructability criteria.

Figure2-10 presents the calculated total economic costs for various wall types in which
MSE walls, for polymeric or steel reinforcements, prove to be the moseftestive
solution as wall height inceses when compared to gravity or cantilever wall solutions.
For smaller wall heights (3 to 5 meters) cost discrepancy between solutions is negligible

12 000 |

—B—  Gravity

1(}(}(}@: —@— Cantilever

| —&— MSE wall: steel

2000 | —9v— MSE wall: polymeric X -
| —x— Koerneretal (1998) .~ -~

6000

4000 1

2000 1

= Polymeric
= Steel

Cost per metre running length of wall: €

3 5 7 10 115 15
Wall height H: m

Figure2-10. Total cost for various wall types as a €tinn of wall height (Damians et.&018)

2.3 Atmospheric effects

Previous studies have shown that ambient boundary temperatures can have considerable
effect on insoil temperatureslistributionsin MSE wall backfills, especially near the
surface (Segrestin and Jailloux 1988, Kazosi et al. 2015, Bathurst 1992). Furéhermo
backfill temperatures have been shown to follow an annual cyclic pattern (Murray and
Farrar 1988)oscillating within a certain degree of the annual mean temperétsitee

depth increases, 4soil temperature tends to a constant value that can bexapated

by the annual mean ambient temperature. As such, the average backfill temperature for
MSE walls, depending on the geographic location, can be higher than the values presented
in design standards (Kazosi et al. 2015).

Thermal models for MSE walfsund in the literature (Murray and Farrar 1988, Segrestin
and Jailloux 1988, Kazosi et al. 2015) have modelled temperature series data by
sinusoidal curves.
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